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ABSTRACT

Knowledge distillation is widely used as a means of improving the performance of
a relatively simple “student” model using the predictions from a complex “teacher”
model. Several works have shown that distillation significantly boosts the student’s
overall performance; however, are these gains uniform across all data subgroups?
In this paper, we show that distillation can harm performance on certain subgroups,
e.g., classes with few associated samples, compared to the vanilla student trained
using the one-hot labels. We trace this behaviour to errors made by the teacher
distribution being transferred to and amplified by the student model. To mitigate this
problem, we present techniques which soften the teacher influence for subgroups
where it is less reliable. Experiments on several image classification benchmarks
show that these modifications of distillation maintain boost in overall accuracy,
while additionally ensuring improvement in subgroup performance.

1 INTRODUCTION

Knowledge distillation is a technique for improving the performance of a “student” model using the
predictions from a “teacher” model. At its core, distillation involves replacing the one-hot training
labels with the teacher’s predicted label distribution. Empirically, distillation has proven successful
for model compression (Bucilǎ et al., 2006; Hinton et al., 2015), improving the performance of a
fixed model architecture (Anil et al., 2018; Furlanello et al., 2018), and semi-supervised learning (Ra-
dosavovic et al., 2018). Theoretically, several works (Lopez-Paz et al., 2016; Mobahi et al., 2020;
Tang et al., 2020; Menon et al., 2020; Zhang & Sabuncu, 2020; Ji & Zhu, 2020; Allen-Zhu & Li,
2020; Zhou et al., 2021; Dao et al., 2021) have studied how distillation affects learning. Put together,
both strands of work further the understanding of when and why distillation helps.

In this paper, we are similarly motivated to better understand the mechanics of distillation, but pose a
slightly different question: does distillation help all data subgroups uniformly? Or, do its overall gains
come at the expense of degradation of performance on certain subgroups? To our knowledge, there
has been no systematic study (empirical or otherwise) of this question. This consideration is topical
given the study of fairness of machine learning algorithms on under-represented subgroups (Hardt
et al., 2016; Buolamwini & Gebru, 2018; Chzhen et al., 2019; Sagawa et al., 2020a).

Our first finding is that even in standard settings — e.g., on image classification benchmarks such
as CIFAR — distillation can disproportionately harm performance on subgroups defined by the
individual classes (see Figure 1). To discern the source of this behaviour, we ablate the teacher
and student architectures (§3.2), dataset complexity (§3.3), label frequencies (§3.4). These point to
the potential harms of distillation when the teacher makes confident mispredictions on a subgroup.
We emphasise that this phenomenon is not simply the teacher’s worst class accuracy translating to
student; instead, distillation amplifies worst class imbalance much more than the teacher.

Having identified a potential limitation of distillation, we present two simple techniques to remedy it.
These apply per-subgroup mixing weights between the teacher and one-hot labels, and per-subgroup
margins respectively (§4). Intuitively, these limit the influence of teacher predictions on subgroups it
models poorly. Experiments on image classification benchmarks show that these methods typically
maintain a boost in overall accuracy, while ensuring a more equitable improvement across subgroups.

In sum, this work provides novel insights into distillation performance, with three main contributions:
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(b) ImageNet.

Figure 1: Illustration of the potential deleterious effects of distillation on data subgroups. We train a
ResNet-56 teacher on CIFAR-100-LT, a long-tailed version of CIFAR-100 (Cui et al., 2019; Cao
et al., 2019) where some labels have only a few associated samples, and a ResNet-50 teacher on
ImageNet. For each dataset, we self-distill to a student ResNet of the same depth. On CIFAR-100-
LT, as is often observed, distillation helps the overall accuracy over one-hot student training (∼2%
absolute). However, such gains come at significant cost on subgroups defined by the individual
classes: on the ten rarest classes, distillation harms performance by ∼1%. Similarly, on ImageNet,
distillation harms the average accuracy of the worst-10 classes by ∼3%. Our proposed techniques
(§4) can roughly preserve the overall accuracy, while boosting subgroup performance.

(i) we identify a hitherto unexplored issue with distillation, namely, that its improvements in overall
accuracy may come at the expense of harming accuracy on certain subgroups (§3.1). Such
a finding is topical given the widespread practical use of generic learning paradigms such as
distillation, and the increasing societal applications of learning systems more broadly.

(ii) we ablate potential sources for the above phenomenon (§3.2, §3.3, §3.4), and in the process
identify certain characteristics of data (e.g., skewed label distributions) where it can manifest.
This systematic empirical analysis aims at understanding a non-trivial phenomenon, rather than
empirically comparing different learning methods.

(iii) we propose two simple modifications of distillation that mitigate the above problem, based on
applying per-subgroup mixing weights and margins (§4); these perform well empirically (§5).

While the paper’s analysis is empirical rather than theoretical, we note that our focus is on systematic
analysis aiming at understanding a non-trivial phenomenon, rather than merely empirical comparison:
Section §3 is devoted to carefully understanding the extent of, and causes for, the non-uniform gains
of distillation. This is in line with works which empirically analyse neural network phenomena, e.g.
Zhang et al. (2017); Müller et al. (2019); Nakkiran et al. (2020); Neyshabur et al. (2020).

2 BACKGROUND AND RELATED WORK

Knowledge distillation. Consider a multi-class classification problem over instances X and labels
Y = [L]

.
= {1, . . . , L}. Given a training set S = {(xn, yn)}Nn=1 drawn from some distribution P, we

seek a classifier h : X → Y that minimises the misclassification error Eavg(h)
.
= P(h(x) 6= y). In

practice, one may learn logits f : X→ RL to minimise R̂(f) = 1
N

∑N
n=1 `(yn, f(xn)), where ` is a

loss function such as the softmax cross-entropy, which for softmax probabilities py(x) ∝ exp(fy(x))
is `(y, f(x))

.
= − log py(x). One may then classify the sample via h(x) = arg maxy∈[L] fy(x).

