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Abstract
This paper demonstrates that Semantic Context
(SC), leveraging descriptive tool information, is
a foundational component for robust tool orches-
tration. Our contributions are threefold. First, we
provide a theoretical foundation using contextual
bandits, introducing SC-LinUCB and proving it
achieves lower regret and adapts favourably in
dynamic action spaces. Second, we provide par-
allel empirical validation with Large Language
Models, showing that SC is critical for successful
in-context learning in both static (efficient learn-
ing) and non-stationary (robust adaptation) set-
tings. Third, we propose the FiReAct pipeline,
and demonstrate on a benchmark with over 10,000
tools that SC-based retrieval enables an LLM to
effectively orchestrate over a large action space.
These findings provide a comprehensive guide
to building more sample-efficient, adaptive, and
scalable orchestration agents.

1. Introduction
The capacity of intelligent systems, particularly Large Lan-
guage Models (LLMs), is significantly amplified by their
ability to orchestrate external tools—such as APIs, auxiliary
agents, or specialized functions (Patil et al., 2023; Qin et al.,
2023; Schick et al., 2023). This orchestration is a sequential
decision-making task: given a user query and a dynamic tool
catalogue, an agent must select and use the most appropriate
tool. While reinforcement learning (RL) offers a principled
framework, naive application (e.g., LLMs generating tool
invocations token-by-token) creates intractably large action
spaces (V L with vocabulary size V and sequence length L),
hindering learning. A common simplification presents the
agent with an explicit list of O available indices or tools,
Aavail = {a1, . . . , aO}, from which to select. However,
this often discards valuable semantic descriptions D(τ) as-
sociated with each tool (e.g., API doc strings, capability
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summaries). Recent works using RL to train LLM to or-
chestrate tools rely on the provision of tool names and de-
scriptions in the prompts (Feng et al., 2025; Singh et al.,
2025; Zhang et al., 2025; Qian et al., 2025). (Lin et al.,
2024) improve tool call reliability by random augmentation
of tool and argument names, thus pushing the model to rely
on tool descriptions. This paper investigates the critical and
quantifiable advantages of equipping agents with what we
term the Semantic Context (SC)—the collection of semantic
descriptions for all currently available actions.

This SC is not merely a helpful addition but a fundamen-
tal component for effective tool orchestration. Our work
establishes this through three core findings.

First, we provide a theoretical and empirical foundation
showing that even in static settings with a fixed tool set,
SC enables more efficient learning. To do this, we develop
SC-LinUCB, a bandit algorithm, and prove that it achieves
favourable regret compared with non-semantic baselines by
creating a more parsimonious and accurate reward model
(Section 3). Empirical support is provided by SC-LINUCB
and in-context learning experiments with LLM.

Second, we demonstrate SC’s critical role in dynamic adap-
tation. Our experiments show that as tools are added or
removed, an agent leveraging SC adapts gracefully, whereas
baselines suffer from catastrophic forgetting and require
costly retraining. This highlights SC as a key enabler for
continual learning in evolving environments for both, SC-
LINUCB and in-context learning LLM.

Finally, we show how SC makes tool orchestration practical
at scale through a FiReAct (Filter-Reason-Act) pipeline.
We demonstrate that semantically filtering a large corpus
of tools into a small, relevant set is essential for maintain-
ing high accuracy as the number of tools grows into the
thousands. This scalable application bridges our theoretical
insights with the practical challenges faced by modern LLM
agents (SubSection 5.3).

Our research draws from the contextual bandit framework
(Li et al., 2010; Chu et al., 2011), with LinUCB (Abbasi-
Yadkori et al., 2011) as a cornerstone, and contributes
by rigorously analysing features from a priori semantic
embeddings of natural language action descriptions and
quantifying their regret impact. While action representa-
tion learning from interaction is common in RL (Chan-
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dak et al., 2019; Pathakota et al., 2023), and using natu-
ral language for actions has been explored (Tennenholtz
and Mannor, 2019), our focus is on leveraging pre-existing,
structured semantic information. Addressing dynamic ac-
tion spaces, central to continual learning, we differ from
Chandak et al. (2020) who infer latent action structures;
we demonstrate how explicit, given semantic descriptions
enable robust adaptation without relearning action space
representations. This complements continual RL’s focus on
evolving reward/transition functions (Müller and Pacchiano,
2022; Khetarpal et al., 2020), aiming to furnish principled
insights for more sample-efficient, generalizable, and adap-
tive tool-orchestrating agents that explicitly leverage SC.

When dealing with high dimensional task-/ action spaces
there is a variety of approaches to dial down complexity. Ex-
amples include learning action elimination networks(Zahavy
et al., 2019) to approaches partitioning the task space based
on task embeddings (Müller et al., 2020). More recent
tool-RAG methods tackle the problem from a retrieval per-
spective: small LMs learn a function-mask head that sup-
presses irrelevant APIs at inference time (Lin et al., 2024);
completeness-oriented retrievers rank tools so that only a
minimal yet sufficient subset is forwarded to the reasoner
(Qu et al., 2024; Shi et al., 2025).

2. Problem Formulation
We model the task of selecting an appropriate tool for a given
query as a contextual bandit problem. This framework
allows us to rigorously analyse the decision-making that
underpins tool orchestration.

At each discrete time step t ∈ {1, . . . , T}, an agent observes
a context (a user query qt ∈ Q) and must select an action at

from a set of currently available tools, At = {a1, . . . , aOt
}

of magnitude Ot. The environment is stochastic: for a
given query qt, each action ai ∈ At has a true but unknown
probability of success, peff(ai, qt). After selecting at, the
agent receives a stochastic binary reward rt ∈ {0, 1}, drawn
from a Bernoulli distribution governed by this probability:
rt ∼ Bernoulli(peff(at, qt)).

The agent’s objective is to learn a policy π(at|qt, Ht−1)
that maximizes the cumulative reward (or Return),

∑T
t=1 rt.

This is equivalent to minimizing the Cumulative Expected
Regret, defined as the sum of the per-step differences be-
tween the expected reward of the optimal action for a given
query and the expected reward of the action the agent actu-
ally chose:

RT =
T∑

t=1

(
max
a∈At

peff(a, qt)− peff(at, qt)
)

. (1)

The central hypothesis of this paper is that an agent’s policy

can learn more efficiently and adapt faster to changes in
the action space At if it explicitly leverages the Semantic
Context, the rich descriptions associated with each action,
rather than treating actions as abstract, opaque indices.

Definition 2.1 (Semantic Context, CS(At)). Given At, the
set of available actions at time t, the semantic context
CS(At) is the collection of semantic information related to
these actions. Specifically, CS(At) = {(ai, D(ai))}ai∈At ,
where for each action ai, D(ai) is its natural language de-
scription (e.g., docstring). Each description is mapped to
a demb-dimensional semantic context embedding ϕ(ai) =
Ξ(D(ai)) via an embedding function Ξ. This provides struc-
tured, a priori information about the available actions, al-
lowing an agent’s policy π(at|st, CS(At)) to leverage both
the usual state st (which includes the query qt) and the SC.

Our analysis begins with the simplest instantiation of this
framework: a stationary environment where the set of ac-
tions is fixed.

Definition 2.2 (Semantic Context Bandit, SC-Bandit). An
SC-Bandit models a single-step decision with a static action
space Aavail. At each step t, given a query qt, the agent
selects an action at based on its policy π(at|qt, CS(Aavail)),
where the Semantic Context is fixed.

For SC MDP A.1 and the Lifelong SC MDP A.2 with non-
stationary action space we refer to appendix A.2. In all
frameworks, the central hypothesis is that explicit incor-
poration and effective utilization of the Semantic Action
Context CS(At) enable agents to achieve superior learning
efficiency, generalization, and adaptability.

3. Theoretical Framework: Semantic LinUCB
We analyse Semantic Contextual Linear UCB (SC-
LinUCB), an adaptation of the LinUCB algorithm (Abbasi-
Yadkori et al., 2011) that leverages semantic information
from action descriptions. Our analysis demonstrates that
by incorporating well-structured semantic features, SC-
LinUCB can achieve significantly lower regret than Lin-
UCB variants relying on non-semantic action representa-
tions. This improvement stems from a more efficient rep-
resentation of the underlying reward structure, leading to
better generalization and reduced exploration complexity.

Our theoretical contribution focuses on how the specific
construction of semantic features x(sem) for SC-LinUCB
leads to a more favorable instantiation of this generic bound
compared to using non-semantic features.

3.1. Contextual Linear Bandits and Feature Design

We operate within the standard contextual linear bandit
framework (detailed in Appendix B.1). At each time step
t, given a query (context) embedding qt ∈ Rdq , the agent
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selects a tool τj from the Kt available tools. Each tool
τj is associated with a semantic description embedding
ϕj ∈ Rddesc . The expected reward E[Rt|xt,j ] = xT

t,jθ∗ is
linear in the constructed d-dimensional feature vector xt,j .
The SC-LinUCB algorithm itself is Algorithm 2 (Appendix
B.2).

The core of our analysis lies in comparing two feature con-
struction strategies:

• SC-LinUCB Semantic Features (x(sem)): We con-
struct x(sem)

t,j = [qt; ϕj ; sim(qt, ϕj); 1]. The resulting
feature dimension is dsem = dq + ddesc + 1 + 1. This
design explicitly incorporates query attributes, tool se-
mantic attributes, and their direct alignment.

• LinUCB-NS Non-Semantic Features (x(non−sem)):
As a baseline, we use features x(non−sem)

t,j =
[qt; ej ; 1], where ej ∈ RK is the one-hot encoding
for tool τj . The dimension is dnon−sem = dq + K + 1.
This baseline distinguishes tools by identity but lacks
explicit shared semantic information.

