
When Diffusion Models Memorize: Inductive Biases in Probability Flow of
Minimum-Norm Shallow Neural Nets

Chen Zeno 1 Hila Manor 1 Greg Ongie 2 Nir Weinberger 1 Tomer Michaeli 1 Daniel Soudry 1

Abstract
While diffusion models generate high-quality im-
ages via probability flow, the theoretical under-
standing of this process remains incomplete. A
key question is when probability flow converges
to training samples or more general points on the
data manifold. We analyze this by studying the
probability flow of shallow ReLU neural network
denoisers trained with minimal ℓ2 norm. For in-
tuition, we introduce a simpler score flow and
show that for orthogonal datasets, both flows fol-
low similar trajectories, converging to a training
point or a sum of training points. However, early
stopping by the diffusion time scheduler allows
probability flow to reach more general manifold
points. This reflects the tendency of diffusion
models to both memorize training samples and
generate novel points that combine aspects of mul-
tiple samples, motivating our study of such behav-
ior in simplified settings. We extend these results
to obtuse simplex data and, through simulations in
the orthogonal case, confirm that probability flow
converges to a training point, a sum of training
points, or a manifold point. Moreover, memo-
rization decreases when the number of training
samples grows, as fewer samples accumulate near
training points.

1. Introduction
In diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b), new images are sampled from
the data distribution through an iterative process. Beginning
with a random initialization, the model gradually denoises
the image until a final image emerges. At their core, dif-
fusion models learn the data distribution by estimating the
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score function of a Gaussian-blurred version of the data
distribution. The connection between the score function
and the denoiser, often called Tweedie’s identity (Robbins,
1956; Miyasawa et al., 1961; Stein, 1981), holds only un-
der optimal Bayes estimation. Moreover, for the estimated
score to be a true gradient field, the denoiser must have
a symmetric positive semidefinite Jacobian matrix (Chao
et al., 2023; Manor & Michaeli, 2024). However, in practice,
neural network denoisers are used, and their Jacobian matrix
is generally non-symmetric, raising open questions about
the convergence of the sampling process in score-based
diffusion algorithms.

Diffusion models typically use a stochastic sampling pro-
cess, which can be described by a stochastic differential
equation (SDE) (Song et al., 2021b). Alternatively, a deter-
ministic version of the sampling process can also be used,
formulated as an ordinary differential equation (ODE) (Song
et al., 2021a), called the probability flow ODE. We aim to
theoretically analyze the probability flow, in order to illu-
minate this complex sampling process. However, practical
diffusion architectures are typically deep and not fully con-
nected, making it difficult to obtain theoretical guarantees
without making additional strong assumptions (e.g., assum-
ing a linearized regime, like the neural tangent kernel (Jacot
et al., 2018)). Therefore, in this paper, we focus on diffusion
models based on shallow ReLU neural network denoisers.
Such networks are simple enough to allow for a theoretical
investigation yet rich enough to offer valuable insights.

To gain insight into the dynamics of the probability flow
ODE, we also explore a simpler ODE, which corresponds
to flowing in the direction of the score of the noisy data
distribution, for a fixed noise level. We call this the score-
flow ODE. The score flow aims to sample from one of
the modes of the noise-perturbed data distribution. We
explore both the probability flow and the score flow ODEs
for denoisers with minimal representation cost that perfectly
fit the training data. Our analysis reveals that, for small noise
levels, the trajectories of both flows are similar for a given
initialization. However, the diffusion time scheduler induces
“early stopping”, which determines whether the probability
flow converges to training samples or to other points on
the data manifold. This analysis provides insights into the
stability and convergence properties of these processes.
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Our Contributions We investigate the probability and the
score flow of shallow ReLU neural network denoisers in the
context of interpolating noisy samples with minimal cost,
that is, when the denoiser maps each noisy sample exactly
to its corresponding clean training point, resulting in zero
empirical loss. Our focus is on the low-noise regime, where
noisy samples are well clustered.

• Theoretical: We prove that when the clean training
points are orthogonal to one another, the probability
flow and score flow follow a similar trajectory for a
given initialization point. However, while the score
flow converges only to a training point or to a sum of
training points, the probability flow can also converge
to a point on the boundary of the hyperbox whose ver-
tices are all partial sums of the training points. This
happens due to “early stopping” induced by the diffu-
sion time scheduler. We generalize this result to the
case where the training points are the vertices of an
obtuse simplex.

• Experimental: We train shallow denoisers that inter-
polate the training data with minimal representation
cost on orthogonal datasets. We start by empirically
demonstrating that the score flow ODE corresponding
to a single such denoiser typically converges either to
a sum of training points, which we call virtual training
points, or to a general point on the boundary of the
hyperbox (it converges to a training point only in rare
occasions). We then show that the probability flow
ODE, which uses a sequence of denoisers for varying
noise levels, also converges to virtual points and to the
boundary of the hyperbox, albeit at a somewhat lower
frequency compared to the training points. Finally, we
show that generalization improves as the number of
clean data points increases.

2. Setup and Review of Previous Results
We study the denoising problem, where we observe a vector
y ∈ Rd that is a noisy observation of x ∈ Rd, i.e. y = x+ϵ,
such that x and ϵ are statistically independent and ϵ is
Gaussian noise with zero mean and covariance matrix σ2I .
The MSE loss of a denoiser h(y) is

LMSE (h) = Ex,y ∥h (y)− x∥2 , (1)

where the expectation is over the joint probability distri-
bution of x and y. The minimizer of the MSE loss is the
MMSE estimator

hMMSE (y) = Ex|y [x|y = y] . (2)

In practice, since the true data distribution is unknown, we
use empirical risk minimization with regularization. Con-
sider a dataset consisting of M noisy samples for each of

the N clean data points xn such that yn,m = xn + ϵn,m,
n = 1, . . . , N , m = 1, . . . ,M . Then, one typically aims to
minimize the loss

L (θ) =
1

MN

M∑
m=1

N∑
n=1

∥hθ (yn,m)− xn∥2 + λC(θ) ,

(3)

where θ are the parameters of the denoiser model hθ and
C(θ) is a regularization term. We focus on a shallow ReLU
network with a skip connection as the parametric model of
interest (Ongie et al., 2020; Zeno et al., 2023), given by

hθ(y) =

K∑
k=1

ak[w
⊤
k y + bk]+ + V y + c , (4)

where θ = ({θk}Kk=1; c,V ) with θk = (bk,ak,wk) ∈
R×Rd×Rd and c ∈ Rd,V ∈ Rd×d and the regularization
term is a ℓ2 penalty on the weights, but not on the biases
and skip connections, i.e.,

C(θ) =
1

2

K∑
k=1

(
∥ak∥2 + ∥wk∥2

)
. (5)

Zeno et al. (2023) showed that in the “low-noise regime”, i.e.
when the clusters of noisy samples around each clean data
point are well-separated1, there are multiple solutions mini-
mizing the empirical MSE (first term in equation 3). Each
of these solutions has a different generalization capability.
They studied the solution at which the ℓ2 regularization of
equation 5 is minimized.

Definition 2.1. Let hθ : Rd → Rd denote a shallow ReLU
network of the form of equation 4. For any function h :
Rd → Rd realizable as a shallow ReLU network, we define
its representation cost as

R(h) = inf
θ:h=hθ

C (θ)

= inf
θ:h=hθ

K∑
k=1

∥ak∥ s.t. ∥wk∥ = 1, ∀k , (6)

and a minimizer of this cost, i.e., a ‘min-cost’ solution, as

h∗ ∈ argmin
h

R(h) s.t. h(yn,m) = xn ∀n,m . (7)

In the multivariate case, finding an exact min-cost solution
for finitely many noise realizations is generally intractable.
Therefore, Zeno et al. (2023) simplified equation 7 by as-
suming that h(y) = xn for all y in an open ball centered at
xn. Specifically, letting B(xn, ρ) denote the ball of radius

1The noise level in the low-noise regime, though small, is not
negligible and has been noted as practically “useful” (Zeno et al.,
2023), e.g. for diffusion sampling (Raya & Ambrogioni, 2023).
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ρ centered at xn, we simplify notations by writing this con-
straint as h(B(xn, ρ)) = {xn}. Consider minimizing the
representation cost under this constraint, that is, solving

h∗
ρ (y) ∈ argmin

h
R(h) s.t. h(B(xn, ρ)) = {xn}, ∀n.

(8)
Even this surrogate problem is still challenging to solve
explicitly in the general case. Nonetheless, it can be solved
for two specific configurations of training data points, which
serve as prototypes for more general configurations. The
first case is when all the data points form an obtuse simplex,
i.e., the generalization of an obtuse triangle to higher dimen-
sions, and the second case is when the data points form an
equilateral triangle (see Appendix D).

3. The Probability Flow and the Score Flow
Given an explicit solution for the neural network denoiser,
we estimate the score function by leveraging the connec-
tion between the MMSE denoiser and the score function
(Robbins, 1956; Miyasawa et al., 1961; Stein, 1981),

hMMSE (y) = y + σ2∇ log p (y) , (9)

where p (y) is the probability density function of the noisy
observation. From this relation, we can estimate the score
function ∇ log p (y) as

s (y) =
h∗
ρ(y)− y

σ2
, (10)

where h∗
ρ(y) is the minimum norm denoiser. In diffusion

models, a stochastic process is typically used to sample new
images. However, to generate unseen images from the data
distribution, Song et al. (2021a) introduced a deterministic
sampling process—the probability flow ODE (Song et al.,
2021b; Karras et al., 2022).

We assume in this paper the variance exploding (VE) case,
for which the probability flow ODE is given by

∀t ∈ [0, T ] :
dyt

dt
= −1

2

dσ2
t

dt
∇ log p (yt, σt) , (11)

where the score is estimated using the neural network de-
noiser ∇ log p (yt, σt) ≈ s (yt, σt), and σt =

√
t is the

diffusion time scheduler. The minus sign in the probabil-
ity flow ODE arises due to the reverse time variable: we
initialize at yT , and finish at y0, a sample from the data
distribution. In Appendix A we show that by using time
re-scaling arguments the probability flow ODE is equivalent
to the following ODE

dyr

dr
= h∗

ρ
g
−1
r

(yr)− yr, (12)

where gr = − log σr, assuming the radius of the noise balls
satisfies ρt = ασt for some α > 0.

Additionally, we will also analyze the score flow, which is a
simplified case of equation 12 where ρ does not depend on t.
Analyzing the score flow can be helpful in understanding the
dynamics of the probability flow. The score flow represents
the sampling process from one of the modes of the (multi-
modal) distribution of y. The score flow is initialized at y0

and for t > 0 follows

dyt

dt
= ∇ log p (y) . (13)

Using the estimated score function and time re-scaling r =
1
σ2 t we obtain the score flow

dyr

dr
= h∗

ρ(yr)− yr . (14)

Notably, in contrast to the probability flow ODE, the min-
cost denoiser here is independent of t.

