
Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities
of LLMs

Abstract

Reasoning encompasses two typical types: de-
ductive reasoning and inductive reasoning. De-
spite extensive research into the reasoning ca-
pabilities of Large Language Models (LLMs),
most studies have failed to rigorously differenti-
ate between inductive and deductive reasoning,
leading to a blending of the two. This raises an
essential question: In LLM reasoning, which
poses a greater challenge - deductive or induc-
tive reasoning? While the deductive reasoning
capabilities of LLMs, (i.e. their capacity to
follow instructions in reasoning tasks), have
received considerable attention, their abilities
in true inductive reasoning remain largely unex-
plored. To investigate the true inductive reason-
ing capabilities of LLMs, we propose a novel
framework, SolverLearner. This framework
enables LLMs to learn the underlying function
(i.e., 𝑦 = 𝑓𝑤 (𝑥)), that maps input data points
(𝑥) to their corresponding output values (𝑦),
using only in-context examples. By focusing
on inductive reasoning and separating it from
LLM-based deductive reasoning, we can isolate
and investigate inductive reasoning of LLMs in
its pure form via SolverLearner. Our observa-
tions reveal that LLMs demonstrate remarkable
inductive reasoning capabilities through Solver-
Learner, achieving near-perfect performance
with ACC of 1 in most cases. Surprisingly, de-
spite their strong inductive reasoning abilities,
LLMs tend to relatively lack deductive reason-
ing capabilities, particularly in tasks involving
“counterfactual” reasoning.

1 Introduction

Recent years have witnessed notable progress in
Natural Language Processing (NLP) with the de-
velopment of Large Language Models (LLMs) like
GPT-3 (Brown et al., 2020) and ChatGPT (Ope-
nAI, 2023). While these models exhibit impressive
reasoning abilities across various tasks, they face
challenges in certain domains. For example, a re-
cent study (Wu et al., 2023) has shown that while

LLMs excel in conventional tasks (e.g., base-10
arithmetic), they often experience a notable decline
in accuracy when dealing “counterfactual” reason-
ing tasks that deviate from the conventional cases
seen during pre-training (e.g., base-9 arithmetic).
It remains unclear whether they are capable of fun-
damental reasoning, or just approximate retrieval.

In light of this, our paper seeks to investigate
the reasoning capabilities of LLMs. Reasoning
can encompasses two types: deductive reasoning
and inductive reasoning, as depicted in Fig. 1. De-
ductive reasoning starts with a general hypothesis
and proceeds to derive specific conclusions about
individual instances while inductive reasoning in-
volves formulating broad generalizations or princi-
ples from a set of instance observations. Despite
extensive research into the reasoning capabilities of
LLMs, most studies have not clearly differentiated
between inductive and deductive reasoning. For in-
stance, arithmetic reasoning task primarily focuses
on comprehending and applying mathematical con-
cepts to solve arithmetic problems, aligning more
with deductive reasoning. Yet, when employing
in-context learning for arithmetic reasoning tasks,
where the model is prompted with a few 〈input,
output〉 examples, the observed improvements are
often attributed to their inductive reasoning capac-
ity. This fusion of reasoning types poses a critical
question: Which is the more significant limita-
tion in LLM reasoning, deductive or inductive
reasoning?

To explore this question, it’s crucial to differen-
tiate between deductive and inductive reasoning.
Current methods that investigate deductive and in-
ductive reasoning often rely on disparate datasets,
making direct comparisons challenging (Xu et al.,
2023a; Tang et al., 2023; Dalvi et al., 2021; Han
et al., 2022; Sinha et al., 2019; Yu et al., 2020). To
overcome this limitation, we have designed a set of
comparative experiments that utilize a consistent
task across different contexts, each emphasizing

(b) Few-shot IO w/ Mapping Function

Q: Assuming that all numbers are in base-8 where
the digits are "01234567", what is 57+27?
A: The result for 57+27 is 106.
Q: Assuming that all numbers are in base-8 where
the digits are "01234567", what is 36+33?
A:

(Output) The result for 36+33 is 71.

(a) Zero-shot

Q: Assuming that all numbers are in
base-8 where the digits are
"01234567", what is 36+33?
A:

(Output) 71

Deductive Reasoning Inductive Reasoning
General Principle Specific Conclusion

The result for 36+33 is 71.

General ➔ Specific

Deductive
Reasoning

(c) Few-shot IO w/o Mapping Function

Q: You are asked to add two numbers, the
base of which is unknown, what is 57+27?
A: The result for 57+27 is 106.
Q: You are asked to add two numbers, the
base of which is unknown, what is 36+33?
A:

(Output) The result for 36+33 is 71.

(d) SolverLearner
Q: You are asked to add two numbers, the base of which is unknown, what is 57+27?
A: The result for 57+27 is 106.
Q: What is the function to map the input to the output?
A:
(Output) def solver(n1: str, n2: str) -> str:\n # Let's analyze the given examples to find
the base\n # 57 + 27 = 106\n # It seems like the base is 8 (octal)\n\n # Convert the
input strings to integers in base 8\n num1 = int(n1, 8)\n num2 = int(n2, 8)\n\n #
Calculate the sum\n result = num1 + num2\n\n # Convert the result back to a string in
base 8\n return oct(result)[2:]

Addition in base 8
Begin from the rightmost digit, perform the addition. If the sum
exceeds 8, subtract 8, record the remainder, and carry over 1
to the next column. Repeat this process from right to left for
each column, and your final result will be the sum in base 8.

The result for 71+44 is 135.
The result for 42+70 is 132.
The result for 50+45 is 115.
The result for 61+55 is 136.
The result for 63+22 is 105.

Specific ➔ Specific Specific ➔ GeneralGeneral + Specific ➔ Specific

Specific Observation General Principle
Addition in base 8

Begin from the rightmost digit, perform the addition. If the sum
exceeds 8, subtract 8, record the remainder, and carry over 1
to the next column. Repeat this process from right to left for
each column, and your final result will be the sum in base 8.

