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ABSTRACT

Bayesian Neural Networks (BNNs) have been extensively studied for uncertainty quan-
tification. To train BNNs efficiently, Variational Bayesian Last Layer (VBLL) provides a
sampling-free, deterministic method, significantly reducing computational cost. However,
these existing methods assume homoscedastic noise and sufficient data, while real-world
industrial applications frequently encounter heteroscedastic noise, where the uncertainty
level (i.e., noise) varies with input, and collecting training data in such cases is often
expensive. Modeling heteroscedastic noise with sparse data is challenging, but it plays a
critical role in setting appropriate safety margins for industrial applications. In this work,
we propose Heteroscedastic VBLL (HVBLL) to effectively capture the input-dependent
noise. We showcase the impact of noise prior on sparse-data regression, and further design
a clustering-based noise level estimation method to provide reliable priors. Experimental
results demonstrate that our proposed methods significantly improve the performance of
BNNs under heteroscedastic and sparse-data conditions.

1 INTRODUCTION

Uncertainty quantification is essential for improving the reliability of optimization and decision-making
processes, especially in scientific and engineering applications (Smithl 2024). Many models have been
studied to accurately characterize uncertainty under the assumption of homoscedasticity (MacKay, 1995
Watson et al.l [2021)) or in data-rich scenarios (Abdar et al., |2021). However, these assumptions may not
hold in real-world settings (Smithl 2024). For example, in aircraft design, the design variables (inputs) are
usually geometric parameters. The uncertainty of performance and safety is introduced by stochastic material
properties, defects, environments, etc. (Beran et al.,[2017; Montomoli et al.||2015). The level of uncertainty
usually differs across designs. Some designs may be sensitive to unavoidable sources of uncertainty, which
may lead to unsafe products. Therefore, it is essential to quantify the heteroscedastic uncertainty, i.c.,
input-dependent uncertainty, to identify robust designs and allocate appropriate safety factors. Meanwhile, in
many industrial design and application processes, data can be expensive or difficult to obtain. The sparsity
of data brings additional challenges for modeling and uncertainty quantification.

Several classes of methods have been proposed for uncertainty estimation, each with advantages and draw-
backs. Monte Carlo Dropout (Gal & Ghahramani, | 2016) interprets dropout as approximate Bayesian inference
and estimates predictive uncertainty through stochastic forward passes. Gaussian Process (GP) regression
(Goldberg et al.l [1997; [Le et al.,2005)) provides a principled Bayesian framework with well-calibrated uncer-
tainty estimates, but its cubic complexity in data size makes it difficult to scale to large datasets. Bayesian
Neural Networks (BNNs) (Neal, [2012)) place distributions over network weights to capture model uncertainty
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(Seitzer et al., 2022} Immer et al.| 2023} Deka et al.|[2024), but often suffer from high computational overhead,
making them difficult to scale to large models and datasets.

However, these approaches often have high computational costs due to reliance on sampling-based inference,
or have significant architectural modifications, making them less practical for deployment in large-scale or
latency-sensitive applications (Lampinen & Vehtari, [2001}; |Jospin et al.l 2022). The recently proposed VBLL
(Harrison et al.,|2024) addresses these limitations by offering efficient uncertainty estimation with minimal
overhead. This makes VBLL a promising foundation for extending to heteroscedastic problems.

In this work, we propose Heteroscedastic Variational Bayesian Last Layers (HVBLL) to overcome the
limitations of the homoscedastic noise assumption, while retaining the key advantages of VBLL. We replace
the constant noise term with an input-dependent Gaussian distribution parameterized by an auxiliary neural
network. To train this model, we derive a variational formulation with a deterministic lower bound on
the marginal likelihood. This approach enables efficient, scalable and sampling-free loss computation.
This approach also enables HVBLL to disentangle aleatoric uncertainty from epistemic uncertainty, which
improves the interpretability of the model. Since HVBLL retains the structure of Bayesian Last Layers, it
remains computationally efficient and can be seamlessly integrated into existing neural network architectures
with minimal modification.

To demonstrate the performance of our method, especially in sparse-data regression, we designed a typical toy
function featuring heteroscedastic noise to test the models. With the data samples generated by the function,
we discovered that VBLLs are sensitive to the noise prior, especially in sparse-data scenarios, while our
method are more robust to dataset sizes. We further propose a clustering-based algorithm to estimate the
average conditional variance of the data, which can serve as a reliable noise prior for BNNs. We tested this
algorithm on a dataset generated by multiple test functions, showing that it can generate noise prior closely
matching the ground-truth variance. With this noise prior in practice, we compare our proposed HVBLL
with VBLL and other baseline methods on open-source benchmark datasets. The results demonstrate that our
approach consistently outperforms the alternatives.

In summary, our contributions in this work can be listed as:

* We extend the original VBLL framework by introducing a heteroscedastic noise term, allowing the
model to account for variable noise levels that commonly arise in industrial and other real-world
applications.

* We show noise prior is critical to heteroscedastic problems, especially in sparse-data regression
problems.

* We propose a clustering-based noise level estimation method to provide reasonable noise priors, and
demonstrate the performance of HVBLL.

2 PRELIMINARIES

In this work, we study the regression problem of a heteroscedastic system:

y=f(x)+e e~ N(00%x), (D)

where x € R™= is the input vector, y € R is the scaler output. f(x) is the mean function, and o(x) denotes
the noise level, i.e., the aleatoric uncertainty. Then, the conditional probability of output given the inputs is
p(ylx) = N(f(x),0%(x)). The data set is denoted as D = {D,, D, } = {(xi, i)} ;.
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2.1 UNCERTAINTIES OF STOCHASTIC MODELS

Uncertainty in stochastic models generally falls into two categories: aleatoric uncertainty (inherent noise),
which arises from inherent data noise and is irreducible; and epistemic uncertainty (model uncertainty),
which stems from limited knowledge and can be reduced with more data or better modeling (Abdar et al.|
2021). In industrial applications, aleatoric uncertainty often defines the necessary safety margin. Therefore, it
is crucial to disentangle aleatoric uncertainty from epistemic uncertainty and to minimize the latter during
modeling. The BNN framework offers a principled approach for modeling two uncertainties separately,
offering benefits for industrial applications (Jospin et al., 2022).

Given a dataset D, the law of total variance describes the different sources of data variance. It states that if
X, Y are the random variables and the variance of Y is finite, then,

Vary () (V) = Exp() [Varyp(yix) (V[X)] + Vark 0 [Eywpyix) (Y] X)]- 2)

Applying Eq. [T to Eq. [ it becomes Vi = FEnoise + Vinean, Where Vi is the total variance of V',
FEroise = Exmp(x) [02(x)] is the average aleatoric uncertainty, Vieun = Vary.,(x)[f(x)] is the variance of
the mean function f(x). Vioise = Varxp(x)[02(x)] is the variance of aleatoric uncertainty in the input space.
Therefore, The magnitude of Ve and Eiise together characterize the degree of heteroscedasticity in the
dataset.