4. The Probability and Score Flow of Min-cost
Denoisers

In this section, we consider training sets that model different
types of data manifolds, and state for each type the possible
convergence points of the score and probability flows of min-
cost solutions. As the score flow is a specific instance of
probability flow (after time re-scaling) in which the variance
profile is fixed, the difference between the convergence
points of these two flows thus illuminates the effect of the
variance reduction scheduling σt (and thus the ρt schedule)
on the generated sample.

We begin with the following simple, yet general, observation
on the dynamics of score flow. For this dynamics, the stabil-
ity condition for a stationary point y is that any eigenvalue
of the Jacobian matrix of the score function with respect to
the input y, i.e., λ (J (y)) satisfies

Re{λ (J (y))} < 0 . (15)

We next show that in any model that perfectly fits an open
ball of radius ρ > 0 around the training points (and thus
also interpolates the training set), the clean data points are
stable stationary points of the score flow. This implies that,
when initialized near these points, the process can converge
to the clean data points.

Proposition 4.1. Let ρ > 0 be arbitrary. Let h (y) be a
denoiser that satisfies h(B(xn, ρ)) = {xn} for all n ∈
[N ] (and thus interpolates the training data). Then, any
training point y ∈ {xn}Nn=1 is a stable stationary point
of equation 13 where we estimate the score using s (y) =
h(y)−y

σ2 .

Proof. For all y ∈ {xn}Nn=1 we get that s (y) = 0 since
the denoiser interpolates the training data. In addition, for
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all y ∈ int (B(xn, ρ))) the Jacobian matrix is

J (y) = − 1

σ2
I , (16)

therefore the stability condition of equation 15 holds.

This result implies that, when the score function is differen-
tiable and the training points are the only stationary points,
the score flow will converge to the training points with prob-
ability 1.

4.1. Flow Properties on Analytically Solvable Datasets

Zeno et al. (2023) found the min-cost solution h∗
ρ analyti-

cally in three cases: (1) orthogonal points, (2) points that
form an obtuse angle with one of the points, and (3) a spe-
cific case of 3 training points forming an equilateral triangle.

For simplicity, we consider the case of a dataset composed of
orthogonal points, and defer to the appendices of other types
of datasets. Specifically, suppose that we have N training
points {xn}N−1

n=0 where x0 = 0 and the remaining training
points are orthogonal, i.e., x⊤

i xj = 0 for all i, j > 0 with
i ̸= j.2 This approximates the behavior of data in many
generic distributions (e.g., standard normal), which becomes
more orthogonal in higher dimensions (Saxe et al., 2014;
Boursier et al., 2022). For example, for standard i.i.d. Gaus-
sian data xn, it can be shown using the analysis in Section
3.2.3 of Vershynin (2018) along with a union bound, that
the largest cosine similarity between two distinct datapoints

satisfies maxn ̸=m
xn·xm

|xn||xm| ∼
√

lnN
d with high probability.

Therefore, in the realistic regime exp(d) ≫ N > d ≫ 1,
most pairs are nearly orthogonal. Let un = xn/∥xn∥ for
all n = 1, ..., N − 1 . A minimizer of equation 8, h∗

ρ, is
given by (Zeno et al., 2023, proof of Theorem 3)3

h∗
ρ(y) =

N−1∑
n=1

(
∥xn∥

∥xn∥ − 2ρ

(
[u⊤

n y − ρ]+

− [u⊤
n y − (∥xn∥ − ρ)]+

)
un

)
. (17)

We prove (Appendix D.1) the set of stationary points is the
set of all possible sums of training points.
Theorem 4.2. Suppose that the training points
{x0,x1,x2, ...,xN−1} ⊂ Rd are orthogonal. Then,
the set of the stable stationary points of equation 13 is
A = {∑n∈I xn | I ⊆ [N − 1]}.

2The result holds for the general case where x0 is non-zero,
provided that (xi − x0)

⊤ (xj − x0) = 0.
3The same arguments used in the proof of Theorem 3 in (Zeno

et al., 2023) can be applied to prove equation 17. The requirement
for strictly obtuse angles (i.e., x⊤

i xj < 0 instead of x⊤
i xj ≤

0) in (Zeno et al., 2023) is only made specifically to ensure the
uniqueness of the solution.

This implies that the stationary points are the vertices of a
hyperbox (an n-dimensional analog of a rectangular). Next,
we prove (in Appendix D.2) that the score flow converges
to the vertex of the hyperbox closest to the initialization
y0. Also, for some y0, score flow first converges to the
hyperbox boundary, then to a specific vertex.
Theorem 4.3. Suppose that the training points
{x0,x1,x2, ...,xN−1} ⊂ Rd are orthogonal. Con-
sider the score flow where we estimate the score using
s (y) =

h∗
ρ(y)−y

σ2 and an initialization point y0. If
∀i ∈ [N − 1] : u⊤

i y0 ̸= ∥xi∥
2 , then

• We converge to the closest vertex of the hyperbox to the
initialization y0.

• If the closest point to y0 on the hyperbox is a
point on its boundary which is not a vertex, then
for any ϵ < mini |u⊤

i y0| there exists ρ0 (ϵ) and
T0 (ϵ, ρ) , T1 (ρ) such that for all ρ < ρ0 (ϵ) and all
T ∈ [T0 (ϵ, ρ) , T1 (ρ)], the point yT is not a stable
stationary point and at most at distance ϵ from the
boundary of the hyperbox.

Next, we consider the probability flow. For tractable anal-
ysis, we approximate the score estimator for small noise
levels (i.e., for all minn∈[N−1]

ρt

∥xn∥ ≪ 1) via Taylor’s ap-
proximation to obtain (See Figure 16 in Appendix J for a
comparison of the exact and approximated score function
trajectories, which are nearly identical at low noise levels)

s (y, t) =
1

σ2
t

(
N−1∑
n=1

unϕ(u
⊤
n y)−

(
I −

N−1∑
n=1

unu
⊤
n

)
y

)
(18)

where

ϕ(z) =


−z z < ρt

ρt

(
2

∥xn∥z − 1
)

ρt < z < ∥xn∥ − ρt

∥xn∥ − z z > ∥xn∥ − ρt

. (19)

With this approximation, one can show the probability flow
and the score flow have a similar trajectory (for small ρ),
if they have the same initialization point. However, the ρt
diffusion time scheduler in probability flow induces “early
stopping”. This can lead to the probability flow to converge
to a non-vertex boundary point (in contrast to score flow), or
to influence the speed of convergence to a stationary point.
We show this in the following result for the probability flow
(proved in Appendix D.3)
Theorem 4.4. Suppose that the training points
{x0,x1,x2, ...,xN−1} ⊂ Rd are orthogonal. Con-
sider the probability flow where σt =

√
t, we estimate the

score using equation 18, and yT is the initialization point.
If ∀i ∈ [N − 1] : u⊤

i yT ̸= ∥xi∥
2 , then
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• If the closest point to yT on the hyperbox is a vertex,
then we converge to this vertex.

• If the closest point to yT on the hyperbox is not a vertex,
then there exists τ(yT , ρT ) such that we converge to
the closest vertex to the initialization point yT if T >
τ(yT , ρT ), and we converge to a point on the boundary
of the hyperbox if T < τ(yT , ρT ).

Theorem 4.4 shows that the probability flow converges4

to a vertex of the hyperbox or a point on the boundary of
the hyperbox. We consider this hyperbox boundary as an
implicit data manifold—the diffusion model samples from
this hyperbox boundary even though we did not assume an
explicit sampling model that generated the training data,
such as a distribution supported on the manifold. However,
in some cases probability flow ODE can converge to specific
points in this manifold: the training points, or sums of
training points (“virtual points”). We view these virtual
points as representing a form of generalization, as they
go beyond the empirical data distribution and form novel
combinations not present in the training set.

This result aligns well with empirical findings that diffusion
models can memorize individual training examples and gen-
erate them during sampling (Carlini et al., 2023). In addition,
an empirical result shows that Stable Diffusion (Rombach
et al., 2022) can reproduce training data by piecing together
foreground and background objects that it has memorized
(Somepalli et al., 2023). This behavior resembles our re-
sult that the probability flow can also converge to sums of
training points. In Stable Diffusion we observe a “semantic
sum” of training points; however, our analysis focuses on
the probability flow of a simple 1-hidden-layer model, while
in deep neural networks summations in deeper layers can
translate into more intricate semantic combinations.

In Appendices B and C, we extend our results to non-
orthogonal datasets. In Appendix B, we analyze training
points forming an (N − 1)-simplex, where x0 forms an
obtuse angle with all other vertices. We prove that the set of
stable stationary points is a subset of all partial sums of the
training points. Additionally, we show that when angles be-
tween data points are nearly orthogonal, a stable stationary
point corresponding to the sum of all points exists. We then
prove that the score flow first converges to a point along a
chord connecting the origin to another training point before
settling on an edge of the chord. Similarly, the probability
flow converges either to a point on the chord or to one of its
edges. In Appendix C, we consider training points forming
an equilateral triangle. We show that the score flow first

4Note that, unlike the score flow, the probability flow ODE
reaches the point exactly. Since this is a special case of conver-
gence, and to maintain consistent terminology, we use the term
”converge to a point” in both cases.

converges to the triangle’s face before ultimately reaching a
vertex.

5. Simulations
5.1. Probability Flow and Score Flow

In this section, we demonstrate the findings of Theorems
4.2, 4.3 and 4.4 in shallow neural networks. In practical
settings, the continuous probability flow ODE given by
equation 11 is discretized to S timesteps, as

yt−1 = yt + (σ2
t − σ2

t−1)
(h∗

ρt
(yt)− yt)

2σ2
t

, t = T, . . . , 1 ,

(20)

where h∗
ρt
(yt) is modeled as a series of S denoisers (usually

with weight sharing), which are applied consecutively to
gradually denoise the signal. In this setting, the sampling
should theoretically be initialized at T = ∞, however in
practice it is initialized from a finite timestep T , which
is chosen such that σT ≫ ∥xi∥ for all i. Similarly, the
score-flow of equation 13 is discretized as

yt+1 = yt + γ
(h∗

ρt0
(yt)− yt)

σ2
t0

, t = 0, 1, . . . , (21)

where γ is some step size and here t0 is a fixed timestep (so
that all iterations are with the same denoiser). Note that here
t increases along the iterations, and since we use a single
denoiser, there is no constraint on the number of iterations
we can perform.