Inductive
Reasoning

Integrate the deductive reasoning with few-shot
examples

Traditional IO prompting for inductive
reasoning

Completely decouple inductive reasoning from deductive reasoningDeductive Reasoning

Deductive Setting (mapping function is provided) Inductive Setting (mapping function is not provided)

Figure 1: We have designed a set of comparative experiments that utilize a consistent task across different contexts, each
emphasizing either deductive (i.e., methods (a) and (b)) or inductive reasoning (i.e., methods (c) and (d)). As we move from left
to right across the figure, the methods gradually transition their primary focus from deductive reasoning to inductive reasoning.
Specifically, method (a) is designed to demonstrate the LLMs’ deductive reasoning in its pure form. Conversely, method (c)
utilizes Input-Output (IO) prompting strategies, which are prevalent for probing the inductive reasoning skills of LLMs. However,
we can observe that methods (c) cannot fully disentangle inductive reasoning from deductive reasoning as their learning process
directly moves from observations to specific instances, blurring the lines between the two. To exclusively focus on and examine
inductive reasoning, we introduce a novel framework called SolverLearner, positioned at the far right of the spectrum.

either deductive (i.e., methods (a) and (b)) or induc-
tive reasoning (i.e., methods (c) and (d)), as depicted
in Fig 1. For instance, in an arithmetic task, the pro-
ficiency of a LLM in deductive reasoning depends
on its ability to apply a given input-output mapping
function to solve problems when this function is
explicitly provided. Conversely, an LLM’s skill
in inductive reasoning is measured by its ability
to infer these input-output mapping functions (i.e.,
𝑦 = 𝑓𝑤 (𝑥)), that maps input data points (𝑥) to their
corresponding output values (𝑦), based solely on
in-context examples. The base system often serves
as the input-output mapping function in an arith-
metic task. In line with the aforementioned setup,
we employ four methods to investigate the reason-
ing capacity of LLMs. As we move from left to
right across Fig. 1, the methods gradually transition
their primary focus from deductive reasoning to
inductive reasoning. Method (a), at the far left of
the figure, aims to explore the deductive reasoning
capabilities of LLMs in its pure form, where no in-
context-learning examples are provided (zero-shot
settings). While exploring deductive reasoning in
its pure form appears relatively straightforward in
zero-shot settings, untangling inductive reasoning
poses more significant challenges. Recent studies
have investigated the inductive reasoning abilities
of LLMs (Yang et al., 2022; Gendron et al., 2023;
Xu et al., 2023b), they have primarily used Input-
Output (IO) prompting (Mirchandani et al., 2023),
which involves providing models with a few 〈in-
put, output〉 as demonstrations without providing

the underlying mapping function. The models
are then evaluated based on their ability to han-
dle unseen examples, as illustrated in method (c).
These studies often find LLMs facing difficulties
with inductive reasoning. Our research suggests
that the use of IO prompting might not effectively
separate LLMs’ deductive reasoning skills from
their inductive reasoning abilities. This is because
the approach moves directly from observations to
specific instances, obscuring the inductive reason-
ing steps. Consequently, the underperformance in
the context of inductive reasoning tasks may be
attributed to poor deductive reasoning capabilities,
i.e., the ability of LLMs to execute tasks, rather than
being solely indicative of their inductive reasoning
capability.

To disentangle inductive reasoning from deduc-
tive reasoning, we propose a novel model, referred
to as SolverLearner. Given our primary focus on in-
ductive reasoning, SolverLearner follows a two-step
process to segregate the learning of input-output
mapping functions from the application of these
functions for inference. Specifically, functions are
applied through external interpreters, such as code
interpreters, to avoid incorporating LLM-based
deductive reasoning.

We evaluate the performance of several LLMs
across various tasks. LLMs consistently demon-
strate remarkable inductive reasoning capabilities
through SolverLearner, achieving near-perfect per-
formance with ACC of 1 in most cases. Surprisingly,
despite their strong inductive reasoning abilities,

LLMs tend to exhibit weaker deductive capabilities,
particularly in terms of “counterfactual” reasoning.
This finding, though unexpected, aligns with the
previous research (Wu et al., 2023). In a zero-shot
scenario, the ability of an LLM to correctly exe-
cute tasks by applying principles (i.e. deductive
reasoning) heavily relies on the frequency with
which the model was exposed to the tasks during
its pre-training phase.

2 Task Definition

Our research is focused on a relatively unexplored
question: Which presents a greater challenge to
LLMs - deductive reasoning or inductive reasoning?
To explore this, we designed a set of comparative
experiments that apply a uniform task across var-
ious contexts, each emphasizing either deductive
or inductive reasoning. The primary distinction
between the deductive and inductive settings is
whether we explicitly present input-output map-
pings to the models. Informally, we can describe
these mappings as a function 𝑓𝑤 : 𝑋 → 𝑌 , where
an input 𝑥 ∈ 𝑋 is transformed into an output 𝑦 ∈ 𝑌 .
We distinguish between the deductive and inductive
settings as follows:

• Deductive setting: we provide the models with
direct input-output mappings (i.e., 𝑓𝑤).

• Inductive setting: we offer the models a few
examples (i.e., (𝑥, 𝑦) pairs) while intentionally
leaving out input-output mappings (i.e., 𝑓𝑤).

For example, consider arithmetic tasks, where the
base system is the input-output mapping function.
The two approaches on the left side of Fig. 1 (i.e.,
method (a) and (b)) follow the deductive setting,
illustrating the case where the arithmetic base is
explicitly provided. In contrast, the two methods
(i.e., method (c) and (d)) on right side of Fig. 1
adhere to the inductive setting, depicting the sce-
nario characterized by the absence of a specified
arithmetic base, while a few input-output examples
are provided for guidance.

3 Our Framework for Inductive
Reasoning: SolverLearner

While recent studies have explored the inductive
reasoning abilities of LLMs (Yang et al., 2022; Gen-
dron et al., 2023; Xu et al., 2023b), they have primar-
ily relied on Input-Output (IO) prompting (Mirchan-
dani et al., 2023). This method involves providing

models with a few 〈input, output〉 demonstrations
and then evaluating their performance on unseen
examples, as depicted in method (c) in Fig. 1. Our
research suggests that the use of IO prompting and
directly evaluating the final instance performance
might not effectively separate LLMs’ deductive
reasoning skills from their inductive reasoning abil-
ities. This is because the approach moves directly
from observations to specific instances, obscuring
the inductive reasoning steps. To better disentangle
inductive reasoning, we propose a novel framework,
SolverLearner. This framework enables LLMs to
learn the function (i.e., 𝑦 = 𝑓𝑤 (𝑥)), that maps in-
put data points (𝑥) to their corresponding output
values (𝑦), using only in-context examples. By
focusing on inductive reasoning and setting aside
LLM-based deductive reasoning, we can isolate and
investigate inductive reasoning of LLMs in its pure
form via SolverLearner. SolverLearner includes
two-stages as illustrated in Fig. 2:

• Function Proposal: In this initial phase, we
propose a function, that could be used to map
input data points (𝑥) to their corresponding output
values (𝑦). This is corresponding to the inductive
reasoning process.

• Function Execution: In the second phase, the
proposed function is applied through external
code interpreters to solve the test queries for
evaluation purposes. This phase ensures that
the LLM is fully prevented from engaging in
deductive reasoning.