2.2  VARIATIONAL BAYESIAN LAST LAYER

For regression tasks described in Eq. [T} canonical Bayesian Last Layers (BLLs) (Brosse et al.| 2020; [Fiedler
& Lucial, [2023) apply a Bayesian treatment to the last layer of neural networks while keeping the feature
extractor deterministic. Instead of using fixed weights in the last layer, BLLs place a Gaussian distribution
over the weights, resulting in a lightweight and scalable approach. This formulation corresponds to Bayesian
linear regression, defined as:

=wlgp(x) +¢ e~ N(0,0%), 3)

where ¢ := ¢g(x) € R" is referred as features. They assume the noise ¢ to follow an i.i.d. Gaussian
distribution, which represents a homoscedastic model. Assume p(¢) = N(0,02) is the prior noise
distribution. A Gaussian prior is placed over the weights, p(w) = N (w0, Sw,0), independently of the
noise. Given a Gaussian posterlor over the weights, N (g, Sy), the resulting predictive distribution is
p(ylx,0,m) = N(uLe, ¢S, + 02), where n = (i1, S,y) denotes the posterior parameters of the weight
distribution. A full training strategy optimizes the last layer variational posterior together with MAP estimation
of the features. Its loss function (minimization) is

10889, 52 = —L(0,7,0%) + N[~ log p(0) — log p(0®) + KL (g (w)][p(w))], )

where the evidence lower bound (ELBO) is

1N.~

L(O,n,0 =N

1
[logNylqubz, %) — ﬁ¢;sw¢i . &)

i=1
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3 METHODOLOGY

3.1 HETEROSCEDASTIC VARIATIONAL BAYESIAN LAST LAYER

We extend the i.i.d noise term of VBLL described in Eq. [3]to a heteroscedastic noise, which is described in
Eq.[I] Then, the Heteroscedastic VBLL (HVBLL) is described as

y=wp(x) +e(x); e~ N(0,0(x)%), (6)

where noise €(x) is assumed to be independent of w. The variance of noise is modeled with a neural network,
o(x)? = expgg(x), where 3 is the weights of the neural network g. Then, the predictive distribution
(likelihood) of the model is

p(ylx,0,m,8) = N(ulo, ¢* Swod + exp gg(x)). 7)

Note that the ¢7'S,,¢ term is the epistemic uncertainty, and the o(x) is the heteroscedastic aleatoric
uncertainty. Then, HVBLL employs a sampling-free stochastic variational inference (Hoffman et al.,
2013) for the BLL networks. VBLL jointly computes an approximate last layer posterior and optimize
network weights by maximizing lower bounds on marginal likelihood. So that the training efficiency is
significantly improved, comparing to the Monte-Carlo sampling. Denote the approximate posterior of weights
as ¢, (W) = Ny, Sw). Then, the evidence lower bound (ELBO) can be derived from:

N og p(Dy| Dy, 0,0%) > L(6,n,0%) — N KL{gy (w)|[p(w)]. ®)

Eq. [§ holds with

N,
1 & 1
0 ==Y |log N(yilupo: — ———— ¢! Swi
‘c( a777ﬁ) Ns £ |:Og (y |:uu;¢ agﬁ(x)) QQXPQB(X) (ZSZ S, ¢ 5 (9)
More proof can be found in Appendix |A] Then, the loss function is
Jo.n.p = —L(0,,8) + N[~ log p(0) + KL(gg(€)lp(c)) + KL(gy (W) [p(w))], (10)

where p() = N (0, 02) is the prior noise distribution, gs(¢) = N (0, exp gz(x)) is the approximated noise
distribution. A simple isotropic zero-mean Gaussian priors on feature weights (yielding weight decay
regularization). For Gaussian priors, the Kullback—Leibler divergence can be computed in closed form:

1 1 _
KL (g, (W)|lp(wW))] = 5(Sy05w) + 5w = 10,0)" Sy 0 (pwr = p0.0) = 110 = 108 (| Suo/[Sw.0l). - (A1)

3.2 CLUSTERING-BASED NOISE LEVEL ESTIMATION

As will be demonstrated in Section the performance of heteroscedastic models is strongly affected by the
noise prior o, especially when the training data is scarce. Therefore, it is crucial to provide a reasonable
estimation of 08 given a data set D. According to Eq. |2} the average conditional variance Fis. can be a
good estimation of o3. We propose Clustering-Based Noise Level Estimation (Algorithm 1)) to estimate
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FEhoises Vinean and Viise directly from data set D, so that the degree of heteroscedasticity can be assessed and a
reasonable o3 can be provided.

The proposed algorithm begins by partitioning the dataset into small groups, each containing at most n
samples. Within each group, samples are selected to have similar inputs x, i.e., they are locally clustered in
the input space. Then, we can assume a zero-order approximation of the regression problem in Eq. |1} where
the variation of the mean function in each group is negligible, i.e., Vipean — 0. Consequently, the variance of
y within each group (denoted as v;) can be interpreted as the local aleatoric uncertainty.

Algorithm 1 Clustering-based noise level estimation

Require: Data set D

1: Input: The maximum number of samples in a group for clustering ng
2: Calculate the total variance Vi of y in D

3: Group samples by similar x using clustering (e.g., Nearest Neighbors)
4: Ngroup < number of groups

5: while i = 1, ..., Ngroup do

6:  m; < mean of y in the cluster group

7:  w; + variance of y in the cluster group

8: end while

9: Vinean < Var(m;)
10: Ehgise < Mean(v;)
11: Vioise < Var(v;)

4 EXPERIMENTS

Our experiments aim to demonstrate and validate the following claims: (1) For heteroscedastic regression
problems, HVBLL can accurately learn input-dependent noise, whereas VBLL can only capture the average
noise; (2) The noise prior is a critical hyperparameter for both HVBLL and VBLL, and their performance on
sparse data regressions is highly sensitive to its value — ideally, a noise prior of the same order of magnitude
as the ground truth should be provided; (3) We propose a simple algorithm to estimate a reliable noise prior,
which performs well under both high-dimensional and sparse-data settings; (4) We compare HVBLL, VBLL,
and six baseline models on various real-world datasets, including both sparse and sufficient data scenarios as
well as datasets with different degrees of heteroscedasticity, demonstrating the strong and robust performance
of HVBLL.

We first use toy functions in Sections . TH4.2| where the ground-truth noise distribution is known, allowing
for direct validation of model performance. We then evaluate the proposed model and baselines on standard
benchmarks for Bayesian neural network regression using datasets from the UCI Machine Learning Repository
(Dua & Graff} 2017), European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERAS) dataset
(Hersbach et al.| 2020) and a custom dataset on composite structure failure (Appendix [J)).

4.1 HETEROSCEDASTIC TOY FUNCTIONS

Toy functions are used to demonstrate the necessity of employing HVBLL for heteroscedastic problems. The
toy function is described as

y=f(x)+g(x)e e~ N(0,1),x €[0,1]". (12)
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Figure 1: The HVBLL and VBLL are trained on four heteroscedastic toy functions. The blue solid line
represents the ground truth mean function f(z), and the blue shaded region indicates the ground truth 1o
confidence interval, g(z). The red dashed line shows the predicted mean, with the red shaded area representing
the predicted aleatoric uncertainty at the 1o level.

Then, the conditional probability becomes p(y|x) = N(f(x), g?(x)). The toy functions are combinations of
linear functions and sine functions, as shown in Appendix [B] In this section, n, = 1, and 200 data points are
sampled from a uniform distribution x ~ U([0, 1]) and a Gaussian distribution € ~ N (0, 1).

