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Figure 1: Our novel method, 𝐸3Gen, showcases its capability to generate high-quality animatable avatars with complex textures,
providing diverse camera and full-body pose control.

ABSTRACT
This paper aims to introduce 3D Gaussians for efficient, expressive,
and editable digital avatar generation. This task faces two major
challenges: 1) The unstructured nature of 3D Gaussians makes it
incompatible with current generation pipelines; 2) the animation
of 3D Gaussians in a generative setting that involves training with
multiple subjects remains unexplored. In this paper, we propose a
novel avatar generation method named 𝐸3Gen, to effectively ad-
dress these challenges. First, we propose a novel generative UV
features representation that encodes unstructured 3D Gaussians
onto a structured 2D UV space defined by the SMPL-X parametric
model. This novel representation not only preserves the represen-
tation ability of the original 3D Gaussians but also introduces a
shared structure among subjects to enable generative learning of
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the diffusion model. To tackle the second challenge, we propose a
part-aware deformation module to achieve robust and accurate full-
body expressive pose control. Extensive experiments demonstrate
that our method achieves superior performance in avatar genera-
tion and enables expressive full-body pose control and editing.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

1 INTRODUCTION
Digital avatars, we refer to as 3D clothed human characters, have
extensive applications [2, 12] in various fields such as virtual and
augmented reality, film making, telecommunication, and more. Tra-
ditional graphics-based pipelines require weeks of labor from ex-
perienced 3D artists, utilizing sophisticated equipment [13, 21, 57]
and software, to construct a single digital avatar. This manual and
time-consuming process poses a significant obstacle to the creation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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of digital avatars at scale. Consequently, there is a pressing need
for efficient methods that can generate digital avatars in a fast and
autonomous way.

To enable the aforementioned applications, it would be desirable
for digital avatars to meet the 𝐸3 standard: (1) Efficient, i.e., digi-
tal avatars are expected to enable real-time, high-resolution, and
realistic rendering. (2) Expressive, i.e., the avatars should allow
animation not only by global body poses but also by local facial ex-
pressions and hand gestures. (3) Editable, i.e., digital avatars should
support easy editing, including local geometry/texture editing and
partial attribute transfer, as shown in Fig 1. The key to achieving
the 𝐸3 standard is to design a powerful generative representation
that can cover all these features.

Implicit and explicit representations are the main streams to
model digital avatars. Implicit-function-based representations [20,
42] such as neural radiance field [38] can achieve photorealistic
rendering results. However, due to the reliance on computation-
ally expensive and time-consuming volume rendering, this repre-
sentation struggles to support high-resolution and real-time ren-
dering which is crucial in practical applications. The editing abil-
ity is also constrained due to the entanglement of geometry and
texture. Explicit-mesh-based representations [14, 18, 49], on the
other hand, enable high-resolution and real-time rendering through
rasterization-based renderer [32] while struggling to represent thin
structures like hair which alleviates the realism. A promising alter-
native for avatar representation is 3D Gaussian [30], which offers
realistic rendering quality and real-time high-resolution rendering.

With the flourishing of 3D generative models [4, 17, 18, 26, 35,
39, 50, 55, 61], implicit representations [9, 23, 31, 40, 58] have been
widely applied to generate digital avatars. 3D-aware GANs [5] have
been applied to generate avatars in canonical pose space [3, 7, 16,
62], followed by a deformation module to transform the avatars to
various body poses. These methods can generate avatars under the
control of camera viewpoint and body pose, but due to the diverse
topology and complex texture of avatars, they cannot realistic ren-
dering results. Recently, diffusion-based methods [15, 22, 46, 54]
have surpassed GAN-basedmethods [27–29] in 2D generation tasks,
achieving high-quality generation results in complex and diverse
scenes, promising for utilization in 3D content generation. Several
attempts [11, 24] have beenmade to introduce diffusion-basedmeth-
ods for animatable avatar generation. However, the performance is
still restricted by the representation of avatars.

It is natural to ask a question: Can we marry the generation
power of diffusion model with the representation ability of 3D Gauss-
ian to achieve the 𝐸3 standard? Our answer is YES, but this is a
non-trivial task due to the following reasons. 1) The unstructured
nature of the 3D Gaussian poses challenges for its integration into
diffusion-based generation pipelines which primarily consists of
2D-CNN-based networks [47]. 2) it is an unexplored problem for
the animation of 3D Gaussians in a generative setting.