3.1 Framework
In this subsection, we will take the arithmetic task
as a case study to demonstrate the entire process.

Function Proposal: Given the in-context ex-
amples, the primary goal of LLMs is to learn a
function that can map input data points (𝑥) to their
corresponding output values (𝑦). This process of
learning the mapping between inputs and outputs
is akin to inductive reasoning, while employing
the learned function to address unseen queries
aligns with deductive reasoning. In order to sepa-
rate inductive reasoning from deductive reasoning,
the execution of the learned function should be
completely detached from LLMs. To achieve this
separation, external tools such as code interpreters
serve as efficient way to execute these functions in-
dependently. By encapsulating the learned function
within Python code, we can effectively detach the
duty of deductive reasoning from LLMs, assigning

The result for 71+44 is 135.
The result for 42+70 is 132.
The result for 50+45 is 115.
The result for 61+55 is 136.
The result for 63+22 is 105.
The result for 72+62 is 154.
The result for 57+27 is 106.
The result for 52+76 is 150.

8 Shot Examples
Python Function 14+57

44+45
...

61+23
22+77

Test Queries

② Function
Execution

① Function
Proposal

Figure 2: An overview of our framework SolverLearner for inductive reasoning. SolverLearner follows a two-step process to
segregate the learning of input-output mapping functions from the application of these functions for inference. Specifically,
functions are applied through external code interpreters, to avoid incorporating LLM-based deductive reasoning.

it solely to these external executors. For instance,
in function proposal stage for an arithmetic task,
we have:

“You are an expert mathematician and program-
mer. You are asked to add two numbers, the base
of which is unknown. Below are some provided
examples: The result for 76+76 is 174.
Please identify the underlying pattern to determine
the base being used and implement a solver() func-
tion to achieve the goal.
def solver(n1: str, n2: str) -> str:
Let’s write a Python program step by step
Each input is a number represented as a string.
The function computes the sum of these numbers
and returns it as a string. ”

Function Execution: In the second phase, func-
tions are executed through external code interpreters
to solve the test cases for evaluation purposes. These
code interpreters act as “oracle” deductive reason-
ers, fully preventing the LLM from involving deduc-
tive reasoning. This ensures that the final results
reflect only the inductive reasoning capability of the
LLM. To further decouple the LLM’s influence in
this phase, test cases are generated using a template
without involving the LLM. More details can be
found in Appendix A.1.3.

4 Tasks

In this section, we provide a brief overview of the
tasks under consideration. Our focus is on inves-
tigating the reasoning abilities of LLMs in both
deductive and inductive reasoning scenarios. To
ensure a robust evaluation, we carefully select tasks
that lend themselves well to comparison. Firstly, to
prevent LLMs from reciting tasks seen frequently
during pre-training, which could artificially inflate
performance in deductive reasoning, a significant
portion of the tasks falls into the category of “coun-

terfactual reasoning” tasks. Secondly, in the context
of inductive reasoning, where only a few in-context
examples are available without the mapping func-
tion, our objective is to learn the function that
maps inputs to outputs based on this restricted
dataset. To achieve this, we choose tasks that are
well-constrained, ensuring the existence of a single,
unique function capable of fitting this limited data.
Detailed descriptions of each task and the prompts
used can be found in Appendix A.1 and A.2.

Arithmetic In this study, we focus on the two-
digit addition task previously explored in the work
of Wu et al. (2023). We investigate multiple
numerical bases, specifically base-8, 9, 10, 11, and
16 where base 10 corresponds to the commonly
observed case during pretraining. In the context of
deductive reasoning, the base is explicitly provided
without any accompanying in-context examples,
and the LLM is expected to perform the addition
computation by relying on its inherent deductive
reasoning abilities. Conversely, in the context of
inductive reasoning, instead of explicitly providing
the base information to LLMs, we provide LLMs
solely with few-shot examples and require them
to induce the base through these examples and
subsequently generate a function to solve arithmetic
problems.

Basic Syntactic Reasoning In this setting, we
concentrate on tasks related to syntactic recognition
previously explored by Wu et al. (2023). Our
objective is to evaluate LLMs using artificially
constructed English sentences that vary from the
conventional subject-verb-object (SVO) word order.
For deductive reasoning, we directly provide the
new word order to LLMs without any contextual
examples, challenging them to identify the subject,
verb, and object within this artificial language. In
contrast, for inductive reasoning, we do not give

explicit instructions on the changes in word order.
Instead, we introduce sentence pairs where one
sentence follows the standard word order, and the
other follows a modified sequence. Through this
setting, LLMs are expected to learn the specific
changes made to the word order and then apply this
learned rule to identify the subject, verb, and object
within new sentences.

Spatial Reasoning In this task, we investigate
the spatial reasoning previously investigated by Wu
et al. (2023). Our specific focus is on modifying
the direction-unit vector mapping and determining
the object coordinates in this revised system. We
explore multiple systems, starting with the com-
monly observed case during pretraining, where up
corresponds to north, down to south, left to west,
and right to east. This is compared to coordinate
systems with swapped, rotated, and randomly per-
muted axes. For deductive reasoning, we directly
provide the direction-unit vector mapping without
any contextual examples, requiring LLMs to com-
pute the object coordinates within these systems.
Conversely, in the context of inductive reasoning, in-
stead of directly explaining the changes made to the
direction-unit vector mapping to LLMs, we present
LLMs with a few example shots and challenge them
to infer the changes made to the mapping. They
are then expected to apply this learned function to
determine the object coordinates in the system.

Cipher Decryption Under this scenario, we ex-
plore an innovative task that we have created, con-
centrating on the decryption of strings encrypted
using specific cipher systems. We have incorpo-
rated three particular cipher systems for this ex-
ploration: the Alphabetically Sorting Cipher the
Caesar Cipher and the Morse Cipher. For deduc-
tive reasoning, we directly inform LLMs about the
cipher system being used, yet we do not offer any
contextual examples. The objective for LLMs is to
decode strings according to these cipher systems.
Conversely, in the inductive reasoning scenario, our
task involves providing LLMs with several exam-
ples, each consisting of an encrypted string and
its decrypted version. The main challenge for the
models in this scenario is first to identify what ci-
pher system was used and then to apply that cipher
system to decrypt an unseen string.

5 Results

For each task, we evaluate our proposed Solver-
Learner for pure LLM inductive reasoning and

other settings using two different models, gpt-3.5-
turbo-1106 and gpt-4-1106-preview, which are de-
noted as GPT-3.5 and GPT-4 respectively. Since
both methods are closed-source, we do not provide
specific information about their size, architecture,
and pre-training particulars. Our experiments pri-
marily focus on investigating the reasoning abilities
of LLMs in both deductive and inductive reasoning
scenarios. Therefore, we structure our evaluation
across two distinct settings to highlight each type
of reasoning. The formal definition of each setting
is provided in Sec. 2. For the deductive setting, two
methods are proposed for investigation:

• Zero-shot evaluates deductive reasoning ability
of the LLMs in its pure form. It tests the LLM’s
ability to conclude information about specific
individuals based solely on instructions, without
relying on examples.