It should be noted that while our theorems characterize only
the low-noise regime, here we simulate a more practical
sampling process, which starts the sampling from large
noise. Namely, the initialization (yT in equation 20 and
y0 in equation 21) is drawn from a Gaussian with large σ.
Thus, our theoretical analysis becomes relevant only once
the dynamics enter the low-noise regime.

To demonstrate our results for the case of an orthogonal
dataset, we use orthonormal training samples, set σt =

√
t,

and choose T = 100 to ensure an effectively high noise
at the beginning of the sampling process. We train a set
of S = 150 denoisers, ensuring 50 equally-spaced noise
levels in the “low-noise regime” and 100 equally-spaced
noise levels outside it. Note that since we are discretizing
an ODE, using sufficiently small timesteps ensures that the
discretization does not affect the results. In practical models,
some denoisers are guaranteed to operate in the low-noise
regime, as the final sampled point is obtained when t ≈ 0,
where the noise level is inherently small. We train our
networks on data in dimension d = 30, with M = 500
noisy samples per training sample, taking the dimension of
the hidden layer of the networks to be K = 300.
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Figure 1: Existence of stable virtual training points. We
run fixed-point iterations on a single denoiser, starting from
all possible pair-wise, triplet-wise, and quadruplet-wise
combinations of training samples. The plot shows the per-
centage of points that converged within an L∞ distance of
0.2 to the original, virtual, input point.

To be consistent with our theory, which assumes the denoiser
achieves exact interpolation over the noisy training samples,
we use a non-standard training protocol to enforce close-
to-exact interpolation. Specifically, we pose the denoiser
training as the equality constrained optimization problem

min
θ

C(θ) s.t. hθ(yn,m) = xn, ∀n,m (22)

which we optimize using the Augmented Lagrangian (AL)
method (see, e.g., (Nocedal & Wright, 2006)). Specifically,
we define

LAL(θ,Q, µ) :=C(θ) +
1

MN

M∑
m=1

N∑
n=1

µ

2
∥hθ (yn,m)− xn∥2

+ ⟨q(n,m),hθ (yn,m)− xn⟩ (23)

where µ ∈ R>0, q(n,m) ∈ Rd represents a vector of La-
grange multipliers, and Q ∈ Rd×MN is the matrix whose
columns are q(n,m) for all m = 1, ...,M , n = 1, ..., N .
Then, starting from an initialization of µ0 > 0 and Q0 = 0,
for k = 0, 1, ...,K we perform the iterative updates:

θk+1 = argmin
θ

LAL(θk,Qk, µk) (24)

q
(n,m)
k+1 = q

(n,m)
k + µk(hθ (yn,m)− xn), ∀n,m (25)

µk+1 = ηµk, (26)

where η > 1 is a fixed constant. The solution of equation 24
is approximated by following standard training using the
Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 10−4 for 104 iterations. We additionally take η = 3 and
K = 7, and decrease the learning rate by 0.5 after each
iterative update.

We start by demonstrating the existence of virtual training
points, that is, stable stationary points that are sums of train-
ing points, as predicted by Theorem 4.2. We take a denoiser
from the “low-noise regime” (σt = 0.095 in this example)

and run 10 fixed-point iterations on all the predicted virtual
points that consist of combinations of pairs, triplets and
quadruplets of the training points. In Figure 1 we plot the
percentage of these runs that converged within an L∞ dis-
tance of 0.2 to the predicted virtual point. As can be seen,
98.6% of the predicted virtual points composed of pairs of
training points are stable in practice, and the stability of
virtual points decreases as higher-numbers of combinations
are considered. Nevertheless, the absolute number of stable
virtual points increases substantially as higher-numbers of
combinations are considered. Specifically, in the same ex-
ample a total of 429, 3390, and 6965 stationary points were
found for the pairs, triplet and quadruplet combinations. The
increase in the absolute numbers is due to the higher number
of higher-order sums. The decrease in percentages is due to
small deviations in the ReLU boundaries of the trained de-
noiser compared to the theoretical optimal denoiser. These
deviations have a greater impact on stationary points that
involve sums of more training points.

Next, we explore the full dynamics of the diffusion pro-
cess. We start with the score flow for a single denoiser from
timestep t0, which corresponds to noise level σt0 = 0.095.
We randomly sample 500 points from N (0, 100I), and ap-
ply 3000 score-flow iterations to each, with a step size of
γ = 5 · 10−4. The right hand side of Figure 2a shows the
percentage of points that converged within an L∞ distance
of 0.2 to either virtual points, training points, or a boundary
of the hyperbox. On the left hand side of Figure 2a, we plot
the projection of all samples on three dimensions. Out of
500 samples, almost all points converged to virtual points,
which is expected in random initialization due to their larger
number, compared to the training points. The rest of the
points converged to the hyperbox’s boundaries. The path
the points take towards the hyperbox first draws them to the
closest boundary, and then they drift along the boundary
towards the closest stable stationary point.

Finally, we examine a full diffusion process with the prob-
ability ODE. Here we follow equation 20 using S = 150
trained denoisers, starting again from 500 randomly sam-
pled points from N (0, σT I). Our results hold where the
noise level is small compared to the norm of the training
samples. Therefore, denoisers of large noise levels are not
expected to have stable virtual points. In probability flow,
most noise levels are large compared to this norm, as the
sampling process begins with a large variance (in the VE
case). Specifically, in our example only the last 50 denois-
ers have small noise levels. Yet, as can be seen on the
right hand side of Figure 2b, a large percentage of the sam-
ples produced are virtual points. In contrast to the score
flow case, the start of the sampling process here attracts
most samples towards the mean of the training points, as
any optimal-MSE denoiser would, which creates a biased
starting point to the sampling process in the “low-noise
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regime”. From this regime onwards, the points travel along
the boundaries of the hyperbox towards their nearest stable
points, which is usually a training point. This behavior is
demonstrated on the left side of Figure 2b, where the pro-
jected path of a random point is drawn starting from the
90th step. See Appendix E for comparisons of additional
thresholds and Appendix F for experiments where neural
denoisers are trained using the standard Adam optimizer,
with and without weight decay regularization. We show that
without weight decay, the probability flow converges only to
training points or boundary points of the hyperbox. In con-
trast, with weight decay, it also converges to virtual points,
aligning with the results obtained using the Augmented La-
grangian method for training the minimum-norm denoiser.
We conduct additional experiments on the effect of adding
dropout to the training process. This results in a higher MSE
loss, leading to fewer denoisers in the “low-noise regime” to
perfectly fit the training data, and thus to more samples be-
ing generated outside the boundary of the hyperbox. Please
see Appendix H for further details. Finally, Appendix I in-
cludes a comparison to detection metrics for memorization,
spuriousness, and generalization as proposed by Pham et al.
(2024), using the same setup as in Figure 2.

5.2. The Effect of the Number of Training Samples

The effect of the training set size has been explored in sev-
eral past works (Somepalli et al., 2023; Kadkhodaie et al.,
2024), as surveyed in detail in Section 6. Here we con-
tinue the analysis to investigate the effect of changing N ,
the training set size, on the full dynamics of the diffusion
process with the probability ODE. Specifically, we repeat
the experiment while reducing N . All the hyperparameters
are kept the same, except for M which we increase to 2000
for N = 10 only, to prevent over-fitting in the large-noise
regime. Figure 3 shows the percentage of points that con-
verged within an L∞ distance of 0.2 to either virtual points,
training points, or a boundary of the hyperbox, for the differ-
ent N values. The generalization increases with N , drawing
a larger percentage of samples to converge in the vicinity of
virtual points, or to boundaries of the hyperbox. This aligns
with the results of Kadkhodaie et al. (2024).

As in the case of strictly orthogonal data it is impossible
to have N > d+ 1, we consider here two additional cases
to explore similar setups: oversampling duplications from
the training set, and augmenting the training set with sam-
ples randomly drawn from the boundary of the hyperbox.
When considering the effect of oversampling duplications,
previous works observed that diffusion models tend to over-
fit more to duplicate training points than to other training
points (Somepalli et al., 2023). However, here we study
the regime in which the model perfectly fits all the training
points. In practice, duplicate training points would cause the
neural network to fit them better, at the expense of the other

training points. Then, we expect our analysis to effectively
hold, but only for the training points that are well-fitted and
their associated virtual points. Therefore, this mirrors the
case of decreasing N , and will cause more convergence to
the duplicated training points and increase memorization.
Next, we augment the original orthonormal dataset used in
Figure 2 with additional random data points drawn from the
boundary of the hyperbox. We then retrain the denoisers
using the AL method for two values: N = 40 and N = 50.
In these cases, the probability flow still almost exclusively
converges to the hyperbox boundary. Further details appear
in Appendix G.

6. Related Work
Memorization and Generalization in Deep Generative
Models Several recent works have sought to explain the
transition from memorization to generalization in deep gen-
erative models, both from a theoretical and empirical per-
spective. One early line of work in this vein studied memo-
rization in over-parametrized (non-denoising) autoencoders
(Radhakrishnan et al., 2019; 2020). This work shows that
over-parameterized autoencoders trained to low cost are
locally contractive about each training sample, such that
training images can be recovered by iteratively applying
the autoencoder to noisy inputs. A theoretical explanation
of this phenomenon using a neural tangent kernel analysis
is given in (Jiang & Pehlevan, 2020). More recent work
has also shown that state-of-the-art diffusion models ex-
hibit a similar form of memorization, such that extraction
of training samples is possible by identifying stable station-
ary points of the diffusion process (Carlini et al., 2023).
Additionally, when trained on few images, several works
have shown that the outputs of diffusion models are strongly
biased towards the training set, and thus fail to generalize
(Somepalli et al., 2023; Yoon et al., 2023; Kadkhodaie et al.,
2024). A recent empirical study suggests that memorization
and generalization in diffusion models are mutually exclu-
sive phenomenon, and successful generation occurs only
when memorization fails (Yoon et al., 2023; Zhang et al.,
2024). Beyond these empirical studies, recent work has put
forward theoretical explanations for generalization in score-
based models. In (Pidstrigach, 2022), the authors show that
score-based models can learn manifold structure in the data
generating distribution. A complementary perspective is
provided by Kadkhodaie et al. (2024), which argues that
diffusion models implicitly encode geometry-adaptive har-
monic representations. Ross et al. (2025) propose the Man-
ifold Memorization Hypothesis as a geometric framework
for understanding memorization in deep generative mod-
els. Using local intrinsic dimension to compare the model’s
learned manifold with the data manifold, they distinguish
between overfitting-driven and data-driven memorization.
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Figure 2: Projection to three dimensions and convergence types frequency of randomly sampled points. We run the
discrete ODE formulation of equation 20 for 500 randomly sampled points from R30, for both sampling using the score flow
(2a) and a regular diffusion process (2b). For each, we plot on the right the percentage of points that converged to either
a virtual point, a training point, or to the boundaries of the hyperbox, out of all points. On the left, we plot the sampling
results projected to three dimensions, along with the path a single point took until convergence. In score flow, all points
converged to either virtual points or to boundaries of the hyperbox, which is evident in the point clusters in the locations of
the projected virtual points. For probability flow, the bias induced by the “large-noise regime” denoisers diffusion causes
more samples to converge around the training points and their adjacent boundaries. Nevertheless, a large percentage of
samples still converge in the vicinity of virtual points. The paths the points take towards the hyperbox draws them first to the
closest boundary, and then, if the step sizes and amount permit, travel along the edges towards the closest stable stationary
points.