Both VBLL and HVBLL are trained on the toy functions. Their dimension of features is ny = 32, the neural
network of ¢y contains one hidden layer with 32 neurons. The neural network of gg in HVBLL contains two
hidden layers with eight neurons. The noise prior o3 = 0.01. The initial learning rate is 0.01, the learning
rate gradually reduces during the training of 5,000 epochs. Adam optimizer (Kingma & Ba), 2014)) is used for
training.

Their performance is illustrated in Fig. [T} The results demonstrate that HVBLL effectively captures the
heteroscedastic noise in the toy functions, whereas the VBLL can only estimate the average noise level.
For example, by comparing (a) and (e), we observe that VBLL fails to capture the characteristic of smaller
variance when x is small, whereas HVBLL successfully captures this heteroscedastic behavior. Comparing
(b) and (f), the variance of our designed toy function varies with input x in a cosine-like pattern. HVBLL
accurately fits this wave-like variance, while VBLL still treats it as homoscedastic, and thus cannot distinguish
the variance differences.

4.2 SPARSE DATA SCENARIOS

A more complex toy function (Eq. is used to study the influence of noise prior o2 on VBLL and HVBLL,
especially in the sparse data scenarios. In this section, 20 and 200 data points are sampled from a uniform
distribution x ~ U([—0.5,1.5]) and a Gaussian distribution € ~ N (0, 1) for training, 20 other samples are
sampled for testing. Both VBLL and HVBLL have their dimension of features n;y = 16, the neural network
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Figure 2: Influence of noise prior 03 on HVBLL and VBLL. The left plot shows results under the sparse data
setting, while the right plot corresponds to the data-rich setting. Outlier data points with excessively large
values are omitted for clarity.

of ¢ contains three hidden layers with 64 neurons. The neural network of gg in HVBLL contains one hidden
layer with eight neurons. The initial learning rate is 0.01, the learning rate gradually reduces during the
training of 20,000 epochs. Adam optimizer is used for training.

f(x) = x? sin(4mx)
{ g(x) = 0.05max(1.0,5z + 1) » * €705 15 (3)

Fig. 2| shows the negative log likelihood on the training and testing sets of VBLL and HVBLL under different
values of noise prior (03 s). The ground truth agme = 0.052. In Fig. [2(a), the values of "THVBLL Test’,
"VBLL Train’ and *VBLL Test’ in 02 = 103 are omitted because they are several orders of magnitude larger
than the remaining cases, i.e., the models overfit the problem in these cases. The results indicate that a small
o3 leads to overfitting, because the model assumes the data is nearly noise-free. In contrast, a large o2 leads
to underfitting of the noise level. The performance of VBLL and HVBLL in sparse data scenarios (Ny = 20)
is shown in Fig. 4| (Appendix |C). This sensitivity to o3 is significantly reduced when more data is available,
as shown in Fig. [5|(Appendix |C)), where N = 200.

In summary, both VBLL and HVBLL are sensitive to the noise prior in sparse data scenarios. A noise prior
that is too small can lead to severe overfitting; however, when it is on the same order of magnitude as the true
noise level—or one or two orders of magnitude larger—it can yield better fitting performance.

4.3 ESTIMATION OF NOISE LEVEL

As demonstrated in Section providing an appropriate noise prior o3 is crucial for both VBLL and
HVBLL. Based on Eq Fhoise 18 a suitable choice for 0(2), so we introduce Algorith to estimate Fpjse.
This algorithm is evaluated on the four multivariate toy functions described in Section[4.1] under varying input
dimensions n, and sample sizes IN. For comparison, we also employ Monte Carlo Dropout (MC-Dropout,
(Gal & Ghahramani} 2016))), a widely-used deep learning method for uncertainty estimation, to estimate the
noise level and benchmark its performance against our proposed approach.

The ratios of estimated F),is to the real value of all cases are plotted in Fig. E} The details are presented in
Table. 3| (Appendix @]) The results indicate that our algorithm estimates Fyise to be within the same order of
magnitude as the true value, even under sparse data conditions and in high-dimensional settings. In contrast,
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Figure 3: Estimation of noise. Algorithm (left) and MC-Dropout (right) are tested on four toy functions (Eq.
- with different input dimensions and sample sizes. The plots show the ratio of the estimated Fise to
the real value, where a ratio of one (gray dashed line) indicates a perfect estimation. Curves closer to the
dashed line represent more accurate noise estimates.

MC-Dropout exhibits larger estimation errors. Notably, our method tends to slightly overestimate the noise
level, whereas MC-Dropout underestimates it. Based on the results in Section[4.2] overestimation of noise
prior generally yields better fitting performance. Therefore, Algorithmis valid to estimate o3.

4.4 REAL-WORLD DATASETS

We evaluate HVBLL against VBLL and six baselines on a wide range of benchmarks. The six baseline
models are: Monte-Carlo Dropout (Dropout, (Gal & Ghahramanil 2016)), Stochastic Weight Averaging
Gaussian (SWAG, (Maddox et al.,[2019)), Latent Derivative Bayesian Last Layer Networks (BLL, (Watson
et al.; |2021))), Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks (PNN, (Seitzer]
et al.l2022)), Deterministic Variational Inference (DVI, (Wu et al.,2018)) and Mixture Density Networks
(MDN, (Bishop, |{1994)).

The benchmarks cover four UCI datasets and their modified variants (Appendix [E), the ERAS dataset
(Appendix [F)), and a custom dataset on composite structure failure (Appendix [G). To examine robustness
under varying data availability, each case is tested with three different training sample sizes (V). Performance
is evaluated using Negative Log Likelihood (NLL), Mean Absolute Error (MAE), and Continuous Ranked
Probability Score (CRPS), all of which are preferable when lower. Each experiment is repeated ten times
with different random samplings.

Tables [I] and 2] summarize the advantage of HVBLL over the baselines. Table [T] focuses on sparse-data
scenarios, while Table [2]reports the average advantage across all scenarios.

For each metric, HVBLL’s improvement over each baseline is computed on a case-by-case basis. NLL
improvements are reported as absolute differences due to scale invariance, whereas MAE and CRPS improve-
ments are expressed as relative percentages since they are scale-dependent. The Average Improvement (Al)
represents the relative improvement of HVBLL over each baseline model (positive values indicate HVBLL
performs better). The Win Rate (WR) shows the percentage of cases where HVBLL outperforms the baseline
model. All metrics are calculated on test data across dataset cases. Further details of network architectures,
training setups and results are provided in Appendix [HH]J|

Overall, HVBLL outperforms VBLL and other baselines in most cases, with particularly strong improvements
on sparse-data cases. The advantage is especially pronounced under stronger heteroscedastic noise and limited
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training data. HVBLL demonstrates robustness across dataset sizes and input dimensionalities, maintaining
reliable predictions even in sparse-data settings.