• 8-IO w/ Mapping Function (MF) follows the
deductive setting but enhances LLM reasoning
further by incorporating in-context examples. It
aligns with the most commonly used prompt
methods for enabling LLM reasoning. With the
inclusion of in-context examples, this approach
can be seen as leveraging inductive reasoning to
augment deductive reasoning.

For the inductive setting, we propose two methods
for evaluation:

• 8-IO w/o Mapping Function (MF) aligns with
traditional input-output (IO) prompting methods
widely used to investigate the inductive reasoning
capability of LLMs. However, as this method
proceeds directly from a set of observations to
specific target instances, it remains intertwined
with LLM-based deductive reasoning.

• 8-shot SolverLearner corresponds to our pro-
posed framework for inductive reasoning, capable
of evaluating inductive reasoning ability of the
LLMs in its pure form. It segregates the learning
of input-output mapping functions from the ap-
plication of these functions for inference, thereby
preventing the blend of LLM-based deductive
reasoning into the process.

Besides using 8-shot examples, our study also in-
cludes experiments with 16-shot examples to assess
how changes in the number of in-context examples
impact the results. Experimental results are given
in the Appendix A.3. Generally, the results indicate

Arithmetic Basic Syntax Spatial Cipher Decryption

8 9 10 11 16
Base

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
0-shot
8-IO w/ MF

OSV OVS SOV VOS VSO
Order

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
0-shot
8-IO w/ MF

Default S-NS S-WE R90 R180 R270 Random
Coordinate

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
0-shot
8-IO w/ MF

Alphabetically Sorting Caesar Morse
Encryption System

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AC
C

GPT-3.5
0-shot
8-IO w/ MF

8 9 10 11 16
Base

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
0-shot
8-IO w/ MF

OSV OVS SOV VOS VSO
Order

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
0-shot
8-IO w/ MF

Default S-NS S-WE R90 R180 R270 Random
Coordinate

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
0-shot
8-IO w/ MF

Alphabetically Sorting Caesar Morse
Encryption System

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
0-shot
8-IO w/ MF

Figure 3: Comparison of the deductive reasoning abilities of LLMs across various tasks. Different methods are illustrated
through color-coded bars: blue bars indicate the results achieved using Zero-shot, while orange bars show the performance of
8-IO w/ Mapping Function (MF).

8 9 10 11 16
Base

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours
8-IO w/o MF

OSV OVS SOV VOS VSO
Order

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours
8-IO w/o MF

Default S-NS S-WE R90 R180 R270 Random
Coordinate

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours
8-IO w/o MF

Alphabetically Sorting Caesar Morse
Encryption System

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours
8-IO w/o MF

8 9 10 11 16
Base

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
8-IO w/o MF

OSV OVS SOV VOS VSO
Order

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
8-IO w/o MF

Default S-NS S-WE R90 R180 R270 Random
Coordinate

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
8-IO w/o MF

Alphabetically Sorting Caesar Morse
Encryption System

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
8-IO w/o MF

Figure 4: Comparison of the inductive reasoning abilities of LLMs across various tasks. Different methods are illustrated
through color-coded bars: blue bars indicate the results achieved using our proposed SolverLearner, while orange bars show the
performance of 8-IO w/o Mapping Function (MF).

8 9 10 11 16
Base

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours (inductive)
0-shot (deductive)

OSV OVS SOV VOS VSO
Order

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours
0-shot

Default S-NS S-WE R90 R180 R270 Random
Coordinate

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours
0-shot

Alphabetically Sorting Caesar Morse
Encryption System

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-3.5
Ours (inductive)
0-shot (deductive)

8 9 10 11 16
Base

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
0-shot

OSV OVS SOV VOS VSO
Order

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
0-shot

Default S-NS S-WE R90 R180 R270 Random
Coordinate

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
0-shot

Alphabetically Sorting Caesar Morse
Encryption System

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

GPT-4
Ours
0-shot

Figure 5: Comparison of the inductive reasoning abilities versus deductive reasoning abilities of LLMs across various
tasks. Different methods are illustrated through color-coded bars: blue bars indicate the results achieved using our proposed
SolverLearner for inductive reasoning, while orange bars show the performance of Zero-shot for deductive reasoning.

that an increase in the number of in-context exam-
ples yields only slight improvements across both
deductive and inductive reasoning scenarios. Fur-
thermore, we conduct an ablation study concerning
our proposed SolverLearner in Appendix A.5 for
deeper insights into its functionality.

5.1 Main Results

The results for all tasks are presented from Fig. 3
through Fig. 5. Specifically, Fig. 3 concentrates on
comparing performances in the deductive setting,
while Fig. 4 examines comparisons in the inductive
setting. Additionally, Fig. 5 focuses on contrasting
the models’ capabilities across deductive and induc-
tive setting. For further reference, the prompts used
for all tasks are included in Appendix A.2, and the
full numerical results can be found in Appendix A.3.

LLMs exhibit poor deductive reasoning capa-
bilities, particularly in “counterfactual” tasks.
We include two methods in Fig. 3, Zero-shot and
8-IO w/ Mapping Function (MF), to illustrate the
deductive reasoning capability of LLMs. Our obser-
vations reveal that LLMs exhibit relatively weaker
deductive capabilities, especially in “counterfac-
tual” tasks, while showing prowers in standard
tasks like base-10 arithmetic. This aligns with
findings reported in (Wu et al., 2023). Integration
of in-context examples notably enhances LLMs’
performance in various scenarios, suggesting that
their improvement stems from the acquisition of
knowledge through inductive reasoning from these
examples. This further confirms the exceptional
inductive reasoning abilities of LLMs. This com-
bined evidence suggests that LLMs face challenges
in precisely following instructions and executing
commands, especially when those instructions are
relate to scenarios rarely encountered during their
pre-training phase.

LLMs demonstrate remarkable inductive rea-
soning capabilities through SolverLearner. We
include two methods in Fig. 4, SolverLearner (Ours)
and 8-IO w/o Mapping Function (MF), to illustrate
the inductive reasoning capability of LLMs. While
8-IO w/o Mapping Function (MF) struggles with
inductive reasoning, SolverLearner consistently
achieves perfect performance with an accuracy of
1 across all the cases with GPT-4 and succeeds in
most cases when used with GPT-3.5. This discrep-
ancy arises because the utilization of IO prompting
to directly reach conclusions on target instances may
not effectively distinguish between LLMs’ deduc-

tive and inductive reasoning skills. By completely
disentangling the inductive reasoning of LLMs,
our proposed SolverLearner shows the remarkable
inductive reasoning capabilities inherent in LLMs.
It is also noteworthy that the efficacy of LLMs’
inductive reasoning capability heavily depends on
the foundational model, with GPT-4 consistently
outperforming GPT-3.5.