The generic regret for LinUCB algorithms stated in Ap-
pendix B.3), scaling asRT = Õ(d · σeff ·

√
T ), where d is

the feature dimension and σeff is the effective noise stan-
dard deviation (incorporating observation noise and linear
model approximation error).

3.2. Regret Advantage via Efficient Semantic
Representation

To formalize the advantage of x(sem), we introduce an as-
sumption about the nature of the true reward function.

Assumption 3.1 (Semantically Structured Rewards). The
true expected reward function f∗(q, ϕ) is primarily de-
termined by a limited number of underlying semantic
interaction patterns between queries and tool seman-
tic properties. Specifically, there exists an optimal lin-
ear model in the semantic feature space, (x(sem)

t,j )T θ∗
sem,

that approximates f∗(qt, ϕj) with a mean squared error
σ2

approx,sem. Further, to achieve a comparable or better
linear approximation quality using non-semantic one-hot
features, i.e., (x(non−sem)

t,j )T θ∗
non−sem ≈ f∗(qt, ϕj) with

error σ2
approx,non−sem ≥ σ2

approx,sem, the dimensionality
dnon−sem (which scales with K) may be significantly larger
than dsem if K is large and there is semantic redundancy
across tools (i.e., ddesc + 1≪ K).

Theorem 3.2 (Regret Reduction for SC-LinUCB).
Under Assumption B.1 (for both SC-LinUCB with
(dsem, σeff,sem, Ssem, Lsem) and LinUCB-NS with
(dnon−sem, σeff,non−sem, Snon−sem, Lnon−sem)) and
Assumption 3.1: SC-LinUCB achieves a cumulative
regret RT (SC) that is less than or equal to the regret of

LinUCB-NS, RT (NS), if its semantic features lead to a
more favorable combination of dimensionality and effective
noise. Specifically, RT (SC) ≤ RT (NS) if the factor
dsem · σeff,sem (ignoring constants and polylog terms from
α) is smaller than dnon−sem · σeff,non−sem. A significant
improvement (RT (SC)≪ RT (NS)) is realized if:

1. Parsimonious Representation: dsem ≪ dnon−sem

(achievable if ddesc + 1≪ K) while maintaining com-
parable or better approximation quality (σeff,sem ≲
σeff,non−sem). The regret reduction factor is roughly
dsem/dnon−sem.

2. Superior Fit: Even if dsem ≈ dnon−sem, if se-
mantic features provide a substantially better lin-
ear approximation, then σeff,sem ≪ σeff,non−sem,
leading to a regret reduction factor of roughly
σeff,sem/σeff,non−sem.

Proof Sketch. The underlying mechanism is that SC-
LinUCB learns a single model θ̂sem over features that en-
code shared semantic properties. This enables generaliza-
tion: experience with one tool informs the valuation of other
semantically similar tools for similar contexts, leading to
more efficient exploration of the (context × action) space
compared to LinUCB-NS, which learns tool-specific param-
eters more independently via orthogonal one-hot encodings.

The regret for LinUCB (Theorem 19.2 in (Lattimore and
Szepesvári, 2020)) is RT = Õ(αd

√
T ), where the explo-

ration parameter α ≈ σeff

√
d log(TK/δ) + const · Sθ.

Thus, RT ≈ Õ((σeff d + Sθ

√
d)
√

T ). For simplicity
in comparing dominant effects, we consider the scaling
Õ(d · σeff ·

√
T ).

Case 1: Parsimony (dsem ≪ dnon−sem with σeff,sem ≈
σeff,non−sem = σeff ). Assumption 3.1 posits that rel-
evant semantic information can be captured in dsem =
dq + ddesc + 2 dimensions. If K tools share significant
semantic redundancy (e.g., many tools belong to a few
archetypes effectively distinguished by ddesc features, so
ddesc ≪ K), then dsem does not need to scale with K. In
contrast, LinUCB-NS requires dnon−sem = dq + K + 1
to assign distinct parameters to each tool via its one-hot
encoding ej . If ddesc + 1 ≪ K, then dsem ≪ dnon−sem.
Since the regret scales with d, SC-LinUCB directly benefits
from operating in a lower-dimensional parameter space, as-
suming the quality of linear fit (σeff ) is maintained. This
reduction in d means SC-LinUCB needs to estimate fewer
parameters, and the confidence ellipsoids effectively cover
the parameter space with fewer samples. The sum of ex-
ploration terms

∑
s2

t,τt
is bounded by O(dsem log T ) for

SC-LinUCB versus O(dnon−sem log T ) for LinUCB-NS
(Lemma B.3).

Case 2: Superior Fit (σeff,sem < σeff,non−sem with
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dsem ≈ dnon−sem). If the true reward function f∗(q, ϕ) is
more closely aligned with a linear model over semantic fea-
tures x(sem) than over non-semantic features x(non−sem),
then the approximation error component of σeff,sem will
be smaller than that of σeff,non−sem. Semantic features
like direct query-tool similarity (qT

t ϕj) can capture critical
interaction effects that might be poorly represented by the
interactions of qt with orthogonal one-hot vectors ej in a
linear model. A smaller σeff,sem makes the exploration
parameter αsem smaller for SC-LinUCB (for the same con-
fidence δ), leading to tighter UCB scores pt,j , thus less ex-
ploration of suboptimal arms. This means the term 2αst,τt

in the instantaneous regret bound is smaller on average.

Generalization Impact on Exploration Dynamics: Be-
yond the direct impact on d and σeff , the shared nature
of θ̂sem in SC-LinUCB means that an update from explor-
ing (qt, ϕa) refines weights associated with semantic com-
ponents (e.g., specific dimensions of ϕa or the similarity
feature). If another tool ϕb shares these semantic compo-
nents relevant to qt, the UCB score for (qt, ϕb) is implicitly
updated and its uncertainty reduced more effectively than
in LinUCB-NS, where the learning for tool a (via ea) is
largely isolated from tool b (via eb). This leads to a more
efficient ”pruning” of the (context× action) space, reducing
the cumulative sum

∑
st,τt . The combination of these ef-

fects results inRT (SC-LinUCB) ≤ RT (LinUCB-NS),
with significant improvement when semantic features offer
substantial parsimony or fit advantages.

4. SC-LinUCBExperiments
To empirically evaluate the impact of semantic information
in contextual bandit settings, we employ two variants of
the shared LinUCB algorithm (Abbasi-Yadkori et al., 2011).
Both agents aim to learn a single shared parameter vector
θ∗ ∈ Rd to predict expected rewards E[Rt|xt,j ] ≈ xT

t,jθ∗.
Their core distinction lies in the construction of the feature
vector xt,j for a given query (context) qt and tool (action)
τj .

We compare SC-LinUCB and LinUCB-OneHot using their
respective semantic and non-semantic feature constructions
detailed in Section 3.1. For this experiment with K = 6
tools, dsem = 6 and dnon−sem = 9. Results are averaged
over Nruns = 15 seeds.

We conduct a series of experiments to empirically validate
our theoretical findings and demonstrate the practical bene-
fits of using semantic action features. We first focus on an
intra-episode setting with a fixed action set, then evaluate
adaptation in a continual learning scenario with dynamic
action sets. Experiments are run on Colab (free tier CPU).

4.1. Experiment 1: Intra-Episode Efficiency in a
Multi-Context Environment

Objective. This experiment validates our theoretical claim
that SC-LinUCB achieves lower regret than LinUCB-
OneHot by leveraging semantic action features in a multi-
context setting with a fixed action set (K = 6).

Environment Setup. The environment features NQ = 3
distinct query types (contexts) that cycle periodically over
T = 10000 timesteps. Each of the K = 6 tools τj is asso-
ciated with a 2D toy semantic embedding ϕj , derived from
one of three underlying archetypes plus noise. Each query
type is designed to align semantically with one specific tool
archetype. Stochastic rewards Rt ∈ {0, 1} are determined
by the semantic alignment between the current query qt

and the chosen tool’s embedding ϕj . Full details are in
Appendix C.1.2.

Results. Figure 1 presents the average cumulative regret
(log scale). SC-LinUCB (orange line) shows substantially
superior performance, maintaining an exceptionally low cu-
mulative regret (around 100) over 10000 timesteps, indicat-
ing rapid convergence to a nearly optimal policy across con-
texts. LinUCB-OneHot (blue line), while exhibiting sublin-
ear regret (indicating learning), incurs orders-of-magnitude
higher regret (exceeding 103). This stark difference under-
scores SC-LinUCB’s ability to generalize semantic patterns
across different (context, tool) pairings, leading to vastly
improved sample efficiency compared to the baseline, which
learns tool utilities more independently. Both algorithms
used α = 0.3. For ablations over the value of α we refer to
figure 5.

Figure 1. Average Cumulative Regret (log scale) for SC-LinUCB
and LinUCB-OneHot in the multi-context (switching) with fixed
toolset experiemnt. Time steps T = 10000, averaged over 15 runs
and α = 0.3).
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4.2. Experiment 2: Continual Adaptation to Dynamic
Toolsets

Objective. This experiment evaluates the agents’ abil-
ity to adapt to a dynamically changing tool set over four
distinct phases (Tphase = 2500 steps each, for a total of
T = 10000 steps), involving tool addition, removal, and
the introduction of novel semantic types alongside new rele-
vant queries. The setup tests the robustness and generaliza-
tion capabilities crucial for lifelong learning. The environ-
ment cycles through three base query types (qA, qB , qC)
for the first three phases, with a fourth query type (qD)
introduced in Phase 4. Full phase details, including spe-
cific tool archetype assignments and query cycling, are in
Appendix B.8. LinUCB-OneHot re-initializes it’s model
matrices (A, b) when K changes due to its feature space
dependency on K. SC-LinUCB’s model matrices and dsem

remain fixed. Both agents use an exploration parameter
α = 0.5 for this illustrative plot (sensitivity to α is explored
in Appendix B.8). Results are averaged over Nruns = 15
independent seeds.