Representation Costs and Neural Network Denoisers
Several other works have investigated overparameterized
autoencoding/denoising networks with minimal representa-
tion cost (i.e., minimial ℓ2-norm of parameters). Function
space characterizations of min-norm solutions of shallow
fully connected neural networks are given in (Savarese et al.,
2019; Ongie et al., 2020; Parhi & Nowak, 2021; Shenouda
et al., 2024); extensions to deep networks and emergent
bottleneck structure are considered in (Jacot, 2022; Jacot
et al., 2022; Jacot, 2023; Wen & Jacot, 2024). The present
work relies on the shallow min-norm solutions derived by
Zeno et al. (2023) for specific configurations of data points,
but goes beyond this work in studying the dynamics of its
associated flows.

A recent study investigates properties of shallow min-norm
solutions to a score matching objective (Zhang & Pilanci,
2024), building off of a line of work that studies min-norm
solutions from a convex optimization perspective (Pilanci
& Ergen, 2020; Ergen & Pilanci, 2020; Sahiner et al., 2021;
Wang & Pilanci, 2021). In the case of univariate data, an
explicit min-norm solution of the score-matching objective
is derived, and convergence results are given for Langevin
sampling with the neural network-learned score function.
Additionally, in the multivariate case, general min-norm
solutions to the score-matching loss are characterized as
minimizers of a quadratic program. Our results differ from
(Zhang & Pilanci, 2024) in that we study different optimiza-
tion formulations (denoising loss versus score-matching
loss) and inference procedures (probability- and score-flow

versus Langevin dynamics). Our results focus on high-
dimensional data belonging to a simplex, while Zhang &
Pilanci (2024) give convergence guarantees only in the case
of univariate data.

7. Discussion
Conclusions. We explored the probability flow ODE of
shallow neural networks with minimal representation cost.
We showed that for orthogonal dataset and obtuse-angle
dataset the probability flow and the score flow follow the
same trajectory given the same initialization point and small
noise level. The diffusion time scheduler in probability flow
induces “early stopping”, which results in converging to
a boundary point instead of a specific vertex (as in score
flow) or speed up convergence to a specific vertex. Simu-
lations confirm these findings and show that generalization
improves as the number of clean training points increases.
In practice, natural images often lie on a low-dimensional
linear subspace due to their approximate low-rank structure
(see Zeno et al. (2023), Appendix D3). As a result, the
denoiser first contracts the data towards this subspace (see
Theorem 2 in Zeno et al. (2023)). If the subspace has a
sufficiently high dimension, then data points become ap-
proximately orthogonal. Thus, the geometric structure of
high-dimensional image spaces may resemble the hyper-
box studied in our work. One possible extension of this
work is to analyze the probability flow ODE in the case of
variance-preserving processes. This is an important case
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Figure 3: Convergence types frequency of randomly sampled points in diffusion sampling for different N . We run the
discrete ODE formulation of equation 20 for 500 randomly sampled points from R30 for diffusion sampling, using different
training set sizes, N . We plot the percentage of points that converged to either a virtual point, a training point, or to the
boundaries of the hyperbox, out of all points. The generalization increases with N , drawing a larger percentage of samples
to converge in the vicinity of virtual points and the boundaries of the hyperbox.

since practical diffusion models more often use variance-
preserving forward and backward processes.

Limitations. A key limitation of our analysis is the as-
sumption (inherited from Zeno et al. (2023)) that the de-
noiser interpolates data across a full d-dimensional ball
centered around each clean training sample, where d rep-
resents the input dimension. In real-world scenarios, the
number of noisy samples is typically smaller than the in-
put dimension d. A more accurate approach might involve
assuming that the denoiser interpolates over an (M − 1)-
dimensional disc around each training sample, reflecting the
norm concentration of Gaussian noise in high-dimensional
spaces. Furthermore, for mathematical tractability, our anal-
ysis focuses on a single hidden layer model.
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A. Proofs of Results in Section 3
The probability flow ODE is given by

dyt

dt
= −1

2

dσ2
t

dt
∇ log p (yt, σt) (27)

= −σt
dσt

dt
∇ log p (yt, σt) . (28)

First, we apply change of variable as follows

r = g (t) = − log σt (29)
dr

dt
= − 1

σt

dσt

dt
(30)

dt

dr
=

(
− 1

σt

dσt

dt

)−1

. (31)

Therefore,

dyt
dr

=
dyt
dt

dt

dr
=

(
−σt

dσt

dt
∇ log p (yt, σt)

)(
− σt

dσt

dt

)
(32)

= σ2
t∇ log p (yt, σt) (33)

Next, we estimate the score function using a neural network denoiser, and substitute t = g−1 (r) to obtain

dyr
dr

= h∗
ρ(g−1(r))(yr)− yr . (34)

B. Obtuse-Angle Datasets
In this section we consider the case of a non-orthogonal dataset. Specifically, suppose the convex hull of the training points
{x0,x1, ...,xN−1} ⊂ Rd is a (N − 1)-simplex such that x0 forms an obtuse angle with all other vertices; we assume
WLOG that x0 = 0. We refer to this as an obtuse simplex. Let un = xn/∥xn∥ for all n = 1, ..., N − 1. In this case, the
minimizer h∗

ρ is still given by equation 17.

In Figure 4, we illustrate the normalized score flow for the case of an obtuse 2-simplex (see Figure 15 in Appendix J for the
unnormalized score flow). The normalized score function is the score function multiplied by the log of the norm of the score
and divided by the norm of the score. As shown, the training points are stationary points. Next, we prove (in Appendix D.4)
that, in the general case of N training points, the set of stable stationary points is a subset of the set of all partial sums of
the training points. Additionally, we demonstrate that when the angles between data points are nearly orthogonal, a stable
stationary point corresponding to the sum of the points exists.
Theorem B.1. Suppose the convex hull of the training points {x0,x1, ...,xN−1} ⊂ Rd is an obtuse simplex. Then, the
set A of the stable stationary points of equation 13 satisfies {xn}N−1

n=0 ⊆ A ⊆ {∑n∈I xn | I ⊆ {0, 1, · · · , N − 1}}.
In addition, the point

∑
n∈I xn, where I ⊆ {0, 1, · · · , N − 1} and |I| ≥ 2 if 0 /∈ I and |I| ≥ 3 if 0 ∈ I, is a stable

stationary point if mink∈I

{∑
i∈I\{k} u

⊤
k ui ∥xi∥

}
> −ρ.

The condition mink∈I
∑

i∈I\{k} u
⊤
k ui ∥xi∥ > −ρ holds for almost orthogonal dataset (and ρ > 0).

Next, we prove (in Appendix D.5) that in the general case with N training points, for small noise levels (i.e., small ρ) and an
initialization point close to the chords connecting the origin to each training point (xn), the score flow first converges to a
point along a chord connecting the origin and another training point, and then to an edge of the chord (0 or xn, depending
on initialization).
Theorem B.2. Suppose the convex hull of the training points {x0,x2, ...,xN−1} ⊂ Rd is an obtuse simplex. Given an
initial point y0 such that ρ < u⊤

i y0 < ∥xi∥− ρ and u⊤
j y0 < ρ for all j ̸= i, consider the score flow where we estimate the

score using s (y) =
h∗

ρ(y)−y

σ2 . Then we converge to the closest edge of the chord. In addition, for all ϵ ∈ (0,u⊤
i y0) there

exists ρ0 (ϵ) and T0(ϵ, ρ), T1(ρ) such that for all ρ < ρ0 (ϵ) the point yT is not a stable stationary point and at most at
distance ϵ from the line between x1 and xi for T0(ϵ, ρ) < T < T1(ρ).

12
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Figure 4: The normalized score function of obtuse simplex. The red dots are the training points x1,x2,x3. The black
lines are the ReLU boundaries.

We next turn to the probability flow. To this end, we assume that the initial point yT is such that ρT < u⊤
i yT < ∥xi∥ − ρT

and u⊤
j yT < ρ for all j ̸= i. We again use Taylor’s approximation in the small-noise level regime (specifically, for all

i ∈ [N − 1] ρt

∥xn∥ ≪ 1), to obtain the following score estimation at a point y such that ρt < u⊤
i y < ∥xi∥ − ρt and

u⊤
j y < ρt for all j ̸= i is

s (y, t) =
1

σ2
t

(((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − ρtui

)
. (35)

We now have the following result regarding probability flow (proved in Appendix D.6)

Theorem B.3. Suppose the convex hull of the training points {x0,x2, ...,xN−1} ⊂ Rd is an obtuse simplex. Given an
initial point yT such that ρT < u⊤

i yT < ∥xi∥ − ρT and u⊤
j yT < ρT for all j ̸= i. Consider the probability flow where

σt =
√
t and we estimate the score using equation 35. Then, ∃τ(yT , ρT )) such that we converge to a point on the line

connecting x1 and xi if T < τ(yT , ρT ) and if T ≥ τ(yT , ρT ) we converge to the closest point in the set {x0,xi} to yT .

Theorem B.3 shows that the probability flow converges to a point on the chord or to one of the edges of the chord. In this
scenario, we consider the chords as the implicit data manifold.

C. An Equilateral Triangle Dataset
In this section we consider the score flow in the case where the training points form the vertices of an equilateral triangle
(as this is the last remaining dataset case for which the min-cost denoiser is analytically solvable (Zeno et al., 2023)). In
Figure 5 we illustrate the normalized score flow for the case of an equilateral triangle dataset.

We prove (in Appendix D.7) that, given an initialization point near the edge of the triangle, the score flow first converges to
the face of the triangle (the implicit data manifold here) and then to the vertex closest to the initialization point y0.