Deductive reasoning presents a greater chal-
lenge than inductive reasoning for LLMs. To
compare the challenges of the deductive reasoning
capability with the inductive reasoning capability
of LLMs, we include two methods in Fig. 1, Solver-
Learner and Zero-shot, demonstrating pure induc-
tive and deductive reasoning abilities. Since the
entire reasoning involves two steps: first, obtaining
the input-output function (𝑓𝑤), which corresponds
to inductive reasoning, and second, applying the
function for inference, which corresponds to deduc-
tive reasoning. Once both steps are successfully
completed, perfect performance is observed, as
indicated by the dotted line in the figure. Zero-
shot can be seen as replacing the first step with
an oracle, with deductive reasoning capability of
LLMs to be studied, while SolverLearner can be
seen as replacing the second step with an oracle,
with inductive reasoning capability of LLMs to be
studied. By comparing the gaps of SolverLearner
and Zero-shot towards perfect reasoning, we can
observe that in most cases, LLMs can complete the
inductive step perfectly, while they rarely achieve
perfect performance on the deductive step. This in-
dicates that in LLM reasoning, deductive reasoning
presents a greater challenge. Note that we avoid to
phrasing it as directly comparing inductive and de-
ductive reasoning capabilities. Instead, we examine
whether the gaps mainly come from inductive or
inductive reasoning, considering that LLMs could
not achieve perfect counterfactual reasoning.

5.2 More Results over Additional LLMs
To validate the generalizability of our conclusion,
we have included results over additional LLMs,
claude-3-sonnet-20240229-v1:0, which is denoted
as Claude3. Due to space limitations, the full
numerical results are provided in Appendix A.4.

5.3 Ablation Study
We conducted several experiments to gain a deeper
understanding of our framework, detailed in the ab-
lation studies in Appendix A.5. These experiments
include investigating the effects of programs exe-

cuted by a Python interpreter v.s. natural language
executed by an LLM and examining the impact of
the number of in-context learning examples.

6 Related Works

6.1 In-Context Learning
GPT-3 (Brown et al., 2020) has demonstrated its
effectiveness in learning from a few demonstration
examples and solve previously unseen tasks with-
out requiring updates to its model parameters (Wei
et al., 2022a). This remarkable capability is com-
monly referred to as the “in-context learning ability”
of language models. It implies that the LLMs can
leverage its existing knowledge and generalize from
a few demonstration examples to solve new, related
tasks (Dong et al., 2022; Liu et al., 2021; Rubin et al.,
2021; Gonen et al., 2022). Some notable works
include chain-of-thought (CoT) prompting (Wei
et al., 2022b), which elicits reasoning with inter-
mediate steps in few-shot exemplars. Built upon
the CoT framework, several works expand CoT by
organizing and processing thoughts using more
complex structures, such as trees (Yao et al., 2023)
and graphs (Besta et al., 2023) or breaking a prob-
lem into sub problems and then proceeds to solve
each one independently (Zhou et al., 2022). While
these studies have effectively improved the reason-
ing capability of LLMs, they have failed to clearly
distinguish between inductive and deductive reason-
ing, let alone investigate which represents a more
critical limitation for LLM reasoning capabilities:
deductive reasoning or inductive reasoning.

6.2 Exploring LLMs’ Reasoning Skills
Despite the impressive achievements of LLMs in
various reasoning tasks, the underlying mechanisms
of their reasoning capabilities remain a subject of
debate. The question of whether LLMs genuinely
reason in a manner akin to human cognitive pro-
cesses or merely simulate aspects of reasoning
without true comprehension is still open (Huang
and Chang, 2022). For instance, Kojima et al.
have suggested that LLMs exhibit commendable
zero-shot reasoning abilities, implying that these
models can draw logical conclusions in scenarios
they have not been explicitly trained on (Kojima
et al., 2022). However, some researchers cast doubt
on the reasoning capability of LLMs. While ap-
proaches like the chain-of-thought method may
mimic human-like thought processes, it remains
uncertain whether LLMs are genuinely engaging in

reasoning or simply following patterns learned dur-
ing training (Wei et al., 2022b; Valmeekam et al.,
2022). Additionally, there’s a debate regarding
whether LLMs are symbolic reasoners (Tang et al.,
2023) or possess strong abstract reasoning capa-
bilities (Gendron et al., 2023). In light of these
seemingly contradictory conclusions, our research
aims to investigate deeper into the reasoning capa-
bilities of LLMs. We intend to dissect the nuances
of inductive and deductive reasoning within the
context of LLMs, identifying which form of reason-
ing presents a more significant challenge to their
reasoning abilities.

6.3 Equipping LLMs with External Tools
Large Language Models (LLMs) have made signifi-
cant progress in utilizing tools through frameworks
like CREATOR (Qian et al., 2023) and LATM (Cai
et al., 2023), which allow LLMs to create tools
using documentation and code. Logic-LM (Pan
et al., 2023) integrates LLMs with symbolic solvers
to improve logical problem-solving, However, these
approaches focus exclusively on deductive reason-
ing, aiming to enable LLMs to derive correct an-
swers for specific questions without incorporating
the capacity for inductive reasoning to infer underly-
ing mapping function shared by few-shot examples.
In contrast, our primary objective is not to propose
a new framework for using tools to enhance the
problem-solving capabilities of LLMs. Instead, we
aim to differentiate between deductive and inductive
reasoning within LLMs and explore which presents
a greater challenge to their reasoning abilities.

7 Conclusion

This study aims to explore a less-investigated aspect
of LLMs: within LLM reasoning, which presents
a greater challenge — deductive or inductive rea-
soning? To investigate the inductive reasoning
capacities of LLMs, we introduce a novel frame-
work called SolverLearner. By concentrating on
inductive reasoning while setting aside LLM-based
deductive reasoning, SolverLearner can scrutinize
the pure form of inductive reasoning in LLMs.
Our findings unveil remarkable inductive reasoning
prowers in LLMs through SolverLearner, achieving
near-perfect performance with an ACC of 1 in most
cases. Surprisingly, despite their strong inductive
reasoning abilities, LLMs often exhibit weaker de-
ductive capabilities, particularly in tasks involving
“counterfactual” scenarios.