To address the first challenge, our key insight is to project the
unstructured 3DGaussian into a structured 2D space. Following this
idea, we propose a novel avatar representation, i.e., generative UV
feature planes. Specifically, we employ the parametric humanmodel
SMPL-X [43] as an initial template to provide a shared structure for
the human body, and the corresponding 2D UV map is utilized to
encode the attributes of 3D Gaussian. We assign the initial position

of each 3D Gaussian on the surface of a densified SMPL-X mesh. By
decoding the UV feature maps, we obtain the attribute UV maps of
3D Gaussian. Each pixel within these maps represents the attributes
of the corresponding 3D Gaussian anchored on the SMPL-X surface.
This novel representation offers several benefits. First, it preserves
the efficient advantage of the original 3D Gaussians representation
while obtaining a shared structure UV space. Second, by utilizing
the semantic information of SMPL-X, this representation supports
editing. Third, it is compatible with generative models, enabling an
efficient and editable avatar generation process.

The remaining question is how to enable expressive body con-
trol. Compared to body pose animation, animating the hands and
face region is challenging because the small volume and complex
deformations of these regions make it difficult to learn or query
accurate skinning weights. We observe that hands and face regions
have limited topology changes, while body parts undergo large
topology changes. Therefore, we develop a part-aware deformation
module to enable expressive full-body pose control. Thanks to the
generative UV feature plane representation, we can easily assign
the accurate blendshapes and skinning weights of SMPL-X for 3D
Gaussian in the face and hand region according to their barycen-
tric coordinate. The body parts are animated with precomputed
KNN-based skinning weights. Unlike previous methods [59], we
utilize a forward skinning scheme [8, 10] instead of an inverse
skinning technique which would lead to errors for points in the
interaction area. Our novel representation that provides 3D Gauss-
ian distributed over the avatar’s surface also facilitates accurate
and robust animation, compared to implicit representations that
contain many points far away from the geometric surface where
blending weights are difficult to assign.

Extensive experiments demonstrate that our method 𝐸3Gen
achieves superior efficiency, generation quality, and control abil-
ity compared to current state-of-the-art methods. Ablation studies
have been conducted to evaluate the design choices of our method.
Furthermore, 𝐸3Gen supports local editing tasks, including local
attribute transfer (such as face shape and clothing) and texture
editing. In summary, our method has the following contributions:

• We propose 𝐸3Gen, an efficient avatar generation pipeline
that enables real-time rendering at high resolution (1024 ×
1024). It also supports expressive pose control and editing
capability.

• We propose a novel 3D avatar presentation called generative
UV features to marry the unstructured 3D Gaussians with
the current diffusion generation pipeline.

• Our 𝐸3Gen achieves superior generation quality on THu-
man2.0 Dataset and supports local editing including attribute
transfer and texture editing.

2 RELATEDWORK
2.1 3D Digital Human Generation
In the field of 3D digital avatar generation, various approaches [3, 9,
58] have been explored to create animatable avatars by combining
3D-Aware GANs [4, 5, 50] or diffusion models [54] with implicit
human representations. ENARF-GAN [40] utilizes an articulated
neural representation based on tri-planes [5] but struggles to pro-
duce high-quality generation results. Other approaches [3, 16, 62]
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Figure 2: Method Overview. Our approach utilizes a single-stage diffusion model to simultaneously train the denoising process
and fitting process. The UV features plane, xi, is randomly initialized and optimized by both processes. In the denoising process,
noise is added to the UV features plane and then denoised following a v-parameterization scheme using a denoising UNet. In the
fitting process, the UV features plane is decoded into Gaussian Attribute maps, which are used to generate a 3D-Gaussian-based
avatar in canonical space by fetching the corresponding attributes for the initialized Gaussian primitive. Finally, a part-aware
deformation module is employed to deform the avatar into the desired pose based on SMPL-X parameters.

build upon EG3D [5] and employ super-resolution module to en-
hance the resolution of the generated avatars. Unfortunately, these
methods are often hindered by view inconsistency issues, which
affect the overall quality of generated avatars. To address this chal-
lenge, EVA3D [23] represents the digital human as a compositional
part-based human representation. This approach achieves impres-
sive rendering results with resolutions of 512. However, it falls
short in enabling real-time rendering and faces difficulties in edit-
ing due to the entanglement of geometry and texture. Implicit
human representations mainly rely on inverse skinning technique
for avatar animation. However, this technique has certain draw-
backs. Firstly, it tends to produce artifacts in joint regions and areas
of contact. Secondly, for learnable skinning weights fields, it lacks
generalization capabilities. To solve these issues, AG3D [16] adopts
a forward-skinning technique [10] but faces the costly process of
root finding. Another category of methods [18, 19] attempt to incor-
porate explicit mesh models to achieve real-time high-resolution
rendering while providing better support for editing and animation.
These mesh-based methods often rely on parametric models such
as SMPL [37] to learn offsets or employ neural networks [51] for
mesh optimization. However, meshes representations face chal-
lenges in accurately representing thin structures, such as hair, and
may be constrained by the topology limitations imposed by models
like SMPL, resulting in generated avatars that lack realism in their
rendering results.