Results. Figure 2 (see figure 6 for corresponding reward
plots) illustrates the average cumulative regret on a log scale.
The performance of SC-LinUCB (Semantic, orange line)

Figure 2. Average Cumulative Regret (log scale) for SC-LinUCB
and LinUCB-OneHot in the continual adaptation experiment. Each
phase is 2500 steps, changes indicated by dashed lines.

is remarkably robust. Its cumulative regret remains very low,
consistently around 101 (approximately 10-20 units), across
all four phases and 10000 time steps. Crucially, at the phase
transitions (dashed vertical lines at t = 2500, 5000, 7500),
its regret curve shows almost no perturbation. This demon-
strates SC-LinUCB’s ability to gracefully handle tool re-
moval, leverage its existing semantic knowledge to quickly
incorporate new tools with familiar semantic embeddings
(Phase 3), and effectively learn about novel semantic types
when new queries make them relevant (Phase 4), all without
catastrophic forgetting or costly re-learning phases.

In stark contrast, LinUCB-OneHot (Non-Semantic, blue
line) exhibits significantly higher regret and poor adapta-
tion. Its regret climbs steeply, exceeding 103 by the end
of the experiment. At each phase transition where the
number of tools K changes, its regret curve shows a pro-
nounced upward jump or a sharply increased slope. This
is a direct consequence of its model matrices (A, b) being
re-initialized due to the change in its feature space dimen-
sionality (dnon−sem = dq + K + 1), forcing it to largely
relearn the value of tools from scratch for the new configu-
ration.

These results strongly underscore the high cost of adap-
tation for a non-semantic agent in dynamic environments.
SC-LinUCB’s fixed-dimensional semantic feature space,
combined with its capacity for semantic generalization, pro-
vides robust, efficient, and truly continual learning in the
face of a changing action landscape.

5. SC in LLM Tool Orchestrators
Using and training LLM to orchestrate across O many tools
can be done in a broad variety of methods. As previously
mentioned it can be e.g. a classic policy mapping the query
to an action (id or name) or a policy taking in the query
alongside the semantic context. Crucially there is a variety
of training regimes. A popular branch of methods used
LLM fine-tuning techniques (full rank or low rank) using
supervised fine-tuning (Prabhakar et al., 2025) with RL rea-
soning (Feng et al., 2025; Zhang et al., 2025) and algorithms
like PPO or GRPO. All of these provide semantic context in
their implementations. An alternative is to follow the recipe
in (Dulac-Arnold et al., 2015) and train a hierarchical policy
that predicts in the first step for a given query a text descrip-
tion of the action it wants to take (or an embedding of the
action) and performs in the second stage nearest-neighbour
search/ softmax over k-nearest neighbours to select the re-
spective action. A third method is to rely on the in-context
learning abilities.

We rigorously evaluate how SC impacts LLM in-context
learning efficacy for sequential tool selection. We frame this
as a multi-armed bandit (MAB) problem: an LLM agent
learns to select optimal tools based on query context and
interaction history presented via its prompt. Our investi-
gation spans static and dynamic environments, assessing
fundamental learning and adaptation.

5.1. Experimental Design

Our experimental design focuses on varying the semantic
richness of action representations provided to the LLM. We
consider four conditions:

Index Only (IO): Actions are presented as abstract, non-
informative indices (e.g., “Action 1”, “Action 2”). This
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baseline tests the LLM’s ability to learn solely from correla-
tions in the interaction history.

Name Only (NO): Actions are presented by their names
(e.g., “Data Analyzer”, “QuickTranslate”). This provides a
concise signal, yet it is quite fragile.

Name + Description (ND): Actions are presented with their
names and detailed functional descriptions, offering the
richest semantic context.

Description Only (DO): Actions are presented as abstract
non-informative indices together with detailed functional
descriptions.

The LLM for all experiments is Gemini 2.0 Flash.
Each experiment was conducted for multiple independent
trials (5 for static environments, 7 for dynamic environ-
ments). The full prompt structure, LLM parameters (tem-
perature 0.5, max output tokens 500− 1500), and detailed
configurations of arms and queries are provided in appendix
C.1. We report the average return over trials, where the
expectation is taken over the stochasticity of rewards and
LLM responses in figure 3. Average cumulative regrets are
presented in figure 7.

We designed four distinct experimental scenarios: Exp
1 (fQfA): fixed query and fixed tools probes baseline in-
context learning of best arm selection; Exp 2 (mQfA): var-
ied queries with fixed tools test contextual generalisation;
Exp 3 (fQmA): fixed query with evolving tools measures
adaptation; Exp 4 (mQmA): both queries and tools shift,
stressing full non-stationary robustness.

5.2. Results and Analysis

The experimental results, depicted by the average cumula-
tive reward curves in 3, reveal a nuanced and significant
impact of semantic context on the LLM’s in-context learn-
ing and adaptation for tool selection. For the corresponding
regret plot we refer the reader to figure 7 in the appendix.
With the small action gap and the poor performance of the
index only, the cumulative reward plot tells the semantic
baselines better apart.

Static Environments (fQfA - Exp1; mQfA - Exp2): In en-
vironments with fixed action spaces (Exp1 and Exp2 panels
in 3), providing richer semantic context generally leads to
higher cumulative rewards. ND (green solid line) and NO
(orange dash-dot line) both outperform IO (blue dashed line).
In Exp1 (fQfA), ND and NO perform very similarly, both
achieving near-optimal reward accumulation, indicating that
even names are sufficient for the single, repeated query. In
Exp2 (mQfA), which involves multiple queries, ND main-
tains a slight edge over NO, suggesting that descriptions
help differentiate tools more effectively as contextual com-
plexity increases. IO consistently lags, demonstrating the

LLM’s difficulty in accumulating rewards without semantic
cues to guide its choices.

Dynamic Environments (fQmA - Exp3; mQmA - Exp4):
The introduction of non-stationarity through changing action
spaces and/or queries highlights more complex interactions.
In Experiment 3 (fQmA: fixed query, moving actions), the
reward plot (3, Exp3 panel) shows that the ND condition
adapts most effectively to the introduction of a superior tool
(“E3 SuperCalc”) around turn 17 (phase details in C.1.4). Its
reward accumulation rate increases sharply after this point,
surpassing NO. The NO condition also shows adaptation
and reward growth but appears to either identify or commit
to the superior tool with a delay or less consistency. The IO
condition is slow in picking up the dynamic reward signal.

Experiment 4 (mQmA: moving queries and actions) presents
the most striking results (3, Exp4 panel). In this highly
dynamic scenario, the NO achieves the highest cumulative
reward, notably outperforming ND. This intriguing outcome
suggests that when both tasks and tools are frequently chang-
ing, the conciseness of tool names might offer an advantage
in terms of agile decision-making or reduced risk of mis-
interpretation compared to longer descriptions. The ND
condition still performs well and significantly better than
IO, but the simpler NO representation appears more robust
or efficient for the LLM in this specific rapidly evolving con-
text. The IO condition again accumulates the least reward,
underscoring its inadequacy in complex dynamic settings.

Synthesis of Findings: The results consistently demon-
strate that the absence of semantic context (IO) severely
limits the LLM’s ability to effectively learn and accumulate
rewards in these tool-selection bandit tasks. Providing se-
mantic information is crucial. Rich descriptions (ND) are
generally powerful, particularly for rapid optimal tool iden-
tification in static settings and for adapting to clear improve-
ments (like a new superior tool for a known task) in dynamic
environments. However, the superior performance of Names
Only in the most complex, fully dynamic scenario (Exp4)
is a key finding. It suggests a potential trade-off: while
detailed descriptions offer depth, concise and sufficiently in-
dicative names might facilitate greater agility or reduce the
processing/interpretation burden on the LLM when faced
with rapid and multifaceted environmental changes. This
implies that the optimal level of semantic detail for action
representation may not be monolithic but rather depend on
the stability and complexity of the operational environment.
It is also crucial to reiterate the finding of (Lin et al., 2024)
that the naming of tools alters much more across developers
than descriptions, making this approach more fragile.

Analysis of the Reasoning traces

Reasoning traces from Gemini 2.0 Flash (detailed examples
in App. C.3) reveal how LLMs leverage semantic context.
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Figure 3. Semantic Context yields higher average return across Experiments 1-4. Subplot titles indicate: f=Fixed, m=Moving, Q=Queries,
A=Actions. Shaded regions represent ±1 standard error of the mean (SEM) across trials. Higher values indicate better performance. Note
the varying x and y-axis scales.

"Reasoning: The query mentions \"sales
figures\" and \"growth pattern\", which
indicates numerical data and the need to
find trends. The Data Analyzer tool is
specifically designed for processing
numerical data arrays to find trends. The
other tools, Text Formatter and Image

Resizer, are not relevant to this query.
Therefore, the Data Analyzer is the most
likely to yield a reward.\n\n Chosen
Action: Data Analyzer"

Two main decision mechanisms are apparent: the reliance
on previous experience (ICL exploration (Krishnamurthy
et al., 2024)), and semantic matching. Particularly with ND
and NO, the LLM often engages in a two-step semantic
matching process: 1) analyse the user query to infer the ab-
stract capability required; 2) match this inferred need against
the semantic information of available tools, selecting the
best aligner. This resembles the two-step action selection
(Dulac-Arnold et al., 2015) where the policy maps first to a
desired description (proto action) and subsequently selects
the most appropriate match. For instance, for a sales growth
query, the LLM with ND or NO typically identifies a ”Data
Analyser” by matching functionality. The richness of ND
can lead to more nuanced initial alignments (Exp3), while
the conciseness of NO might offer faster, if less precise,
matching in dynamic scenarios (Exp4), potentially reduc-
ing cognitive load. This relies however on the concise tool
naming ability of the tool creator. (Lin et al., 2024) raise
that tool and argument naming is more user-sensitive than
the function description, making the latter more robust. Cru-
cially, NO and even more ND can enable LLM to prioritize
semantic fit over immediate past negative rewards for the
best tool. In contrast, IO relies solely on the ICL ability of
LLM. The observed two-step reasoning provides a qualita-
tive explanation for SC’s quantitative benefits, suggesting
that LLMs internalize descriptions for structured decision-
making beyond simple index-based pattern matching.