Limitations

LLMs cannot perform inductive reasoning over
all the tasks In our inductive learning setting, LLMs
are provided with only a limited number of contex-
tual examples. The goal is to infer the function that
accurately maps inputs to outputs based solely on
this constrained dataset. In order to solve this prob-
lem, it is significant that we can find a unique func-
tion satisfied given these examples. For instance, a
linear function can be precisely determined given
just two data points, as it has a singular solution.
However, attempting to deduce a quadratic curve
from two points poses an insurmountable challenge
due to the existence of infinite functions capable
of passing through those specific points. Addition-
ally, LLMs might struggle to discern the correct
mapping function when the search space of the
problem expands excessively. Consider the case
of arithmetic tasks; without limiting the search
space to finding a suitable base that aligns with
the observations, the task becomes overwhelmingly
complex. This is because the search space could en-
compass any conceivable rule that accommodates
the observations.

The effectiveness of LLMs’ inductive reason-
ing capability is heavily reliant on the founda-
tional model While GPT-4 consistently showcase
impressive inductive reasoning abilities through
SolverLearner and achieve perfect performance
with ACC of 1 across all the tasks, GPT-3.5 strug-
gle to learn the correct input-output mapping func-
tion in several cases. This observation suggests
that the inductive reasoning potential of LLMs is
significantly constrained by the underlying model.

Chain of Thought (COT) has not been incor-
porated into the comparison Chain of Thought
(COT) is a significant prompting technique designed
for use with LLMs. Rather than providing a direct
answer, COT elicits reasoning with intermediate
steps in few-shot exemplars. This method was not
incorporated into our comparison as it is viewed
as a technique to improve the deductive reasoning
capabilities of LLMs. Although COT has proven to
be effective across various tasks, numerous studies
highlight a significant performance gap that COT
still needs to bridge to achieve flawless execution.

Ethical Considerations

The authors foresee no ethical concerns with the
research presented in this paper.

References
Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-

stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint arXiv:2308.09687.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zheng-
nan Xie, Hannah Smith, Leighanna Pipatanangkura,
and Peter Clark. 2021. Explaining answers with
entailment trees. arXiv preprint arXiv:2104.08661.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, and Zhifang
Sui. 2022. A survey for in-context learning. arXiv
preprint arXiv:2301.00234.

Gaël Gendron, Qiming Bao, Michael Witbrock, and
Gillian Dobbie. 2023. Large language models are not
abstract reasoners. arXiv preprint arXiv:2305.19555.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith,
and Luke Zettlemoyer. 2022. Demystifying prompts
in language models via perplexity estimation. arXiv
preprint arXiv:2212.04037.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Ekate-
rina Zubova, Yujie Qiao, Matthew Burtell, et al. 2022.
Folio: Natural language reasoning with first-order
logic. arXiv preprint arXiv:2209.00840.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. Advances
in neural information processing systems, 35:22199–
22213.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.
Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers
for faithful logical reasoning. arXiv preprint
arXiv:2305.12295.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
6922–6939.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau,
and William L Hamilton. 2019. Clutrr: A diagnostic
benchmark for inductive reasoning from text. arXiv
preprint arXiv:1908.06177.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.
2023. Large language models are in-context seman-
tic reasoners rather than symbolic reasoners. arXiv
preprint arXiv:2305.14825.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on
planning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob
Andreas, and Yoon Kim. 2023. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. arXiv preprint
arXiv:2307.02477.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun
Liu, and Erik Cambria. 2023a. Are large language
models really good logical reasoners? a compre-
hensive evaluation from deductive, inductive and
abductive views. arXiv preprint arXiv:2306.09841.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott
Sanner, and Elias B Khalil. 2023b. Llms and the
abstraction and reasoning corpus: Successes, failures,

and the importance of object-based representations.
arXiv preprint arXiv:2305.18354.

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik
Cambria, Xiaodong Liu, Jianfeng Gao, and Furu Wei.
2022. Language models as inductive reasoners. arXiv
preprint arXiv:2212.10923.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi
Feng. 2020. Reclor: A reading comprehension
dataset requiring logical reasoning. arXiv preprint
arXiv:2002.04326.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

A Appendix

A.1 Full Setups
SolverLearner is a prompting based reasoning ap-
proach, and we only need to perform inference with
LLMs.

A.1.1 Settings for Each Task
Arithmetic The arithmetic dataset introduced in
Wu et al.’s paper (Wu et al., 2023) comprises 1,000
randomly selected addition expressions, each in-
volving two-digit numbers. These expressions are
drawn from bases 8, 9, 10, 11, and 16, with sepa-
rate sampling for each base. Importantly, all the
expressions have been carefully chosen to yield
distinct results when evaluated in their respective
bases, thereby distinguishing them from one another
during the process of rule learning.

Basic Syntactic Reasoning In accordance with
the methodology outlined in Wu et al.’s work (Wu
et al., 2023), we have generated a set of 100 simple
three-word sentences (e.g., “bob likes bananas”)
with five different word order variations (e.g., “ba-
nanas bob likes” in OSV format). Subsequently,
we tasked LLMs with learning how to manipulate
sentence order. It’s noteworthy that we took great
care in selecting words to ensure that each word in
a sentence can only fulfill one specific role, such as
subject, object, or verb. For instance, we ensured
that sentences like “bob likes anna” were excluded,
as both “bob” and “anna” could potentially serve as
both subjects and objects, violating this constraint.

Spatial Reasoning The spatial reasoning dataset
introduced in Wu et al.’s paper (Wu et al., 2023)
consists of 100 rooms that were randomly selected,
and each room contains three distinct objects. The
spatial directions within these rooms are represented
using unit vectors. For instance, north is represented
as (0, 1), south as (0, -1), east as (1, 0), and west
as (-1, 0), with a y-axis pointing upward serving
as the default orientation. In our study, we have
modified the mapping between directions and unit
vectors and tasked LLMs with learning this new
direction-to-unit vector relationship. We explore
two direction-swapped scenarios (north-south and
east-west), three rotated scenarios (by 90°, 180°,
and 270°), and a randomly permuted scenario. The
primary metric we report is instance-level accuracy,
which necessitates that all three objects within a
room must be correctly positioned in order to be
considered accurate.

Cipher Decryption We’ve generated a collection

of 100 pairs of strings (e.g., “Mrxuqhb -> Journey”
for Caesar Cipher) for each of three cipher systems,
including the Alphabetically Sorting Cipher the
Caesar Cipher and the Morse Cipher. Each pair
comprises an encrypted string (e.g., “Mrxuqhb”)
and its corresponding decrypted version (e.g., “Jour-
ney”). By providing LLMs with several examples,
each containing an encrypted string alongside its
corresponding decrypted counterpart, the primary
task is to accurately determine the cipher system
employed in an open-world context.

A.1.2 Few shot Example Generation
The preparation of examples for few-shot learning
follows a straightforward process. We divide all the
data into a training set and a test set, from which few-
shot examples are extracted from the training set.
These few-shot examples are automatically prepared
by associating queries with their corresponding
ground truth answers using a pre-defined template.