Recently, 3D Gaussians [30] serve as an explicit representation
that supports both editing and animation capabilities while en-
abling real-time high-resolution rendering. This representation
offers greater representation capability compared to meshes. A con-
current work, GSM [1], combines 3D Gaussians with EG3D [5]
using shell maps [45]. In comparison, our generative UV features
plane representation facilitate expressive animation that includes

facial expressions and gestures, while also supporting editing capa-
bilities. Additionally, GSM [1] control body-only poses and faces
challenges in editing local regions of the avatar. We do not compare
to it since the training code have not been released.

2.2 Diffusion Model
The diffusion model has recently achieved significant success in the
field of generation, surpassing GANs in tasks such as text-to-image
generation. Consequently, there is a growing interest in extending
the success of the diffusion model from 2D to 3D generation. One
approach [44, 56] leverage prior knowledge encoded in pre-trained
latent diffusion models for text-to-3D generation. However, these
methods often employ per-subject optimization, which can take
hours to generate a single sample, thus reducing efficiency.

Another approach [41, 52] focuses on directly generating 3D
representations, enabling faster inference. However, many of these
methods adopt a two-stage training scheme. This can introduce
noisy patterns and artifacts in the latent code due to the uncertain
nature of inverse rendering. Consequently, these noisy patterns
can distract denoising networks and affect the quality of the gener-
ated outputs. To solve this, SSDNeRF [6] proposes a single-stage
diffusion model that trains the fitting and denoising parts together,
leveraging the diffusion priors to constrain the latent codes. How-
ever, SSDNeRF focuses on static object generation and adopts an
implicit representation, which limits the rendering resolution to
only 128x128. In comparison, our proposed method can achieve
high-resolution rendering at 1024x1024 in real time while generat-
ing articulated digital avatars.

3 PRELIMINARY
In this section, we provide a brief introduction about SMPL-X hu-
man model in Sec. 3.1 and 3D Gaussians Splatting in Sec. 3.2.
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3.1 SMPL-X
SMPL-X is an animatable parametric human model that represents
human body (without cloth) with a parameterized deformable mesh
𝑀 (𝛽, 𝜃,𝜓 ). This model consists of 10,475 vertices and 54 joints,
allowing for control over hand gestures and facial expressions. The
deformation process can be formulated as follows:

𝑀 (𝛽, 𝜃,𝜓 ) = 𝐿𝐵𝑆 (𝑇𝑃 (𝛽, 𝜃,𝜓 )), 𝐽 (𝛽), 𝜃,W), (1)

where 𝛽 , 𝜃 and𝜓 represent shape, pose and expression parameters
respectively. The linear blend skinning (LBS) function, denoted as
𝐿𝐵𝑆 (·), is used to transform the canonical template 𝑇𝑃 the given
pose 𝜃 based on the skinning weights W and joint locations 𝐽 (𝛽).
The canonical template 𝑇𝑃 can be computed as:

𝑇𝑃 (𝛽, 𝜃,𝜓 ) = 𝑇𝐶 + 𝐵𝑆 (𝛽 ;S) + 𝐵𝐸 (𝜓 ; 𝜖) + 𝐵𝑃 (𝜃 ; P), (2)

where, 𝑇𝐶 denotes the mean shape template. 𝐵𝑆 (𝛽 ;S), 𝐵𝐸 (𝜓 ; 𝜖)
and 𝐵𝑃 (𝜃 ; P) represent per-vertex displacements calculated by the
blend shapes S , P and E with their corresponding shape, pose and
expression parameters.

3.2 Gaussian Splatting
3D Gaussian splatting is an explicit point-based representation for
3D static scenes, involving a collection of 3D Gaussian primitives
denoted as G. These primitives enable real-time rendering through
differentiable rasterization. Each 3D Gaussian G𝑘 comprises five
attributes: position 𝜇,scaling matrix 𝑆 , rotation matrix 𝑅, opacity 𝛼 ,
and view-dependent color 𝑐 , which is represented by coefficients
of spherical harmonics. In practice, we employ RGB color instead
of spherical harmonics coefficients for simplicity and utilize the
diagonal vector s ∈ R3 and axis-angle r ∈ R3, to represent the
scaling and rotation matrix, respectively.