Knowledge distillation (Bucilǎ et al., 2006; Hinton et al., 2015) employs the logits f t : X→ RL of a
“teacher” model to train a “student” model. The latter learns logits f s : X→ RL to minimise:

R̂dist(f) =
1

N

N∑
n=1

[
(1− α) · `(yn, f(xn)) + α ·

∑
y′∈[L]

pt
y′(xn) · `(y′, f(xn))

]
, (1)

where α ∈ [0, 1]. Here, one converts the teacher logits to probabilities pt : X→ ∆L for simplex ∆,
e.g. via a softmax transformation pt

y′(x) ∝ exp(f t
y′(x)). The second term smooths the student labels
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based on the teacher’s confidence that they explain the sample. The first term includes the original
label, so as to prevent incorrect teacher predictions from overwhelming the student. One further
important trick is temperature scaling of the teacher logits, so that pt

y′(x) ∝ exp(T−1 · f t
y′(x)).

Setting T � 0 makes pt more uniform, thus preventing overconfident predictions (Guo et al., 2017).

Average versus subgroup performance. The above exposition treats the misclassification error
Eavg(h) as the fundamental performance measure of interest. However, suppose the data contains
subgroups G = {1, . . . , G}. Defining the per-subgroup errors errg(h)

.
= P(h(x) 6= y | g), we have

Eavg(h) =
∑
g∈G P(g) · errg(h), which may mask errors on samples with P(g) ∼ 0 (Sagawa et al.,

2020a;b; Sohoni et al., 2020). To this end, one may instead measure the balanced error (Menon
et al., 2013) Ebal(h)

.
=
∑
g∈G

1
|G| · errg(h) which treats the subgroup distribution as uniform, or

the worst-subgroup error (Sagawa et al., 2020a;b; Sohoni et al., 2020) Emax(h)
.
= maxg∈G errg(h),

which focusses on the worst-performing subgroup. An intermediary is the average of the k worst-
performing subgroups (Williamson & Menon, 2019): for ith largest per-subgroup error err[i](h),
Etop−k(h)

.
= 1

k

∑k
i=1 err[i](h).

The definition of subgroups is a domain-specific consideration. One special case is where each label
defines a subgroup (i.e., G = Y), and P(y) is skewed. In such long-tail settings (Buda et al., 2017),
classifiers with good average performance can perform poorly on “tail” labels where P(y) ∼ 0.

Related work. There is limited prior study that dissects distillation’s overall gains per subgroup.
Zhao et al. (2020) showed that in incremental learning settings, distillation can be biased towards
recently observed classes. We show that even in offline settings, distillation can harm certain classes.
Recently, Zhou et al. (2021) studied the standard aggregate performance Eavg of distillation, which
was tied to a certain subset of “regularisation samples”. By contrast, our primary concern is to
understand the subgroup performance of distillation.

Study of the fairness of machine learning algorithms on under-represented data subgroups has
received recent attention (Dwork et al., 2012; Hardt et al., 2016; Buolamwini & Gebru, 2018; Chzhen
et al., 2019). This has prompted dissection of the performance of techniquess such as dimensionality
reduction (Samadi et al., 2018), increasing model capacity (Sagawa et al., 2020a), and selective
classification (Jones et al., 2021). We follow the general spirit of such works, studying a more delicate
setting involving two separate models (the student and teacher), each with their own inductive biases.
We present more discussion of related directions in §6. In a related effort, Hooker et al. (2019)
explore how model compression may harm subgroup performance compared to the original model.

3 ARE DISTILLATION’S GAINS UNIFORM?

We demonstrate that the gains of distillation are not uniform across subgroups: specifically, consider-
ing subgroups defined by classes, distillation can harm the student’s performance on the “hardest”
few classes (§3.1). To understand the genesis of this problem, we perform ablations (cf. Table 1) that
establish its existence in settings where there are insufficient samples to model certain classes, either
due to the number of classes being large (§3.3), or the class distribution being skewed (§3.4). We
then identify that the student may amplify the teacher’s errors (§3.6). Finally, we corroborate these
results for a more general notion of subgroup in a fairness dataset (§3.5).

3.1 DISTILLATION HURTS SUBGROUP PERFORMANCE

To begin, we consider the effect of distillation on a standard image classification benchmark, namely,
ImageNet. We employ a self-distillation (Furlanello et al., 2018) setup, with ResNet-34 teacher and
student models, trained with standard hyperparameter choices (see Appendix B). Following Cho &
Hariharan (2019), we use early stopping on the teacher model. We now ask: what is the impact of
distillation on the student’s overall and per-class performance? The first question has an expected
answer: distillation improves the student’s average accuracy by +0.4% (see the Baseline setting in
Table 1). Judged by this conventional metric, distillation is thus a success.

A more nuanced picture emerges when we break down the source of the above improvement. We
compute the per-class accuracies for the one-hot and distillation models, to understand how the overall
gains of distillation are distributed. Figure 2 shows that these gains are non-uniform: distillation
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Setting Dataset Avg acc Worst
subgroup acc

Baseline (§3.1) ImageNet +0.39 -0.43

Stronger teacher (§3.2) ImageNet +0.17 -1.19

Long tail (§3.4) CIFAR-100 LT +2.17 -1.46
ImageNet LT +0.21 -0.32

Fairness (§3.5) UCI Adult +3.10 -5.94

Reduce #classes (§3.3) CIFAR-100 +1.93 +3.33
ImageNet-100 +0.09 +0.06

Table 1: Summary of findings in the ablation anal-
ysis of distillation’s subgroup performance (§3). In
a range of different settings, distillation is seen to
hurt the hardest subgroup accuracy (worst-k class
accuracy or worst subgroup according to an at-
tribute), despite improving the average accuracy
(upper rows). Decreasing number of labels helps
improve the hardest classes (bottom row).
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Figure 2: Cumulative gain of ResNet-34 self-
distillation on ImageNet. For index k, we
compute the gain in average accuracy over
the k worst classes. While average accuracy
(k = 1000) improves by +0.4%, for k ≤ 40,
distillation harms over the one-hot model (evi-
denced by the negative gain).