A.1.3 Test Case Generation
In the function execution phase, the test cases are
generated using a template without involving LLM.
In particular, the test cases are drawn from the test
data files, containing all the queries along with
their correct answers (e.g., “76+76 = 174”). When
the LLM is used for generating code, we specify
a function interface, such as def solver(n1: str,
n2: str) -> str. Then, using the query examples
provided, like “76+76 = 174”, we create test cases
by applying this function interface to the query (e.g.,
solver(76,76)), thereby eliminating any reliance on
LLM for this process. This method ensures that our
test case generation is 100% correct.

A.2 Full Prompts
We provide the prompts that we used to query the
LLMs for all tasks in Tables 1 to 4. We do not use
the system message field for any model.

A.3 Full Results
We show the full numerical results in Tables 5 to 8.
In addition to using 8-shot examples, these results
also include experiments with 16-shot examples
to assess how changes in the number of in-context
examples impact the results.

A.4 More Results on Additional LLMs
To validate the generalizability of our conclu-
sion, we have included additional LLMs, claude-
3-sonnet-20240229-v1:0, which is denoted as

Claude3. We show the full numerical results in
Tables 9 to 12.

A.5 Ablation studies
LLMs struggle as executors when applying
learned functions. To better demonstrate the de-
ductive capacity of LLM, we present both GPT-3.5
and Python with identical code and task them with
applying the code to deduce the same set of queries.
As shown in Table 13, while the Python interpreter
can be considered an oracle, delivering flawless
performance, it proves challenging for LLMs to
accurately execute the code.

LLMs can learn the function with very few
examples when the inductive reasoning problem
is well defined. To examine the impact of the
number of few-shot examples on the inductive rea-
soning capability of LLMs, we vary the number of
in-context examples within [1,2,4,8,16] and assess
performance on the spatial reasoning task using
GPT-3.5 as presented in Table 14. We observe that
even with very few examples, GPT-3.5 can still
learn the mapping function if it is learnable.

Table 1: Prompts for the Arithmetic Task.

Mode Prompt
Zero-shot You are a mathematician. Assuming that all numbers are in base-8 where the digits are "01234567",

what is 36+33? End the response with the result in "\boxed{result}".
Few-shot IO w/ MF You are a mathematician. You are asked to add two numbers. Assuming that all numbers are in

base-8 where the digits are "01234567". Below are some provided examples:
The result for 76+76 is 174.
Please identify the base being used and determine what is 36+33? End the response with the result
in "\boxed{result}".

Few-shot IO w/o MF You are a mathematician. You are asked to add two numbers, the base of which is unknown. Below
are some provided examples:
The result for 76+76 is 174.
Please identify the base being used and determine what is 36+33? End the response with the result
in "\boxed{result}".

SolverLearner You are an expert mathematician and programmer. You are asked to add two numbers, the base of
which is unknown. Below are some provided examples:
The result for 76+76 is 174.
Please identify the underlying pattern to determine the base being used and implement a solver()
function to achieve the goal.
def solver(n1: str, n2: str) -> str:
Let’s write a Python program step by step
Each input is a number represented as a string.
The function computes the sum of these numbers and returns it as a string.
After defining the solver() function, create test cases based on the input examples and print the results.
An example of a test case could be "print(solver("76", "76"))". Place the function solver() as well as
the test cases between "START_CODE" and "END_CODE".

Table 2: Prompts for the Basic Syntactic Reasoning Task.

Mode Prompt
Zero-shot You are an expert in linguistics. Imagine a language that is the same as English with the only

exception being that it uses the object-subject-verb order instead of the subject-verb-object order.
Please identity the subject, verb, and object in the following sentences from this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

Few-shot IO w/ MF As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but uses the object-subject-verb order instead of the subject-verb-object order.
Presented below are examples of valid sentences in this constructed language, accompanied by their
corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Following the examples, please analyze the subject, verb, and object in the following sentences from
this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

Few-shot IO w/o MF As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but follows a unique grammatical structure. Presented below are examples of valid
sentences in this constructed language, accompanied by their corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Following the examples, please analyze the subject, verb, and object in the following sentences from
this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

SolverLearner As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but follows a unique grammatical structure.Presented below are examples of valid
sentences in this constructed language, accompanied by their corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Please summarize the pattern concerning the order of subject, verb and object in this invented
linguistic system. Place the pattern between START_PATTERN and END_PATTERN.

Table 3: Prompts for the Spatial Reasoning Task.

Mode Prompt
Zero-shot You are in the middle of a room. You can assume that the room’s width and height are both 500

units. The layout of the room in the following format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1], ’east’:
[1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’: ’wardrobe’, ’direction’:
’north’, ’name’: ’desk’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system using the following format:
[’name’: ’chair’, ’x’: ’?’, ’y’: ’?’, ’name’: ’wardrobe’, ’x’: ’?’, ’y’: ’?’, ’name’: ’desk’, ’x’: ’?’, ’y’:
’?’]

Few-shot IO w/ MF You are an expert programmer. You are in the middle of a room. You can assume that the room’s
width and height are both 500 units. The layout of the room in the following format:
’name’: ’laundry room’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1],
’east’: [1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’dryer’, ’direction’: ’east’, ’name’: ’sink’, ’direction’:
’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Following the examples, please give the coordinates of objects in the following room using the same
format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1], ’east’:
[1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’: ’wardrobe’, ’direction’:
’north’, ’name’: ’desk’, ’direction’: ’south’]

Few-shot IO w/o MF You are in the middle of a room. You can assume that the room’s width and height are both 500
units. The layout of the room in the following format:
’name’: ’laundry room’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’dryer’, ’direction’: ’east’,
’name’: ’sink’, ’direction’: ’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Following the examples, please give the coordinates of objects in the following room using the same
format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’:
’wardrobe’, ’direction’: ’north’, ’name’: ’desk’, ’direction’: ’south’]

SolverLearner You are an expert programmer. You are in the middle of a room. You can assume that the room’s
width and height are both 500 units. The layout of the room in the following format: ’name’: ’laundry
room’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’dryer’, ’direction’: ’east’, ’name’: ’sink’,
’direction’: ’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Please summarize the pattern and implement a solver() function to achieve the goal.
def solver():
Let’s write a Python program step by step
the input is the layout of the room
the output the coordinates of objects
After defining the solver() function. Place the function solver() between "START_CODE" and
"END_CODE".

Table 4: Prompts for the Cipher Decryption Task.