The 3D Gaussians are projected onto the 2D image plane during
the rendering process. The resulting pixel color 𝐶 is computed by
blending the 𝑁 projected 3D Gaussians primitives within that pixel.
This process can be formulated as:

C =

𝑁∑︁
𝑖=1

𝛼𝑖

𝑖−1∏
𝑗=1

(
1 − 𝛼 𝑗

)
c𝑖 , (3)

where 𝑐𝑖 denotes the color of the 𝑖-th projected 3D Gaussians prim-
itive, and 𝛼𝑖 represents the blending weight calculated from the
learned opacity and probability density.

4 METHOD
In this work, we propose 𝐸3Gen, a generative model designed for
efficient, expressive, editable digital avatar generation. An overview
of 𝐸3Gen is illustrated in Fig 2.

To achieve efficient, expressive and editable avatar generation,
we propose a novel generative UV features plane representation
(Sec 4.1). This representation ensures compatibility between the 3D
Gaussian and the generative diffusion model while preserving effi-
ciency. In Sec 4.2, we present the part-aware deformation module.
This module offers full-body pose control, including facial expres-
sions and gestures, allowing for expressive avatar animations. The
training scheme of our method is detailed in Sec 4.3. Furthermore,
in Sect 4.4, we discuss the editing capability of our method.

4.1 Generative UV Features Representation
Get inspiration from previous work for adopting 3D Gaussians in
animatable avatar reconstruction tasks, we aim to introduce 3D
Gaussians as a target space for diffusion model. Different from re-
construction tasks focusing on per-subject optimization, we have to
enable 3D Gaussian training among multiple subjects, thus a shared
structure among subjects is needed. To be compatible with the 2D-
CNN-based denoising network in diffusion model, the shared struc-
ture is expected to be a 2D representation. Therefore, we propose
to represent 3D Gaussian based digital avatars in the 2D UV space
defined by the SMPL-X parametric model.

Given a generated UV features plane {𝑥𝑖 }, we extract a set of
𝐾 3D Gaussian primitives from it to obtain a 3D Gaussian-based
generated avatar G:

G = {G𝑘 }𝐾𝑘=1 , where G𝑘 = {𝜇𝑘 , 𝛼𝑘 , r𝑘 , s𝑘 , c𝑘 } . (4)

Each Gaussian primitive G𝑘 is parameterized by a 3D position
𝜇𝑘 ∈ R3, an opacity 𝛼𝑘 ∈ R, a rotation matrix 𝑅 represented by the
axis angle representation 𝑟𝑘 ∈ R3, a scale matrix 𝑆 represented by
a diagonal vector 𝑠𝑘 ∈ R3, and a rgb color 𝑐𝑘 ∈ R3.

The input generated UV features plane is first separated evenly
into two parts and then decoded with two light-weight shared de-
coders 𝐷𝑎 and 𝐷𝑔 , respectively. The separation of the UV features
plane enables the disentanglement of geometry and texture, facili-
tating capability in editing. 𝐷𝑔 predicts geometry related attributes
of 3D Gaussians: position 𝜇 and opacity 𝛼 , while 𝐷𝑎 predict appear-
ance related attributes of 3D Gaussians: scale s, rotation r and color
𝑐 . As demonstrated by Li et.al [33], convolutional-based decoder
provide realistic results with more details than MLP-based decoder.
Thus, we construct 𝐷𝑔 and 𝐷𝑎 as shallow convolutional-based net-
works for fast inference and high generation quality.

With these decoded attributemaps, we can extract a 3DGaussians-
based avatar in canonical pose space. Specifically, we query the
attributes of those Gaussian primitives G𝑘 by projecting them ac-
cording to their initial position 𝜇𝑘 onto each of the five attribute
planes, retrieving the corresponding attributes via bilinear inter-
polation, thus obtaining a set of Gaussian primitives G which rep-
resent a digital avatar. In practice, the position 𝜇𝑘 , scale s𝑘 and
rotation r𝑘 of one Gaussian primitive G𝑘 are modeled relative to
the SMPL-X template as follows:

𝜇𝑘 = 𝜇𝑘 + 𝛿𝜇𝑘
s𝑘 = ŝ𝑘 · 𝛿s𝑘
r𝑘 = r̂𝑘 · 𝛿r𝑘 ,

(5)

where 𝜇𝑘 , ŝ𝑘 and r̂𝑘 are initial values based on SMPL-X parametric
model. 𝛿𝜇𝑘 , 𝛿s𝑘 , 𝛿r𝑘 represent the predicted values queried from
attribute maps. The weak constraints to the surface of SMPL-X
model ensure reasonable generation results without undermining
the representation ability of the original 3D Gaussians.