Teacher Student Average
accuracy

Worst-10
accuracy

EffnNet Res-50 +0.17 -1.19
EffnNet Res-34 0.00 -0.80
EffnNet Res-18 +0.05 -1.60

Teacher Student Average
accuracy

Worst-10
accuracy

Res-50 Res-50 +0.39 -0.43
Res-50 Res-34 +0.39 -2.05
Res-50 Res-18 -0.09 -1.00

Teacher Student Average
accuracy

Worst-10
accuracy

Res-34 Res-34 +0.42 -2.60
Res-34 Res-18 +0.15 -3.60
Res-18 Res-18 -0.13 -3.80

Table 2: Summary of effect of distillation on different teacher and student architectures considered
for the ImageNet dataset. The comparison is with respect to the one-hot (i.e., non-distilled) student.
We find that distillation consistently hurts accuracy of the worst 10 classes.

in fact hurts the worst-k class performance for k ≤ 40. (See Appendix C for a detailed per-class
breakdown.) Thus, distillation may harm the student on classes that it already finds difficult. At the
same time we note that distillation does improve many classes, such as the classes with relatively
high accuracies from the one-hot student.

Given that average accuracy improves, it is worth asking whether the above is a cause for concern:
does it matter that performance on subgroups corresponding to the “hardest” classes suffers? While
ultimately a domain-specific consideration, in general exacerbating subgroup errors may lead to
issues from the fairness perspective. Indeed, we shall see that distillation can also harm in settings
where the subgroups correspond to sensitive variables; we discuss this further in §3.5.

At this stage, it is apposite to ask whether the above is an isolated finding, or indicative of a deeper
issue. We thus study each of the following in turn: (i) does the finding hold in settings beyond
self-distillation? (ii) does the finding hold for other datasets, or is it simply due to the idiosyncrasies
of ImageNet? (iii) what are some general characteristics of settings where the problem is manifest?

3.2 IS DISTILLATION BIASED BY THE MODEL SIZE OR ARCHITECTURE?

Having begun with a self-distillation setup, we now demonstrate that similar findings hold when
the student and teacher architectures differ. Continuing with the ImageNet dataset, in the second
row in Table 1 we report statistics for the overall average accuracy and average accuracy over the
worst 10 classes when distilled ResNet-50 student from a stronger teacher: Efficient-Net (Tan & Le,
2021) teacher achieving 85.7% accuracy. Again, we see improved average accuracy and harmed
Worst subgroup accuracy, composed of the 10 classes with the lowest accuracy according to teacher’s
performance. In Table 2, we report statistics when varying teacher and student architectures. The
detrimental effect of distillation on hard class performance holds across all scenarios: thus, our earlier
results were not specific to self-distillation.

For self-distillation settings, smaller models appear to incur greater losses on the worst-class error.
When distilling between different architectures (e.g., from ResNet-50 to ResNet-18), we observe that
even average accuracy may not improve, as noted in Cho & Hariharan (2019). There is however no
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clear trend between the difference in architectures and drop in worst class performance. Finally, we
note that there is little change in the teacher’s and student’s worst-k classe; see Figure 6 (Appendix).

3.3 IS DISTILLATION BIASED BY A LARGE NUMBER OF CLASSES?

Having seen that ImageNet consistently demonstrates a performance degradation on certain classes,
we now repeat the same analysis on a smaller image classification benchmark. We return to the self-
distillation setup, using ResNet-56 models on CIFAR-100. On this dataset, Table 1 shows a (perhaps
more expected) result: distillation boosts both the average and worst-1 class performance. This
indicates that, at a minimum, the behaviour of distillation’s performance gains are problem-specific;
on CIFAR, distillation appears a complete win for both the average and subgroup accuracy.

One plausible hypothesis is that the tension between average and subgroup performance only mani-
fests on problems with many labels, which might informally be considered “harder”. To confirm this
further while fixing the dataset, we randomly select 10% of classes from the ImageNet dataset, and
only keep examples corresponding to those classes across the train and validation sets. Consistent
with the results for CIFAR-100, we again find that the worst-10 class accuracy is not harmed under
distillation (see the right side of Table 1 where we report results on ResNet-34 self-distillation).

The above indicates that for problems with a few, balanced labels, there may not be a tension between
average and worst-subgroup performance under distillation. However, we now show that even for
problems with relatively few labels, one may harm subgroup performance if there is label imbalance.

3.4 IS DISTILLATION BIASED BY CLASS IMBALANCE?

We now consider a long-tail setting, where the training label distribution P(y) is highly non-uniform.
Following the long-tail learning literature (Cui et al., 2019; Cao et al., 2019; Kang et al., 2020), we
construct “long-tailed” (LT) versions of the above datasets, wherein the training set is down-sampled
so as to achieve a particular label skew. For ImageNet, we use the long-tailed version from Liu et al.
(2019). For other datasets, we down-sample labels to follow P(y = i) ∝ 1

µi for constant µ and
i ∈ [L] (Cui et al., 2019). The ratio of the most to least frequent class is set to 100.

From the Long tail setting in Table 1, we note that on both CIFAR-100-LT and ImageNet-LT, accuracy
over the hardest classes drops (we report results from self-distillation using ResNet-56 for CIFAR-100
and ResNet-50 ImageNet). The former is particularly interesting, given that the standard CIFAR-100
shows gains amongst the hardest classes. This provides evidence that for some “harder” problems —
e.g., where there are insufficiently many samples from which to model a particular class — there may
be a tension between the average and subgroup performance.

3.5 BEYOND CLASSES: OTHER CHOICES OF SUBGROUPS

Our analysis thus far has focused on subgroups defined by classes. This choice is natural for long-
tailed problems, where it is important to ensure good model performance on rare classes (Kang
et al., 2020). In other problems, different choices of subgroups may be appropriate. For example, in
problems arising in fairness, one may define subgroups based on certain sensitive attributes (e.g., sex,
race). In such settings, does one similarly see varying gains from distillation across subgroups?