5.3. Semantic Context for Scaling Action Space

In the previous subsection reasoning traces showed a two
step of action description and action selection pattern. In
all this experiments all tools and descriptions were part of
the policy LLM context. To be practical, an orchestrator
must scale to large amounts of tools. As the context of
LLM runs naturally at some point out, we propose a ”filter-
then-reason-then-act” (FiReAct) pipeline. Pseudocode of
FiReAct is provided in alg 1 and can be thought of as Tool-
RAG version of RAG (Lewis et al., 2021).

Algorithm 1 The FiReAct Pipeline
Require: Embedding model ϕ, LLM policy π, query qt,

toolset At, num candidates k
1: Filter: Retrieve candidate subsetAcand ⊆ At of size k

via semantic search using ϕ(qt) and {ϕ(ai)|ai ∈ At}.
2: Reason & Act: Select final action aselected ∈ Acand

using the LLM policy π(qt, CS(Acand)).
3: return aselected

We instantiate this pipeline using a
text-embedding-004 retriever and a
gemini-2.0-flash LLM policy. Firstly query
and tools are embedded and the top k tools selected.
These are feed (in the respective descriptive format (IO,
ND,NO,DO) together with the query to the LLM policy.
Based on this, the tool is selected. FireAct can be deployed
at both test and train time. We demonstrate its usage at
test time in a 0-shot pipeline on a challenging benchmark
constructed from the XLAM dataset (Zhang et al., 2024),
evaluating 100 queries against a corpus of over 10,000 tools.
Figure 4 plots tool selection accuracy for three strategies:
pure semantic retrieval (‘top 1‘), LLM-filtered reasoning
(‘top 5‘), and exhaustive unfiltered reasoning (‘all‘). The
results are unequivocal: without SC, performance is
catastrophic. The IO condition yields 0-shot just random
pulls, thus (1/O) success rate.
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Figure 4. Semantic Context is essential for scalable tool selection with top 5 filtering followed by ND yields the strongest performance for
large tool sets. Accuracy is plotted against the total number of tools (log scale). The left plot shows accuracy of identifying the ground
truth tool, whereas the right plot uses an LLM as judge to evaluate the tool correctness.

Given SC’s necessity, its quality is paramount. Rich ND
context (green lines) consistently provides the highest accu-
racy across all methods, offering a distinct advantage over
the weaker ‘name only‘ and ‘description only‘ signals. This
shows that while any semantic signal is beneficial, more
detailed information provides critical disambiguation power,
especially as the number of distractor tools increases. Note
however the superiour/ competitive performance of NO with
N+D for up to 100 distractor tools. This demonstrates that
more detailed semantic information provides critical disam-
biguation power in complex environments. However less
SC (NO) is sometimes simpler, we hypothesize due to the
smaller context window.

The most crucial finding, however, reveals how to best lever-
age SC at scale. While pure retrieval (‘top 1‘) is power-
ful, its top-1 precision degrades as the tool space grows;
with 10,000 distractors, the accuracy for ‘name + descrip-
tion‘ context falls to 75%(80% with LLM Judge). The
retriever’s recall within the top 5 remains high, however,
creating a vital opportunity for a reasoning step. By hav-
ing the LLM re-rank these ‘top 5‘ candidates, we restore
accuracy to nearly 90%. This 15% accuracy gain validates
the FiReAct pipeline as a robust, scalable strategy, where
SC is the essential fuel for both initial filtering and final,
high-fidelity reasoning.

6. Future Work and Conclusion
This paper establishes that explicit Semantic Context (SC),
derived from action descriptions, is a powerful asset for
efficient tool orchestration. We demonstrated this principle
across two distinct paradigms: for linear contextual ban-
dits, we proved that our SC-LinUCB framework enables

more efficient learning and robust adaptation to dynamic
action spaces compared to non-semantic baselines. We
then showed that these principles translate directly to Large
Language Models performing in-context learning. Our ex-
periments confirmed that richer semantic context generally
enhances tool selection and adaptability, and we demon-
strated that our FiReAct pipeline leverages SC to make this
approach scalable to thousands of tools.

Our work has limitations that open clear avenues for future
investigation. Theoretically, key steps include developing
sharp regret bounds for formally non-stationary toolsets (At)
and analyzing algorithmic robustness to noisy or imperfect
semantic features. While our LLM experiments are indica-
tive, they are specific to the chosen model and prompting
strategies; direct theoretical guarantees for in-context tool
learning remain a major open challenge. Empirically, ex-
tending our experiments to the fine-tuning of LLMs and de-
veloping end-to-end trainable retrieval-reasoning pipelines
are promising directions.

In conclusion, by formalizing and demonstrating the “se-
mantic advantage,” our work shows that leveraging the in-
herent meaning of actions is a more effective strategy than
treating them as opaque indices. The consistent benefits of
SC observed across different learning frameworks—from
linear models to large transformers—suggest that providing
structured, semantic descriptions of actions is a valuable
and generalizable design principle. This approach provides
a principled path toward developing agents that are more
sample-efficient, adaptive, and scalable when interacting
with complex and evolving toolsets.
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A. Background
A.1. Notation at a Glance

Table 1. Notation at a glance
Symbol Meaning

At action set available at round t of cardinality Ot

ϕt(a) semantic feature vector of action a
dsem similarity metric on X
θ⋆ unknown linear reward vector
Vt design matrix at round t

A.2. Semantic Context MDP

Definition A.1 (Semantic Context MDP, SC-MDP). An SC-MDP describes sequential decision-making with a fixed
toolset Aavail and its corresponding fixed Semantic Action Context CS(Aavail). It is an MDP (S,A, P, R, γ) where:
The state st ∈ S is typically (ht, qt), representing history and current query. The action space A consists of choices
(aj , args(aj)) where aj ∈ Aavail. The policy π(at|st) implicitly utilizes the fixed CS(Aavail) (which defines this specific
MDP environment) to select at. Transitions P (st+1|st, at) and rewards R(st, at) are standard. Tool execution yields an
output ot, forming part of ht+1.

Definition A.2 (Lifelong Semantic Context MDP, LSC-MDP). An LSC-MDP models scenarios with a dynamically
changing tool set At. It is an MDP (SLSC ,ALSC , PLSC , RLSC , γ), where the state st ∈ SLSC is (ht, qt, CS(At)),
explicitly includes the time-dependent SC CS(At) that changes as the tool set At evolves. The action space ALSC(st)
comprises choices (aj , args(aj)) where aj ∈ At. The policy is π(at|st). Transition dynamics PLSC(st+1|st, at) determine
the next query qt+1 and, crucially, the next available toolset At+1 (and thus CS(At+1)).

B. Appendix Semantic Context LINUCB
B.1. Formal Assumptions

For the linear bandit setting we have the following standard assumptions.

Assumption B.1 (Contextual Linear Bandit Setting (Restated)). Over T timesteps, t ∈ {1, . . . , T}:

1. A context st is observed, from which a dq-dimensional query embedding qt = q(st) is derived.

2. The agent selects an action (tool) at from a fixed set of K tools A = {a1, . . . , aK}.

3. Each tool aj ∈ A has a ddesc-dimensional semantic description embedding ϕj = ϕ(Daj
).

4. For each context-tool pair (qt, aj), a d-dimensional feature vector xt,j = x(qt, ϕj) is constructed. We assume
∥xt,j∥2 ≤ Lx.

5. The expected reward is linear in these features: E[Rt(xt,j)|xt,j ] = xT
t,jθ∗ for an unknown true parameter vector

θ∗ ∈ Rd. We assume ∥θ∗∥2 ≤ Sθ.

6. Observed rewards are Rt(xt,j) = xT
t,jθ∗ + ηt,j , where ηt,j is conditionally σ-subGaussian noise: E[ηt,j |xt,j ] = 0

and E[eληt,j |xt,j ] ≤ eλ2σ2/2 for all λ ∈ R.
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B.2. SC-LinUCB Algorithm Detail

Algorithm 2 SC-LinUCB (Shared Model) - Appendix Version
Require: Exploration parameter α > 0, regularization λreg > 0.

1: Initialize A = λregId, b = 0d.
2: for t = 1, . . . , T do
3: Observe query qt.
4: For each tool aj ∈ A (with semantic embedding ϕj), construct feature vector xt,j = x(qt, ϕj).
5: Compute A−1.
6: Compute θ̂t = A−1b.
7: For each tool aj ∈ A:

8: st,j ←
√

xT
t,jA−1xt,j

9: pt,j ← xT
t,j θ̂t + αst,j

10: Choose at = arg maxj∈{1,...,K} pt,j (break ties randomly).
11: Let xchosen

t = xt,at
.

12: Play tool at, observe reward Rt(xchosen
t ).

13: A← A + xchosen
t (xchosen

t )T .
14: b← b + Rt(xchosen

t )xchosen
t .