Proposition C.1. Suppose the convex hull of the training points x1,x2,x3 ∈ Rd is an equilateral triangle. Given an
initial point y0 such that i ∈ {1, 2} − ∥xi∥

2 + ρ < u⊤
i y0 < ∥xi∥ − ρ and u⊤

3 y < −∥x3∥
2 + ρ, consider the score flow

where we estimate the score using s (y) =
h∗

ρ(y)−y

σ2 . Then we converge to the closest vertex to the y0. In addition, for all
0 < ϵ < (u1 + u2)

⊤
y0 − ∥x∥

2 there exists ρ0 (ϵ) and T0 (ρ, ϵ) , T1 (ρ) such that for all ρ < ρ0 (ϵ) the point yT is not a
stable stationary point and at most ϵ distance from the line between x1 and x2 for T0 (ρ, ϵ) < T < T1 (ρ).

Without loss of generality, we can permute the training points indices {1, 2, 3} in the above result. The probability flow for
this case can be also analyzed, similarly to what we did in previous cases.

D. Proofs of Results in Section 4
In this section we use the following Propositions from (Zeno et al., 2023).

13
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Figure 5: The normalized score function of equilateral triangle. The red dots are the training points x1,x2,x3. The
black lines are the ReLU boundaries.

Proposition D.1. Suppose that the convex hull of the training points {x1,x2, ...,xN} ⊂ Rd is a (N − 1)-simplex such
that x1 forms an obtuse angle with all other vertices, i.e., (xj − x1)

⊤(xi − x1) < 0 for all i ̸= j with i, j > 1. Then the
minimizer h∗

ρ of equation 8 is unique and is given by

h∗
ρ(y) = x1 +

N∑
n=2

unϕn(u
⊤
n (y − x1)) (36)

where un = xn−x1

∥xn−x1∥ , ϕn(t) = sn([t−an]+−[t−bn]+), with an = ρ, bn = ∥xn−x1∥−ρ, and sn = ∥xn−x1∥/(bn−an)

for all n = 2, ..., N .

Proposition D.2. Suppose the convex hull of the training points x1,x2,x3 ∈ Rd is an equilateral triangle. Assume
the norm-balls Bn := B(xn, ρ) centered at each training point have radius ρ < ∥xn − x0∥/2, n = 1, 2, 3, where
x0 = 1

3 (x1 + x2 + x3) is the centroid of the triangle. Then a minimizer h∗
ρ of equation 8 is given by

h∗
ρ(y) = u1ϕ1(u

⊤
1 (y − x0)) + u2ϕ2(u

⊤
2 (y − x0)) + u3ϕ3(u

⊤
3 (y − x0)) + x0, (37)

where ϕn(t) = sn([t − an]+ − [t − bn]+) with un = xn−x0

∥xn−x0∥ , an = − 1
2∥xn − x0∥ + ρ, bn = ∥xn − x0∥ − ρ, and

sn = ∥xn − x0∥/(bn − an).

D.1. Proof of Theorem 4.2

Proof. In the case of orthogonal dataset where for all i ̸= j x⊤
i xj = 0 and x0 = 0, the score function is

s (y) =
h∗
ρ(y)− y

σ2
(38)

=

∑N−1
i=1 en

∥xi∥
∥xi∥−2ρ ([yi − ρ]+ − [yi − (∥xi∥ − ρ)]+)− y

σ2
. (39)

The Jacobian matrix is

Jij (y) =

∥xi∥
∥xi∥−2ρ∆i (y) δi,j − δi,j

σ2
, (40)

where ∆n (y) indicates if only one of the ReLU functions is activated. In matrix form, we obtain

J (y) =
1

σ2

(
diag

( ∥x1∥
∥x1∥ − 2ρ

∆1 (y) , · · · ,
∥xN−1∥

∥xN−1∥ − 2ρ
∆N−1 (y)

)
− I

)
, (41)

where ∆n (y) ∈ {0, 1}. In this case, the stability condition is

Re{λ (J (y))} = λ (J (y)) < 0 . (42)
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Note that for ∆i (y) = 1

λ (J (y)) =
∥xi∥

∥xi∥ − 2ρ
∆i (y)− 1 > 0 . (43)

Therefore, a stationary point is stable if and only if for all i ∈ [N − 1] ∆i (y) = 0. We define the set A = {∑n∈I xn|I ∈
P([N − 1])}. Note that the set of points where the score is zero and ∆i (y) = 0 for all i ∈ [N − 1] is A.

D.2. Proof of Theorem 4.3

Proof. We assume WLOG that for all i ∈ [N − 1] ui = ei. We can analyze the ODE equation 14 along each orthogonal
direction separately. In each direction, we divide the ODE into the following cases:

If yi ≤ ρ or i > N − 1, the score function is

si (yi) = − yi
σ2

. (44)

Therefore, according to Lemma D.3,

(yt)i = (y0)ie
− t

σ2 (45)

and we converge to zero.

If yi ≥ ∥xi∥ − ρ, the score function is

si (yi) =
∥xi∥ − yi

σ2
. (46)

Therefore, according to Lemma D.3,

(yt)i = (y0)ie
− t

σ2 + ∥xi∥
(
1− e−

t
σ2

)
(47)

= (y0 − ∥xi∥) e−
t

σ2 + ∥xi∥ (48)

and we converge to ∥xi∥.

Finally, if ρ < yi < ∥xi∥ − ρ, the score function is

si (yi) =
1

σ2

(( ∥xi∥
∥xi∥ − 2ρ

− 1

)
yi −

∥xi∥ ρ
∥xi∥ − 2ρ

)
. (49)

Therefore, according to Lemma D.3,

(yt)i = (y0)ie

(
∥xi∥

∥xi∥−2ρ
−1

)
t

σ2
+

∥xi∥
2

(
1− e

(
∥xi∥

∥xi∥−2ρ
−1

)
t

σ2

)
(50)

=

(
(y0)i −

∥xi∥
2

)
e

(
∥xi∥

∥xi∥−2ρ
−1

)
t

σ2
+

∥xi∥
2

. (51)

Here, if (y0)i =
∥xi∥
2 we converge to ∥xi∥

2 ; if (y0)i >
∥xi∥
2 then we converge to ∥xi∥; if (y0)i <

∥xi∥
2 then we converge to

zero.

There are multiple initializations in which the closest point on the hyperbox is a point on the boundary which is not a vertex.
We first consider the case where there exist a non empty set I ⊂ [N − 1] such that for all i ∈ I ρ < (y0)i < ∥xi∥ − ρ, and
for all j ∈ [N ] \ I (y0)j < ρ or (y0)j > ∥xi∥ − ρ. We define ∆Ti (ρ) time to reach the edge of the partition, i.e. ∥xi∥ − ρ

(when (y0)i > ∥xi∥ − ρ) starting from the initialization point, and ∆T̃j (ρ, ϵ) time to reach ϵ distance from zero or ∥xi∥
starting from the initialization point:

∆Ti (ρ) = σ2 ∥xi∥ − 2ρ

2ρ
log

(
∥xi∥
2 − ρ

(y0)i − ∥xi∥
2

)
(52)

∆T̃j (ρ, ϵ) = σ2 log

(
(y0)i
ϵ

)
. (53)
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Since ρ = ασ we get that

∆Ti (ρ) = ρ
∥xi∥ − 2ρ

2α2
log

(
∥xi∥
2 − ρ

(y0)i − ∥xi∥
2

)
(54)

∆T̃j (ρ, ϵ) =
( ρ
α

)2
log

(
(y0)i
ϵ

)
. (55)

Note that ∃ρ0 (ϵ) > 0 such that ∀ρ < ρ0 (ϵ, )

T0 = max
j

∆T̃j (ρ, ϵ) < T < T1 = min
i

∆Ti (ρ) , (56)

since ∃ρ0 (ϵ) such that

(ρ0
α

)2
log

(
(y0)i
ϵ

)
< ρ0

∥xi∥ − 2ρ0
2α2

log

(
∥xi∥
2 − ρ0

(y0)i − ∥xi∥
2

)
(57)

log

(
(y0)i
ϵ

)
<

∥xi∥ − 2ρ0
2ρ0

log

(
∥xi∥
2 − ρ0

(y0)i − ∥xi∥
2

)
. (58)

We can similarly derive the time interval during which yT is at most ϵ distance from the boundary of the hyperbox and is
not at a stationary point for additional initializations. Specifically, for all i ∈ [N − 1] ρ < (y0)i < ∥xi∥ − ρ is such an
initialization point.

D.3. Proof of Theorem 4.4

First, we prove the following lemma.

Lemma D.3. consider the following affine ODE

dyt
dt

= ayt + b (59)

with initial point yT , where a ̸= 0. The solution is

y = ea(t−T )

(
yT − b

a

(
e−a(t−T ) − 1

))
. (60)

Proof. We verify directly that this is indeed the solution, since

dyt
dt

= aea(t−T )

(
yT − b

a

(
e−at − 1

))
+ ea(t−T )be−a(t−T ) (61)

= aea(t−T )

(
yT − b

a

(
e−(t−T )t − 1

))
+ b = ayt + b (62)

yT =

(
yT − b

a
(1− 1)

)
= yT . (63)

Next, we prove the main Theorem.

Proof. We assume WLOG that for all i ∈ [N − 1] ui = ei. We can analyze the score flow along each orthogonal direction
separately. In each direction, we divide the ODE to the following cases:

If i /∈ [N − 1], then equation 12 is

dyr
dr

= −y . (64)
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Note that the initial point is at r0 = − log
√
T . Using Lemma D.3, we obtain

(yr)i = (yT )i e
−1(r+log

√
T) . (65)

Since r = − log
√
t, we further obtain

(yt)i = (yT )i e
(log

√
t−log

√
T) = (yT )i e

(
log

√
t
T

)
= (yT )i

√
t

T
. (66)

Therefore, we obtain (y0)i = 0.

We now consider now the case where i ∈ [N − 1].

In the case where yi < ρt, equation 12 is

dyr
dr

= −y . (67)

So, similarly to the previous case, we obtain (y0)i = 0.

In the case where yi > ∥xi∥ − ρt, equation 12 is

dyr
dr

= ∥xi∥ − y . (68)

Note that the initial point is at r0 = − log
√
T . Using Lemma D.3 we obtain

(yr)i = e−1(r+log
√
T)
(
(yT )i + ∥xi∥

(
e−1(r+log

√
T) − 1

))
(69)

= ∥xi∥+ ((yT )i − ∥xi∥) e−1(r+log
√
T) . (70)

Since r = − log
√
t, we further obtain

(yt)i = ∥xi∥+ ((yT )i − ∥xi∥) e(log
√
t−log

√
T) = (71)

= ∥xi∥+ ((yT )i − ∥xi∥)
√

t

T
. (72)

Therefore, we obtain (y0)i = ∥xi∥.