We confirm this can indeed hold on the UCI Adult dataset using random forest models (details in
Appendix C.3). This data involves the task of predicting if an individual’s income is ≥ 50K or not,
and possesses subgroups defined by the individual’s race and sex. Akin to the preceding results, we
find that distillation can significantly improve overall accuracy, at the expense of degrading accuracy
on certain rare subgroups, e.g., Black women; see Table 1, and Table 8 (Appendix). This further
corroborates our basic observation on the non-uniform distribution of distillation’s gains.

A distinct notion of subgroup was recently considered in Zhou et al. (2021), who identified the
impact of certain “regularisation samples” on distillation. These are a subset of training samples
which were seen to degrade the overall performance of distillation. It is of interest whether such a
subgroup relates to our previously studied subgroups of “hard” classes; e.g., is there an abundance of
regularisation samples in such subgroups, which might explain the poor performance of distillation? In
Appendix C.4, we study the relationship between regularisation samples, and the per-label subgroups
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Figure 3: Logit statistics on CIFAR-100 LT, for the teacher and distilled student under a self-
distillation setup (ResNet-56→ ResNet-56). We show the statistics on 10 class buckets: these are
created by sorting the 100 classes according to the teacher accuracy, and then creating 10 groups
of classes. As expected, the student follows the general trend of the teacher model. Strikingly, we
observe that the teacher model tends to systematically confidently mispredict samples in the higher
buckets, thus incurring a negative margin; such misplaced confidence is largely transferred to the
student, whose accuracy suffers on such buckets. Note that we consider statistics on the test set.

from our analysis; we find that, in general, these may be complementary notions. We further analyze
the effect of the technique proposed in Zhou et al. (2021) on average and subgroup accuracies in §5.

3.6 WHY DOES DISTILLATION HURT CERTAIN SUBGROUPS?

The above has established that in a range of scenarios, distillation can hurt performance on subgroups
defined by individual classes. However, a firm understanding of why this happens remains elusive. To
study this, we consider ResNet-56 self-distillation on CIFAR-100-LT — which showed a stark gap
between the average and subgroup (i.e., worst-1 class) performance — and dissect the logits of the
teacher and distilled student. (See the Appendix for plots where the teacher and student architectures
differ.) Across classes, we seek to understand: (i) how aligned are the student and teacher accuracies?
(ii) how reliable are the models’ probability estimates? (iii) how do the models’ confidences behave?

For a test1 example (x, y) and predicted label distribution p(x) ∈ ∆L, we thus compute each
models’ accuracy, log-loss `log(y, p(x)) = − log py(x), and margin (Koltchinskii & Panchenko,
2002) `marg(y, p(x)) = py(x)−maxy′ 6=y p

′
y(x). Note that the latter may be negative if the model

predicts the incorrect label for the example. Figure 3 shows these metrics on 10 class buckets: these
are created by sorting the 100 classes according to the teacher accuracy, and then creating 10 buckets
of classes. Within each bucket, we compute the average of the metric specified above.

Remarkably, for 5 out of 10 class buckets, average margins are negative, suggesting that the teacher is
often wrong yet confident in predicting these classes. On these buckets, the student accuracy generally
worsens compared to the teacher. Further, log-loss increases across all buckets (including those
where accuracy improves), indicating reduced confidence in the true class of the distilled student.
This points at a potential source of the poorer performance on the worst-1 accuracy. Recall that
the distilled student’s aim is to mimic the teacher’s logits on the training samples. This is a proxy
to the student’s true goal, which is mimicking these logits on test samples, so as to attain similar
generalisation performance as the teacher. When such generalisation happens, the student can thus
be expected to roughly inherit the teacher’s per-class performance; in settings like the above, this
unfortunately implies it will perform poorly on those classes with negative teacher margin.

4 IMPROVING SUBGROUP PERFORMANCE UNDER DISTILLATION

We now study simple means of correcting distillation to prevent the degradation of subgroup per-
formance identified above. These leverage the insight that the behaviour is potentially a result of

1The choice of test, rather than train, example is crucial: an overparameterised teacher will likely correctly
predict all training samples, thus rendering the above statistics of limited use. To leverage the insights from the
above analysis in practice, we shall use a holdout set that can be carved out from the training set.
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the teacher confidently mispredicting on some subgroups. In the following, for concreteness and
simplicity, we focus on subgroups that are given by the individual classes.

4.1 DISTILLATION WITH ADAPTIVE MIXING WEIGHTS

In §3.6, we saw that distillation can hurt on classes where the teacher is inherently inaccurate. Such
inaccuracy may in fact be amplified by the student, which is hardly desirable. An intuitive fix is to
simply rely less on the teacher for classes where it performs poorly, or is otherwise not confident;
instead, the student can simply fall back onto the one-hot training labels themselves. Formally, for
per-class mixing weights (α1, . . . , αL) ∈ [0, 1]L, the student can minimise

R̄dist(f) =
1

N

N∑
n=1

[
(1− αyn) · `(yn, f(xn)) + αyn ·

∑
y′∈[L]

pt
y′(x) · `(y′, f(xn))

]
. (2)

This objective introduces a mixing weight αy per-class, which allows us to weigh between teacher
predictions and one-hot labels for each class independently. By contrast, in the standard distillation
setup equation 1 we only have a single weight α that is common for all classes.

How do we choose the weights αy? In the standard distillation objective equation 1, one only needs
to tune a single scalar α, which is amenable to, e.g., cross-validation. By contrast, equation 2 involves
a single scalar for each label, which makes any attempt at grid search infeasible. Following the
observations in §3.6, we propose the following intuitive setting of αy given teacher predictions pt:

αy = max
(
0,Ex|y

[
γavg(y, pt(x))

])
γavg(y, pt(x))

.
= pt

y(x)− 1

L− 1

∑
y′ 6=y

pt
y′(x). (3)

In words, Equation 3 places greater faith in the teacher model for those classes which it predicts
correctly with confidence, i.e., with large average margin γavg. When this margin is negative — so
that the teacher is incorrect on average, which can occur on classes that are rare in the training set
— we set αy = 0, and completely ignore the teacher predictions. The above requires estimating the
expectation Ex|y [·], which requires access to a labelled sample. This may be done using a holdout
set; we shall follow this in our subsequent experiments.