15: end for

B.3. Standard Lemmas and Proof for Generic LinUCB Regret

Theorem B.2 (Confidence Set for θ∗, Theorem 2 from Abbasi-Yadkori et al. (2011)). Under Assumption 3.1, let δ ∈ (0, 1)
and λreg > 0. Define

α′
t(δ) := σ

√
2 log(1/δ) + d log

(
1 + tL2

x

λregd

)
+

√
λregSθ

(This form of α is closer to the direct statement in Abbasi-Yadkori et al., Theorem 2, which uses log(det(At)/ det(λregI)) ≤
d log(1 + tL2

x/(λregd))). Then, with probability at least 1− δ, for all t ≥ 1, θ∗ lies in the set Ct = {θ ∈ Rd : ∥θ̂t−θ∥At
≤

α′
t(δ)}. This implies that for any x ∈ Rd with ∥x∥2 ≤ Lx, |xT (θ̂t − θ∗)| ≤ α′

t(δ)
√

xT A−1
t x. For the main paper, we use

a slightly simplified α ≥ α′
T (δ) for clarity, which might incorporate a log K term for uniform convergence over arms at

each step if not absorbed into δ.

Proof. See proof of theorem 2 from Abbasi-Yadkori et al. (2011) for full derivation.

Lemma B.3 (Elliptical Potential Lemma, Lemma 11 from Abbasi-Yadkori et al. (2011)). Let x1, . . . , xT ∈ Rd be a
sequence of feature vectors such that ∥xt∥2 ≤ Lx. Let At = λregId +

∑t−1
j=1 xjxT

j . Then,

T∑
t=1

min(1, xT
t A−1

t xt) ≤ 2d log
(

1 + TL2
x

λregd

)

Proof. See proof of Lemma 11 from Abbasi-Yadkori et al. (2011).

B.4. Elleptical potential lemma

We restate and proof the elleptical potential lemma:

Lemma B.4 (Elliptical Potential Lemma, Lemma 11 from Abbasi-Yadkori et al. (2011)). Let x1, . . . , xT ∈ Rd be a
sequence of feature vectors such that ∥xt∥2 ≤ Lx. Let At = λregId +

∑t−1
j=1 xjxT

j . Then,

T∑
t=1

min(1, xT
t A−1

t xt) ≤ 2d log
(

1 + TL2
x

λregd

)
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If λreg ≥ L2
x, then xT

t A−1
t xt ≤ xT

t (λregId)−1xt = ∥xt∥2

λreg
≤ L2

x

λreg
≤ 1, so the min(1, ·) can be removed. For a general

λreg, the bound still holds with the min.

Proof. See Lemma 11 and Appendix A.3 in Abbasi-Yadkori et al. (2011).

B.5. Detailed Argument for Theorem 3.2 (Advantage of SC-LinUCB)

Theorem 3.2 posits that SC-LinUCB achieves lower regret than LinUCB-NS by enabling more efficient exploration and
generalization through its semantic features. We elaborate on the two main mechanisms:

1. More Parsimonious Effective Model (Relating to d): The regret bound for LinUCB scales roughly with d, the feature
dimensionality. For SC-LinUCB, features x(sem)

t,j = [qt; ϕj ; sim(qt, ϕj); 1] have dimension dsem = dq + ddesc + 1 + 1.

For LinUCB-NS with one-hot tool encodings, x(non−sem)
t,j = [qt; ej ; 1] has dimension dnon−sem = dq + K + 1.

Assumption B.1 implies that the true reward function f∗(qt, ϕj) depends on shared semantic properties encoded in ϕj

and their interaction with qt. If the diversity of K tools can be meaningfully captured by ddesc-dimensional semantic
embeddings such that ddesc ≪ K (e.g., tools fall into fewer semantic archetypes than K, or their reward-relevant variations
are low-dimensional), then dsem can be substantially smaller than dnon−sem. SC-LinUCB learns a single parameter vector
θ̂sem ∈ Rdsem . This vector effectively models the utility of semantic *attributes* (dimensions of qt, dimensions of ϕj , and
their similarity) and how they combine to predict reward. This model is shared across all K tools. LinUCB-NS, on the
other hand, needs to learn parameters in θ̂non−sem ∈ Rdnon−sem where K of these dimensions (from ej) are dedicated
to capturing the unique identity and behavior of each tool. If there is underlying semantic redundancy across tools that
LinUCB-NS cannot exploit, it is effectively learning a higher-dimensional model than necessary. Thus, if dsem < dnon−sem

and both feature sets achieve a comparable quality of linear approximation (i.e., σeff,sem ≈ σeff,non−sem), the d factor in
the regret bound directly favors SC-LinUCB. This represents a reduction in the complexity of the parameter space to be
learned.

2. Faster Reduction of Uncertainty for Semantically Similar Options (Relating to
∑

st,at
): The instantaneous regret

rt is bounded by 2αst,at = 2α
√

xT
t,at

A−1
t xt,at . The cumulative regret depends on the sum of these exploration terms.

Consider the update to the covariance matrix At+1 = At + xtxT
t . The inverse A−1

t+1 shrinks based on the direction of xt.
The exploration term s2

t′,j = xT
t′,jA−1

t+1xt′,j for any arm j at a future step t′ will decrease more significantly if xt′,j has a
substantial component along the direction of xt (the chosen arm’s features at time t).

For SC-LinUCB, if tool aa is chosen at time t (with features x(sem)
t,a ), the update to Asem reflects increased certainty

along the semantic dimensions present in x(sem)
t,a . Now, consider another tool ab. If ab is semantically similar to aa with

respect to context qt (or a similar context qt′ ), then their feature vectors x(sem)
t,a and x(sem)

t′,b will share many active semantic

components (e.g., similar ϕ components, similar interaction terms). Consequently, the exploration term s
(sem)
t′,b for tool

ab will also be reduced due to the information gained from pulling aa. The agent effectively learns about a ”semantic
neighborhood” of tools with each pull.

For LinUCB-NS, the feature vectors x(non−sem)
t,a = [qt; ea; 1] and x(non−sem)

t,b = [qt; eb; 1] (for a ̸= b) have orthogonal
tool-identity components ea and eb. An update from pulling aa (involving ea) primarily reduces uncertainty associated
with ea and its interaction with qt. It has minimal effect on reducing the uncertainty associated with the distinct orthogonal
direction eb. Thus, LinUCB-NS learns little about ab’s specific utility from pulling aa, even if aa and ab are semantically
very similar.

This implies that SC-LinUCB can ”cross off” or gain confidence about larger regions of the (context × semantic tool
property) space with each observation. As a result, the sum of exploration terms

∑T
t=1 st,at

is expected to be smaller for
SC-LinUCB compared to LinUCB-NS over T steps, as it requires fewer ”distinctly exploratory” pulls to identify good
actions across the spectrum of contexts and tools. While the Elliptical Potential Lemma (Lemma B.3) bounds

∑
s2

t,at

by O(d log T ) for both, the actual sequence of st,at values chosen by SC-LinUCB can be smaller on average due to this
generalization, leading to a tighter sum for

∑
st,at when applying Cauchy-Schwarz.

Combining a potentially smaller dsem with a more efficient exploration dynamic (leading to a smaller effective sum of
exploration bonuses), SC-LinUCB achieves lower cumulative regret.
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B.6. SC-LinUCB in the continual setting

Beyond efficiency with a fixed set of tools, SC-LinUCB’s semantic feature design offers significant advantages in continual
learning scenarios where the set of available tools At (and thus its size Kt) changes over time. This is a critical capability
for agents in evolving environments.

Consider a setting with phases, where within each phase p, the toolset A(p) is fixed, but it can change between phases (e.g.,
A(p+1) = (A(p) \ Aremoved) ∪ Aadded).

Theorem B.5 (Low-Cost Adaptation of SC-LinUCB to Dynamic Toolsets). Let SC-LinUCB use semantic features x(sem)

of fixed dimension dsem and LinUCB-NS use one-hot features x(non−sem) of dimension dnon−sem(Kt) = dq + Kt + 1.
When the set of available tools changes from A(p) (size K(p)) to A(p+1) (size K(p+1)):

1. SC-LinUCB (Semantic):

• Its feature dimension dsem remains constant.

• Its learned parameter vector θ̂
(p)
sem (from phase p) and covariance matrix A(p)

sem remain valid and are directly
carried over to phase p + 1.

• For any newly added tool anew ∈ Aadded with semantic embedding ϕnew, SC-LinUCB can immediately compute
its feature vector x(sem)

q,new and estimate its utility using the existing θ̂
(p)
sem, yielding an informed initial UCB score.

• The ”cost of adaptation” is primarily the exploration required for new semantic aspects introduced by Aadded

that were not sufficiently covered by θ̂
(p)
sem. If new tools are semantically similar to previously seen optimal tools,

adaptation is very fast.

2. LinUCB-NS (Non-Semantic Baseline):

• If K(p+1) ̸= K(p), its feature dimension dnon−sem(Kt) changes. This necessitates a change in its parameter
vector θ̂non−sem and matrices Anon−sem, bnon−sem.

• Common strategies for LinUCB-NS include: (a) Full Re-initialization: Anon−sem and bnon−sem are reset.
The agent effectively relearns from scratch for the new toolset A(p+1), incurring regret similar to starting a
new bandit problem of size K(p+1). (b) Heuristic Adaptation: Attempting to adapt Anon−sem, bnon−sem (e.g.,
adding/removing rows/columns) is complex and typically still treats new tool IDs as completely unknown entities
requiring extensive exploration.

• For any newly added tool anew, LinUCB-NS has no prior information derived from other tools about its utility, as
its one-hot encoding is orthogonal to others.

• The ”cost of adaptation” involves significant relearning for the entire (or substantial parts of) the new toolset.

Consequently, over a sequence of phases with changing toolsets, SC-LinUCB is expected to achieve substantially lower
cumulative regret than LinUCB-NS due to its fixed-dimensional semantic representation, knowledge transfer via θ̂sem, and
ability to gracefully incorporate or ignore tools based on their semantic features without model restructuring.

Proof Sketch for Theorem B.5. This theorem’s argument builds on the properties of the agents and the implications of
Theorem ?? applied piecewise.

For SC-LinUCB: The feature space Rdsem and the parameter vector θ∗
sem are defined over semantic properties, not tool

identities or the count Kt. Thus, the learned model (θ̂sem, Asem) retains its validity and utility when the set of available
tools At changes.