Gaussian Primitives Initialization. The positions 𝜇 of Gauss-
ian primitives are initialized by sampling the center points of faces
on a densified SMPL-X model. Similar to TADA [34], we subdivide
the SMPL-X model to enhance the generation quality. We do not
sample points uniformly on the UV space as the UV space shows
a sparsity of points on the body surface which might undermine
the representation ability. All Gaussian primitives are assigned an
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initial scale ŝ according to the distances between them and their
neighbors. The initial scale is calculated in the targeted pose space
to enable stretching ability for reasonable animation results. Dif-
ferent from origin 3D Gaussians, we set the orientation of each
Gaussian primitive as the local tangent frame of the 3D surface
point, similar to Lombardi et.al [36]. This initialization introduces
human prior which alleviates the spiking artifacts during the ani-
mation process. We also adopt a different rotation representation:
axis-angles compared to the quaternion utilized in previous work.
Because the elements in this representation have the same value
range which stabilizes the optimization of the neural network.

4.2 Part-aware Deformation Module
To achieve expressive full-body pose control, we propose a part-
aware deformation module to transform the extracted digital avatar
G into targeted pose space with accurate control over hands and
face. The deformation module follows a forward skinning scheme
based on linear blend skinning technique. Specifically, we apply
the following transformation to the position 𝜇𝑘 of each Gaussian
primitive G𝑘 :

𝜇′
𝑘
=

𝑛𝑏∑︁
𝑖=1

𝑤𝑖B𝑖𝜇k, (6)

where 𝑛𝑏 is the number of joints, and B𝑖 denotes the transformation
matrix of the 𝑖th joint from the canonical pose space to the targeted
pose space.𝑤𝑖 represents skinning weights, which determine the
influence of the motion of each joint on position 𝜇𝑘 quantitatively.

To compute the skinning weights field for our deformation mod-
ule, we leverage the predefined skinning weights on the SMPL-X
mesh due to the complexity of diffusion training scheme compared
to reconstruction tasks. Additionally, since the hands and face re-
gions are relatively small but exhibit intricate deformation, full-
body pose control has long been challenging. With the alignment
to SMPL-X and the observation that the face and hands regions
undergo minimal topology changes, we can compute the skinning
weights directly based on their barycentric coordinates. This ap-
proach ensures accurate and robust animation for these specific
regions. For body parts where large topology changes may oc-
cur, applying the same technique directly would result in artifacts.
Drawing inspiration from AG3D [16], we represent the skinning
weights field for body parts using a low-resolution volume. Each
voxel in the volume is assigned skinning weights by calculating the
values through the accumulation of skinning weights from each of
the K nearest vertices on the densified SMPL-X surface, weighted
by inverse distance. Gaussian primitives associated with the body
part can then retrieve their skinning weights through trilinear
interpolation from the volume. This approach enables accurate
and smooth deformation while handling large topology changes
effectively. Different from [16], our deformation method enables
full-body animation, whereas AG3D focuses on specific body parts.
Additionally, we avoid the costly root-finding process associated
with the implicit representation adopted by AG3D, achieve more
efficient deformation.

3D Gaussian Attribute Deformation. During the deformation
process, the opacity 𝛼 and color 𝑐 remain unchanged, while the
scale 𝑠 , rotation 𝑟 and position 𝜇 change. We have already discussed
the deformation of position 𝜇 in the previous paragraphs. In this

part, we try to tackle the deformation in rotation 𝑟 and scale 𝑠 . The
rotation 𝑟 is updated using the following formula:

R′ = T1:3,1:3R, where T =

𝑛𝑏∑︁
𝑖=1

𝑤𝑖 (𝜇)B𝑖 , (7)

where R is the rotation matrix derived from the axis angle repre-
sentation 𝑟 , and T is the transformation matrix computed as the
weighted sum of the bone transformations B𝑖 .𝑤𝑖 (𝜇) corresponds to
the skinning weights associated with the position 𝜇. To account for
the change in scale 𝑠 , we define the initial value of 𝑠 in the targeted
pose space. Specifically, using the deformed Gaussian primitives,
we determine the initial value of 𝑠 based on the distance to its
neighboring primitives.

By updating the rotation 𝑟 and scale 𝑠 , we ensure that the de-
formations applied to the Gaussian primitives encompass changes
in rotation, scale, and position, , allowing for robust and accurate
pose control.