Table 1: HVBLL Advantage Summary (small datasets)

NLL MAE CRPS

Model Al WR Al WR Al wr DNewse
VBLL 0553 81.0% 0073 667% 0113 667% 21
BLL 9367 100.0% 0365 100.0% 0.548 100.0% 21
MC-Dropout  1.777 90.5% 0.020 619% 0.152 81.0% 21
PNN 11261 100.0% 0041 714% 0080 857% 21
SWAG 2133 100.0% 0380 762% 0.424 100.0% 21
DVI 1311 1000% 0.153 952% 0.154 952% 21
MDN 3.063 100.0% 0332 905% 0533 100.0% 21
Overall 0440 939% 0.195 803% 028 898% 21
Table 2: HVBLL Advantage Summary (all datasets)
NLL MAE CRPS
Model WR Al WR Al WR Nease

VBLL 0401 794% 0.023 556% 0.067 68.3 % 63
BLL 7457 100.0% 0344 100.0% 0.528 100.0% 63
Dropout 2.026 889% -0.018 460% 0.115 714% 63
PNN 6.234 1000 % -0.002 508% 0.032 65.1% 63
SWAG 1966 984% 0374 794% 0417 96.8% 63
DVI 0.635 905% 0.124 84.1% 0.116 81.0% 63
MDN 2184 968% 0273 T77.8% 0.466 825 % 63

Overall 0331 90.0% 0160 705% 0249 80.7 % 63

5 DISCUSSION AND CONCLUSIONS

We introduced the Heteroscedastic Variational Bayesian Last Layer (HVBLL) model to capture input-
dependent noise in heteroscedastic regression tasks with high computational efficiency. HVBLL can be easily
integrated into existing neural network architectures, making it a practical solution for uncertainty modeling.
We evaluated HVBLL on both toy regression functions and benchmark datasets, comparing it with the vanilla
VBLL and six other baselines under varying training data sizes. Results demonstrate that the choice of
noise prior significantly impacts the performance. To address this, we proposed a clustering-based noise
estimation method for more informed prior selection. Overall, HVBLL mostly achieves superior performance,
particularly in sparse data scenarios, highlighting its potential for robust uncertainty modeling.

While our method makes a meaningful step forward, it still relies on the assumption of independent of noise
and weights. The performance of HVBLL is also affected by the noise prior as shown in our experiments. We
proposed a clustering-based strategy to estimate this prior, but the performance of HVBLL on more complex
datasets remains an open question. Exploring better noise prior modeling is an important direction for future
work.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Most experiments are conducted on publicly available
benchmark datasets (e.g., UCI repository, ERAS reanalysis dataset) and synthetically generated toy functions.
The custom dataset on composite structure failure will be made available in the supplementary material
to facilitate replication and extension of our results. No human subjects, personal data, or sensitive social
attributes are involved. The research objective is to advance uncertainty modeling methods for scientific and
engineering applications, particularly under sparse-data and heteroscedastic conditions, without potential
misuse or discriminatory applications. All datasets are used in accordance with their respective licenses, and
no conflicts of interest or undisclosed sponsorships are associated with this work.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide full details of the model formulation, derivations, and experimental
settings in the main text and appendices. The theoretical derivations, including the proof of the evidence
lower bound, are presented in Appendix [A] The toy functions used for validation are defined in Appendix
and the benchmark datasets (UCIL, ERAS, and composite structure failure dataset) with preprocessing details
are described in Appendices [E}{G The clustering-based noise prior estimation algorithm is fully specified
in Section 3.2 and Appendix [D] Network architectures, training hyperparameters, and optimization setups
are listed in Appendices [C} [H{J] Anonymous implementation code and experimental scripts will be made
available in the supplementary material to facilitate replication and extension of our results.
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A EVIDENCE LOWER BOUND OF HVBLL
The proof of evidence lower bound of Heteroscedastic Variational Bayesian Last Layers is presented here.

Following the same procedure in (Harrison et al.| 2024)), we consider the more general form of multivariate
regression case:

y=Wo+e, (14)

where ¢ ~ MN(0,X) is assumed to be independent from W, 6 is the parameters of the feature neural
network ¢ := ¢y(x). Given a parameter W, the distribution of y is

p(ylx,0,W, %) = N(W¢,%). (15)

A matrix normal prior is placed on the weights W ~ M N (w, I, S). Then, the posterior is also matrix normal.
For the details about matrix normal distributions, please refer to (Box & Tiao,2011). Then, given a parameter
distribution M N (W, 1,S), denote n = {W, S}, the predictive distribution (likelihood) of the HVBLL is

p(ylx,0,n,%) = N(W¢,¢" Sol + %). (16)

Looking at the inequality in Eq. [8]in multivariate regression cases:

Z\]s_1 Ing(Dy|Daca 9, E) Z ‘C’(G7 na E) - NS_IKL[QT](W)Hp(W)]) (17)

we need to prove Eq. [I7|holds with the following ELBO:

Ny

£0.0.3) = 3 [l Nl76,9) - JoT sou(z )] s
g =1
Proof.
logp(Dy|Dw,9, Y) = long(W [p(D |D., 0, W, %)] (19)
— 1ogE,, (w) [ (D |Ds, 0, W, %) ](MVQ] (20)
> Ey, (w) [P(Dy| Dy, 0, W, ) — KL (g,,(W)[p(W))] (21)
- ;E%(m Pl 0, W, )] — KL (g, (W)|p(W)) @)

Since the expectation term in Eq. 22]is the log of a Normal distribution, by applying Lemma I, we have

1 _
Eqwin [p(yilxi, 0, W, %)] = log p(yilxi, 0, W, ¥) — §¢iTS¢1:E L (23)

which completes the proof. Modeling 3 with a neural network using x as input does not corrupt the proof,
therefore, Eq. [9]holds.
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Lemma 1. Let (i) = N(ji, S) and p(y| X, u) = N(Xpu,X) withy € RN, ji,u € RM, X € RN*M  and
S, % € RM*M Then

1o
Eq( P(y| X )] = log p(y| X, j1) = 5% 'XTSX, (24)

Proof. This was proved in Lemma 4 in (Harrison et al.,[2024), we repeat their proof here.

1

Eqg(u P(Y1X, 1)) = = 5Bq(u) [logdet(2n%) + (y = Xp)" 57 (y = Xp)] (25)
1

=-3 (logdet(27X) + Eqy [(y — Xp) TSy — Xp)]) (26)

= —% (logdet(Qﬂ'Z) +(y—Xp)'sHy — Xp) + tr(Z_lXTSX)) . 27

B ToOY FUNCTIONS

Four toy functions are used to represent heteroscedastic problems described in Eq. [I2} The four toy functions
are combinations of linear functions and sine functions, as shown below. The a = 0.1,0.2,0.2,0.1 in Eq. 2§]-

respectively.

Fo0 = L ¥ F0 = Y0 o
{g<x> S 9 g6 = a7, sin2mz) O
£) = LT[, sin(2rz,) £) = §TI=, sin(2ra,)
{g<x> S G0 ST, e S

C INFLUENCE OF (7(2) IN SPARSE AND SUFFICIENT DATA SCENARIOS

The performance of VBLL and HVBLL in sparse data (/Ng = 20) and sufficient data (Ny = 200) scenarios is
shown in Fig. [ and Fig. [5] Comparing to Fig. d The results indicates that the sensitivity of performance to

the noise prior o7 is significantly reduced when more data is available.
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—— Ground truth mean - Training data Aleatoric uncertainty (10)
—— Predicted mean Ground truth noise level (10)
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Figure 4: Influence of noise prior o3 in sparse data scenarios. The first row shows the results of HVBLL, the
second shows VBLL. The three columns show the performance of models trained with different o2 values.
The solid lines represent the mean function, and the shaded regions indicate the 1o confidence interval.

