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ABSTRACT

Bayesian Neural Networks (BNNs) have been extensively studied for uncertainty quan-
tification. To train BNNs efficiently, Variational Bayesian Last Layer (VBLL) provides a
sampling-free, deterministic method, significantly reducing computational cost. However,
these existing methods assume homoscedastic noise and sufficient data, while real-world
industrial applications frequently encounter heteroscedastic noise, where the uncertainty
level (i.e., noise) varies with input, and collecting training data in such cases is often
expensive. Modeling heteroscedastic noise with sparse data is challenging, but it plays a
critical role in setting appropriate safety margins for industrial applications. In this work,
we propose Heteroscedastic VBLL (HVBLL) to effectively capture the input-dependent
noise. We showcase the impact of noise prior on sparse-data regression, and further design
a clustering-based noise level estimation method to provide reliable priors. Experimental
results demonstrate that our proposed methods significantly improve the performance of
BNNs under heteroscedastic and sparse-data conditions.

1 INTRODUCTION

Uncertainty quantification is essential for improving the reliability of optimization and decision-making
processes, especially in scientific and engineering applications (Smith, 2024). Many models have been
studied to accurately characterize uncertainty under the assumption of homoscedasticity (MacKay, 1995;
Watson et al., 2021) or in data-rich scenarios (Abdar et al., 2021). However, these assumptions may not
hold in real-world settings (Smith, 2024). For example, in aircraft design, the design variables (inputs) are
usually geometric parameters. The uncertainty of performance and safety is introduced by stochastic material
properties, defects, environments, etc. (Beran et al., 2017; Montomoli et al., 2015). The level of uncertainty
usually differs across designs. Some designs may be sensitive to unavoidable sources of uncertainty, which
may lead to unsafe products. Therefore, it is essential to quantify the heteroscedastic uncertainty, i.e.,
input-dependent uncertainty, to identify robust designs and allocate appropriate safety factors. Meanwhile, in
many industrial design and application processes, data can be expensive or difficult to obtain. The sparsity
of data brings additional challenges for modeling and uncertainty quantification.

Several classes of methods have been proposed for uncertainty estimation, each with advantages and draw-
backs. Monte Carlo Dropout (Gal & Ghahramani, 2016) interprets dropout as approximate Bayesian inference
and estimates predictive uncertainty through stochastic forward passes. Gaussian Process (GP) regression
(Goldberg et al., 1997; Le et al., 2005) provides a principled Bayesian framework with well-calibrated uncer-
tainty estimates, but its cubic complexity in data size makes it difficult to scale to large datasets. Bayesian
Neural Networks (BNNs) (Neal, 2012) place distributions over network weights to capture model uncertainty
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(Seitzer et al., 2022; Immer et al., 2023; Deka et al., 2024), but often suffer from high computational overhead,
making them difficult to scale to large models and datasets.

However, these approaches often have high computational costs due to reliance on sampling-based inference,
or have significant architectural modifications, making them less practical for deployment in large-scale or
latency-sensitive applications (Lampinen & Vehtari, 2001; Jospin et al., 2022). The recently proposed VBLL
(Harrison et al., 2024) addresses these limitations by offering efficient uncertainty estimation with minimal
overhead. This makes VBLL a promising foundation for extending to heteroscedastic problems.

In this work, we propose Heteroscedastic Variational Bayesian Last Layers (HVBLL) to overcome the
limitations of the homoscedastic noise assumption, while retaining the key advantages of VBLL. We replace
the constant noise term with an input-dependent Gaussian distribution parameterized by an auxiliary neural
network. To train this model, we derive a variational formulation with a deterministic lower bound on
the marginal likelihood. This approach enables efficient, scalable and sampling-free loss computation.
This approach also enables HVBLL to disentangle aleatoric uncertainty from epistemic uncertainty, which
improves the interpretability of the model. Since HVBLL retains the structure of Bayesian Last Layers, it
remains computationally efficient and can be seamlessly integrated into existing neural network architectures
with minimal modification.

To demonstrate the performance of our method, especially in sparse-data regression, we designed a typical toy
function featuring heteroscedastic noise to test the models. With the data samples generated by the function,
we discovered that VBLLs are sensitive to the noise prior, especially in sparse-data scenarios, while our
method are more robust to dataset sizes. We further propose a clustering-based algorithm to estimate the
average conditional variance of the data, which can serve as a reliable noise prior for BNNs. We tested this
algorithm on a dataset generated by multiple test functions, showing that it can generate noise prior closely
matching the ground-truth variance. With this noise prior in practice, we compare our proposed HVBLL
with VBLL and other baseline methods on open-source benchmark datasets. The results demonstrate that our
approach consistently outperforms the alternatives.

In summary, our contributions in this work can be listed as:

• We extend the original VBLL framework by introducing a heteroscedastic noise term, allowing the
model to account for variable noise levels that commonly arise in industrial and other real-world
applications.

• We show noise prior is critical to heteroscedastic problems, especially in sparse-data regression
problems.

• We propose a clustering-based noise level estimation method to provide reasonable noise priors, and
demonstrate the performance of HVBLL.

2 PRELIMINARIES

In this work, we study the regression problem of a heteroscedastic system:

y = f(x) + ε; ε ∼ N(0, σ2(x)), (1)

where x ∈ Rnx is the input vector, y ∈ R is the scaler output. f(x) is the mean function, and σ(x) denotes
the noise level, i.e., the aleatoric uncertainty. Then, the conditional probability of output given the inputs is
p(y|x) = N(f(x), σ2(x)). The data set is denoted as D = {Dx,Dy} = {(xi, yi)}Ns

i=1.
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2.1 UNCERTAINTIES OF STOCHASTIC MODELS

Uncertainty in stochastic models generally falls into two categories: aleatoric uncertainty (inherent noise),
which arises from inherent data noise and is irreducible; and epistemic uncertainty (model uncertainty),
which stems from limited knowledge and can be reduced with more data or better modeling (Abdar et al.,
2021). In industrial applications, aleatoric uncertainty often defines the necessary safety margin. Therefore, it
is crucial to disentangle aleatoric uncertainty from epistemic uncertainty and to minimize the latter during
modeling. The BNN framework offers a principled approach for modeling two uncertainties separately,
offering benefits for industrial applications (Jospin et al., 2022).

Given a dataset D, the law of total variance describes the different sources of data variance. It states that if
X,Y are the random variables and the variance of Y is finite, then,

Vary∼p(y)(Y ) = Ex∼p(x)[Vary∼p(y|x)(Y |X)] + Varx∼p(x)[Ey∼p(y|x)(Y |X)]. (2)

Applying Eq. 1 to Eq. 2, it becomes Vtotal = Enoise + Vmean, where Vtotal is the total variance of Y ,
Enoise = Ex∼p(x)[σ

2(x)] is the average aleatoric uncertainty, Vmean = Varx∼p(x)[f(x)] is the variance of
the mean function f(x). Vnoise = Varx∼p(x)[σ

2(x)] is the variance of aleatoric uncertainty in the input space.
Therefore, The magnitude of Vnoise and Enoise together characterize the degree of heteroscedasticity in the
dataset.