4.2 DISTILLATION WITH PER-CLASS MARGINS

Our second approach for improving distillation on harder classes is to leverage recent developments
in long-tail learning, where the goal is to improve performance on rare classes. Specifically, Khan
et al. (2018); Cao et al. (2019); Tang et al. (2020); Ren et al. (2020); Menon et al. (2020); Wang et al.
(2021) proposed a variant of the softmax cross-entropy with margins ρyy′ between label pairs:

`(y, f(x)) = log

1 +
∑
y′ 6=y

ρyy′ · efy′ (x)−fy(x)

 . (4)

Intuitively, this penalises predicting label y′ instead of y when ρyy′ is large. For training label
distribution π, Cao et al. (2019) proposed to set ρyy′ ∝ exp(π

−1/4
y ), so that rare labels receive a

higher weight when misclassified. Khan et al. (2018); Ren et al. (2020); Menon et al. (2020); Wang
et al. (2021) showed gains with ρyy′ ∝

πy′

πy
, so that rare labels are not confused with common ones.

We adapt such techniques to our setting, with the intuition that we ought to increase the student
penalty for misclassifying those “hard” classes that the teacher has difficulty modeling. We thus
choose ρyy′ =

αy′

αy
, where αy is the adaptive per-class mixing weight from the previous section. This

discourages the model from confusing “hard” labels y with “easy” labels y′, when αy′ > αy. To
avoid a division by 0 issue, we add a small offset to αy when it becomes 0.

We may understand the effect of Equation 4 by studying how it impacts the Bayes-optimal student
model predictions, i.e., the optimal predictions in the infinite sample limit, and without a model
capacity restriction. We have the following.
Lemma 1. Let ` be the loss of Equation 4, with ρyy′

.
=

αy′

αy
. Let f∗ be the Bayes-optimal student

scores that minimise Rdist(f)
.
= Ex(pt(x))>`(f(x)). Then, ∀x ∈ X, y ∈ [L], f∗y (x) = log

pty(x)

αy
.
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Table 3: Summary of student’s average accuracy using one-hot and distilled labels. Worst k denotes
accuracy over the worst k classes. Global and adaptive temperatures αy selected using a held out dev
set. The proposed AdaAlpha technique improves both mean and worst class accuracy over vanilla
distillation. For AdaMargin on CIFAR-100 LT and ImageNet LT, we observed divergence during
training, presumably due to this method being sensitive to the selection of hyperparameters, which in
turn are estimated on very small number of examples per class.

Dataset Method Per-class accuracy statistics
Mean Worst-1 Worst-10

CIFAR-100 One-hot 73.31 45.67 52.12

Distillation 75.24 49.00 54.65

AdaAlpha 75.43 49.33 56.42

AdaMargin 75.15 51.33 56.62

ImageNet One-hot 76.38 14.00 23.64

Distillation 76.35 13.00 22.02

AdaAlpha 76.57 13.00 23.22

AdaMargin 76.36 14.00 23.20

Dataset Method Per-class accuracy statistics
Mean Worst-1 Worst-10 Worst-100

CIFAR-100 LT One-hot 43.22 0.00 2.33 N/A
Distillation 45.39 0.00 0.87 N/A
AdaAlpha 48.57 0.67 4.20 N/A
AdaMargin* Training diverges

ImageNet LT One-hot 45.41 0.00 0.00 1.39

Distillation 45.98 0.00 0.00 1.10

AdaAlpha 46.15 0.00 0.00 1.08

AdaMargin* Training diverges

Lemma 1 illustrates that using per-class margins encourages the student to mimic the teacher
predictions pt(x), but with an important modification: we up-weight the probabilities for classes
that the teacher does poorly on (αy ∼ 0). Intuitively, this makes it easier for the student to improve
performance on classes with small teacher margin.

Relation to existing work. Previous works varied distillation supervision across examples towards
improving average accuracy. Proposals included weighting samples based on the ratio (Tang et al.,
2019; Zhou et al., 2021), and difference (Zhang et al., 2020) between student and teacher score.
Similarly, Zhou et al. (2020) proposed to only apply distillation on samples the teacher gets correct.

5 RESULTS FOR ADAPTIVE DISTILLATION METHODS

We now present results that further corroborate the potential non-uniform gains of distillation, and
the ability to mitigate this with the techniques of the previous section. We emphasise here that our
goal is expressly not to improve over the state-of-the-art in distillation techniques; rather, we wish to
verify the key principles identified in the preceding study, which considers distillation from a novel
angle (i.e., in terms of subgroup rather than average performance).

Setup. We report results on the datasets used in §3: CIFAR-100, ImageNet; and long-tailed (LT)
versions of the same. For brevity, we report results under self-distillation. (For results with varying
architectures, see the Appendix.) Thus, for each dataset, we train a one-hot teacher ResNet model,
which is distilled to a student ResNet of the same depth. We use ResNet-56 models for CIFAR, and
ResNet-50 models for all other datasets. We employ the same hyper-parameters as used in §3, except
we use non-early stopped teachers for consistency across datasets; see the Appendix for details.

We compare: (i) one-hot training of the student (ii) standard distillation, i.e., minimising Equation 1
(iii) AdaAlpha, our proposed distillation objective with adaptive mixing between one-hot and teacher
labels Equation 2, and α as per Equation 3 (iv) AdaMargin, our proposed distillation objective with
adaptive margins (Equation 4), and ρyy′ =

αy′

αy
. We summarise each method by reporting: (i) the

standard mean accuracy over all classes; (ii) the accuracy over the worst-1 class; and (iii) the mean
accuracy over worst-10 (and worst-100 for the LT datasets) classes.