• Tool Addition: When anew (with ϕnew) is added, SC-LinUCB calculates x(sem)
q,new and its UCB score using the current

θ̂sem and Asem. If ϕnew aligns semantically with query features for which θ̂sem has learned high weights, anew will
be explored efficiently. The exploration cost is for resolving uncertainty about this specific x(sem)

q,new within the existing
learned model structure. No part of the model needs to be ”resized” or ”reset.”

• Tool Removal: If aremoved is removed, SC-LinUCB simply no longer considers it for selection. Its learned θ̂sem and
Asem (which contain information from past pulls of aremoved) remain valid for evaluating the remaining tools.
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The regret within any phase p where A(p) is fixed is governed by Theorem ?? with d = dsem. The transitions between
phases incur minimal structural cost.

For LinUCB-NS (OneHot): The feature space Rdnon−sem(Kt) explicitly depends on the current number of tools Kt via the
one-hot encodings ej ∈ RKt .

• Tool Addition (K increases): dnon−sem increases. The matrices Anon−sem and bnon−sem must be expanded. The
new dimensions corresponding to the new tool ID have no prior history. Effectively, the agent must learn about this
new tool’s interaction with all query types from scratch. If the agent fully resets Anon−sem, bnon−sem (as done in our
Experiment 2 for a clear baseline), it starts a new learning problem with regret Õ(dnon−sem(Knew)

√
Tphase). Even

with more sophisticated matrix adaptation, the components of θ∗
non−sem relevant to the new tool are unknown.

• Tool Removal (K decreases): dnon−sem decreases. The agent might discard rows/columns from Anon−sem, bnon−sem.
This is less detrimental than addition if no reset occurs, but the overall problem structure for its features has changed.

The key issue is that LinUCB-NS’s learned knowledge is tied to specific tool indices. If these indices change, or new ones
appear, extensive relearning is often needed for those affected dimensions. The strategy of re-initializing A, b upon change
in K (as implemented for LinUCB-OneHot in our Experiment 2) represents a clear case where it incurs a full bandit learning
cost for the new configuration.

Comparing Adaptation Costs: The ”cost” can be seen as the additional regret incurred during a phase transition compared
to an oracle that was already adapted. For SC-LinUCB, this cost is low because θ̂sem provides immediate, semantically-
informed estimates for new tools, and its structure is stable. For LinUCB-NS (with resets on K change), this cost is high,
equivalent to the initial regret of a new bandit problem. Thus, over multiple phases of toolset changes, the cumulative regret
of SC-LinUCB will be substantially lower due to these significantly reduced adaptation costs at phase boundaries, on top of
its potential intra-phase efficiency from Theorem 3.2.

B.7. Experiment 1: Detailed Setup and Full Results for Intra-Episode Efficiency

This section provides further details for Experiment 1, which evaluates the intra-episode efficiency of SC-LinUCB with
semantic features against LinUCB-OneHot with non-semantic features in a multi-context toy environment.

Environment Design. The environment is a contextual bandit task designed to highlight the benefits of semantic
generalization.

• Timesteps (T ): Each experimental run consists of T = 10000 timesteps.

• Tools (K): There are K = 6 tools available throughout each run.

• Tool Semantic Archetypes and Embeddings (ϕj): Tools are designed around Narch = 3 underlying semantic
archetypes. Each tool aj is assigned one of these archetypes. Its dtool sem = 2 dimensional toy semantic embedding
ϕj is generated by taking the corresponding archetype vector and adding Gaussian noise with zero mean and standard
deviation σemb noise = 0.05. This noise is re-generated for each of the Nruns independent experimental trials to ensure
robustness of results to minor variations in embeddings. The archetype vectors are:

– Archetype 1 (ϕarch1): [0.9, 0.1]T (2 tools assigned this archetype)
– Archetype 2 (ϕarch2): [0.1, 0.9]T (2 tools assigned this archetype)
– Archetype 3 (ϕarch3): [−0.7,−0.7]T (2 tools assigned this archetype, replacing the previous 1 ’type3’ and 1

’noise’ for more symmetry)

• Queries/Contexts (qt): There are NQ = 3 distinct query types, each represented by a dq = 2 dimensional toy
embedding. These queries cycle periodically every NQ timesteps (i.e., qA, qB , qC , qA, qB , qC , . . . ). The query
embeddings are:

– Query A (qA): [1.0, 0.2]T , designed to align best with Tool Archetype 1.
– Query B (qB): [0.2, 1.0]T , designed to align best with Tool Archetype 2.
– Query C (qC): [−0.8,−0.8]T , designed to align best with Tool Archetype 3.
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• Reward Function (Rt): The reward Rt ∈ {0, 1} is stochastic, drawn from a Bernoulli distribution. The success
probability P (success|qt, ϕj) is determined by the semantic alignment between the current query qt and the chosen
tool’s embedding ϕj . Specifically:

P (success) = clip(Pbase + Csim · (qT
t ϕj) + Balign, Pmin, Pmax)

where Pbase = 0.45 is a base success rate, Csim = 0.40 scales the dot product similarity, and Balign = 0.25 is a bonus
awarded if the chosen tool’s true archetype matches the current query’s preferred archetype. Probabilities are clipped to
[Pmin = 0.05, Pmax = 0.95]. This structure ensures that tools whose semantic embeddings align well with the current
query, especially those of the preferred archetype, have a higher expected reward.

Agent Configurations. Both SC-LinUCB and LinUCB-OneHot are instances of the stanard LinUCB algorithm differing
only in their feature construction:

• SC-LinUCB (Semantic): Uses dsem = dq + dtool sem + 1(similarity) + 1(bias) = 2 + 2 + 1 + 1 = 6 dimensional
features: x(sem)

t,j = [qt; ϕj ; qT
t ϕj ; 1].

• LinUCB-OneHot (Non-Semantic Baseline): Uses dnon−sem = dq + K + 1(bias) = 2 + 6 + 1 = 9 dimensional
features: x(non−sem)

t,j = [qt; ej ; 1], where ej is the one-hot encoding for tool aj .

Both agents use λreg = 1.0. We evaluate exploration parameters α ∈ {0.3, 0.5, 1.0}.

Evaluation Metrics. Results are averaged over Nruns = 15 independent Monte Carlo runs. We report:

1. Average Cumulative Reward: 1
Nruns

∑Nruns

run=1
∑T

t=1 R
(run)
t .

2. Average Cumulative Regret: 1
Nruns

∑Nruns

run=1
∑T

t=1(E[R|qt, a∗
t ] − E[R|qt, a

(run)
t ]). Here, E[R|qt, a] is the true

expected reward (success probability) of tool a for query qt, and a∗
t is the tool with the maximum expected reward for

qt. This uses expected instantaneous regret for smoother non-decreasing cumulative regret curves.

Full Experimental Results. Figure 5 shows both the average cumulative reward and average cumulative regret on
logarithmic y-axes for all tested α values.

The results clearly indicate the superiority of SC-LinUCB. In the reward plot (left), SC-LinUCB variants (particularly with
α = 1.0, purple dashed line) accumulate substantially more reward over time compared to LinUCB-OneHot variants. The
log scale emphasizes the sustained higher rate of reward collection.

The regret plot (right) offers the most striking comparison. SC-LinUCB agents maintain an extremely low cumulative
regret (primarily between 100 and 101), indicating rapid convergence to near-optimal policies for the cycling contexts. The
SC-LinUCB (Semantic) α = 0.3 (blue solid line) shows the lowest regret overall. In stark contrast, all LinUCB-OneHot
variants incur regret that is orders of magnitude higher, reaching 103. While their regret curves are sublinear (indicating
learning), their inefficiency compared to SC-LinUCB is evident. The LinUCB-OneHot agent with α = 1.0 (brown solid
line) performs best among the non-semantic baselines but is still vastly outperformed.

These empirical findings strongly corroborate our theoretical analysis (Theorem 3.2). The ability of SC-LinUCB to
generalize across tools and contexts using a compact semantic feature space (dsem = 6) leads to substantially more efficient
learning than LinUCB-OneHot, which must learn more independently for each tool ID within its higher-dimensional feature
space (dnon−sem = 9). The semantic features provide a powerful inductive bias that aligns with the problem structure,
reducing the effective complexity faced by the learning algorithm.

B.8. Experiment 2: Detailed Results for Continual Adaptation with Varying Exploration

This section provides the full results for Experiment 2, which evaluates the continual adaptation capabilities of SC-LinUCB
(Semantic) and LinUCB-OneHot (Non-Semantic) in an environment with dynamically changing toolsets. We present a
sensitivity analysis with respect to the exploration parameter α ∈ {0.3, 0.5, 1.0}.
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Figure 5. Full results for Experiment 1: SC-LinUCB (Semantic) vs. LinUCB-OneHot (Non-Semantic) in the multi-context toy environment
(T = 10000, 15 runs). Left: Average Cumulative Reward (log scale). Right: Average Cumulative Regret (log scale). Different line
styles/colors within agent types correspond to α ∈ {0.3, 0.5, 1.0}.

Experimental Setup Recap. The environment consists of four distinct phases, each lasting Tphase = 2500 timesteps
(total T = 10000). The set of available tools (K) and active query types (NQ) evolve across these phases, involving tool
addition (of both semantically familiar and novel types), tool removal, and the introduction of new query types corresponding
to novel tools.

• Phase 1 (K = 4, NQ = 3): Initial tools: {aA1, aA2(type1); aB1, aB2(type2)}. Queries: qA, qB , qC .