2.2 VARIATIONAL BAYESIAN LAST LAYER

For regression tasks described in Eq. 1, canonical Bayesian Last Layers (BLLs) (Brosse et al., 2020; Fiedler
& Lucia, 2023) apply a Bayesian treatment to the last layer of neural networks while keeping the feature
extractor deterministic. Instead of using fixed weights in the last layer, BLLs place a Gaussian distribution
over the weights, resulting in a lightweight and scalable approach. This formulation corresponds to Bayesian
linear regression, defined as:

y = wTϕθ(x) + ε; ε ∼ N(0, σ2), (3)

where ϕ := ϕθ(x) ∈ Rnf is referred as features. They assume the noise ε to follow an i.i.d. Gaussian
distribution, which represents a homoscedastic model. Assume p(ε) = N(0, σ2

0) is the prior noise
distribution. A Gaussian prior is placed over the weights, p(w) = N(µw,0, Sw,0), independently of the
noise. Given a Gaussian posterior over the weights, N(µw, Sw), the resulting predictive distribution is
p(y|x, θ, η) = N(µT

wϕ, ϕ
TSwϕ+ σ2), where η = (µw, Sw) denotes the posterior parameters of the weight

distribution. A full training strategy optimizes the last layer variational posterior together with MAP estimation
of the features. Its loss function (minimization) is

lossθ,η,σ2 = −L(θ, η, σ2) +N−1
s [− log p(θ)− log p(σ2) + KL(qη(w)||p(w))], (4)

where the evidence lower bound (ELBO) is

L(θ, η, σ2) =
1

Ns

Ns∑
i=1

[
logN(yi|µT

wϕi, σ
2)− 1

2σ2
ϕT
i Swϕi

]
. (5)
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3 METHODOLOGY

3.1 HETEROSCEDASTIC VARIATIONAL BAYESIAN LAST LAYER

We extend the i.i.d noise term of VBLL described in Eq. 3 to a heteroscedastic noise, which is described in
Eq. 1. Then, the Heteroscedastic VBLL (HVBLL) is described as

y = wTϕθ(x) + ε(x); ε ∼ N(0, σ(x)2), (6)

where noise ε(x) is assumed to be independent of w. The variance of noise is modeled with a neural network,
σ(x)2 = exp gβ(x), where β is the weights of the neural network g. Then, the predictive distribution
(likelihood) of the model is

p(y|x, θ, η, β) = N(µT
wϕ, ϕ

TSwϕ+ exp gβ(x)). (7)

Note that the ϕTSwϕ term is the epistemic uncertainty, and the σ2(x) is the heteroscedastic aleatoric
uncertainty. Then, HVBLL employs a sampling-free stochastic variational inference (Hoffman et al.,
2013) for the BLL networks. VBLL jointly computes an approximate last layer posterior and optimize
network weights by maximizing lower bounds on marginal likelihood. So that the training efficiency is
significantly improved, comparing to the Monte-Carlo sampling. Denote the approximate posterior of weights
as qη(w) = N(µw, Sw). Then, the evidence lower bound (ELBO) can be derived from:

N−1
s log p(Dy|Dx, θ, σ

2) ≥ L(θ, η, σ2)−N−1
s KL[qη(w)||p(w)]. (8)

Eq. 8 holds with

L(θ, η, β) = 1

Ns

Ns∑
i=1

[
logN(yi|µT

wϕi, gβ(x))−
1

2 exp gβ(x)
ϕT
i Swϕi

]
, (9)

More proof can be found in Appendix A. Then, the loss function is

Jθ,η,β = −L(θ, η, β) +N−1
s [− log p(θ) + KL(qβ(ε)||p(ε)) + KL(qη(w)||p(w))], (10)

where p(ε) = N(0, σ2
0) is the prior noise distribution, qβ(ε) = N(0, exp gβ(x)) is the approximated noise

distribution. A simple isotropic zero-mean Gaussian priors on feature weights (yielding weight decay
regularization). For Gaussian priors, the Kullback–Leibler divergence can be computed in closed form:

KL(qη(w)||p(w))] =
1

2
tr(S−1

w,0Sw) +
1

2
(µw − µw,0)

TS−1
w,0(µw − µw,0)− nx − log(|Sw|/|Sw,0|). (11)

3.2 CLUSTERING-BASED NOISE LEVEL ESTIMATION

As will be demonstrated in Section 4.2, the performance of heteroscedastic models is strongly affected by the
noise prior σ2

0 , especially when the training data is scarce. Therefore, it is crucial to provide a reasonable
estimation of σ2

0 given a data set D. According to Eq. 2, the average conditional variance Enoise can be a
good estimation of σ2

0 . We propose Clustering-Based Noise Level Estimation (Algorithm 1) to estimate
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Enoise, Vmean and Vnoise directly from data set D, so that the degree of heteroscedasticity can be assessed and a
reasonable σ2

0 can be provided.

The proposed algorithm begins by partitioning the dataset into small groups, each containing at most ns

samples. Within each group, samples are selected to have similar inputs x, i.e., they are locally clustered in
the input space. Then, we can assume a zero-order approximation of the regression problem in Eq. 1, where
the variation of the mean function in each group is negligible, i.e., Vmean → 0. Consequently, the variance of
y within each group (denoted as vi) can be interpreted as the local aleatoric uncertainty.

Algorithm 1 Clustering-based noise level estimation

Require: Data set D
1: Input: The maximum number of samples in a group for clustering ns
2: Calculate the total variance Vtotal of y in D
3: Group samples by similar x using clustering (e.g., Nearest Neighbors)
4: Ngroup ← number of groups
5: while i = 1, ..., Ngroup do
6: mi ← mean of y in the cluster group
7: vi ← variance of y in the cluster group
8: end while
9: Vmean ← Var(mi)

10: Enoise ← Mean(vi)
11: Vnoise ← Var(vi)

4 EXPERIMENTS

Our experiments aim to demonstrate and validate the following claims: (1) For heteroscedastic regression
problems, HVBLL can accurately learn input-dependent noise, whereas VBLL can only capture the average
noise; (2) The noise prior is a critical hyperparameter for both HVBLL and VBLL, and their performance on
sparse data regressions is highly sensitive to its value — ideally, a noise prior of the same order of magnitude
as the ground truth should be provided; (3) We propose a simple algorithm to estimate a reliable noise prior,
which performs well under both high-dimensional and sparse-data settings; (4) We compare HVBLL, VBLL,
and six baseline models on various real-world datasets, including both sparse and sufficient data scenarios as
well as datasets with different degrees of heteroscedasticity, demonstrating the strong and robust performance
of HVBLL.

We first use toy functions in Sections 4.1–4.2 where the ground-truth noise distribution is known, allowing
for direct validation of model performance. We then evaluate the proposed model and baselines on standard
benchmarks for Bayesian neural network regression using datasets from the UCI Machine Learning Repository
(Dua & Graff, 2017), European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) dataset
(Hersbach et al., 2020) and a custom dataset on composite structure failure (Appendix J).

4.1 HETEROSCEDASTIC TOY FUNCTIONS

Toy functions are used to demonstrate the necessity of employing HVBLL for heteroscedastic problems. The
toy function is described as

y = f(x) + g(x)ϵ; ϵ ∼ N(0, 1),x ∈ [0, 1]nx . (12)

5
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(c) HVBLL: sin-lin
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(d) HVBLL: sin-sin
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(f) VBLL: lin-sin
0.00 0.25 0.50 0.75 1.00

x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y
(g) VBLL: sin-lin
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Figure 1: The HVBLL and VBLL are trained on four heteroscedastic toy functions. The blue solid line
represents the ground truth mean function f(x), and the blue shaded region indicates the ground truth 1σ
confidence interval, g(x). The red dashed line shows the predicted mean, with the red shaded area representing
the predicted aleatoric uncertainty at the 1σ level.