—— Ground truth mean - Training data Aleatoric uncertainty (10)
—— Predicted mean Ground truth noise level (10)

—05 0.0 05 10 5 —05 0.0 05 70 5 —05 0.0 05 0 5
X X X
(a) HVBLL: 03 = 0.001 (b) HVBLL: 0 = 0.1 (c) HVBLL: 03 = 10.0

05 0.0 05 10 5 05 00 05 70 5 05 0.0 05 0 5
X X X
(d) VBLL: ¢ = 0.001 (e) VBLL: 03 = 0.1 (f) VBLL: 02 = 10.0

Figure 5: Influence of noise prior o2 on VBLL in sufficient data scenarios
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D ESTIMATION OF VARIANCE IN TOY FUNCTIONS

Algorithm [T using Nearest Neighbor (denoted by "Our (NN)") and MC-Dropout (denoted by "MC") are used
to estimate the noise level in the four toy functions shown in Section where @ = 0.1. Another version of
Algorithm [ using K-means as the clustering technique (denoted by "Our (KM)") is also tested. Different
input dimension n,, number of samples IV are tested on all toy functions. Each case is repeatedly tested
on ten randomly sampled data sets. The average values are presented in Table. 3} The maximum number of
samples in a group for clustering (n;) is five in Algorithm[I] There is five hidden layers in the neural network
of MC-Dropout, with 128 neurons in each layer; the dimension of features is 64. The initial learning rate is
0.01, the learning rate gradually reduces during the training of 20,000 epochs. Adam optimizer is used for
training.

Both using Nearest Neighbor and K-means as the clustering technique in Algorithm T|achieve similar results.
AlgorithmE] not only estimates the average noise level Eyise, but also provides estimates for the variance of
the mean, Vi,ean, and the variance of the noise level, Viise. By comparing the magnitudes of Viyean and Vigise,
we can preliminarily assess the degree of heteroscedasticity in the problem, and thus determine whether using
HVBLL would offer advantages over VBLL.

E DESCRIPTION OF MODIFIED UCI DATASETS

Four UCI datasets are used for testing. Table [ presents the ID, name, input dimension (n;), and number of
samples (IVs, 1ora) for each dataset. All datasets have output dimension n,, = 1. Since the original datasets lack
significant heteroscedastic noise, they are not well-suited for highlighting the differences between HVBLL
and VBLL. Inspired by partially observable systems that frequently occurs in industrial applications, the
datasets are modified by treating a subset of the inputs as unobservable inputs (states). These unobservable
inputs are assumed to be random variables, and thus become the source of aleatoric uncertainty in the system
(Smith} 2024). The Epoises Vimean and Vioise Of the original and modified datasets are calculated with Algorithm
Table 5| shows the indexes of inputs that are considered as unobservable and the source of uncertainty.

F DESCRIPTION OF ERAS5 DATASETS

The ERAS dataset is a global atmospheric reanalysis product providing hourly data on single levels from
1940 to the present, across ~ 137 atmospheric levels, with ~ 31 km horizontal resolution. In our work, we
extract only the 2 m temperature variable over a sub-region bounded by latitudes 7° to 83° and longitudes
—169° to —35°, for the years 2020 through 2024. Within each month we sample on days 1, 5, 10, 15, 20, 25,
and at times 00:00, 06:00, 12:00, and 18:00 UTC. The raw data therefore forms a spatial-temporal field with
shape (Nmonths Mat; o), Which we resize to (nmonm, 64, 64) for the dataset.

In our heteroscedastic Bayesian regression setup, we use month, latitude, and longitude as observed inputs
and predict the 2 m temperature. Day and hour are treated as latent (unobserved) variables, whose absence
induces input-dependent noise (heteroscedasticity). Accordingly, the model learns not only the conditional
mean temperature for each month, latitude, and longitude, but also a non-constant variance of temperature in
each month.
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Table 3: Variance estimation of multivariate toy functions

Real Our (NN) Our (KM) MC
Case Toy function n, N Eroise Eroise Viotal Vinean Vioise Ehoise Ehoise
1 Eq. |28 1 20 44e-3 79e-3 7T.6e-2 57e-2 1.2e-3 7.3e-3 2.2e-3
2 Eq. 1 100  4.4e-3 3.1e-3 8.le-2 7.7e-2 73e-4 2.9e-3 2.1e-3
3 Eq. 1 1000 4.4e-3 3.4e-3 8.6e-2 8.3e-2 9.2e4 3.3e-3 1.8e-3
4 Eq. 10 50 2.6e-3 5.8¢-3 1.le2 4.2e-3 6.4e-4 5.5e-3 2.7e-4
5 Eq. 10 1000 2.6e-3 3.9e-3 1.0e-2 5.9e-3 4.9e-4 3.8e-3 6.4¢-3
6 Eq. 10 10000 2.6e-3 4.0e-3 1.0e-2 6.2e-3 2.4e-4 3.9¢-3 1.9¢-4
7 Eq. 100 100 2.5e-3 24e-3 3.3e-3 7.0e-4 2.8e-4 2.0e-3 1.1e-4
8 Eq. 100 1000 2.5e-3 2.4e-3 33e-3 7.0e-4 2.9e-4 2.0e-3 4.3e-4
9 Eq. 100 10000 2.5e-3 2.8e-3 3.3e-3 4.3e-4 1.5¢4 2.7e-3 1.4e-4
10 Eq. 1 20 49e-3 7.2e-3 8.le-2 63e-2 1.2e-3 6.3e-3 2.0e-3
11 Eq. 1 100 4.9e-3 3.8¢-3 8.0e-2 7.7e-2 1.0e-3 3.7e-3 1.8e-3
12 Eq. 1 1000 4.9e-3 39e-3 8.6e-2 822 1.1e-3 3.8e-3 1.8e-3
13 Eq. 2 50 24e-3 4.2e-3 39e-2 3.le2 6.2¢e4 4.2e-3 1.0e-3
14 Eq. 2 1000 24e-3 2.1e-3 4.4e-2 4.1e2 7.2e4 2.0e-3 7.8e-4
15 Eq. 2 10000 2.4e-3 2.2e-3 4.4e-2 4.le2 7T.7e4 2.2e-3 5.3e-4
16 Eq. 4 100 6.2e-4 34e-3 22e-2 1.8e-2 4.le4 3.4e-3 4.5e-4
17 Eq. 4 1000  6.2e-4 1.4e-3 2.1e-2 1.9e-2 24e4 1.4e-3 3.3e-4
18 Eq. 4 10000 6.2e-4 1.0e-3 2.1e-2 2.0e-2 1.7e-4 1.0e-3 2.3e-4
19 Eq. 1 20 4.4e-3 1.9e-2 1l.le-1 92e-2 2.9e-3 2.0e-2 2.1e-3
20 Eq. 1 100 4.4e-3 3.8e-3 12e-1 1l.le-l1 7.7e-4 2.2e-3 1.8e-3
21 Eq. 1 1000 4.4e-3 3.4e-3 1.2e-1 1.2e-1 9.2e4 3.3e-3 1.8e-3
22 Eq. 10 50 2.6e-3 22e-3 27e-3 4.7e-4 27e-4 2.0e-3 8.2e-5
23 Eq. 10 1000  2.6e-3 2.3e-3 2.8e-3 5.8e-4 3.2e4 2.2e-3 5.2e-4
24 Eq. 10 10000 2.6e-3 2.7¢e-3 2.9e-3 3.0e-4 2.2e-4 2.6e-3 1.3e-4
25 Eq. 100 100 2.5¢-3 1.8e-3 23e-3 4.2e4 2.le4 1.5e-3 8.1e-5
26 Eq. 100 1000 2.5¢-3 1.9e-3 24e-3 4.77e-4 2.3e-4 1.6e-3 3.2e-4
27 Eq. 100 10000 2.5¢-3 2.2e-3 2.5e-3 2.5e-4 1.2e-4 2.1e-3 1.8e-4
28 Eq.[31 1 20 49e-3 1.7¢e-2 1.0e-1 84e-2 2.3e-3 1.8e-2 2.0e-3
29 Eq.[31 1 100 4.9e-3 4.4e3 1.2e-1 1.2e-1 8.5¢-4 4.1e-3 1.8e-3
30 Eq. 1 1000 4.9e-3 39e-3 1.2e-1 1.2e-1 1.1e-3 3.8e-3 1.6e-3
31 Eq. 2 50 24e-3 19e-2 5.7e-2 4.le2 2.4e-3 1.9¢-2 1.7¢-3
32 Eq. 2 1000 24e-3 3.2e-3 6.4e-2 6.1e-2 7.le4 3.0e-3 1.9¢-3
33 Eq. 2 10000 2.4e-3 2.5¢-3 6.4e-2 6.2e2 6.7e4 2.5e-3 1.6e-3
34 Eq. 4 100 6.2e-4 1.2e-2 1.5e2 6.3e-3 2.1e-3 9.5e-3 1.0e-3
35 Eq.[31 4 1000  6.2e-4 6.6e-3 1.6e-2 1.1e-2 1.6e-3 5.5e-3 1.8e-3
36 Eq. 4 10000 6.2e-4 4.4e-3 1.6e-2 1.2e-2 9.6e-4 4.1e-3 1.9e-3
Table 4: UCI datasets for testing
ID Name Ny Ny