In the case where ρt < yi < ∥xi∥ − ρt, equation 12 is

dyr
dr

= ρg−1
r

(
2

∥xi∥
y − 1

)
. (73)

Note that

ρt = ασt = α
√
t (74)

g−1
r = e−2r . (75)

Therefore,

ρr = αe−r (76)

so we obtain the following ODE:

dyr
dr

= αe−r

(
2

∥xi∥
y − 1

)
. (77)

17



When Diffusion Models Memorize

Next, we apply additional time re-scaling

k = −αe−r (78)
dk

dr
= αe−r = ρr (79)

dr

dk
= α−1er = ρ−1

r . (80)

So, we get the following ODE:

dyr
dk

=
dyr
dr

dr

dk
= αe−r

(
2

∥xi∥
y − 1

)
α−1er =

2

∥xi∥
y − 1 (81)

dyk
dk

=
2

∥xi∥
y − 1 . (82)

Note that the initial point is at k0 = −α
√
T . Using Lemma D.3 we obtain

(yk)i = e
2

∥xi∥ (
k+α

√
T)
(
(yT )i +

∥xi∥
2

(
e
− 2

∥xi∥ (
k+α

√
T) − 1

))
(83)

=
∥xi∥
2

+

(
(yT )i −

∥xi∥
2

)
e

2

∥xi∥ (
k+α

√
T)

. (84)

Since k = −αe−r and r = − log
√
t, we obtain

(yr)i =
∥xi∥
2

+

(
(yT )i −

∥xi∥
2

)
e

2

∥xi∥ (
−αe−r+α

√
T)

(85)

(yt)i =
∥xi∥
2

+

(
(yT )i −

∥xi∥
2

)
e

2

∥xi∥ (
−α

√
t+α

√
T)

. (86)

So, we obtain (y0)i =
∥xi∥
2 +

(
(yT )i −

∥xi∥
2

)
e

2α
√

T

∥xi∥ . Given an initialization point yT , let I ⊆ [N − 1] be a non empty set
such that ρ < (yT )i < ∥xi∥ − ρ for all i ∈ I and either (yT )i < ρ or (yT )i > ∥xi∥ − ρ for all j ∈ [N − 1] \ I. Then, if

T > max
i∈I

(∥xi∥
2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
, (87)

we converge to the closest point in the set A = {∑n∈I xn | I ⊆ [N − 1]} to the initialization point yT , where {xn}N−1
n=0

is the training set. We instead converge to the closest boundary of the hyperbox to the initialization point yT if

T < max
i∈I

(∥xi∥
2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
. (88)

D.4. Proof of Theorem B.1

Proof. In the case where the convex hull of the training points is an (N − 1)-simplex, such that x0 forms an obtuse angle
with all other vertices and x0 = 0, the score function is

s (y) =
h∗
ρ(y)− y

σ2
(89)

=

∑N−1
n=1

∥xn∥
∥xn∥−2ρun

(
[u⊤

n y − ρ]+ − [u⊤
n y − (∥xn∥ − ρ)]+

)
− y

σ2
. (90)

The Jacobian matrix is

Jij (y) =

∑N−1
n=1

∥xn∥
∥xn∥−2ρ (un)i (un)j ∆n (y)− δi,j

σ2
, (91)
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where ∆n (y) indicates if only one of the ReLU functions is activated. In matrix form we obtain

J (y) =
1

σ2

(
UU⊤ − I

)
, (92)

where

U =
(
∆1 (y)

√
γ1u1, · · · ,∆N−1 (y)

√
γN−1uN−1

)
(93)

γn =
∥xn∥

∥xn∥ − 2ρ
(94)

∆n (y) ∈ {0, 1} . (95)

Note that the Jacobian matrix is a real and symmetric matrix therefore it has real eigenvalues. In this case, the stability
condition is

Re{λ (J (y))} = λ (J (y)) < 0 . (96)

For any a ∈ Rd

a⊤J (y)a ≤ λmax (J (y))a⊤a . (97)

This holds in particular for a ∈ Sd−1, therefore

λmax (J) ≥ a⊤ 1

σ2

(
UU⊤ − I

)
a (98)

=
1

σ2

(∥∥a⊤U
∥∥2
2
− 1
)
. (99)

If we choose a = un such that ∆n (y) ̸= 0, then
∥∥a⊤U

∥∥2
2
> 1, since γn > 1. Therefore, a stationary point is stable if and

only if for all n ∈ {1, · · · , N − 1} ∆i (y) = 0. Note that if y is such that ∆n (y) = 0 for all n ∈ {1, · · · , N − 1}, then
there exists I ∈ P(0, 1, · · · , N − 1) such that

f∗(y) =
∑
n∈I

xn . (100)

Therefore, y∗ =
∑

n∈I xn is a stationary point if and only if for all i ∈ {1, · · · , N − 1} ∆i (y
∗) = 0. Note that the

set of stable stationary points is not empty, since for all i ∈ [N ] the point y∗ = xi is a stable stationary point because
f∗ (y∗) = xi, and thus ∆n (y

∗) = 0 for all n ∈ {1, · · · , N − 1}.

The condition for the point
∑

n∈I xn where I ⊆ [N ] and |I| ≥ 2 if 0 /∈ I and |I| ≥ 3 if 0 ∈ I to be a stable stationary
point, is that for all ∀k ∈ I ∑

i∈I
u⊤
k xi > ∥xk∥ − ρ , (101)

which is equivalent to that for all ∀k ∈ I ∑
i∈I\{k}

u⊤
k xi > −ρ . (102)

This set of inequality is equivalent to the condition

min
k∈I

 ∑
i∈I\{k}

u⊤
k ui ∥xi∥

 > −ρ . (103)
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D.5. Proof of Theorem B.2

First, we prove the following lemma.

Lemma D.4. Consider the following system of affine ODE

dyt

dt
= Ayt + b , (104)

with the initial condition y0, where A ∈ Rd×d is a non singular matrix. The solution is

yt = eAt
(
y0 −A−1

(
e−At − I

)
b
)
. (105)

In the case where A is also symmetric, the solution can be written as

yt =

d∑
i=1

vi

(
v⊤
i y0

)
eλit −

d∑
i=1

vi

(
v⊤
i b
)
λ−1
i

(
1− eλit

)
, (106)

where
∑d

i=1 λiviv
⊤
i is the eigenvalue decomposition of the matrix A.

Proof. We verify directly that this is indeed the solution, since

dyt

dt
= AeAt

(
y0 −A−1

(
e−At − I

)
b
)
+ eAte−Atb = Ayt + b (107)

y0 = I
(
y0 −A−1 (I− I) b

)
= y0 . (108)

In the case where A is also symmetric,

eAt =

∞∑
k=0

1

k!
(At)

k
= V

( ∞∑
k=0

1

k!
tkΛk

)
V ⊤ (109)

= V diag
(
eλ1t, · · · , eλdt

)
V ⊤ =

d∑
i=1

eλitviv
⊤
i (110)

e−At =

d∑
i=1

e−λitviv
⊤
i . (111)

Therefore,

yt = eAt
(
y0 −A−1

(
e−At − I

)
b
)

(112)

=

d∑
i=1

viv
⊤
i e

λit

y0 −
d∑

k=1

vkv
⊤
k λ

−1
i

d∑
j=1

vjv
⊤
j

(
e−λjt − 1

)
b

 (113)

=

d∑
i=1

viv
⊤
i e

λit

(
y0 −

d∑
k=1

vkλ
−1
k v⊤

k

(
e−λkt − 1

)
b

)
(114)

=

d∑
i=1

vi

(
v⊤
i y0

)
eλit −

d∑
i=1

vi

(
v⊤
i b
)
λ−1
i

(
1− eλit

)
. (115)

Next, we prove Theorem B.2.
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Proof. We assume WLOG that x0 = 0. Given the initial point y0 such that y0 such that ρ < u⊤
i y0 < ∥xi∥ − ρ and

u⊤
j y0 < ρ for all j ̸= i, the score is given by

s (y) =
1

σ2

( ∥xi∥
∥xi∥ − 2ρ

ui

(
u⊤
i y − ρ

)
− y

)
(116)

=
1

σ2

(( ∥xi∥
∥xi∥ − 2ρ

uiu
⊤
i − I

)
y − ∥xi∥ ρ

∥xi∥ − 2ρ
ui

)
. (117)

According to Lemma D.4, the score flow in the partition ρ < u⊤
i y < ∥xi∥ − ρ and u⊤

j y < ρ for all j ̸= i is

yt =

d∑
k=1

vk

(
v⊤
k y0

)
eλk

t
σ2 −

d∑
k=1

vk

(
v⊤
k b
)
λ−1
k

(
1− eλk

t
σ2

)
, (118)

where the matrix A =
(

∥xi∥
∥xi∥−2ρuiu

⊤
i − I

)
. The eigenvalue decomposition of A is

A = V ΛV ⊤ (119)

V =
(
ui w1 · · · wd−1

)
(120)

Λ = diag

(
2ρ

∥xi∥ − 2ρ
,−1, · · · ,−1

)
, (121)

where wj ∈ u⊥
i . Since, ( ∥xi∥

∥xi∥ − 2ρ
uiu

⊤
i − I

)
ui =

( ∥xi∥
∥xi∥ − 2ρ

− 1

)
ui (122)

=
2ρ

∥xi∥ − 2ρ
ui (123)( ∥xi∥

∥xi∥ − 2ρ
uiu

⊤
i − I

)
wj = −wj , (124)

and b = − ∥xi∥ρ
∥xi∥−2ρui. So, we get

yt = ui

((
u⊤
i y0

)
e

2ρ

∥xi∥−2ρ
t

σ2 +
∥xi∥
2

(
1− e

2ρ

∥xi∥−2ρ
t

σ2

))
+

d∑
k=2

vk

(
v⊤
k y0

)
e−

t
σ2 . (125)

Note that we can analyze the score flow along each orthogonal direction separately. Next, we divide it into the following
cases:

If u⊤
i y0 = ∥xi∥

2 , then

yt = ui
∥xi∥
2

+

d∑
k=2

vk

(
v⊤
k y0

)
e−

t
σ2 . (126)

Therefore, we converge to the point y∞ = ui
∥xi∥
2 .

If u⊤
i y0 > ∥xi∥

2 , then we converge to y∞ = ui ∥xi∥, and if u⊤
i y0 < ∥xi∥

2 then we converge to y∞ = x1 = 0 (since then
the score function is ∥xi∥−y

σ2 or − y
σ2 ).