Then, the conditional probability becomes p(y|x) = N(f(x), g2(x)). The toy functions are combinations of
linear functions and sine functions, as shown in Appendix B. In this section, nx = 1, and 200 data points are
sampled from a uniform distribution x ∼ U([0, 1]) and a Gaussian distribution ϵ ∼ N(0, 1).

Both VBLL and HVBLL are trained on the toy functions. Their dimension of features is nf = 32, the neural
network of ϕθ contains one hidden layer with 32 neurons. The neural network of gβ in HVBLL contains two
hidden layers with eight neurons. The noise prior σ2

0 = 0.01. The initial learning rate is 0.01, the learning
rate gradually reduces during the training of 5,000 epochs. Adam optimizer (Kingma & Ba, 2014) is used for
training.

Their performance is illustrated in Fig. 1. The results demonstrate that HVBLL effectively captures the
heteroscedastic noise in the toy functions, whereas the VBLL can only estimate the average noise level.
For example, by comparing (a) and (e), we observe that VBLL fails to capture the characteristic of smaller
variance when x is small, whereas HVBLL successfully captures this heteroscedastic behavior. Comparing
(b) and (f), the variance of our designed toy function varies with input x in a cosine-like pattern. HVBLL
accurately fits this wave-like variance, while VBLL still treats it as homoscedastic, and thus cannot distinguish
the variance differences.

4.2 SPARSE DATA SCENARIOS

A more complex toy function (Eq. 13) is used to study the influence of noise prior σ2
0 on VBLL and HVBLL,

especially in the sparse data scenarios. In this section, 20 and 200 data points are sampled from a uniform
distribution x ∼ U([−0.5, 1.5]) and a Gaussian distribution ϵ ∼ N(0, 1) for training, 20 other samples are
sampled for testing. Both VBLL and HVBLL have their dimension of features nf = 16, the neural network

6
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(b) Ns = 200

HVBLL Train HVBLL Test VBLL Train VBLL Test

Figure 2: Influence of noise prior σ2
0 on HVBLL and VBLL. The left plot shows results under the sparse data

setting, while the right plot corresponds to the data-rich setting. Outlier data points with excessively large
values are omitted for clarity.

of ϕθ contains three hidden layers with 64 neurons. The neural network of gβ in HVBLL contains one hidden
layer with eight neurons. The initial learning rate is 0.01, the learning rate gradually reduces during the
training of 20,000 epochs. Adam optimizer is used for training.{

f(x) = x2 sin(4πx)
g(x) = 0.05max(1.0, 5x+ 1)

, x ∈ [−0.5, 1.5] (13)

Fig. 2 shows the negative log likelihood on the training and testing sets of VBLL and HVBLL under different
values of noise prior (σ2

0s). The ground truth σ2
0,true = 0.052. In Fig. 2 (a), the values of ’HVBLL Test’,

’VBLL Train’ and ’VBLL Test’ in σ2
0 = 10−3 are omitted because they are several orders of magnitude larger

than the remaining cases, i.e., the models overfit the problem in these cases. The results indicate that a small
σ2
0 leads to overfitting, because the model assumes the data is nearly noise-free. In contrast, a large σ2

0 leads
to underfitting of the noise level. The performance of VBLL and HVBLL in sparse data scenarios (Ns = 20)
is shown in Fig. 4 (Appendix C). This sensitivity to σ2

0 is significantly reduced when more data is available,
as shown in Fig. 5 (Appendix C), where Ns = 200.

In summary, both VBLL and HVBLL are sensitive to the noise prior in sparse data scenarios. A noise prior
that is too small can lead to severe overfitting; however, when it is on the same order of magnitude as the true
noise level—or one or two orders of magnitude larger—it can yield better fitting performance.

4.3 ESTIMATION OF NOISE LEVEL

As demonstrated in Section 4.2, providing an appropriate noise prior σ2
0 is crucial for both VBLL and

HVBLL. Based on Eq.2, Enoise is a suitable choice for σ2
0 , so we introduce Algorithm1 to estimate Enoise.

This algorithm is evaluated on the four multivariate toy functions described in Section 4.1, under varying input
dimensions nx and sample sizes Ns. For comparison, we also employ Monte Carlo Dropout (MC-Dropout,
(Gal & Ghahramani, 2016)), a widely-used deep learning method for uncertainty estimation, to estimate the
noise level and benchmark its performance against our proposed approach.

The ratios of estimated Enoise to the real value of all cases are plotted in Fig. 3. The details are presented in
Table. 3 (Appendix D). The results indicate that our algorithm estimates Enoise to be within the same order of
magnitude as the true value, even under sparse data conditions and in high-dimensional settings. In contrast,
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Eq. 24, nx=1
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Figure 3: Estimation of noise. Algorithm 1 (left) and MC-Dropout (right) are tested on four toy functions (Eq.
28 - 31) with different input dimensions and sample sizes. The plots show the ratio of the estimated Enoise to
the real value, where a ratio of one (gray dashed line) indicates a perfect estimation. Curves closer to the
dashed line represent more accurate noise estimates.

MC-Dropout exhibits larger estimation errors. Notably, our method tends to slightly overestimate the noise
level, whereas MC-Dropout underestimates it. Based on the results in Section 4.2, overestimation of noise
prior generally yields better fitting performance. Therefore, Algorithm 1 is valid to estimate σ2

0 .

4.4 REAL-WORLD DATASETS

We evaluate HVBLL against VBLL and six baselines on a wide range of benchmarks. The six baseline
models are: Monte-Carlo Dropout (Dropout, (Gal & Ghahramani, 2016)), Stochastic Weight Averaging
Gaussian (SWAG, (Maddox et al., 2019)), Latent Derivative Bayesian Last Layer Networks (BLL, (Watson
et al., 2021)), Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks (PNN, (Seitzer
et al., 2022)), Deterministic Variational Inference (DVI, (Wu et al., 2018)) and Mixture Density Networks
(MDN, (Bishop, 1994)).

The benchmarks cover four UCI datasets and their modified variants (Appendix E), the ERA5 dataset
(Appendix F), and a custom dataset on composite structure failure (Appendix G). To examine robustness
under varying data availability, each case is tested with three different training sample sizes (Ns). Performance
is evaluated using Negative Log Likelihood (NLL), Mean Absolute Error (MAE), and Continuous Ranked
Probability Score (CRPS), all of which are preferable when lower. Each experiment is repeated ten times
with different random samplings.

Tables 1 and 2 summarize the advantage of HVBLL over the baselines. Table 1 focuses on sparse-data
scenarios, while Table 2 reports the average advantage across all scenarios.

For each metric, HVBLL’s improvement over each baseline is computed on a case-by-case basis. NLL
improvements are reported as absolute differences due to scale invariance, whereas MAE and CRPS improve-
ments are expressed as relative percentages since they are scale-dependent. The Average Improvement (AI)
represents the relative improvement of HVBLL over each baseline model (positive values indicate HVBLL
performs better). The Win Rate (WR) shows the percentage of cases where HVBLL outperforms the baseline
model. All metrics are calculated on test data across dataset cases. Further details of network architectures,
training setups and results are provided in Appendix H–J.

Overall, HVBLL outperforms VBLL and other baselines in most cases, with particularly strong improvements
on sparse-data cases. The advantage is especially pronounced under stronger heteroscedastic noise and limited
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training data. HVBLL demonstrates robustness across dataset sizes and input dimensionalities, maintaining
reliable predictions even in sparse-data settings.