165 Concrete Compressive Strength (Yeh, [1998) 8 1030

186 Wine Quality (Cortez & Reis, [2009) 11 4898

291 Airfoil Self-Noise (Brooks & Marcolini, |1989) 5 1503

294  Combined Cycle Power Plant (Tfekci & Kaya,[2014) 4 9568
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Table 5: Details and variance estimation of testing datasets

DatasetID UCIID n, FEyise Vinean Vioise  Indexes of omitted inputs g of three datasets

1 165 8 62e+l 2.le+2 lde+l N/A 200, 500, 1000
2 165 6 7.7e+l 19e+2 2.0e+l 0,3) "
3 165 5  86e+l 1.8e+2 2.3e+l (0,3,6) "
4 165 5  73e+l 19e+2 1.8e+l (0,4,6) "
5 165 5 12e+2 1.6e+2 19e+l (0,5,7) "
6 186 11  3.6e-1 4.3e-1  9.0e-2 N/A 500, 1000, 4000
7 186 8 3.6e-1 4.0el 9.le2 (1,6,10) "
8 186 8 3.8e-1 3.7e-1  1.0e-1 (5,7,10) "
9 186 6 39e-1 3.7e-1  9.7e2 (1,5,6,7,10) "
10 291 5 73e+0 3.8e+l 1.5e+0 N/A 200, 500, 1000
11 291 4 30e+] 2.0e+l 3.4e+0 (0) "
12 291 3 22e+] 2.5e+]  4.5e+0 (1,4) "
13 291 3 22e+l 2.5e+]  5.0e+0 2.4) "
14 291 2 1.7e+l 3.de+l 4.6e+0 2,3.4) "
15 294 4 13e+l 28e+2 2.5e+0 N/A 500, 1000, 4000
16 294 3 3de+l 2.6e+2  6.9e+0 (0) "
17 204 2 lde+2 1.5e+2  1.7e+l 0,1) "
18 294 2 45e+l 25e+2  6.9e+0 0,2) "
19 294 1 22e+2 73e+l lde+l (0,1,2) "

2m temperature (normalized) - Year: 2024, Month: 1

Mean 0.6 Standard Deviation
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Figure 6: Normalized 2 m temperature distribution in January, 2024

G DESCRIPTION OF COMPOSITE STRUCTURE FAILURE DATASETS

We construct a dataset based on the open-hole compression (OHC) test of composite laminates, a standard
experiment where a plate with a hole is compressed to study how stress concentrates and leads to material
failure. The specimen is a Carbon Fibre Reinforced Plastic (CFRP) plate with in-plane dimensions [, =
50mm, I, = 100 mm, and thickness .. A circular hole is introduced at relative coordinates (ra, ry), where
re € [0.3,0.5], 7, = 0.5, and with radius 7, € [5,12] mm. The plate is clamped at the y = 0 face and
subjected to compressive loading at the y = [, face.
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The design variables include the relative x-coordinate of the hole center r,, and the hole radius r,. The output
is the maximum failure index over the entire specimen. The failure index is a dimensionless measure of
material safety: a value close to zero indicates safe loading, while a value exceeding one means the material
has reached its limit and failure is expected to initiate.

Composite laminates consist of multiple plies stacked in the thickness direction. The laminate stacking
sequence ¢ specifies the fiber orientation angles of all plies, and these orientations have a significant impact
on how the laminate carries load and resists failure. In the early stages of industrial design for large composite
structures, it is often impractical to fully account for the influence of § on structural failure behavior due to
its complexity and design cost. As a result, § is treated as an unobservable variable, introducing intrinsic
uncertainty into the failure prediction problem.

Overall, this dataset provides a controlled yet challenging benchmark for uncertainty quantification in
composite failure prediction.
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Figure 7: Failure index distribution in a composite specimen under an open-hole compression test. Left:
the specimen is compressed uniaxially, leading to stress concentration around the hole. Right: a magnified
view of the hole region, showing multiple layers with different fiber orientations. These orientations cause
variations in stress and failure index values, with higher values indicating a greater likelihood of failure.

H RESULTS FOR UCI REGRESSION TASKS

Algorithmm is used to estimate the the average noise level E, s, variance of the mean, Viyean, and the variance
of the noise level, Vjise. Both the original UCI datasets and the modified ones are evaluated. Each dataset
is evaluated under three different sample sizes (/V;), as listed in Table El For each case, 80% of the data is
randomly selected for training, and the remaining 20% is used for testing.