Adaptation to Multi-subjects. To be compatible with the gen-
eration task, which are trained with multiple subjects in various
body shapes, we disentangle the body shape factor from. We model
the generated avatar in canonical space with a neutral body shape.
And add a warping process to map the neutral body avatar into
the targeted body shape space before transforming to the targeted
pose space. The warping process can be formulated as follows:

𝜇 (𝛽) = 𝜇 + 𝐵𝑆 (𝛽,S, 𝜇), (8)

where, 𝜇 is the positions of 3D Gaussian primitives in canonical
space. 𝐵𝑆 (𝛽 ;S, 𝜇) is the offset derived from the displacements on
each SMPL-X vertex calculated by shape parameters 𝛽 with corre-
sponding bases S. To enable accurate expressive control and alle-
viate artifacts in joints, we further add expression offsets 𝐵𝐸 (𝜓 ; 𝜖)
and pose correction term 𝐵𝑃 (𝜃 ; P) to the warped 3D Gaussians,
follow SMPL-X deformation process.

4.3 Training
We follow the single-stage diffusion training process where UV
features plane fitting and denoising processes are conducted simul-
taneously. The total training objective can be formulated as:

L = 𝜆fit Lfit (𝑥𝑖 ,𝜓 ) + 𝜆denois Ldenois (𝑥𝑖 , 𝜙) , (9)

where𝑥𝑖 denotes the UV feature plane,𝜙 and𝜓 are parameters of the
denoising U-Net and shared decoder, respectively. Lfit and Ldenois
represent training objective for the fitting and denoising process.
𝜆∗ are loss weights. Previous diffusion-based methods adopt a two-
stage training scheme, where a fitting process is trained first to
obtain per-subject latent feature planes. The obtained latent feature
planes are utilized as ground truth for the second-step denoising
process training. Different these methods, our UV feature planes
{𝑥𝑖 } are constrained by both terms in the loss function. The intro-
ducing of denoising process constrain for UV feature plane opti-
mization is beneficial for learning unseen regions in the training
data as demonstrated by previous work [6].

Fitting Process. During the fitting process, we optimize the UV
features plane as well as the geometry and appearance decoder via
the following loss function:

Lfit (𝑥𝑖 ,𝜓 ) = 𝜆cLc + 𝜆vggLvgg + 𝜆𝑟𝑒𝑔Lreg . (10)
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Figure 3: We demonstrate the effectiveness of our method in achieving precise and robust control over facial expressions and
gestures. Our approach enables clear and distinct control over each individual finger, ensuring their visibility and accurate
positioning. Additionally, our method exhibits strong robustness when faced with novel poses, producing reasonable and
plausible results for facial expressions.

The color loss Lc computes the L2 distance between the ground
truth images and the rendered results of our generated avatars. We
randomly sample several images instead of one from all available
observations for each scene in one training step to prevent the
model from getting stuck in a local minimum. Different from SSD-
NeRF [6] which is limited by implicit representation that can only
be optimized via per-pixel objectives, the efficiency of generative
UV features representation enables us to render the whole images
and apply perceptual loss [25] on them. Specifically, the perceptual
loss is calculated based on the features maps of ground truth images
and our rendered outputs which are extracted from a pre-trained
VGG [53] network. Lreg = ∥𝛿𝜇𝑘 ∥2

2 constrains the predicted offset
values from being unreasonably large.

Denoising Process. For digital avatar generation, we utilize
the diffusion model to learn a mapping from Gaussian noise to
generative UV features plane. With Gaussian noise as input, the
diffusion model can denoise it and output a reasonable UV features
plane. During this process, we optimize both the generative UV fea-
tures plane 𝑥𝑖 and the denoising UNet’s parameters 𝜙 . Specifically,
we first add Gaussian noise 𝜖 ∼ N(0, 𝐼 ) into the given genera-
tive UV features plane 𝑥𝑖 via a noise schedule comprising differ-
entiable functions 𝛼 (𝑡) and 𝜎 (𝑡), obtaining a noisy feature plane
𝑥𝑖 (𝑡) := 𝛼 (𝑡)𝑥𝑖 + 𝜎 (𝑡)𝜖 at diffusion time step 𝑡 . Then, we utilize the
denoising UNet to obtain the denoised output 𝑥𝑖 via:

𝑥𝑖 = 𝛼 (𝑡)𝑥𝑖 (𝑡) − 𝜎 (𝑡)𝑣, (11)

where 𝑣 ≡ 𝛼 (𝑡)𝜖 − 𝜎 (𝑡)𝑥𝑖 according to the 𝑣−parameterization
method proposed in [48]. The denoising loss is formulated as fol-
lowing:

Ldenois (𝑥𝑖 , 𝜙) = E
𝑖,𝑡,𝜖

[
1
2𝑤 (𝑡) ∥ 𝑥𝑖 − 𝑥𝑖 ∥2

]
𝑤 (𝑡) = (𝛼 (𝑡)/𝜎 (𝑡))2𝜔 ,

(12)

where 𝑡 ∼ U(0,𝑇 ), 𝜔 is a hyperparameter which we empirically
set to 0.5.