Table 1: HVBLL Advantage Summary (small datasets)

Model NLL MAE CRPS
NcaseAI WR AI WR AI WR

VBLL 0.553 81.0 % 0.073 66.7 % 0.113 66.7 % 21
BLL 9.367 100.0 % 0.365 100.0 % 0.548 100.0 % 21
MC-Dropout 1.777 90.5 % 0.020 61.9 % 0.152 81.0 % 21
PNN 11.261 100.0 % 0.041 71.4 % 0.080 85.7 % 21
SWAG 2.133 100.0 % 0.380 76.2 % 0.424 100.0 % 21
DVI 1.311 100.0 % 0.153 95.2 % 0.154 95.2 % 21
MDN 3.063 100.0 % 0.332 90.5 % 0.533 100.0 % 21

Overall 0.440 93.9 % 0.195 80.3 % 0.286 89.8 % 21

Table 2: HVBLL Advantage Summary (all datasets)

Model NLL MAE CRPS
NcaseAI WR AI WR AI WR

VBLL 0.401 79.4 % 0.023 55.6 % 0.067 68.3 % 63
BLL 7.457 100.0 % 0.344 100.0 % 0.528 100.0 % 63
Dropout 2.026 88.9 % -0.018 46.0 % 0.115 71.4 % 63
PNN 6.234 100.0 % -0.002 50.8 % 0.032 65.1 % 63
SWAG 1.966 98.4 % 0.374 79.4 % 0.417 96.8 % 63
DVI 0.635 90.5 % 0.124 84.1 % 0.116 81.0 % 63
MDN 2.184 96.8 % 0.273 77.8 % 0.466 82.5 % 63

Overall 0.331 90.0 % 0.160 70.5 % 0.249 80.7 % 63

5 DISCUSSION AND CONCLUSIONS

We introduced the Heteroscedastic Variational Bayesian Last Layer (HVBLL) model to capture input-
dependent noise in heteroscedastic regression tasks with high computational efficiency. HVBLL can be easily
integrated into existing neural network architectures, making it a practical solution for uncertainty modeling.
We evaluated HVBLL on both toy regression functions and benchmark datasets, comparing it with the vanilla
VBLL and six other baselines under varying training data sizes. Results demonstrate that the choice of
noise prior significantly impacts the performance. To address this, we proposed a clustering-based noise
estimation method for more informed prior selection. Overall, HVBLL mostly achieves superior performance,
particularly in sparse data scenarios, highlighting its potential for robust uncertainty modeling.

While our method makes a meaningful step forward, it still relies on the assumption of independent of noise
and weights. The performance of HVBLL is also affected by the noise prior as shown in our experiments. We
proposed a clustering-based strategy to estimate this prior, but the performance of HVBLL on more complex
datasets remains an open question. Exploring better noise prior modeling is an important direction for future
work.

9
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engineering applications, particularly under sparse-data and heteroscedastic conditions, without potential
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide full details of the model formulation, derivations, and experimental
settings in the main text and appendices. The theoretical derivations, including the proof of the evidence
lower bound, are presented in Appendix A. The toy functions used for validation are defined in Appendix B,
and the benchmark datasets (UCI, ERA5, and composite structure failure dataset) with preprocessing details
are described in Appendices E-G. The clustering-based noise prior estimation algorithm is fully specified
in Section 3.2 and Appendix D. Network architectures, training hyperparameters, and optimization setups
are listed in Appendices C, H-J. Anonymous implementation code and experimental scripts will be made
available in the supplementary material to facilitate replication and extension of our results.
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A EVIDENCE LOWER BOUND OF HVBLL

The proof of evidence lower bound of Heteroscedastic Variational Bayesian Last Layers is presented here.
Following the same procedure in (Harrison et al., 2024), we consider the more general form of multivariate
regression case:

y = Wϕ+ ε, (14)

where ε ∼ MN(0,Σ) is assumed to be independent from W , θ is the parameters of the feature neural
network ϕ := ϕθ(x). Given a parameter W , the distribution of y is

p(y|x, θ,W,Σ) = N(Wϕ,Σ). (15)

A matrix normal prior is placed on the weights W ∼MN(w̄, I, S). Then, the posterior is also matrix normal.
For the details about matrix normal distributions, please refer to (Box & Tiao, 2011). Then, given a parameter
distribution MN(W̄ , I, S), denote η = {W̄ , S}, the predictive distribution (likelihood) of the HVBLL is

p(y|x, θ, η,Σ) = N(W̄ϕ, ϕTSϕI +Σ). (16)

Looking at the inequality in Eq. 8 in multivariate regression cases:

N−1
s log p(Dy|Dx, θ,Σ) ≥ L(θ, η,Σ)−N−1

s KL[qη(W )||p(W )], (17)

we need to prove Eq. 17 holds with the following ELBO:

L(θ, η,Σ) = 1

Ns

Ns∑
i=1

[
logN(yi|W̄ϕi,Σ)−

1

2
ϕT
i Sϕitr(Σ−1)

]
. (18)

Proof.

log p(Dy|Dx, θ,Σ) = logEp(W ) [p(Dy|Dx, θ,W,Σ)] (19)

= logEqη(W )

[
p(Dy|Dx, θ,W,Σ)

p(W )

qη(W )

]
(20)

≥ Eqη(W ) [p(Dy|Dx, θ,W,Σ)− KL (qη(W )|p(W ))] (21)

=

Ns∑
i=1

Eqη(W ) [p(yi|xi, θ,W,Σ)]− KL (qη(W )|p(W )) . (22)

Since the expectation term in Eq. 22 is the log of a Normal distribution, by applying Lemma 1, we have

Eq(W |η) [p(yi|xi, θ,W,Σ)] = log p(yi|xi, θ,W,Σ)− 1

2
ϕT
i SϕiΣ

−1, (23)

which completes the proof. Modeling Σ with a neural network using x as input does not corrupt the proof,
therefore, Eq. 9 holds.

13
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Lemma 1. Let q(µ) = N(µ̄, S) and p(y|X,µ) = N(Xµ,Σ) with y ∈ RN , µ̄, µ ∈ RM , X ∈ RN×M , and
S,Σ ∈ RM×M . Then

Eq(µ) [p(y|X,µ)] = log p(y|X, µ̄)− 1

2
Σ−1XTSX, (24)

Proof. This was proved in Lemma 4 in (Harrison et al., 2024), we repeat their proof here.

Eq(µ) [p(y|X,µ)] = −1

2
Eq(µ)

[
logdet(2πΣ) + (y −Xµ)TΣ−1(y −Xµ)

]
(25)

= −1

2

(
logdet(2πΣ) + Eq(µ)

[
(y −Xµ)TΣ−1(y −Xµ)

])
(26)

= −1

2

(
logdet(2πΣ) + (y −Xµ)TΣ−1(y −Xµ) + tr(Σ−1XTSX)

)
. (27)

B TOY FUNCTIONS

Four toy functions are used to represent heteroscedastic problems described in Eq. 12. The four toy functions
are combinations of linear functions and sine functions, as shown below. The a = 0.1, 0.2, 0.2, 0.1 in Eq. 28 -
31, respectively.