• Phase 2 (K = 3, NQ = 3): Tool aA2 (type1) removed. (Starts at t = 2500)

• Phase 3 (K = 4, NQ = 3): New tool aA3 (type1, semantically similar to aA1) added. (Starts at t = 5000)

• Phase 4 (K = 5, NQ = 4): New tool aD1 (novel semantic type4) added; query qD (aligning with type4) becomes
active. (Starts at t = 7500)

LinUCB-OneHot re-initializes its model matrices (A, b) when K changes. SC-LinUCB’s core model matrices and semantic
feature dimension (dsem = 6) remain fixed. Toy embeddings and the reward function are as described in Appendix C.1.2
(or a dedicated Exp2 setup section if it differs significantly). All results are averaged over Nruns = 15 independent seeds.

Results with Varying Alphas. Figure 6 displays the average cumulative reward (left, log scale) and average cumulative
regret (right, log scale) for both SC-LinUCB and LinUCB-OneHot across the three tested values of α.

Cumulative Reward Analysis (Figure 6, Left): SC-LinUCB variants consistently achieve higher cumulative rewards
than LinUCB-OneHot variants across all tested α values. For SC-LinUCB, α = 1.0 (purple dashed line) yields the highest
overall reward, suggesting that with strong semantic features, a reasonably high level of exploration can be beneficial for
maximizing long-term reward, even in a changing environment. For LinUCB-OneHot, α = 1.0 (brown dashed line) is also
its best configuration, but it still lags significantly behind all SC-LinUCB variants. The SC-LinUCB curves maintain a
steadier rate of reward accumulation across phase transitions, whereas the LinUCB-OneHot curves show more pronounced
slowdowns or changes in slope, indicative of their relearning periods.

Cumulative Regret Analysis (Figure 6, Right): The regret plot starkly illustrates the advantages of SC-LinUCB.

• SC-LinUCB (Semantic): All variants (blue α = 0.3, green α = 0.5, purple α = 1.0) maintain exceptionally low
cumulative regret, generally staying within the 100 to 101 range over 10000 steps. The phase transitions cause only
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Figure 6. Experiment 2 (Continual Adaptation): Performance of SC-LinUCB (Semantic) and LinUCB-OneHot (Non-Semantic) with
varying exploration parameters α ∈ {0.3, 0.5, 1.0}. Results over 4 × 2500 timesteps, averaged over 15 runs. Vertical dashed lines
indicate phase shifts. Left: Average Cumulative Reward (log scale). Right: Average Cumulative Regret (log scale).

minor, temporary increases in regret, from which they recover quickly. SC-LinUCB with α = 0.3 and α = 0.5 show
particularly stable and low regret. The α = 1.0 variant, while achieving high rewards, exhibits slightly higher regret
and notably wider variance (shaded area), especially around phase shifts, likely due to more extensive exploration when
the environment changes. This indicates that while higher exploration can find good policies, it might come at the cost
of some initial suboptimality if the semantic signal is already strong.

• LinUCB-OneHot (Non-Semantic): All variants incur substantially higher regret, ending up in the 102 to 103 range.
Crucially, at each phase transition where K changes (vertical dashed lines), there is a distinct upward turn or steepening
of the regret slope. This clearly visualizes the significant cost of adaptation incurred by LinUCB-OneHot as it
re-initializes its model and relearns the utility of tools largely from scratch. Increased exploration (e.g., α = 1.0,
brown line) helps LinUCB-OneHot achieve lower regret compared to its lower α counterparts, but it remains orders of
magnitude worse than any SC-LinUCB variant.

Conclusion from Alpha Sensitivity. SC-LinUCB demonstrates robust superiority over LinUCB-OneHot across the tested
range of exploration parameters in this continual learning setting. Its ability to leverage fixed-dimensional semantic features
allows for graceful adaptation to dynamic toolsets with minimal regret cost. While LinUCB-OneHot does benefit from
increased exploration, its fundamental inability to generalize semantically across tools and its need to restructure its feature
space when the number of tools changes impose a significant and persistent learning burden. For the main paper, we typically
present results for a representative α (e.g., α = 0.5) that showcases good performance for SC-LinUCB, as seen in Figure 2.
This detailed ablation confirms the general trends.
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C. Appendix ICL Experiments
C.1. Experimental Setup Details

This section provides comprehensive details of the configurations used for all experiments discussed in the main paper,
ensuring reproducibility.

C.1.1. LLM PARAMETERS AND PROMPT STRUCTURE

The Large Language Model (LLM) utilized across all four experiments was Gemini 2.0 Flash, accessed via the
models/gemini-2.0-flash API endpoint. Key generation parameters were consistently set as follows:

• Temperature: 0.5

• Maximum Output Tokens: 500 for Experiments 1 & 2; 1500 for Experiments 3 & 4 (to accommodate potentially longer
reasoning with dynamic changes).

No specialized safety settings beyond API defaults were applied.

The fundamental prompt structure provided to the LLM comprised a system message defining the task and action presentation,
followed by the interaction history and the current query.

System Prompt Template:

Prompt

You are an intelligent assistant playing a multi-armed bandit game.
Your goal is to maximize your total reward over many turns.
The available actions (tools) or types of queries may change over time.
In each turn, you are presented with a user query and a list of currently
available actions. Each action, when chosen for a query it is suited for,
has a specific hidden probability of yielding a reward of 1, and 0 otherwise.
If an action is not suited for the query, or no suitable action is available,
it will likely yield a reward of 0.
You must choose one action if suitable options exist.
If no actions are available or suitable, state that.

Available actions: [
{Formatted list of actions based on experimental condition}

]

The placeholder {Formatted list of actions...} was populated according to the active experimental condition
(Index Only, Names Only, Description Only or Names + Descriptions) for the currently available tools in that phase/turn.

User Message Template per Turn:

Prompt

Interaction History (most recent 20 turns shown for LLM context):
{Interaction history string, e.g.,
Turn 1: Query: "Full Query Text 1", Your Choice: ActionName1, Outcome: Reward 0
...
Turn K: Query: "Full Query Text K", Your Choice: ActionNameK, Outcome: Reward R_K
}

Current User Query (Global Turn {current_global_turn}): "{Current Query Text}"

Think step-by-step about which action is best for the current query.
Consider the query, CURRENTLY available action descriptions, and past experiences.
After your reasoning, state your final choice clearly.
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For example: "Reasoning: [...reasons...]. Chosen Action: ActionName Or Index".
If no action is suitable or available, you can state ’Chosen Action: None’.
Which action do you choose?

The interaction history provided in the prompt to the LLM contained the full text of the past 20 queries, chosen actions, and
their rewards. The experimental framework maintained the complete history for logging and analysis. Each experiment was
run for a set number of independent trials: 5 trials for Experiments 1 and 2 (static), and 7 trials for Experiments 3 and 4
(dynamic).

C.1.2. EXPERIMENT 1 (FQFA) CONFIGURATION DETAILS

• Description: Single query repeated for T = 10 turns, fixed action space.

• Query (q analyze): “I have a list of sales figures for the last quarter, can you help me understand the growth pattern?”
(Optimal Arm: tool A)

• Arm Configurations:

– tool A (Data Analyzer): “Processes numerical data arrays to find trends.” (ptrue = 0.9, psubopt = 0.55)
– tool B (Text Formatter): “Cleans and formats long text strings.” (Designed with ptrue = 0.9, used with

psubopt = 0.5 when chosen for q analyze)
– tool C (Image Resizer): “Changes the dimensions of image files.” (Designed with ptrue = 0.8, used with

psubopt = 0.6 when chosen for q analyze)

C.1.3. EXPERIMENT 2 (MQFA) CONFIGURATION DETAILS

• Description: Queries randomly drawn from a fixed set for T = 50 turns, fixed action space.

• Arm Configurations:

• tool translate (QuickTranslate): “Translates short text snippets between common languages.” (ptrue =
0.85, psubopt = 0.5)

• tool summarize (BriefSummary): “Creates a one-sentence summary of a paragraph.” (ptrue = 0.75, psubopt = 0.5)

• tool calendar (EventScheduler): “Adds events to a user’s primary calendar.” (ptrue = 0.9, psubopt = 0.55)

• tool filesearch (DocFinder): “Searches for local documents by keyword.” (ptrue = 0.7, psubopt = 0.6)

• Query Configurations (Randomly Sampled from this set):

• q trans hello: “How do you say ’hello’ in Spanish?” (Optimal: tool translate)

• q sum paragraph: “Give me the gist of this: ’The quick brown fox jumps over the lazy dog every day.”’ (Optimal:
tool summarize)

• q sched meeting: “Schedule a meeting with Jane for tomorrow at 2 PM.” (Optimal: tool calendar)

• q find report: “Find the Q3 sales report document on my drive.” (Optimal: tool filesearch)

• q trans bye: “What is ’goodbye’ in French?” (Optimal: tool translate)

• q sum news: “Briefly, what’s this news about: ’Local team wins championship after a dramatic final.’?” (Optimal:
tool summarize)

20



Semantic Context for Tool Orchestration

C.1.4. EXPERIMENT 3 (FQMA) CONFIGURATION DETAILS

• Description: Single query repeated for T = 35 turns (total across phases), action space changes in phases.

• Query (Q ComplexMath): “Solve the integral of x ˆ 2 * sin(x) from 0 to pi, and also find the square root of 1764.”
(Designated Optimal Arm (when available): E3 SuperCalc)

• Master Arm Configurations:

• E3 Calculator (Basic Calculator): “Performs simple arithmetic (+, -, *, /).” (ptrue = 0.7, psubopt = 0.1)

• E3 SciCalculator (Scientific Calculator): “Advanced math functions: exponents, logs, trig.” (ptrue =
0.9, psubopt = 0.15)

• E3 UnitConverter (Unit Converter): “Converts units (e.g., kg to lbs, meters to feet).” (ptrue = 0.8, psubopt = 0.05)

• E3 Plotter (Data Plotter): “Generates simple plots from data.” (ptrue = 0.6, psubopt = 0.1)

• E3 SuperCalc (SuperMath Solver): “Handles complex algebra, calculus, and symbolic math. The ultimate math
tool.” (ptrue = 0.95, psubopt = 0.2)

• Phase Details (Total 35 Turns):

– Phase 1 (P1 BasicTools, 7 Turns): Active Arms: {E3 Calculator, E3 UnitConverter}.
– Phase 2 (P2 SciCalc Added, 10 Turns): Active Arms: {E3 Calculator, E3 SciCalculator,
E3 UnitConverter}.