For all the models, there is three hidden layers in the neural network, with 128 neurons in each layer; the
dimension of features is 32. There is one hidden layers in the gg neural network of HVBLL, with 32 neurons
in each layer. The initial learning rate is 0.01, the learning rate gradually reduces during the training of 10,000
epochs. Adam optimizer is used for training. All the experiments are conducted on a NVIDIA A10 GPU. The
performance of the models on the test sets in different cases is presented in Table [6]- [13]
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Table 6: NLL results for UCI regression tasks (UCI ID = 165, Ny = 200)

Dataset ID 1 2 3 4 5
HVBLL 3.48 +£0.22 4.01+£0.19 3.92+0.16 3.88+0.13 4.09+0.14
VBLL 5.21£1.12 6.10 = 1.54 5.72 £ 1.58 5.52 4+ 0.66 4.874+0.35
BLL 9.32 +1.50 9.66 £+ 1.62 9.63 + 1.64 9.71 +1.62 9.63 £ 1.60
Dropout 4.72 +1.01 5.91 +1.25 7.19 £ 1.66 6.31 +0.58 10.22 + 2.68
PNN 22.11 £9.46 35.794+24.62 34.524+26.16 39.03 +25.68 30.78 +=17.39
SWAG 5.15 £+ 0.27 5.05 +0.39 4.92 +0.29 5.16 4+ 0.30 5.05 +£0.32
DVI 5.22 +£2.18 8.76 &= 3.35 8.40 +6.07 8.05 +5.03 11.00 &+ 6.56
MDN 7.39 £+ 2.58 8.72+1.76 9.40 4+ 3.44 8.08 +2.73 10.97 + 3.25
Table 7: NLL results for UCI regression tasks (UCI ID = 165, Ny = 1000)
Dataset ID 1 2 3 4 5
HVBLL 3.594+0.14 3.84+012 3.89+0.08 3.74+0.09 4.05+0.06
VBLL 3.89 +0.34 4.77 4+ 0.42 4.274+0.29 4.70+0.34 4.124+0.12
BLL 6.29 4+ 0.38 7.43 +£0.47 7.67+048 7.91+0.49 7.91 £ 0.46
Dropout 3.46 +0.48 5.09+1.13 5.444+0.59  4.77 £0.47 9.87 +£0.74
PNN 9.234+3.99 11.334+12.08 6.81 £4.05 8.974+4.99 12.40 £10.77
SWAG 4.824+0.15 4.914+0.23 498+0.24 5.134+0.28 4.96 +0.27
DVI 3.58 4 0.98 4.94 4+ 2.19 4.094+0.34 4.134+0.97 4.27 +0.50
MDN 3.20+0.27 4.34+1.18 3.984+0.28 3.88+0.30 4.46 + 0.63

Table 8: NLL results for UCI regression tasks (UCI ID = 186, Ny = 500)

Dataset ID 1 2 3 4

HVBLL 1.14 +0.06 1.20 +0.09 1.314+0.14 1.254+0.09
VBLL 1.67+0.19 1.67 £0.17 1.84 +0.20 2.01 £0.18
BLL 1.96 +0.01 1.97 +£0.01 1.97 +£0.01 1.97 +£0.01
Dropout 4.51+1.19 4.37 £1.05 4.54+0.71 4.72 +£1.37
PNN 18.98 +20.67 21.26 +32.79 14.204+16.34 3.99 4 2.69
SWAG 1.26 +0.19 1.48 £0.31 1.40 +£0.27 1.60 & 0.45
DVI 1.454+0.20 1.68 +=1.02 1.454+0.17 2.55 £+ 2.87
MDN 2.94 £+ 0.85 4.214+1.01 4.37+0.92 3.62 +0.55

Table 9: NLL results for UCI regression tasks (UCI ID = 186, Ny = 4000)

Dataset ID 1 2 3 4

HVBLL 1.114+0.04 1.124+0.04 1.204+0.03 1.21+0.03
VBLL 1.17 4+ 0.02 1.18 £ 0.02 1.22 +0.02 1.24 +0.01
BLL 1.96 &+ 0.00 1.97 +0.00 1.96 £ 0.00 1.97 £ 0.00
Dropout 5.83 +£0.65 7.30 +1.21 6.11 £0.82 8.90 £+ 1.62
PNN 7.29 +4.59 414+5.01 956+12.41 7.64+15.06
SWAG 1.25+0.11 1.41+£0.11 1.34 +0.10 1.63 +0.21
DVI 1.16 & 0.07 1.15 4+ 0.06 1.22 +0.06 1.24 +0.07
MDN 1.434+0.19 3.25+0.41 3.11 £0.32 248 £0.15
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Table 10: NLL results for UCI regression tasks (UCI ID =291, N; = 200)

Dataset ID 1 2 3 4 5

HVBLL 279+020 3.21+0.13 3.11+0.17 3.16+0.17 3.16+0.13
VBLL 2.99 + 0.58 3.39 + 0.28 3.18 = 0.36 3.42 +0.51 3.254+0.21
BLL 13.54+£1.72 13.78 190 12.13+1.52 10.41+2.12 8.09+1.51
Dropout 2.94 £+ 0.06 3.32£0.15 3.16 £0.09 3.16£0.10 3.19+£0.07
PNN 6.41 + 1.87 6.41 + 2.61 5.66 + 2.38 5.35+1.63 4.15£0.68
SWAG 3.68 £ 1.07 7.99 + 2.02 7.59 + 3.09 6.47 £+ 2.08 9.48 +2.64
DVI 3.06 +=0.13 3.41 +0.15 3.26 = 0.12 3.30 +0.12 3.30 £0.09
MDN 5.96 + 0.10 5.92 +0.00 5.92 £0.00 5.92 £0.00 5.86 £0.33

Table 11: NLL results for UCI regression tasks (UCI ID =291, Ny = 1000)

Dataset ID 1 2 3 4 5
HVBLL 2694+0.19 3.23+£0.04 3.11+£005 3.17+0.07 3.2040.07
VBLL 246 +£0.13 3.40+0.15 3.204+0.15 3.344+0.18 3.30£0.09
BLL 7.33+£0.37 7.66+0.39 7.11+048 6.534+0.42 5.66 = 0.36
Dropout 2.894+0.05 3.25+£0.03 3.12+0.03 3.13+0.04 3.18+0.05
PNN 3.36+0.29 3.77+£0.17 3.60£0.37 3.60+0.23 3.394+0.15
SWAG 2574+0.08 9.96+2.29 5.66+0.85 6.34 £1.21 8.18 +1.73
DVI 2.90 +£0.11 3.284+0.06 3.16£0.06 3.23+£0.06 3.27+0.06
MDN 5.924+0.00 5.92+£0.00 5.92+£0.00 592+0.00 5.524+0.88
Table 12: NLL results for UCI regression tasks (UCI ID =294, N, = 500)
Dataset ID 1 2 3 4 5
HVBLL 291+0.10 3.46+£0.03 4.03+0.06 351+005 4.17+£0.06
VBLL 2.94+0.07 3.444+0.03 4.03+£0.06 3.49+0.05 4.17+0.06
BLL 33.78£6.26 27.194+4.94 31.46+4.93 23.15+£4.42 29.65+3.77
Dropout 4.17 £ 0.06 4.21 +0.09 4.29 +0.04 4.23 +0.05 4.37+0.04
PNN 3.46 + 0.45 3.924+0.21 5.14 +1.75 3.80 +£0.15 4.60 +0.51
SWAG 6.23 £0.71 5.70 +0.47 6.08 = 0.82 5.97 £ 0.84 6.03 = 0.70
DVI 3.90 +0.39 3.94 +0.34 4.14 +0.12 3.69+0.16 4.294+0.14
MDN 5.94 + 0.02 5.96 + 0.02 5.93 +0.01 6.13 + 0.55 5.93 £0.01
Table 13: NLL results for UCI regression tasks (UCI ID =294, Ny = 4000)