{
f(x) = 1

nx

∑nx

i=1 xi

g(x) = a
nx

∑nx

i=1 xi
(28)

{
f(x) = 1

nx

∑nx

i=1 xi

g(x) = a
∏nx

i=1 sin(2πxi)
(29)

{
f(x) = 1

2

∏nx

i=1 sin(2πxi)

g(x) = a
nx

∑nx

i=1 xi
(30)

{
f(x) = 1

2

∏nx

i=1 sin(2πxi)

g(x) = a
∏nx

i=1 sin(2πxi)
(31)

C INFLUENCE OF σ2
0 IN SPARSE AND SUFFICIENT DATA SCENARIOS

The performance of VBLL and HVBLL in sparse data (Ns = 20) and sufficient data (Ns = 200) scenarios is
shown in Fig. 4 and Fig. 5. Comparing to Fig. 4. The results indicates that the sensitivity of performance to
the noise prior σ2

0 is significantly reduced when more data is available.
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Figure 4: Influence of noise prior σ2
0 in sparse data scenarios. The first row shows the results of HVBLL, the

second shows VBLL. The three columns show the performance of models trained with different σ2
0 values.

The solid lines represent the mean function, and the shaded regions indicate the 1σ confidence interval.
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Figure 5: Influence of noise prior σ2
0 on VBLL in sufficient data scenarios
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D ESTIMATION OF VARIANCE IN TOY FUNCTIONS

Algorithm 1 using Nearest Neighbor (denoted by "Our (NN)") and MC-Dropout (denoted by "MC") are used
to estimate the noise level in the four toy functions shown in Section 4.1, where a = 0.1. Another version of
Algorithm 1 using K-means as the clustering technique (denoted by "Our (KM)") is also tested. Different
input dimension nx, number of samples Ns are tested on all toy functions. Each case is repeatedly tested
on ten randomly sampled data sets. The average values are presented in Table. 3. The maximum number of
samples in a group for clustering (ns) is five in Algorithm 1. There is five hidden layers in the neural network
of MC-Dropout, with 128 neurons in each layer; the dimension of features is 64. The initial learning rate is
0.01, the learning rate gradually reduces during the training of 20,000 epochs. Adam optimizer is used for
training.

Both using Nearest Neighbor and K-means as the clustering technique in Algorithm 1 achieve similar results.
Algorithm 1 not only estimates the average noise level Enoise, but also provides estimates for the variance of
the mean, Vmean, and the variance of the noise level, Vnoise. By comparing the magnitudes of Vmean and Vnoise,
we can preliminarily assess the degree of heteroscedasticity in the problem, and thus determine whether using
HVBLL would offer advantages over VBLL.

E DESCRIPTION OF MODIFIED UCI DATASETS

Four UCI datasets are used for testing. Table 4 presents the ID, name, input dimension (nx), and number of
samples (Ns, total) for each dataset. All datasets have output dimension ny = 1. Since the original datasets lack
significant heteroscedastic noise, they are not well-suited for highlighting the differences between HVBLL
and VBLL. Inspired by partially observable systems that frequently occurs in industrial applications, the
datasets are modified by treating a subset of the inputs as unobservable inputs (states). These unobservable
inputs are assumed to be random variables, and thus become the source of aleatoric uncertainty in the system
(Smith, 2024). The Enoise, Vmean and Vnoise of the original and modified datasets are calculated with Algorithm
1. Table 5 shows the indexes of inputs that are considered as unobservable and the source of uncertainty.

F DESCRIPTION OF ERA5 DATASETS

The ERA5 dataset is a global atmospheric reanalysis product providing hourly data on single levels from
1940 to the present, across ∼ 137 atmospheric levels, with ∼ 31 km horizontal resolution. In our work, we
extract only the 2 m temperature variable over a sub-region bounded by latitudes 7◦ to 83◦ and longitudes
−169◦ to −35◦, for the years 2020 through 2024. Within each month we sample on days 1, 5, 10, 15, 20, 25,
and at times 00:00, 06:00, 12:00, and 18:00 UTC. The raw data therefore forms a spatial-temporal field with
shape (nmonth, nlat, nlon), which we resize to (nmonth, 64, 64) for the dataset.

In our heteroscedastic Bayesian regression setup, we use month, latitude, and longitude as observed inputs
and predict the 2 m temperature. Day and hour are treated as latent (unobserved) variables, whose absence
induces input-dependent noise (heteroscedasticity). Accordingly, the model learns not only the conditional
mean temperature for each month, latitude, and longitude, but also a non-constant variance of temperature in
each month.
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Table 3: Variance estimation of multivariate toy functions

Real Our (NN) Our (KM) MC

Case Toy function nx Ns Enoise Enoise Vtotal Vmean Vnoise Enoise Enoise

1 Eq. 28 1 20 4.4e-3 7.9e-3 7.6e-2 5.7e-2 1.2e-3 7.3e-3 2.2e-3
2 Eq. 28 1 100 4.4e-3 3.1e-3 8.1e-2 7.7e-2 7.3e-4 2.9e-3 2.1e-3
3 Eq. 28 1 1000 4.4e-3 3.4e-3 8.6e-2 8.3e-2 9.2e-4 3.3e-3 1.8e-3
4 Eq. 28 10 50 2.6e-3 5.8e-3 1.1e-2 4.2e-3 6.4e-4 5.5e-3 2.7e-4
5 Eq. 28 10 1000 2.6e-3 3.9e-3 1.0e-2 5.9e-3 4.9e-4 3.8e-3 6.4e-3
6 Eq. 28 10 10000 2.6e-3 4.0e-3 1.0e-2 6.2e-3 2.4e-4 3.9e-3 1.9e-4
7 Eq. 28 100 100 2.5e-3 2.4e-3 3.3e-3 7.0e-4 2.8e-4 2.0e-3 1.1e-4
8 Eq. 28 100 1000 2.5e-3 2.4e-3 3.3e-3 7.0e-4 2.9e-4 2.0e-3 4.3e-4
9 Eq. 28 100 10000 2.5e-3 2.8e-3 3.3e-3 4.3e-4 1.5e-4 2.7e-3 1.4e-4
10 Eq. 29 1 20 4.9e-3 7.2e-3 8.1e-2 6.3e-2 1.2e-3 6.3e-3 2.0e-3
11 Eq. 29 1 100 4.9e-3 3.8e-3 8.0e-2 7.7e-2 1.0e-3 3.7e-3 1.8e-3
12 Eq. 29 1 1000 4.9e-3 3.9e-3 8.6e-2 8.2e-2 1.1e-3 3.8e-3 1.8e-3
13 Eq. 29 2 50 2.4e-3 4.2e-3 3.9e-2 3.1e-2 6.2e-4 4.2e-3 1.0e-3
14 Eq. 29 2 1000 2.4e-3 2.1e-3 4.4e-2 4.1e-2 7.2e-4 2.0e-3 7.8e-4
15 Eq. 29 2 10000 2.4e-3 2.2e-3 4.4e-2 4.1e-2 7.7e-4 2.2e-3 5.3e-4
16 Eq. 29 4 100 6.2e-4 3.4e-3 2.2e-2 1.8e-2 4.1e-4 3.4e-3 4.5e-4
17 Eq. 29 4 1000 6.2e-4 1.4e-3 2.1e-2 1.9e-2 2.4e-4 1.4e-3 3.3e-4
18 Eq. 29 4 10000 6.2e-4 1.0e-3 2.1e-2 2.0e-2 1.7e-4 1.0e-3 2.3e-4
19 Eq. 30 1 20 4.4e-3 1.9e-2 1.1e-1 9.2e-2 2.9e-3 2.0e-2 2.1e-3
20 Eq. 30 1 100 4.4e-3 3.8e-3 1.2e-1 1.1e-1 7.7e-4 2.2e-3 1.8e-3
21 Eq. 30 1 1000 4.4e-3 3.4e-3 1.2e-1 1.2e-1 9.2e-4 3.3e-3 1.8e-3
22 Eq. 30 10 50 2.6e-3 2.2e-3 2.7e-3 4.7e-4 2.7e-4 2.0e-3 8.2e-5
23 Eq. 30 10 1000 2.6e-3 2.3e-3 2.8e-3 5.8e-4 3.2e-4 2.2e-3 5.2e-4
24 Eq. 30 10 10000 2.6e-3 2.7e-3 2.9e-3 3.0e-4 2.2e-4 2.6e-3 1.3e-4
25 Eq. 30 100 100 2.5e-3 1.8e-3 2.3e-3 4.2e-4 2.1e-4 1.5e-3 8.1e-5
26 Eq. 30 100 1000 2.5e-3 1.9e-3 2.4e-3 4.7e-4 2.3e-4 1.6e-3 3.2e-4
27 Eq. 30 100 10000 2.5e-3 2.2e-3 2.5e-3 2.5e-4 1.2e-4 2.1e-3 1.8e-4
28 Eq. 31 1 20 4.9e-3 1.7e-2 1.0e-1 8.4e-2 2.3e-3 1.8e-2 2.0e-3
29 Eq. 31 1 100 4.9e-3 4.4e-3 1.2e-1 1.2e-1 8.5e-4 4.1e-3 1.8e-3
30 Eq. 31 1 1000 4.9e-3 3.9e-3 1.2e-1 1.2e-1 1.1e-3 3.8e-3 1.6e-3
31 Eq. 31 2 50 2.4e-3 1.9e-2 5.7e-2 4.1e-2 2.4e-3 1.9e-2 1.7e-3
32 Eq. 31 2 1000 2.4e-3 3.2e-3 6.4e-2 6.1e-2 7.1e-4 3.0e-3 1.9e-3
33 Eq. 31 2 10000 2.4e-3 2.5e-3 6.4e-2 6.2e-2 6.7e-4 2.5e-3 1.6e-3
34 Eq. 31 4 100 6.2e-4 1.2e-2 1.5e-2 6.3e-3 2.1e-3 9.5e-3 1.0e-3
35 Eq. 31 4 1000 6.2e-4 6.6e-3 1.6e-2 1.1e-2 1.6e-3 5.5e-3 1.8e-3
36 Eq. 31 4 10000 6.2e-4 4.4e-3 1.6e-2 1.2e-2 9.6e-4 4.1e-3 1.9e-3