We assume WLOG that u⊤
i y0 > ∥xi∥

2 . We define ∆Tui
(ρ) time to reach the edge of the partition, i.e. ∥xi∥ − ρ starting

from the initialization point, and ∆Tvk
(ρ, ϵ) time to reach ϵ distance from zero (the data manifold) starting from the

initialization point.

∆Tui
(ρ) = σ2 ∥xi∥ − 2ρ

2ρ
log

(
∥xi∥
2 − ρ

u⊤
i y0 − ∥xi∥

2

)
(127)

∆Tvk (ρ, ϵ) = σ2 log

(
v⊤
k y0

ϵ

)
. (128)
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Since ρ = ασ, we get that

∆Tui
(ρ) = ρ

∥xi∥ − 2ρ

2α2
log

(
∥xi∥
2 − ρ

u⊤
i y0 − ∥xi∥

2

)
(129)

∆Tvk (ρ, ϵ) =
( ρ
α

)2
log

(
v⊤
k y0

ϵ

)
. (130)

Similarly to D.2, we get that ∃ρ0 (ϵ) > 0 such that ∀ρ < ρ0 (ϵ, )

T0 = max
k

∆Tvk (ϵ) < T < ∆Tui
(ρ) . (131)

D.6. Proof of Theorem B.3

Proof. The estimated score function at the initialization is

σ2
t s (y, t) =

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − ρtui . (132)

Next, we project the estimated score along ui and the orthogonal direction, so we get

uiu
⊤
i σ

2
t s (y, t) =

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − uiu

⊤
i

)
y − ρtui (133)

= uiρt

(
2

∥xi∥
u⊤
i y − 1

)
(134)

(
I − uiu

⊤
i

)
σ2
t s (y, t) =

(
I − uiu

⊤
i

)((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − ρt

(
I − uiu

⊤
i

)
ui (135)

=

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y −

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − uiu

⊤
i

)
y (136)

=

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − 2

∥xi∥
ρtuiu

⊤
i (137)

=
(
uiu

⊤
i − I

)
y . (138)

Therefore, the projected score onto ui is
ρt

(
2

∥xi∥
u⊤

i y−1

)
σ2
t

, and the projected score function onto wj ∈ u⊥
i is −w⊤

j y

σ2
t

, so we
get the same estimated score as in Theorem 4.4 (we can analyze the score flow along each orthogonal direction separately).
Therefore, along wj we get

w⊤
j yt = w⊤

j yT e
(log

√
t−log

√
T) = w⊤

j yT e

(
log

√
t
T

)
= (yT )i

√
t

T
. (139)

So, we obtain w⊤
j y0 = 0. Along ui we get

u⊤
i yt =

∥xi∥
2

+

(
u⊤
i yT − ∥xi∥

2

)
e

2

∥xi∥ (
−α

√
t+α

√
T)

, (140)

so we obtain w⊤
j y0 = ∥xi∥

2 +
(
u⊤
i yT − ∥xi∥

2

)
e

2α
√

T

∥xi∥ . Then, if

T ≥
(∥xi∥

2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
, (141)
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we converge to the closest point in the set {x0,xi} to the initialization point yT since the estimated score is equal to − y
σ2
t

or ∥xi∥−y
σ2
t

and we converge to 0 or ∥xi∥ (as in Theorem 4.4), and if

T <

(∥xi∥
2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
, (142)

we converge to a point on the line connecting x0 and xi.

D.7. Poof of Proposition C.1

Proof. We assume WLOG that x0 = 0. Note that since the convex hull of the training points is an equilateral triangle, then
∥xi∥ = ∥x∥. Given the initial point y0 such that i ∈ {1, 2}− ∥x∥

2 + ρ < u⊤
i y < ∥x∥− ρ and u⊤

3 y < −∥x∥
2 + ρ, the score

is given by

s (y) =
1

σ2

(
∥x∥

3
2 ∥x∥ − 2ρ

2∑
i=1

(
uiu

⊤
i y +

1

2
xi − uiρ

)
− y

)
(143)

=
1

σ2

( ∥x∥
3
2 ∥x∥ − 2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
y (144)

+
1

σ2

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1

2
∥x∥ − ρ

)
u1 +

∥x∥
3
2 ∥x∥ − 2ρ

(
1

2
∥x∥ − ρ

)
u2

)
. (145)

According to Lemma D.4, the score flow in the partition i ∈ {1, 2} − ∥x∥
2 + ρ < u⊤

i y < ∥x∥ − ρ and u⊤
3 y < −∥x∥

2 + ρ is

yt =

2∑
k=1

vk

(
v⊤
k y0

)
eλk

t
σ2 −

2∑
k=1

vk

(
v⊤
k b
)
λ−1
k

(
1− eλk

t
σ2

)
, (146)

where the matrix A =
(

∥x∥
3
2∥x∥−2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
. The eigenvalue decomposition of A is

A = V ΛV ⊤ (147)

V =
( u1−u2√

2(1−u⊤
1 u2)

u1+u2√
2(1+u⊤

1 u2)

)
(148)

Λ = diag

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1− u⊤

1 u2

)
− 1,

∥x∥
3
2 ∥x∥ − 2ρ

(
1 + u⊤

1 u2

)
− 1

)
, (149)

since,( ∥x∥
3
2 ∥x∥ − 2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
(u1 − u2) =

∥x∥
3
2 ∥x∥ − 2ρ

(
u1 + u2u

⊤
2 u1 − u1u

⊤
1 u2 − u2

)
− (u1 − u2)

(150)

=

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1− u⊤

2 u1

)
− 1

)
(u1 − u2) (151)( ∥x∥

3
2 ∥x∥ − 2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
(u1 + u2) =

∥x∥
3
2 ∥x∥ − 2ρ

(
u1 + u2u

⊤
2 u1 + u1u

⊤
1 u2 + u2

)
− (u1 + u2)

(152)

=

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1 + u⊤

2 u1

)
− 1

)
(u1 + u2) , (153)

and b = ∥x∥
3
2∥x∥−2ρ

(
1
2 ∥x∥ − ρ

)
u1 +

∥x∥
3
2∥x∥−2ρ

(
1
2 ∥x∥ − ρ

)
u2. We assume WLOG that,

u1 =

(
0
1

)
, u2 =

(√
3
2

− 1
2

)
, u3 =

(
−

√
3
2

− 1
2

)
, (154)
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and we get

v1 =
1√
3
(u1 − u2) (155)

v2 = u1 + u2 = −u3 (156)

λ1 =
3
2 ∥x∥

3
2 ∥x∥ − 2ρ

− 1 > 0 (157)

λ2 = −
(
1−

1
2 ∥x∥

3
2 ∥x∥ − 2ρ

)
< 0 . (158)

yt =
1√
3
(u1 − u2)

(
1√
3
(u1 − u2)

⊤
y0

)
e

(
3
2
∥x∥

3
2
∥x∥−2ρ

−1

) t
σ2

σ2 (159)

+ (u1 + u2)
(
(u1 + u2)

⊤
y0

)
e
−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2 (160)

− (u1 + u2)

( ∥x∥
3
2 ∥x∥ − 2ρ

1

2
∥x∥ − ρ

)( 1
2 ∥x∥

3
2 ∥x∥ − 2ρ

− 1

)−1
(
1− e

−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2

)
. (161)

Note that, ( ∥x∥
3
2 ∥x∥ − 2ρ

(
1

2
∥x∥ − ρ

))( 1
2 ∥x∥

3
2 ∥x∥ − 2ρ

− 1

)−1

=
∥x∥

(
1
2 ∥x∥ − ρ

)
3
2 ∥x∥ − 2ρ

3
2 ∥x∥ − 2ρ

−∥x∥+ 2ρ
(162)

=
∥x∥

(
1
2 ∥x∥ − ρ

)
−∥x∥+ 2ρ

= −∥x∥
2

. (163)

Therefore,

yt =
1√
3
(u1 − u2)

(
1√
3
(u1 − u2)

⊤
y0

)
e

(
3
2
∥x∥

3
2
∥x∥−2ρ

−1

)
t

σ2 (164)

+ (u1 + u2)
(
(u1 + u2)

⊤
y0

)
e
−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2 (165)

− (u1 + u2)

(
−∥x∥

2

)(
1− e

−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2

)
(166)

=
1√
3
(u1 − u2)

(
1√
3
(u1 − u2)

⊤
y0

)
e

(
3
2
∥x∥

3
2
∥x∥−2ρ

−1

)
t

σ2 (167)

+ (u1 + u2)

((
(u1 + u2)

⊤
y0 −

∥x∥
2

)
e
−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2
+

∥x∥
2

)
. (168)

Note that we can analyze the score flow along each orthogonal direction separately. Next, we divide it into the following
cases:

If 1√
3
(u1 − u2)

⊤
y0 = 0, then

yt = (u1 + u2)

((
(u1 + u2)

⊤
y0 −

∥x∥
2

)
e
−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2
+

∥x∥
2

)
, (169)

and we converge to the point y∞ = (u1 + u2)
∥x∥
2 .

If 1√
3
(u1 − u2)

⊤
y0 > 0, then we converge to y∞ = x1, and if 1√

3
(u1 − u2)

⊤
y0 < 0, then we converge to y∞ = x2.
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0% 20% 40% 60% 80% 100%

Pairs

Triplets

Quadruplets

L2 Distance < 0.2

Figure 6: Existence of stable virtual training points. We run fixed-point iterations on a single denoiser, starting from all
possible pair-wise, triplet-wise, and quadruplet-wise combinations of training samples. The plot shows the percentage of
points that converged within an L2 distance of 0.2 to the original, virtual, input point.