– Phase 3 (P3 SuperCalc Arrives, 10 Turns): Active Arms: {E3 SciCalculator, E3 SuperCalc}.
– Phase 4 (P4 SuperCalc Only, 8 Turns): Active Arms: {E3 SuperCalc, E3 Plotter}.

C.1.5. EXPERIMENT 4 (MQMA) CONFIGURATION DETAILS

• Description: Both queries (randomly drawn from phase-specific sets) and actions change over T = 28 turns (total
across phases).

• Master Arm Configurations:

• E4 Translate EN DE (German Translator): (ptrue = 0.9, psubopt = 0.1)

• E4 Summarize News (News Summarizer): (ptrue = 0.85, psubopt = 0.15)

• E4 Weather API (City Weather): (ptrue = 0.92, psubopt = 0.1)

• E4 Image Resize (Image Resizer): (ptrue = 0.8, psubopt = 0.05)

• E4 Code Python (Python Code Assistant): (ptrue = 0.75, psubopt = 0.2)

• E4 General QA (Knowledge Bot): (ptrue = 0.7, psubopt = 0.3)

• Master Query Configurations:

• Q Translate Hello DE (Optimal: E4 Translate EN DE)

• Q Summarize Article (Optimal: E4 Summarize News)

• Q Weather Berlin (Optimal: E4 Weather API)

• Q Resize Logo (Optimal: E4 Image Resize)

• Q Python Loop (Optimal: E4 Code Python)

• Q Capital France (Optimal: E4 General QA)

• Q Weather Tokyo (Optimal: E4 Weather API)
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• Q Python Function (Optimal: E4 Code Python)

• Phase Details (Total 28 Turns):

– Phase 1 (P1 Lang Summary, 8 Turns): Active Arms: {E4 Translate EN DE, E4 Summarize News,
E4 General QA}. Active Queries: {Q Translate Hello DE, Q Summarize Article,
Q Capital France}.

– Phase 2 (P2 Weather Image, 10 Turns): Active Arms: {E4 Weather API, E4 Image Resize,
E4 General QA}. Active Queries: {Q Weather Berlin, Q Resize Logo, Q Capital France,
Q Weather Tokyo}.

– Phase 3 (P3 Coding Focus, 10 Turns): Active Arms: {E4 Code Python, E4 General QA,
E4 Weather API}. Active Queries: {Q Python Loop, Q Capital France, Q Weather Tokyo,
Q Python Function}.

C.2. Additional plots

The following figures illustrate the average cumulative regret accrued by the agent under each condition. These trends
generally corroborate the findings from the reward analysis.

Figure 7. Average Cumulative Expected Regret across Experiments 1-4. Subplot titles use abbreviations: f=Fixed, m=Moving, Q=Queries,
A=Actions. Shaded regions represent ±1 standard error of the mean (SEM) across trials. Note the varying x and y-axis scales across
subplots, reflecting different experiment durations and regret magnitudes.

The experimental results, summarized by the average cumulative expected regret curves in figure 7, consistently demonstrate
the profound impact of semantic context on the LLM’s in-context learning and adaptation for tool selection.

Static Environments (Exp1: fQfA; Exp2: mQfA): In environments with fixed action spaces and query distributions, the
provision of rich semantic information via Names + Descriptions (ND) yields unequivocally superior performance. As
illustrated in 7 (Exp1 and Exp2 panels), the ND condition (green solid line) maintains a cumulative expected regret near
zero throughout. This indicates that detailed tool descriptions enable the LLM to rapidly and accurately identify the optimal
tool for a given query from the initial turn, effectively bypassing the need for substantial exploration. The LLM, in this
condition, behaves as if endowed with strong priors that align well with the task structure.

In stark contrast, the Index Only (IO) condition (blue dashed line) results in the highest cumulative regret, which increases
approximately linearly. This suggests that in the absence of semantic anchors, the LLM struggles to discern effective
query-action mappings, leading to inefficient, near-random exploration or persistent suboptimal choices. The Names Only
(NO) condition (orange dash-dot line) performs comparably poorly to IO in these static settings, indicating that simple tool
names alone provide insufficient semantic grounding for the LLM to reliably infer optimal behavior or differentiate tool
efficacies.

Dynamic Environments (Exp3: fQmA; Exp4: mQmA): Non-stationary environments, characterized by changes in the
available toolset and/or query distribution, reveal more nuanced interactions between semantic context and adaptability.

In Experiment 3 (fQmA: fixed query, moving actions), the ND condition again demonstrates robust adaptation (7, Exp3 panel).
While regret initially accumulates for all conditions due to the unavailability of the globally optimal tool (“E3 SuperCalc”),
the ND agent’s regret plateaus sharply around turn 17. This event corresponds to a phase change introducing “E3 SuperCalc”
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(details in C.1.4), which the ND agent immediately identifies and exploits due to its descriptive alignment with the complex,
fixed query. The NO agent also adapts, but with a discernible delay and to a higher regret plateau, suggesting that names
offer some utility for identifying new tools but are less efficient than full descriptions. The IO agent fails to adapt effectively,
its regret continuing to climb.

Experiment 4 (mQmA: moving queries and actions) presents the most complex scenario and yields a particularly insightful
result (7, Exp4 panel). Here, while the ND condition maintains very low regret overall, demonstrating strong adaptability,
the Names Only (NO) condition performs remarkably well, achieving comparable, and at times even slightly lower,
cumulative regret than ND, particularly in later phases. This unexpected outcome suggests that in highly dynamic
and complex environments, excessively detailed or numerous descriptions might introduce a cognitive load or risk of
misinterpretation that slightly hampers agility. Concise, sufficiently indicative names, under such rapid flux, might allow the
LLM to maintain a more flexible mapping, leading to surprisingly robust performance. Nevertheless, both NO and ND
vastly outperform the IO condition, which struggles profoundly with the compound dynamism.

C.3. Example Reasoning Traces

Consider, for example, responses to the query:

”query text”: ”I have a list of sales figures for the last quarter, can you help me understand the growth pattern?”,

• Index only:

– ”Reasoning: The user is asking for help understanding sales figures and growth patterns. This suggests a need for
data analysis and visualization. Without knowing the specific functionality of each action, I will assume Action 1
is a general-purpose tool that can handle data analysis tasks. Actions 2 and 3 might be specialized tools that are
less likely to be relevant to this general request.\n\n Chosen Action: Action 1\n”,

– ”Reasoning: The query is about sales figures and understanding growth patterns. Action 1 has consistently
provided rewards for similar queries in the past. Therefore, it is likely the best choice for this query as well.\n
Chosen Action: Action 1”,

• Names:

– ”Reasoning: The query asks for help understanding a growth pattern in sales figures. This clearly points to data
analysis as the appropriate action. The other actions, Text Formatter and Image Resizer, are not relevant to
numerical data analysis.\n\n Chosen Action: Data Analyzer”,

– ”Reasoning: The query is about understanding the growth pattern of sales figures. The ”Data Analyzer” tool has
consistently provided a reward of 1 for similar queries in the past. The other tools, ”Text Formatter” and Ïmage
Resizer,̈ are not relevant to analyzing numerical data. Therefore, the ”Data Analyzer” is the most likely action to
yield a reward.\n\n Chosen Action: Data Analyzer”,

• Names + Descriptions:

– ”Reasoning: The query mentions s̈ales figuresänd g̈rowth pattern,̈ which indicates numerical data and the need to
find trends. The Data Analyzer tool is specifically designed for processing numerical data arrays to find trends.
The other tools, Text Formatter and Image Resizer, are not relevant to this query. Therefore, the Data Analyzer is
the most likely to yield a reward.\n\n Chosen Action: Data Analyzer”,

– ”Reasoning: The query explicitly mentions s̈ales figuresänd g̈rowth pattern,ẅhich are numerical data-related tasks.
The Data Analyzer is designed to process numerical data arrays to find trends. In the previous turn with a similar
query, the Data Analyzer yielded a reward of 0. However, this could be due to chance, and the Data Analyzer is
still the most appropriate tool for this type of query. The other tools are clearly not relevant.\n\n Chosen Action:
Data Analyzer”,

C.4. Filter Reason Act Pipeline

We use the following prompt for 0-shot experiment:
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Prompt

f"""[BEGIN OF TASK INSTRUCTION]
You are an expert in composing functions. You are given a question and a set of

possible functions.
Based on the question, you will need to make one or more function/tool calls to

achieve the purpose.
If none of the function can be used, point it out and refuse to answer.
If the given question lacks the parameters required by the function, also point it

out.
[END OF TASK INSTRUCTION]
[BEGIN OF AVAILABLE TOOLS]
{actions_prompt_part}
[END OF AVAILABLE TOOLS]
[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format,
and NO other text MUST be included.
The example format is as follows. Please make sure the
parameter type is correct. If no function call is needed,
please make tool_calls an empty list []

{{
"tool_calls": [
{{"name": "func_name1", "arguments": {{"argument1": "value1", "argument2": "value2

"}}}},
... (more tool calls as required)
]
}}

[END OF FORMAT INSTRUCTION]
[BEGIN OF QUERY]
User Query: {query}
[END OF QUERY]
"""

where actions_prompt_part are the available actions with descriptions in the respective IO, NO, DO or DN format
and query is the respective task.

The LLM as judge model used was gemini-2.5-flash-light.
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