Table 4: UCI datasets for testing

ID Name nx Ns

165 Concrete Compressive Strength (Yeh, 1998) 8 1030
186 Wine Quality (Cortez & Reis, 2009) 11 4898
291 Airfoil Self-Noise (Brooks & Marcolini, 1989) 5 1503
294 Combined Cycle Power Plant (Tfekci & Kaya, 2014) 4 9568
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Table 5: Details and variance estimation of testing datasets

Dataset ID UCI ID nx Enoise Vmean Vnoise Indexes of omitted inputs Ns of three datasets

1 165 8 6.2e+1 2.1e+2 1.4e+1 N/A 200, 500, 1000
2 165 6 7.7e+1 1.9e+2 2.0e+1 (0,3) "
3 165 5 8.6e+1 1.8e+2 2.3e+1 (0,3,6) "
4 165 5 7.3e+1 1.9e+2 1.8e+1 (0,4,6) "
5 165 5 1.2e+2 1.6e+2 1.9e+1 (0,5,7) "
6 186 11 3.6e-1 4.3e-1 9.0e-2 N/A 500, 1000, 4000
7 186 8 3.6e-1 4.0e-1 9.1e-2 (1,6,10) "
8 186 8 3.8e-1 3.7e-1 1.0e-1 (5,7,10) "
9 186 6 3.9e-1 3.7e-1 9.7e-2 (1,5,6,7,10) "
10 291 5 7.3e+0 3.8e+1 1.5e+0 N/A 200, 500, 1000
11 291 4 3.0e+1 2.0e+1 3.4e+0 (0) "
12 291 3 2.2e+1 2.5e+1 4.5e+0 (1,4) "
13 291 3 2.2e+1 2.5e+1 5.0e+0 (2,4) "
14 291 2 1.7e+1 3.1e+1 4.6e+0 (2,3,4) "
15 294 4 1.3e+1 2.8e+2 2.5e+0 N/A 500, 1000, 4000
16 294 3 3.4e+1 2.6e+2 6.9e+0 (0) "
17 294 2 1.4e+2 1.5e+2 1.7e+1 (0,1) "
18 294 2 4.5e+1 2.5e+2 6.9e+0 (0,2) "
19 294 1 2.2e+2 7.3e+1 1.4e+1 (0,1,2) "
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Figure 6: Normalized 2 m temperature distribution in January, 2024

G DESCRIPTION OF COMPOSITE STRUCTURE FAILURE DATASETS

We construct a dataset based on the open-hole compression (OHC) test of composite laminates, a standard
experiment where a plate with a hole is compressed to study how stress concentrates and leads to material
failure. The specimen is a Carbon Fibre Reinforced Plastic (CFRP) plate with in-plane dimensions lx =
50mm, ly = 100mm, and thickness tz . A circular hole is introduced at relative coordinates (rx, ry), where
rx ∈ [0.3, 0.5], ry = 0.5, and with radius rh ∈ [5, 12]mm. The plate is clamped at the y = 0 face and
subjected to compressive loading at the y = ly face.

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

The design variables include the relative x-coordinate of the hole center rx and the hole radius rh. The output
is the maximum failure index over the entire specimen. The failure index is a dimensionless measure of
material safety: a value close to zero indicates safe loading, while a value exceeding one means the material
has reached its limit and failure is expected to initiate.

Composite laminates consist of multiple plies stacked in the thickness direction. The laminate stacking
sequence δ specifies the fiber orientation angles of all plies, and these orientations have a significant impact
on how the laminate carries load and resists failure. In the early stages of industrial design for large composite
structures, it is often impractical to fully account for the influence of δ on structural failure behavior due to
its complexity and design cost. As a result, δ is treated as an unobservable variable, introducing intrinsic
uncertainty into the failure prediction problem.

Overall, this dataset provides a controlled yet challenging benchmark for uncertainty quantification in
composite failure prediction.

Figure 7: Failure index distribution in a composite specimen under an open-hole compression test. Left:
the specimen is compressed uniaxially, leading to stress concentration around the hole. Right: a magnified
view of the hole region, showing multiple layers with different fiber orientations. These orientations cause
variations in stress and failure index values, with higher values indicating a greater likelihood of failure.

H RESULTS FOR UCI REGRESSION TASKS

Algorithm 1 is used to estimate the the average noise level Enoise, variance of the mean, Vmean, and the variance
of the noise level, Vnoise. Both the original UCI datasets and the modified ones are evaluated. Each dataset
is evaluated under three different sample sizes (Ns), as listed in Table 5. For each case, 80% of the data is
randomly selected for training, and the remaining 20% is used for testing.