Mode Prompt
Zero-shot As an expert cryptographer and programmer, your task involves reordering the character sequence

according to the alphabetical order to decrypt secret messages. Please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

Few-shot IO w/ MF As an expert cryptographer and programmer, your task involves reordering the character sequence
according to the alphabetical order to decrypt secret messages. For example, given the sequence
"family," you must translate it into "afilmy." Below are further examples that demonstrate the
translation:
school -> chloos
Following the examples, please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

Few-shot IO w/o MF As an expert cryptographer and programmer, your task involves deciphering secret messages. For
example, given the sequence "family," you must translate it into "afilmy." Below are further examples
that demonstrate the translation:
school -> chloos
Following the examples, please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

SolverLearner As an expert cryptographer and programmer, your task involves deciphering secret messages. For
example, given the sequence "family," you must translate it into "afilmy." Below are further examples
that demonstrate the translation:
school -> chloos
Please deduce the encryption system and develop a solver() function for the decryption.
def solver():
Let’s write a Python program step by step
the input is the coded sequence
the output is the decoded sequence
After defining the solver() function. Place the function solver() between "START_CODE" and
"END_CODE".

Table 5: Full Main Results for Arithmetic Task.

Method
Base 8 9 10 11 16

GPT-3.5

Zero-shot 0.330 0.117 1 0.066 0.294
8-IO w/ MF 0.376 0.089 1 0.089 0.849
8-IO w/o MF 0.120 0.027 0.905 0.057 0.587
16-IO w/ MF 0.428 0.088 1 0.098 0.912
16-IO w/o MF 0.108 0.025 0.924 0.063 0.575

8-shot SolverLearner 0.571 0.462 1 0.095 1

GPT-4

Zero-shot 0.600 0.697 0.999 0.551 0.819
8-IO w/ MF 0.576 0.717 0.860 0.540 0.862
8-IO w/o MF 0.255 0.268 0.545 0.264 0.431
16-IO w/ MF 0.543 0.720 0.817 0.534 0.840
16-IO w/o MF 0.257 0.245 0.505 0.237 0.435

8-shot SolverLearner 1 1 1 1 1

Table 6: Full Main Results for Basic Syntactic Reasoning.

Method
Word Order OSV OVS SOV VOS VSO

GPT-3.5

Zero-shot 0.560 0.298 0.190 0.226 0.560
8-IO w/ MF 1 0.643 0.583 0.976 0.988
8-IO w/o MF 1 0.452 0.929 0.988 1
16-IO w/ MF 1 0.738 0.762 0.988 0.952
16-IO w/o MF 1 0.190 0.964 1 1

8-shot SolverLearner 0.988 1 1 1 1

GPT-4

Zero-shot 1 1 1 1 1
8-IO w/ MF 1 1 1 1 1
8-IO w/o MF 1 1 1 1 1
16-IO w/ MF 1 1 1 1 1
16-IO w/o MF 1 0.988 1 1 1

8-shot SolverLearner 1 1 1 1 1

Table 7: Full Main Results for Spatial Reasoning.

Method
Coordinates Default S-NS S-WE R90 R180 R270 Random

GPT-3.5

Zero-shot 0.273 0.702 0.143 0.012 0.310 0.060 0.024
8-IO w/ MF 0.952 0.845 0.869 0.25 0.976 0.060 0.095
8-IO w/o MF 0.369 0.726 0.310 0.083 0.690 0.107 0.071
16-IO w/ MF 0.929 0.893 0.857 0.274 0.952 0.071 0.131
16-IO w/o MF 0.452 0.667 0.452 0.083 0.798 0.131 0.083

8-shot SolverLearner 1 1 0 0 1 0 0

GPT-4

Zero-shot 0.119 0.060 0.083 0.024 0.048 0.012 0.036
8-IO w/ MF 1 1 0.964 0.643 0.952 0.679 0.190
8-IO w/o MF 1 0.976 0.929 0.560 0.976 0.429 0.333
16-IO w/ MF 1 1 0.952 0.690 0.929 0.667 0.214
16-IO w/o MF 1 0.976 0.964 0.607 0.976 0.405 0.369

8-shot SolverLearner 1 1 1 1 1 1 1

Table 8: Full Main Results for Cipher Decryption.

Method
Encryption System Alphabetically Sorting Cipher Caesar Cipher Morse Cipher

GPT-3.5

Zero-shot 0.560 0.036 0.512
8-IO w/ MF 0.595 0.024 0.464
8-IO w/o MF 0.560 0 0.452
16-IO w/ MF 0.619 0.024 0.536
16-IO w/o MF 0.512 0.012 0.440

8-shot SolverLearner 1 0 1

GPT-4

Zero-shot 0.726 0 1
8-IO w/ MF 0.774 0.060 1
8-IO w/o MF 0.75 0.583 1
16-IO w/ MF 0.798 0.179 1
16-IO w/o MF 0.738 0.583 1

8-shot SolverLearner 1 1 1

Table 9: Results over Claude3 for Arithmetic Task.

Method
Base 8 9 10 11 16

Zero-shot 0.710 0.185 0.996 0.334 0.868
8-IO w/ MF 0.783 0.385 0.995 0.473 0.913
8-IO w/o MF 0.269 0.083 0.659 0.105 0.752

8-shot SolverLearner 0 0 1 0.095 1

Table 10: Results over Claude3 for Basic Syntactic Reasoning.

Method
Word Order OSV OVS SOV VOS VSO

Zero-shot 1 1 1 1 0.988
8-IO w/ MF 1 1 1 1 1
8-IO w/o MF 1 0.976 1 1 1

8-shot SolverLearner 1 1 1 1 1

Table 11: Results over Claude3 for Spatial Reasoning.

Method
Coordinates Default R90 R180 R270 S-NS S-WE Random

Zero-shot 0.607 0.012 0.119 0.024 0.321 0.262 0.060
8-IO w/ MF 1 1 1 1 0.988 0.988 1
8-IO w/o MF 1 1 1 1 1 1 1

8-shot SolverLearner 1 1 1 1 1 1 1

Table 12: Results over Claude3 for Cipher Decryption.

Method
Encryption System Alphabetically Sorting Cipher Caesar Cipher Morse Cipher

Zero-shot 0.560 0.024 0.988
8-IO w/ MF 0.607 0.167 1
8-IO w/o MF 0.214 0.048 1

8-shot SolverLearner 0.131 0.119 1

Table 13: Results over the arithmetic task with Python interpreter as executor vs. GPT-3.5 as executor

Executor
Base 8 9 10 11 16

Python Interpreter 1 1 1 1 1
GPT-3.5 0.398 0.196 0.934 0.152 0.64

Table 14: Results for the spatial reasoning over GPT-3.5 w.t.r the number of few-shot examples

Shot
Coordinates Default S-NS S-WE R90 R180 R270 Random

1 1 1 0 0 0 0 0
2 1 1 0 0 1 0 0
4 1 1 0 0 1 0 0
8 1 1 0 0 1 0 0
16 1 1 0 0 1 0 0