4.4 Editing
Our novel representation, generative UV features plane, facilitates
various customization applications, including local region editing
and attribute transfer between subjects. By disentangling geometry
and appearance, we expand the capabilities for editing, allowing for
editing on either geometry or appearance individually. We provide
visual examples in our experiment results(Fig 6).

Local Region Editing. In contrast to previous methods that
employ monolithic representations, where generated avatars are
treated as a unified entity with entangled attributes, the generative
UV features plane represents 3D digital avatars as a collection of
3D Gaussian primitives that are loosely connected to the SMPL-X
parametric model. This representation allows for enhanced flexibil-
ity and freedom in editing the avatars. Each Gaussian primitive can
be independently modified by optimizing its associated geometry
or appearance UV features, or by directly manipulating its attribute
values.

Attribute Transfer. Benefiting from the shared structure among
subjects, we can easily transfer geometry and appearance attributes
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Figure 4: Qualitative Comparison. Our method demonstrates
superior performance in rendering quality and geometry
quality compared to other methods. Due to the challenge of
obtaining normals directly from PrimDiffusion, we visual-
ize its mixture primitives as a rough representation of the
geometric structure.

from one generated subject to another by swapping the correspond-
ing features. The utilization of UV space, which ensures semantic
consistency, further facilitates the transfer of specific regions such
as the nose, clothing, and face.

5 EXPERIMENTS
Dataset. In our experiments, we utilized the THUman2.0 Dataset [60]
as our training data. This dataset comprises 526 textured 3D scans
captured using a dense DSLR rig, covering a wide range of poses.
Each scan is accompanied by its corresponding SMPLX parameters.
Our data pre-processing involves rendering 500 identities from the
THUman2.0 dataset using 54 camera views for each identity. No-
tably, our training did not rely on explicit 3D supervision, such as
normals or 3D meshes, ensuring future extension to multi-view
video datasets.

Metrics.Consistent with previousworks, we evaluate the quality
and diversity of the generated avatars using the Fre’chet Inception
Distance (FID) metrics. To compute these metrics, we employ a set
of 50,000 rendered multi-view images. Additionally, we extend our
analysis by calculating the FIDnorm metrics between the generated
and ground truth normal maps, providing insights into the quality

Table 1: Quantitative comparison on the THUman2.0 [60]
dataset, and the ∗ results are adopted from GETAvatar [63].

Methods Res FID↓ FIDnorm ↓ FPS↑
ENARF∗ [40] 128 124.61 223.72 8
GNARF∗ [3] 256 68.31 166.62 8
EVA3D [23] 512 60.82 60.67 6
GETAvatar∗ [63] 1024 17.91 55.02 17
PrimDiffusion [11] 512 62.43 NA 88
Ours 1024 15.78 25.63 110

of generated geometry. We estimate the normal values based on
the axis directions of each 3D Gaussian Primitives.

5.1 Evaluation of Generated Avatars
5.1.1 Generation and Animation Capacities. RandomGeneration.
We demonstrate the capability of our method to generate diverse
and detailed avatars with controlled actions and camera angles in
Fig 1 and Fig 3. Our method ensures view consistency and produces
high-resolution rendering results for the generated avatars, even
with a given camera pose. Additionally, we achieve accurate and
robust control over hand and facial expressions. Notably, despite
being trained on the THUman2.0 dataset, which has limited facial
expressions, our method is able to generate reasonable open mouth
expressions that are not explicitly present in the dataset. These
results highlight the effectiveness and versatility of our approach.

5.1.2 Comparisons. We compare our method with representative
approaches in both implicit representation and explicit representa-
tion, including those utilizing 3D Aware GANs or diffusion models.
The comparison results are presented in Table 1. The visual re-
sults in shown in Fig 4. Our method demonstrates superior visual
quality and diversity and achieves 100FPS rendering speed for high-
resolution rendering, as measured by FID and FPS. This demon-
strates the power of our proposed generative UV features plane.
Furthermore, even without the supervision of normal maps and 3D
models, our method achieves high performance in capturing de-
tailed geometry surfaces, as indicated by the FIDnorm metrics. Con-
strained by implicit representations, GNARF [3], ENARF-GAN [40],
and EVA3D [23] exhibit limited frames per second. GETAvatar [63]
achieves faster rendering benefiting from its explicit Mesh rep-
resentation. PrimDiffusion, which adopts a mixture of primitive
representation, achieves an extraordinary FPS of 88. However, ob-
taining geometry surfaces from this representation is challenging.
The results tend to be blurry, we guess that might result from arti-
facts caused by the overlapping patches.