For all the models, there is three hidden layers in the neural network, with 128 neurons in each layer; the
dimension of features is 32. There is one hidden layers in the gβ neural network of HVBLL, with 32 neurons
in each layer. The initial learning rate is 0.01, the learning rate gradually reduces during the training of 10,000
epochs. Adam optimizer is used for training. All the experiments are conducted on a NVIDIA A10 GPU. The
performance of the models on the test sets in different cases is presented in Table 6 - 13.
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Table 6: NLL results for UCI regression tasks (UCI ID = 165, Ns = 200)

Dataset ID 1 2 3 4 5

HVBLL 3.48± 0.22 4.01± 0.19 3.92± 0.16 3.88± 0.13 4.09± 0.14
VBLL 5.21± 1.12 6.10± 1.54 5.72± 1.58 5.52± 0.66 4.87± 0.35
BLL 9.32± 1.50 9.66± 1.62 9.63± 1.64 9.71± 1.62 9.63± 1.60
Dropout 4.72± 1.01 5.91± 1.25 7.19± 1.66 6.31± 0.58 10.22± 2.68
PNN 22.11± 9.46 35.79± 24.62 34.52± 26.16 39.03± 25.68 30.78± 17.39
SWAG 5.15± 0.27 5.05± 0.39 4.92± 0.29 5.16± 0.30 5.05± 0.32
DVI 5.22± 2.18 8.76± 3.35 8.40± 6.07 8.05± 5.03 11.00± 6.56
MDN 7.39± 2.58 8.72± 1.76 9.40± 3.44 8.08± 2.73 10.97± 3.25

Table 7: NLL results for UCI regression tasks (UCI ID = 165, Ns = 1000)

Dataset ID 1 2 3 4 5

HVBLL 3.59± 0.14 3.84± 0.12 3.89± 0.08 3.74± 0.09 4.05± 0.06
VBLL 3.89± 0.34 4.77± 0.42 4.27± 0.29 4.70± 0.34 4.12± 0.12
BLL 6.29± 0.38 7.43± 0.47 7.67± 0.48 7.91± 0.49 7.91± 0.46
Dropout 3.46± 0.48 5.09± 1.13 5.44± 0.59 4.77± 0.47 9.87± 0.74
PNN 9.23± 3.99 11.33± 12.08 6.81± 4.05 8.97± 4.99 12.40± 10.77
SWAG 4.82± 0.15 4.91± 0.23 4.98± 0.24 5.13± 0.28 4.96± 0.27
DVI 3.58± 0.98 4.94± 2.19 4.09± 0.34 4.13± 0.97 4.27± 0.50
MDN 3.20± 0.27 4.34± 1.18 3.98± 0.28 3.88± 0.30 4.46± 0.63

Table 8: NLL results for UCI regression tasks (UCI ID = 186, Ns = 500)

Dataset ID 1 2 3 4

HVBLL 1.14± 0.06 1.20± 0.09 1.31± 0.14 1.25± 0.09
VBLL 1.67± 0.19 1.67± 0.17 1.84± 0.20 2.01± 0.18
BLL 1.96± 0.01 1.97± 0.01 1.97± 0.01 1.97± 0.01
Dropout 4.51± 1.19 4.37± 1.05 4.54± 0.71 4.72± 1.37
PNN 18.98± 20.67 21.26± 32.79 14.20± 16.34 3.99± 2.69
SWAG 1.26± 0.19 1.48± 0.31 1.40± 0.27 1.60± 0.45
DVI 1.45± 0.20 1.68± 1.02 1.45± 0.17 2.55± 2.87
MDN 2.94± 0.85 4.21± 1.01 4.37± 0.92 3.62± 0.55

Table 9: NLL results for UCI regression tasks (UCI ID = 186, Ns = 4000)

Dataset ID 1 2 3 4

HVBLL 1.11± 0.04 1.12± 0.04 1.20± 0.03 1.21± 0.03
VBLL 1.17± 0.02 1.18± 0.02 1.22± 0.02 1.24± 0.01
BLL 1.96± 0.00 1.97± 0.00 1.96± 0.00 1.97± 0.00
Dropout 5.83± 0.65 7.30± 1.21 6.11± 0.82 8.90± 1.62
PNN 7.29± 4.59 4.14± 5.01 9.56± 12.41 7.64± 15.06
SWAG 1.25± 0.11 1.41± 0.11 1.34± 0.10 1.63± 0.21
DVI 1.16± 0.07 1.15± 0.06 1.22± 0.06 1.24± 0.07
MDN 1.43± 0.19 3.25± 0.41 3.11± 0.32 2.48± 0.15
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Table 10: NLL results for UCI regression tasks (UCI ID = 291, Ns = 200)

Dataset ID 1 2 3 4 5

HVBLL 2.79± 0.20 3.21± 0.13 3.11± 0.17 3.16± 0.17 3.16± 0.13
VBLL 2.99± 0.58 3.39± 0.28 3.18± 0.36 3.42± 0.51 3.25± 0.21
BLL 13.54± 1.72 13.78± 1.90 12.13± 1.52 10.41± 2.12 8.09± 1.51
Dropout 2.94± 0.06 3.32± 0.15 3.16± 0.09 3.16± 0.10 3.19± 0.07
PNN 6.41± 1.87 6.41± 2.61 5.66± 2.38 5.35± 1.63 4.15± 0.68
SWAG 3.68± 1.07 7.99± 2.02 7.59± 3.09 6.47± 2.08 9.48± 2.64
DVI 3.06± 0.13 3.41± 0.15 3.26± 0.12 3.30± 0.12 3.30± 0.09
MDN 5.96± 0.10 5.92± 0.00 5.92± 0.00 5.92± 0.00 5.86± 0.33

Table 11: NLL results for UCI regression tasks (UCI ID = 291, Ns = 1000)

Dataset ID 1 2 3 4 5

HVBLL 2.69± 0.19 3.23± 0.04 3.11± 0.05 3.17± 0.07 3.20± 0.07
VBLL 2.46± 0.13 3.40± 0.15 3.20± 0.15 3.34± 0.18 3.30± 0.09
BLL 7.33± 0.37 7.66± 0.39 7.11± 0.48 6.53± 0.42 5.66± 0.36
Dropout 2.89± 0.05 3.25± 0.03 3.12± 0.03 3.13± 0.04 3.18± 0.05
PNN 3.36± 0.29 3.77± 0.17 3.60± 0.37 3.60± 0.23 3.39± 0.15
SWAG 2.57± 0.08 9.96± 2.29 5.66± 0.85 6.34± 1.21 8.18± 1.73
DVI 2.90± 0.11 3.28± 0.06 3.16± 0.06 3.23± 0.06 3.27± 0.06
MDN 5.92± 0.00 5.92± 0.00 5.92± 0.00 5.92± 0.00 5.52± 0.88

Table 12: NLL results for UCI regression tasks (UCI ID = 294, Ns = 500)

Dataset ID 1 2 3 4 5

HVBLL 2.91± 0.10 3.46± 0.03 4.03± 0.06 3.51± 0.05 4.17± 0.06
VBLL 2.94± 0.07 3.44± 0.03 4.03± 0.06 3.49± 0.05 4.17± 0.06
BLL 33.78± 6.26 27.19± 4.94 31.46± 4.93 23.15± 4.42 29.65± 3.77
Dropout 4.17± 0.06 4.21± 0.09 4.29± 0.04 4.23± 0.05 4.37± 0.04
PNN 3.46± 0.45 3.92± 0.21 5.14± 1.75 3.80± 0.15 4.60± 0.51
SWAG 6.23± 0.71 5.70± 0.47 6.08± 0.82 5.97± 0.84 6.03± 0.70
DVI 3.90± 0.39 3.94± 0.34 4.14± 0.12 3.69± 0.16 4.29± 0.14
MDN 5.94± 0.02 5.96± 0.02 5.93± 0.01 6.13± 0.55 5.93± 0.01