Dataset ID 1 2 3 4 5
HVBLL 2.91+£0.06 3.46 +0.05 4.03 £ 0.01 3.544+0.03 4.18+0.02
VBLL 2.93 +0.05 3.43 £ 0.05 4.03 +0.02 3.514+0.04 4.18+0.02
BLL 11.90 £0.81 14.78 £0.73 20.96 £0.90 13.13+0.46 22.26 = 0.60
Dropout 4.19 +0.05 4.18 +0.04 4.30 +0.03 4.19 +0.05 4.354+0.03
PNN 3.24 +£0.18 3.63+£0.07 4.30+0.04 3.73 +£0.09 4.43 +0.08
SWAG 5.26 4= 0.50 5.00 = 0.58 5.09 +0.43 6.54 4 2.93 5.07 +£0.33
DVI 2974+0.11 3.42+0.08 4.00£0.02 3474+0.03 4.18+0.02
MDN 5.94 4+ 0.02 5.97+0.13 5.93 £0.01 5.92 £0.01 5.96 & 0.04
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I RESULTS FOR ERAS5 REGRESSION TASKS

Algorithmis used to estimate the the average noise level Eyjse, variance of the mean, Vipean, and the variance
of the noise level, Vjise. Each dataset is evaluated under three different sample sizes (INy), as shown in the
label of each column. For each case, 80% of the data is randomly selected for training, and the remaining
20% 1is used for testing.

For all the models, there is three hidden layers in the neural network, with 128 neurons in each layer; the
dimension of features is 64. There is one hidden layers in the gg neural network of HVBLL, with 32 neurons
in each layer. The initial learning rate is 0.01, the learning rate gradually reduces during the training of 10,000
epochs. Adam optimizer is used for training. All the experiments are conducted on a NVIDIA A10 GPU. The
performance of the models on the test sets in different cases is presented in Table|14]-

Table 14: NLL results for ERAS regression tasks

Model 500 4000 20000
HVBLL -0.10+0.16 -0.84+0.12 —-0.68+0.31
VBLL 0.06 +0.07 —-0.21£0.00 —0.18£0.06
BLL 2.42+£0.00 2.42+£0.00 2.42£0.00
Dropout 2.44+£0.55 0.83+£1.01 1.47 +£2.80
PNN 26.55 = 13.88 7.38 £ 7.61 —0.65 £ 0.05
SWAG 0.84 £0.41 —0.17£0.08 —0.04 £0.06
DVI 0.35+0.04 0.32£0.02 0.32+£0.01
MDN 2.95+1.48 -0.83+0.18 —-1.32+0.07

Table 15: MAE results for ERAS regression tasks

Model 500 4000 20000

HVBLL 0.13+0.01 0.07+0.01 0.08+£0.03
VBLL 0.16 £0.02 0.07+0.00 0.07=+0.02
BLL 0.18£0.01 0.14+£0.03 0.15%£0.04
Dropout 0.13+0.01 0.09+£0.01 0.08£0.01
PNN 0.13+0.01 0.11£0.01 0.10+0.00
SWAG 0.16£0.01 0.17+£0.02 0.12£0.01
DVI 0.28+0.01 0.28£0.01 0.28£0.00
MDN 0.14£0.01 0.07+0.00 0.06=+0.00

J RESULTS FOR COMPOSITE STRUCTURE FAILURE REGRESSION TASKS

Algorithmﬂ]is used to estimate the the average noise level E s, variance of the mean, Vipean, and the variance
of the noise level, Vjise. Each dataset is evaluated under three different sample sizes (/V;), as shown in the
label of each column. For each case, 80% of the data is randomly selected for training, and the remaining
20% is used for testing.

For all the models, there is three hidden layers in the neural network, with 128 neurons in each layer; the
dimension of features is 64. There is one hidden layers in the gg neural network of HVBLL, with 32 neurons
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Table 16: CRPS results for ERAS regression tasks

Model 500 4000 20000

HVBLL 0.10£0.01 0.05+0.01 0.07=£0.02
VBLL 0.13+£0.01 0.08+0.00 0.09=+0.01
BLL 1.05£0.00 1.05£0.00 1.05=£0.00
Dropout 0.10£0.01 0.07+0.01 0.06+0.01
PNN 0.10+0.01 0.08£0.00 0.07+0.00
SWAG 0.12£0.01 0.124+£0.01 0.11£0.01
DVI 0.19£0.01 0.19+£0.00 0.19=£0.00
MDN 0.11+0.01 0.05+0.00 0.05+0.00

in each layer. The initial learning rate is 0.01, the learning rate gradually reduces during the training of 10,000
epochs. Adam optimizer is used for training. All the experiments are conducted on a NVIDIA A10 GPU. The
performance of the models on the test sets in different cases is presented in Table[T7]- [I9]

Table 17: NLL results for laminate regression tasks

Model 500 1000 4000
HVBLL -0.73+0.06 -0.74+0.04 -0.75+0.02
VBLL —-0.16 £0.02 -0.15£0.00 —0.15=£0.00
BLL 2.42+£0.00 2.42+£0.00 2.42£0.00
Dropout 242+£0.77 4.13£0.51 17.50 £ 2.97
PNN 0.47+£0.92 0.15+0.48 —0.45+0.05
SWAG 0.40 £ 0.65 0.30 £0.43 0.24 £0.31
DVI —-0.61+£0.06 —0.59+£0.03 —0.62%0.02
MDN —-0.59£0.09 —-0.62£0.09 —0.63£0.10

Table 18: MAE results for laminate regression tasks

Model 500 1000 4000

HVBLL 0.10£0.01 0.10+0.00 0.10=+0.00
VBLL 0.11+£0.01 0.10£0.00 0.10£0.00
BLL 0.11+0.01 0.11+£0.00 0.10+0.00
Dropout 0.10£0.00 0.10+0.00 0.10=+0.00
PNN 0.11+£0.01 0.11£0.00 0.10£0.00
SWAG 0.10+0.00 0.10+0.00 0.10+£0.00
DVI 0.11+001 0.11+0.00 0.11+0.00
MDN 0.11£0.00 0.10£0.00 0.10£0.00
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Table 19: CRPS results for laminate regression tasks

Model 500 1000 4000

HVBLL 0.07+0.00 0.07+0.00 0.07+0.00
VBLL 0.09+0.00 0.09+0.00 0.09+£0.00
BLL 1.05+£0.00 1.05£0.00 1.044+0.00
Dropout 0.08£0.00 0.08+0.00 0.09=+0.00
PNN 0.08£0.01 0.08+0.00 0.07+0.00
SWAG 0.08+0.01 0.08+0.00 0.08+0.00
DVI 0.08 £0.00 0.08+0.00 0.07+0.00
MDN 0.07+0.00 0.07+0.00 0.07+0.00
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