5.2 Ablation Study
Generative UV features VS Generative UV attributes. Instead
of intuitively producing the Gaussian Attribute maps, we encode
them as latent feature code planes, which enhance the training
stability and lead to significant generation quality improvements
according to Tab 2. This is due to the complexity of the attributes of
3D Gaussians, which makes them challenging to optimize directly.
To address this issue, we employ a lightweight decoder to preserve
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Table 2: Ablation study on the initialization of Gaussian prim-
itives and the utilization of UV features.

Methods FID↓ FIDnorm ↓ KID ↓
w.o init 16.74 51.42 13.75
UV Attributes 17.92 43.23 15.41
Full Pipeline 15.78 25.63 13.30

the efficiency of the original 3D Gaussians. As shown in the Tab 1,
our model’s speed is not significantly affected by the additional
latent decoding process.

The initialization of 3D Gaussian Primitives.We initialize
our generative UV features plane based on SMPL-X prior. Experi-
mental results presented in Tab 2 demonstrate that this initialization
approach yields improved generation quality and better surface
geometry. The weak constraint to SMPL-X does not compromise
the expressive power of our representation. As evident from the
Fig 1, our method is capable of generating loose-fitting clothing
that is not constrained by the SMPL-X topology.

The part-aware deformation methods VS KNN-based for-
ward skinning. Due to the small facial area and its rich range of
motion, using a K-nearest neighbors (KNN) based forward skinning
method leads to errors, as depicted in Fig 5. The KNN-based forward
skinning method fails to accurately open the mouth of the avatar
according to the driving pose. In contrast, our part-aware defor-
mation module takes advantage of the minimal topology changes
in the face and hands, employing different approaches to obtain
skinning weights for the body, face, and hands, resulting in robust
and accurate full-body expressive pose control. Fig 3 demonstrates
the precise control achieved over the fingers and facial expressions
using our method. It is important to note that since our method
does not model the interior of the mouth, the color display after
opening the mouth represents the colors from the hair and neck
region, and not artifacts caused by the driving method.

OursForward Skinning KNN

Figure 5: Ablation on deformation method. Our method
achieves more accurate results for a given facial expression
compared to the K-nearest neighbors (KNN) based forward
skinning method.

5.3 Applications
The Generative UV features plane supports editing of generated
avatars, including local editing and attribute transfer between sub-
jects. Fig 6 provides examples of these two editing methods. For
local editing, the UV features plane represents a person as a col-
lection of 3D Gaussian primitives. By modifying the attributes of
local regions’ 3D Gaussian primitives, local editing can be achieved.
Fig 6 shows an example of editing the nose of the person is shown,
resulting in a change in nose length. The edited avatar can still be
controlled in a similar manner.

Due to the shared UV structure provided by the UV features
plane among subjects, attribute transfer between subjects can be
easily performed. The second row of Fig 6 demonstrates the effect
of exchanging facial attributes. The first two columns show the
original generated avatars, while the last two columns show the
results after attribute exchange. This support for editing enhances
the practical applicability of our method in industrial settings. For
more editing results, please refer to the Sup. Mat.

Local  
editing

Attribute 
Transfer

Figure 6: Our method enables local editing and attribute
transfer. In row one, we demonstrate the capability tomodify
only the nose of the avatar. The shared structure of UV feat-
uers plane allows us to transfer attributes between different
subjects, as showcased in row two.

6 CONCLUSION
In conclusion, this paper introduces a novel method, called 𝐸3Gen,
for efficient, expressive, and editable digital avatar generation using
3D Gaussians. The paper addresses two major challenges in this
task: the unstructured nature of 3D Gaussians and the animation
of 3D Gaussians in a generative setting involving multiple subjects.
To overcome these challenges, the proposed method introduces a
generative UV features representation that encodes unstructured
3D Gaussians onto a structured 2D UV space defined by the SMPL-
X parametric model. This representation preserves the expressive
power of 3D Gaussians while introducing a shared structure among
subjects, enabling generative learning of the diffusion model. To
achieve robust and accurate full-body expressive pose control, a
part-aware deformation module is proposed. This module enables
precise control and editing of avatar poses. Extensive experiments
demonstrate the superior performance of the proposed method in
avatar generation, as well as its ability to enable expressive full-
body pose control and editing.
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