Table 13: NLL results for UCI regression tasks (UCI ID = 294, Ns = 4000)

Dataset ID 1 2 3 4 5

HVBLL 2.91± 0.06 3.46± 0.05 4.03± 0.01 3.54± 0.03 4.18± 0.02
VBLL 2.93± 0.05 3.43± 0.05 4.03± 0.02 3.51± 0.04 4.18± 0.02
BLL 11.90± 0.81 14.78± 0.73 20.96± 0.90 13.13± 0.46 22.26± 0.60
Dropout 4.19± 0.05 4.18± 0.04 4.30± 0.03 4.19± 0.05 4.35± 0.03
PNN 3.24± 0.18 3.63± 0.07 4.30± 0.04 3.73± 0.09 4.43± 0.08
SWAG 5.26± 0.50 5.00± 0.58 5.09± 0.43 6.54± 2.93 5.07± 0.33
DVI 2.97± 0.11 3.42± 0.08 4.00± 0.02 3.47± 0.03 4.18± 0.02
MDN 5.94± 0.02 5.97± 0.13 5.93± 0.01 5.92± 0.01 5.96± 0.04
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I RESULTS FOR ERA5 REGRESSION TASKS

Algorithm 1 is used to estimate the the average noise level Enoise, variance of the mean, Vmean, and the variance
of the noise level, Vnoise. Each dataset is evaluated under three different sample sizes (Ns), as shown in the
label of each column. For each case, 80% of the data is randomly selected for training, and the remaining
20% is used for testing.

For all the models, there is three hidden layers in the neural network, with 128 neurons in each layer; the
dimension of features is 64. There is one hidden layers in the gβ neural network of HVBLL, with 32 neurons
in each layer. The initial learning rate is 0.01, the learning rate gradually reduces during the training of 10,000
epochs. Adam optimizer is used for training. All the experiments are conducted on a NVIDIA A10 GPU. The
performance of the models on the test sets in different cases is presented in Table 14 - 16.

Table 14: NLL results for ERA5 regression tasks

Model 500 4000 20000

HVBLL −0.10± 0.16 −0.84± 0.12 −0.68± 0.31
VBLL 0.06± 0.07 −0.21± 0.00 −0.18± 0.06
BLL 2.42± 0.00 2.42± 0.00 2.42± 0.00
Dropout 2.44± 0.55 0.83± 1.01 1.47± 2.80
PNN 26.55± 13.88 7.38± 7.61 −0.65± 0.05
SWAG 0.84± 0.41 −0.17± 0.08 −0.04± 0.06
DVI 0.35± 0.04 0.32± 0.02 0.32± 0.01
MDN 2.95± 1.48 −0.83± 0.18 −1.32± 0.07

Table 15: MAE results for ERA5 regression tasks

Model 500 4000 20000

HVBLL 0.13± 0.01 0.07± 0.01 0.08± 0.03
VBLL 0.16± 0.02 0.07± 0.00 0.07± 0.02
BLL 0.18± 0.01 0.14± 0.03 0.15± 0.04
Dropout 0.13± 0.01 0.09± 0.01 0.08± 0.01
PNN 0.13± 0.01 0.11± 0.01 0.10± 0.00
SWAG 0.16± 0.01 0.17± 0.02 0.12± 0.01
DVI 0.28± 0.01 0.28± 0.01 0.28± 0.00
MDN 0.14± 0.01 0.07± 0.00 0.06± 0.00

J RESULTS FOR COMPOSITE STRUCTURE FAILURE REGRESSION TASKS

Algorithm 1 is used to estimate the the average noise level Enoise, variance of the mean, Vmean, and the variance
of the noise level, Vnoise. Each dataset is evaluated under three different sample sizes (Ns), as shown in the
label of each column. For each case, 80% of the data is randomly selected for training, and the remaining
20% is used for testing.

For all the models, there is three hidden layers in the neural network, with 128 neurons in each layer; the
dimension of features is 64. There is one hidden layers in the gβ neural network of HVBLL, with 32 neurons
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Table 16: CRPS results for ERA5 regression tasks

Model 500 4000 20000

HVBLL 0.10± 0.01 0.05± 0.01 0.07± 0.02
VBLL 0.13± 0.01 0.08± 0.00 0.09± 0.01
BLL 1.05± 0.00 1.05± 0.00 1.05± 0.00
Dropout 0.10± 0.01 0.07± 0.01 0.06± 0.01
PNN 0.10± 0.01 0.08± 0.00 0.07± 0.00
SWAG 0.12± 0.01 0.12± 0.01 0.11± 0.01
DVI 0.19± 0.01 0.19± 0.00 0.19± 0.00
MDN 0.11± 0.01 0.05± 0.00 0.05± 0.00

in each layer. The initial learning rate is 0.01, the learning rate gradually reduces during the training of 10,000
epochs. Adam optimizer is used for training. All the experiments are conducted on a NVIDIA A10 GPU. The
performance of the models on the test sets in different cases is presented in Table 17 - 19.

Table 17: NLL results for laminate regression tasks

Model 500 1000 4000

HVBLL −0.73± 0.06 −0.74± 0.04 −0.75± 0.02
VBLL −0.16± 0.02 −0.15± 0.00 −0.15± 0.00
BLL 2.42± 0.00 2.42± 0.00 2.42± 0.00
Dropout 2.42± 0.77 4.13± 0.51 17.50± 2.97
PNN 0.47± 0.92 0.15± 0.48 −0.45± 0.05
SWAG 0.40± 0.65 0.30± 0.43 0.24± 0.31
DVI −0.61± 0.06 −0.59± 0.03 −0.62± 0.02
MDN −0.59± 0.09 −0.62± 0.09 −0.63± 0.10

Table 18: MAE results for laminate regression tasks

Model 500 1000 4000

HVBLL 0.10± 0.01 0.10± 0.00 0.10± 0.00
VBLL 0.11± 0.01 0.10± 0.00 0.10± 0.00
BLL 0.11± 0.01 0.11± 0.00 0.10± 0.00
Dropout 0.10± 0.00 0.10± 0.00 0.10± 0.00
PNN 0.11± 0.01 0.11± 0.00 0.10± 0.00
SWAG 0.10± 0.00 0.10± 0.00 0.10± 0.00
DVI 0.11± 0.01 0.11± 0.00 0.11± 0.00
MDN 0.11± 0.00 0.10± 0.00 0.10± 0.00
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Table 19: CRPS results for laminate regression tasks

Model 500 1000 4000

HVBLL 0.07± 0.00 0.07± 0.00 0.07± 0.00
VBLL 0.09± 0.00 0.09± 0.00 0.09± 0.00
BLL 1.05± 0.00 1.05± 0.00 1.04± 0.00
Dropout 0.08± 0.00 0.08± 0.00 0.09± 0.00
PNN 0.08± 0.01 0.08± 0.00 0.07± 0.00
SWAG 0.08± 0.01 0.08± 0.00 0.08± 0.00
DVI 0.08± 0.00 0.08± 0.00 0.07± 0.00
MDN 0.07± 0.00 0.07± 0.00 0.07± 0.00
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