For the Ada-* methods, per §4, creating the label-dependent αy requires estimating the generalisation
performance of the teacher. To do this, we create a random holdout split of the training set. For
non-LT datasets, we randomly split into 80% (new train) – 20% (dev). For LT datasets, for each class
we hold out k examples into the dev set (k = 50 for Imagenet-LT, k = 20 for CIFAR-100-LT), or
half of examples for a class if the total number of per class examples is at most 2k. We train an initial
teacher on the new train slice of data, and estimate its per-class performance on the holdout dev slice.
These are used to estimate αy as per, e.g., Equation 3.

Table 3 summarises the results for all methods. We make the following observations.
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Table 4: Ablations of design choices in the proposed methods: 1) remove distillation signal from the
bottom 10% of classes, according to confidence; 2) randomly shuffle per-class α values; 3) weight
distillation based on student and teacher confidence Zhou et al. (2021).

Dataset Method Per-class accuracy statistics
Mean Worst-1 Worst-10

CIFAR-100 AdaAlpha 75.52± 0.10 49.33± 3.09 56.59± 0.44

remove hardest 10% 75.40± 0.04 48.33± 1.89 55.79± 1.19

shuffle temperatures 74.56± 0.93 46.00± 1.91 53.10± 1.22

Zhou et al. (2021) 75.14± 0.29 45.11± 1.66 53.89± 0.66

AdaAlpha improves mean accuracy over vanilla distillation. The proposed AdaAlpha method
consistently and significantly improves standard mean accuracy over vanilla distillation. Thus,
AdaAlpha does not sacrifice the gains offered by distillation on average class performance, which
is desirable. Other techniques sometimes perform slightly worse than standard distillation on this
metric; however, as we now see, this is compensated by gains on other important dimensions.

AdaAlpha improves worst-accuracy over distillation. The proposed method consistently improves
the worst-class accuracy compared to standard distillation: Thus, the technique largely fulfil their
design goal of improving performance on “hard” classes, while not overly sacrificing average-case
performance. In most cases, these improve both the average and worst-class accuracy, indicating that
softening the teacher influence can be broadly beneficial.

Comparison of AdaAlpha and AdaMargin. In the Appendix, we report per class statistics for
CIFAR-100 LT. AdaMargin flattens both the margin and log-loss distributions, reducing confidence
on the poorly classified, tail classes. AdaAlpha consistently increases log-loss across classes, and
improves margins on few buckets, leading to a positive margin on one bucket where all other methods
give negative margins. Intuitively, AdaMargin tries to more aggressively control the worst-class
accuracy; when this succeeds, there is a large payoff, but there is also greater risk of overfitting.

Additional ablations. We confirm that the success of AdaAlpha is not immediately replicated by
simpler baselines: (i) remove hardest 10%, which removes the distillation loss component on bottom
10% labels according to the per class margins found using Equation 3. It helps analyze whether there
is any additional gain beyond simply removing teacher’s supervision where it is arguably wrong.
(ii) shuffle temperatures, which randomly shuffles the per-class αy values used in AdaAlpha. This
determines whether the precise choice of which labels to up- or down-weight is important; (iii) the
adaptive distillation scheme of Zhou et al. (2021), where distillation is weighted differently across
examples depending on the teacher and student scores.

In Table 4, we find that the first two methods work worse than the proposed AdaAlpha method,
indicating that the precise choice of which labels to up- or down-weight is important, and that it does
not suffice to merely ignore the teacher on entire subgroups. The adaptive distillation scheme Zhou
et al. (2021) is also not as effective as AdaAlpha; see Appendix for more such results.

6 DISCUSSION AND OTHER APPROACHES

Our goal of ensuring equitable performance across classes can be seen as encouraging fairness across
subgroups defined by the classes. This is subtly different to the classical fairness literature (Calders &
Verwer, 2010; Dwork et al., 2012; Hardt et al., 2016), wherein the subgroups are defined by certain
sensitive attributes. Broadly, fairness techniques attempt to learn models that predict the target label
accurately, but the subgroup label poorly; these are inadmissible for our setting, wherein the two
labels exactly coincide. Ensuring fairness across subgroups defined by the classes has been studied
in Mohri et al. (2019); Williamson & Menon (2019); Sagawa et al. (2020a), who proposed algorithms
to explicitly minimise the worst-class (as opposed to the average) loss. Adapting such algorithms to
the distillation setting is of interest for future work. More broadly, the intent of the analysis in this
paper is to better understand settings where distillation can implicitly hurt certain under-represented
subgroups.
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ETHICS STATEMENT

This work studies settings wherein distillation can harm performance on subgroups. The aim of
such a study is to help identify and mitigate potential adverse effects from distillation in practical
applications where fairness considerations are important. Further, our proposed techniques were
shown to improve the subgroup performance of distillation, and thus could be useful for preventing
such adverse behaviour. As a limitation, we considered natural definitions of such subgroups, but an
important practical consideration is settings where subgroup membership is unknown.

REPRODUCIBILITY STATEMENT

For all experiments, we used the default hyperparameters from previous works (see Appendix B for
details).
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A PROOFS

Proof of Lemma 1. We may write

`(y, f(x)) = log

1 +
∑
y′ 6=y

αy′

αy
· efy′ (x)−fy(x)


= log

1 +
∑
y′ 6=y

elnαy′−lnαy · efy′ (x)−fy(x)


= log

1 +
∑
y′ 6=y

ef̄y′ (x)−f̄y(x)


= − log

ef̄y(x)∑
y′∈[L] e

f̄y′ (x)
,

where f̄y(x)
.
= fy(x) + lnαy . The population loss is

Rdist(f) = Ex
[
(pt(x))>`(f(x))

]
= Ex

[
KL(pt(x) ‖ p̄s(x))

]
,

where p̄s
y(x) ∝ exp(f̄y(x)). Thus, at optimality we must have p̄s(x) = pt(x), or f̄y(x) = log pt

y(x).

By definition of f̄ , we thus see that fy(x) = log pt
y(x)− logαy = log

pty(x)

αy
.