We assume WLOG that 1√
3
(u1 − u2)

⊤
y0 > 0. We define ∆Td (ρ, ϵ) as the time to reach ϵ distance from the data

manifold (the line connecting the training points x1 and x2) starting from initialization point y0, and ∆Te (ρ) the time to
reach the edge of the partition starting from initialization point y0. We assume WLOG that (u1 + u2)

⊤
y0 > ∥x∥

2 and
(u1 + u2)

⊤
y0 − ∥x∥

2 > ϵ

∆Td (ρ, ϵ) =
σ2

1
2∥x∥

3
2∥x∥−2ρ

− 1
log

(
ϵ

(u1 + u2)
⊤
y0 − ∥x∥

2

)
(170)

∆Te (ρ) =
σ2

3
2∥x∥

3
2∥x∥−2ρ

− 1
log

 1
2 ∥x∥ − ρ

1√
3
(u1 − u2)

⊤
y0

 . (171)

Since ρ = ασ, we get that

∆Td (ρ, ϵ) =
ρ2

α2
(

1
2∥x∥

3
2∥x∥−2ρ

− 1
) log

(
ϵ

(u1 + u2)
⊤
y0 − ∥x∥

2

)
(172)

∆Te (ρ) =
ρ2

α2
(

3
2∥x∥

3
2∥x∥−2ρ

− 1
) log

 1
2 ∥x∥ − ρ

1√
3
(u1 − u2)

⊤
y0

 . (173)

Similar to D.2 we get that ∃ρ0 (ϵ) > 0 such that ∀ρ < ρ0 (ϵ, )

T0 = ∆Td (ρ, ϵ) < T < T1 = ∆Te (ρ) . (174)

E. Exploration of Different Thresholds
We next repeat the statistical analysis done in Section 5 for different thresholds. Figure 6 demonstrates the existence of
virtual points, in an analogous way to Figure 1, for the L2 metric. Figures 7 and 8 offer additional insights to the right side of
Figure 2a. Specifically, in Figure 7 we compare the results of the convergence types frequency of randomly sampled points
with score flow when using different thresholds of the L∞ distance. In Figure 8 we instead use the L2 metric. Similarly,
Figures 9 and 10 depict additional comparisons to the right side of Figure 2b, for both the L∞ and L2 distance metrics.
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Figure 7: Convergence types frequency of randomly sampled points for score flow based on L∞ proximity. We run the
discrete ODE formulation of equation 20 for 500 randomly sampled points from R30 for sampling using the score flow. We
plot the percentage of points that converged to either a virtual point, a training point, or to the boundaries of the hyperbox,
out of all points, based on their L∞ proximity for different thresholds.
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Figure 8: Convergence types frequency of randomly sampled points for score flow based on L2 proximity. We run the
discrete ODE formulation of equation 20 for 500 randomly sampled points from R30 for sampling using the score flow. We
plot the percentage of points that converged to either a virtual point, a training point, or to the boundaries of the hyperbox,
out of all points, based on their L2 proximity for different thresholds.
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Figure 9: Convergence types frequency of randomly sampled points for probability flow based on L∞ proximity. We
run the discrete ODE formulation of equation 20 for 500 randomly sampled points from R30 for probability flow. We plot
the percentage of points that converged to either a virtual point, a training point, or to the boundaries of the hyperbox, out of
all points, based on their L∞ proximity for different thresholds.
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Figure 10: Convergence types frequency of randomly sampled points for probability flow based on L2 proximity. We
run the discrete ODE formulation of equation 20 for 500 randomly sampled points from R30 for probability flow. We plot
the percentage of points that converged to either a virtual point, a training point, or to the boundaries of the hyperbox, out of
all points, based on their L2 proximity for different thresholds.
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(a) AL method, λ = 1.
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(b) Weight decay, λ = 0.25.
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(c) No weight decay.

Figure 11: Convergence types frequency of randomly sampled points in diffusion sampling for training with AL
method, weight decay, and without weight decay. We run the discrete ODE formulation of equation 20 for 500 randomly
sampled points from R30 for diffusion sampling, using different training configurations. We plot the percentage of points
that converged to either a virtual point, a training point, or to the boundaries of the hyperbox, out of all points. The minimum
norm constraint is necessary for inducing the bias towards virtual training points and the boundaries of the hyperbox.
Additionally, standard training protocol using weight decay regularization simulates well the minimum norm denoiser,
which is achieved by the use of the AL method.

F. The Minimum Norm Assumption
Theorems C.1, 4.4, B.1, B.2 and B.3 all hold in the case of a minimum norm denoiser, in which the denoiser achieves exact
interpolation over the noisy training samples. To enforce a consistent denoiser, we used a non-standard training protocol in
Section 5. Specifically, we optimize an equality-constrained optimization problem using the Augmented Lagrangian method.
Here we verify the robustness of our results and the necessity of the minimum norm assumption by repeating the experiment
from Section 5 when using standard training, with and without the use of weight decay. Specifically, all the hyper parameters
and Adam optimizer are kept the same, and only the loss function changes to directly optimize equation 3. Training with
weight decay should result in a denoiser that is similar to the min-norm solution. Figure 11 shows the percentage of points
that converged within an L∞ distance of 0.2 to either virtual points, training points, or a boundary of the hyperbox, for
the different training configurations. The use of weight decay in a standard training protocol induces a similar bias to that
achieved by the use of Augmented Lagrangian method.

G. Extension to Orthogonal Data With N > d+ 1

As in the case of strictly orthogonal data it is impossible to have N > d, we consider here a simliar setup where the training
set is augmented with samples randomly drawn from the boundary of the hyperbox. Specifically, for each augmented
sample we sample a random vector with i.i.d. elements from the uniform distribution Unif[0.3, 0.7]. This choice avoids the
degenerate case where no denoisers are active in the low-noise regime. We then project the vector on a random face of the
hyperbox to ensure that the new random data points lie on the hyperbox boundary. We train the denoisers following the
same experimental setup as in Figure 2, using M = 500 noisy samples and the AL method for optimization. We report
the the numerical values for the convergence of points for the L∞ metric with a 0.2 threshold in Table 1. As can be seen
from these results, in cases where N > d+ 1 the probability flow almost exclusively converges to the hyperbox boundary.
Specifically, either to the boundary, training points (either old orthogonal points or the new points on the boundary), or to
other vertices of the hyperbox (the original virtual points), which aligns with our theory.
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Figure 12: Convergence types frequency of randomly sampled points in diffusion sampling for training with AL
method, with an augmented training set such that N > d+ 1, where N = 40. We run the discrete ODE formulation of
equation 20 for 500 randomly sampled points from R30 for probability flow. We plot the percentage of points that converged
to either a virtual point, a training point, a new augmented training point from the boundary of the hyperbox, or to the
boundaries of the hyperbox, out of all points, based on their L∞ or L2 proximity for different thresholds.
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Figure 13: Convergence types frequency of randomly sampled points in diffusion sampling for training with AL
method, with an augmented training set such that N > d, where N = 50. We run the discrete ODE formulation of
equation 20 for 500 randomly sampled points from R30 for probability flow. We plot the percentage of points that converged
to either a virtual point, a training point, a new augmented training point from the boundary of the hyperbox, or to the
boundaries of the hyperbox, out of all points, based on their L∞ or L2 proximity for different thresholds.

Table 1: Convergence types frequency of randomly sampled points in diffusion sampling for training with AL method, with
an augmented training set such that N > d+ 1.

N = 40 N = 50

Hyperbox Boundary 99% 98.21%
Original Virtual Points 2.4% 3.4%
Orthogonal Training Datapoints 32% 19.6%
Augmented Random Data Points 14.6% 19%

Further metrics and thresholds for the two cases can be seen in Figures 12 and 13.
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Figure 14: Convergence types frequency of randomly sampled points in diffusion sampling for training with AL and
dropout. We run the discrete ODE formulation of equation 20 for 500 randomly sampled points from R30 for probability
flow. We plot the percentage of points that converged to either a virtual point, a training point, a new augmented training
point from the boundary of the hyperbox, or to the boundaries of the hyperbox, out of all points, based on their L∞ or L2

proximity for different thresholds.

H. Including Dropout During Training
We conduct additional experiments to assess the effect of incorporating dropout during training. As shown in Figure 14, this
results in more samples being generated outside the boundary of the hyperbox. Notably, adding dropout increases the MSE
loss during denoiser training, especially in the “low-noise regime”, which contributes to this behavior.

I. Connection to Hopfield Models
We compute the detection metrics suggested by Pham et al. (2024) for memorization, spurious, and generalization detection,
for the same setup as in Figure 2. Specifically, the training set contains N = 31 orthogonal points, and we use the same 500
sampled points as the evaluation set. Therefore, in the notation of Pham et al. (2024), |S| = 31 and Seval| = 500. Following
the guidelines set by Pham et al. (2024), we ensure the additional required set S′ is much larger than the training set by
constructing S′ such that |S′| = 100× |S|. Additionally, both S′ and Seval were sampled using probability flow.

Table 2 compares the classification of evaluation points into memorization, spurious, and generalization categories as
described by Pham et al. (2024), with our own categorization into training points, virtual points, and hyperbox boundary
points. We set δm = L, corresponsing to the thresholds used in our experiments, and test both L∞ and L2. Additionally, we
use δs = 0.15. The results suggest that many virtual points are classified as spurious under the criteria set by Pham et al.
(2024). This aligns with our analysis, as virtual points are stable, stationary points of the score flow; therefore, given a large
evaluation set, points will cluster near the virtual points, which matches the spurious points definition. However, due to the
exponential number of virtual points, we cannot expect a cluster to form around each of them. As a result, some virtual
points are also classified as “generalization” under these metrics.

Table 2: Comparison of the classification of evaluation points between our notations and the notations of Pham et al. (2024).

Classification under
Pham et al. (2024)

Our
Classification L∞ = 0.2 L∞ = 0.15 L∞ = 0.3 L2 = 0.2 L2 = 0.4

Memorized Training Pts. 100% 99.49% 100% 100% 100%
Boundary Pts. 0% 0.51% 0% 0% 0%

Spurious
Virtual Pts. 52.94% 21.57% 78.22% 34.29% 100%
Training Pts. 0.98% 0% 0% 0% 0%
Boundary Pts. 46.08% 78.43% 21.78% 65.71% 0%

Generalization
Virtual Pts. 11.35% 3.98% 31.48% 3.98% 40.22%
Training Pts. 4.86% 2.99% 6.79% 3.98% 6.15%
Boundary Pts. 83.78% 93.03% 64.73% 92.04% 53.63%

J. Additional Simulations
Figure 4 shows the normalized score flow for the case of an obtuse 2-simplex. Figure 5 shows the normalized score flow for
the case of an equilateral triangle. The normalization was done for visualization purposes only, since the norm of the score
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Figure 15: The score function of obtuse and acute simplex. The red dots are the training points x1,x2,x3. The black
lines are the ReLU boundaries. In figure (a) we plot the score function of obtuse simplex (Proposition D.1). In figure (b) we
plot acute simplex (Proposition D.2)
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Figure 16: The score function of orthogonal dataset. The purple line is the trajectory of the score flow of the exact score
function, and the green line is the trajectory of the score flow of the approximated score function (equation 18) in the case
where σ = 0.03, ρ = 0.09. Both trajectories are very similar.

decreases as it approaches the ReLU boundaries. In Figure 15 we illustrate the unnormalized score flow. Figure 16 shows
the trajectory of score flow of the exact score function, and the green line is trajectory of the score flow of the approximated
score function as can be seen the trajectories are practically identical.
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