B DETAILS OF EXPERIMENTS

B.1 ARCHITECTURE

We use ResNet with batch norm (He et al., 2016) for all our experiments with the following configura-
tions. For CIFAR, we experiment with ResNet-56 and ResNet-32. For ImageNet, we use ResNet-50.
We list the architecture configurations in terms of (nlayer, nfilter, stride) corresponding to each ResNet
block in Table 5.

Architecture Configuration: [(nlayer, nfilter, stride)]

CIFAR ResNet-32 [(5, 16, 1), (5, 32, 2), (5, 64, 2)]
CIFAR ResNet-56 [(9, 16, 1), (9, 32, 2), (9, 64, 2)]
ImageNet ResNet-18 [(2, 64, 1), (2, 128, 2), (2, 256, 2), (2, 512, 2)]
ImageNet ResNet-34 [(3, 64, 1), (4, 128, 2), (6, 256, 2), (3, 512, 2)]
ImageNet ResNet-50 [(3, 64, 1), (4, 128, 2), (6, 256, 2), (3, 512, 2)]*

Table 5: ResNet Architecture configurations used in our experiments (He et al., 2016). [*] Note that
ImageNet ResNet-50 uses larger blocks with 3 convolutional layers per residual block compared to
ResNet-18 and 34. We refer to He et al. (2016) for more details.

B.2 TRAINING SET

For all datasets, we train using SGD and weight decay 10−4 for CIFAR, and 0.5× 10−4 for Imagenet
datasets. We have the following dataset specific settings.

CIFAR-100. We train for 450 epochs with an initial learning rate of 1.0, with a linear warmup in the
first 15 epochs, and an annealed learning rate schedule. We drop the learning rate by a factor of 10 at
epochs number: 200, 300 and 400. We use a mini-batch size of 1024. We use SGD with Nesterov
momentum of 0.9.
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Figure 4: Logit statistics for ResNet-50 self-distillation on ImageNet, for the (early-stopped) teacher,
self-distilled student, and one-hot (non-distilled) student. Per Figure 3, we first create 10 class buckets.
We zoom in on the “tail” bucket (comprising the 100 “hardest” classes), and further split them into
10 “tail sub-buckets”. As in Figure 3, the teacher is seen to confidently mispredict most samples on
the last few buckets, with such misplaced confidence being transferred to the student.

For our distillation experiments we train only with the cross-entropy objective against the teacher’s
logits. For each method we find the best temperature from the list of values: {1, 2, 3, 4, 5}.
ImageNet. We train for 90 epochs with an initial learning rate of 0.8, with a linear warmup in the
first 5 epochs, and an annealed learning rate schedule. We drop the learning rate by a factor of 10 at
epochs number: 30, 60 and 80. We use a mini-batch size of 1024.

For our distillation experiments we train with the distillation objective as defined in Equation 1 setting
α = 0.2. For each method we fix the temperature to 0.9.

Long-tail (LT) datasets. We follow setup as in the non-long tail version, except for the learning rate
schedule, which we change to follow the cosine schedule (Loshchilov & Hutter, 2017).

C ADDITIONAL EXPERIMENTS

We present additional experiments to those in the body.

C.1 FURTHER VARYING DATASETS AND MODEL ARCHITECTURES

On Imagenet, we summarise statistics for three models: the early-stopped teacher, distilled student,
and the one-hot (non-distilled) student. As with CIFAR-100-LT, we sort classes by teacher accuracy,
and bucket them into 10 groups. Owing to the larger number of labels, we further zoom into the “tail”
bucket (comprising the 100 “hardest” classes), and split them into 10 sub-buckets. From Figure 4,
the distilled student performs worse than its one-hot counterpart on the last bucket; this is in keeping
with our results in Table 1.

Figure 5 shows logit statistics for additional settings to considered in the body. On ImageNet-LT, e.g.,
we see again that the margin of the teacher model systematically worsens and becomes negative on
the hardest classes.

In Table 6 we report results from the inherently long-tailed iNaturalist 2018 dataset (Van Horn &
Perona, 2017). Our observations made for other considered datasets hold: adaptive margin method
improves over both one hot and plain distillation in terms of the worst class accuracy. We also
observe, how the average accuracy improves.

C.2 LOGIT PLOTS UNDER ADA-* METHODS

Figure 7 shows the logit statistics under the proposed AdaMargin and AdaAlpha methods on CIFAR-
100 LT. We see that AdaMargin can generally improve the student margin and accuracy on the hardest
classes, while also reducing the log-loss. This confirms that the gains of the method come from
improving behaviour of the scores on these hard classes.
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Figure 5: Logit statistics for the teacher, student with one-hot labels, and student with distilled labels
across: datasets and architectures.
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Figure 6: Per-class accuracies for one-hot and self-distilled ResNet-18 (left) and ResNet-34 (right) on
ImageNet. The diagonal denotes classes where both models achieve the same accuracy. Distillation
tends to worsen performance on “hard” classes for the one-hot model, i.e., those with low accuracy
(red rectangle).

C.3 RESULTS ON ADULT DATASET

We report the results of an experiment on the UCI Adult dataset. This data comprises ∼ 48K
examples, with the target being a binary label denoting whether or not an individual has income
≥ 50K. The data is mildly imbalanced, with 24% of samples being positive.

Inspired by Dao et al. (2021), we consider a random forest based distillation setup: we use a teacher
model that is a random forest classifier comprising 500 trees with a maximum depth of 20, and a
student model that is a random forest regressor comprising 1 tree with a maximum depth of 20. The
teacher model achieves a test (balanced) accuracy of 81.8%.
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Method Per-class accuracy statistics
Mean Worst 20 Top 20% ∆20

One-hot 53.00 5.00 100.00 48.00

Distill 52.67 5.00 100.00 47.67

AdaMargin 53.33 8.33 98.33 45.00

AdaAlpha avg 54.67 13.33 100.00 41.33

Table 6: Self-distillation experiments (from Resnet-50 to Resnet-50) on the iNaturalist dataset Van
Horn et al. (2018) with student’s average accuracy using one-hot and distilled labels. Worst 20
denotes accuracy averaged over worst 20 classes ∆20 denotes the difference between the mean
accuracy and the worst 20 classified classes. The proposed AdaMargin technique improves mean and
worst-class accuracy over both one-hot training and standard distillation.

0 1 2 3 4 5 6 7 8 9
Class bucket

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Model
student distill AdaAlpha
student distill AdaMargin
student distill standard
teacher

(a) Accuracy.

0 1 2 3 4 5 6 7 8 9
Class bucket

0

2

4

6

8

Lo
g-

lo
ss

student distill AdaAlpha
student distill AdaMargin
student distill standard
teacher

(b) Log-loss.
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Figure 7: Logit statistics for ResNet-56 self-distillation on CIFAR-100 LT, for the teacher, self-
distilled student, and our adaptive methods. Per Figure 3, we create 10 class buckets. AdaMargin
flattens both the margin and log-loss distributions. AdaAlpha increases log loss across classes, while
improving margins on few buckets, including flipping the bucket 5 to have positive margin.

Table 7: Difference between distillation and one-hot performance on Adult dataset. Here, subgroups
are defined by the sex and label. ∆ refers to the difference between the distilled and one-hot student’s
accuracy on the subgroup.

sex label ∆

Male 0 -2.222
Female 0 0.393
Female 1 2.373
Male 1 8.384

We perform distillation by feeding the student model the teacher’s prediction scores, mixed in with the
binary training labels with a weight α = 0.9. Distillation improves the student’s overall (balanced)
accuracy significantly, from 76.2% to 79.3%. However, this gain is not distributed uniformly: using
per-label subgroups, we find that distillation helps the positive class by +7.4%, but hurts the negative
class by −1.2%. While by itself suggestive of asymmetry in distillation performance, the data admits
an arguably more natural subgroup creation, based on available sex and sex features. For example,
we find that amongst low-income males, distillation hurts by −2.2%; further restricting to those who
are Asian Pacific-Islander, the degradation is −5.9%. This confirms that in scenarios where fairness
may be a consideration, a naïve application of distillation may be inadmissible.

C.4 ANALYSIS OF REGULARISATION SAMPLES

Recently, Zhou et al. (2021) proposed the notion of regularisation samples to understand how
distillation’s performance can be improved. In brief, such samples correspond to cases where the
teacher’s prediction on the training label is less than the distilled student’s prediction on this label;
these may be shown to correspond to cases where a certain notion of “variance reduction” dominates
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Table 8: Difference between distillation and one-hot performance on Adult dataset. Here, subgroups
are defined by the sex, race, and label. ∆ refers to the difference between the distilled and one-hot
student’s accuracy on the subgroup.

race sex label ∆

Amer-Indian-Eskimo Female 1 -66.667
Asian-Pac-Islander Male 0 -5.941
Other Male 0 -4.347
Black Female 1 -2.381
White Male 0 -2.248
Black Male 0 -1.639
Black Female 0 -0.140
Asian-Pac-Islander Female 0 0.000
White Female 0 0.388
Other Female 0 2.439
White Female 1 2.724
Amer-Indian-Eskimo Female 0 6.349
Amer-Indian-Eskimo Male 0 6.493
Asian-Pac-Islander Female 1 7.692
White Male 1 7.796
Black Male 1 9.489
Other Male 1 15.000
Asian-Pac-Islander Male 1 19.626
Other Female 1 20.000
Amer-Indian-Eskimo Male 1 25.000

a notion of “bias reduction”. Given our analysis above of the asymmetric effects of distillation on
certain subgroups, it is natural to consider whether or not these relate to the presence of regularisation
samples in these groups.

Figure 8(a) visualises the distribution of regularisation samples inside subgroups defined by 10 label
buckets. where the labels are sorted in descending order of label frequency. Here, we compare the
predicted probabilities of the teacher and final distilled student models on all training samples (as
was done in the analysis of Zhou et al. (2021)). Interestingly, we see that the tail buckets tend to have
very few regularisation samples; i.e., for rare labels, the teacher prediction on the training label is
generally higher than that of the distilled student model. We confirm this in Figure 8(b).

While the analysis of Zhou et al. (2021) was primarily for training samples — since the aim in
identifying regularisation samples was to mitigate their influence during training — we may also
identify the breakdown of such samples on test data. Figure 9(a) shows that, compared to the training
set, there are in absolute terms more such samples across nearly every label bucket; however, there is
again no clear correlation between the label bucket and the fraction of such samples. In particular,
the tail bucket is again the one with the fewest regularisation samples. This is corroborated by the
probability scores of the teacher and student in Figure 9(b).

Overall, this results suggest that the existing notion of regularisation samples may not, by themselves,
be sufficient to predict the poor performance of distillation on certain subgroups defined by labels.

C.5 IMPACT OF REPEATED DISTILLATION

In the body, we showed that performing distillation once can harm worst-class accuracy. However,
what is the effect of repeating this process, and distilling using the resulting student as a new teacher?
Does the worst-class accuracy get further harmed?

Table 9 shows that on CIFAR-100 LT, repeating distillation can indeed harm worst-class performance,
even though average performance remains roughly similar. This further highlights the potential
tension between average and worst-case performance under distillation.
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(a) Distribution of regularisation samples
per label bucket.
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Figure 8: Study of regularisation samples on training set, CIFAR-100 LT.
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(a) Distribution of regularisation samples
per label bucket.
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(b) Teacher versus distilled student probail-
ities on test label.

Figure 9: Study of regularisation samples on test set, CIFAR-100 LT.

Method Per-class accuracy statistics
Mean Worst 10 Top 10% ∆10

One-hot 44.16 3.00 87.70 41.16

Distillation 1× 45.49 0.90 88.10 44.59

Distillation 2× 45.22 0.00 88.40 45.22

Distillation 3× 44.80 0.00 87.60 44.80

Table 9: Results of repeated distillation on CIFAR-100 LT. Using a distilled student as teacher for a
subsequent round of distillation is seen to further hurt worst-class accuracy.
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