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ABSTRACT

Over-parameterized models are typically vulnerable to membership inference at-
tacks, which aim to determine whether a specific sample is included in the training
of a given model. Previous Weight regularizations (e.g., ℓ1 regularization) typi-
cally impose uniform penalties on all parameters, leading to a suboptimal tradeoff
between model utility and privacy. In this work, we first show that only a small
fraction of parameters substantially impact the privacy risk. In light of this, we
propose Privacy-aware Sparsity Tuning (PAST)—a simple fix to the ℓ1 Regular-
ization—by employing adaptive penalties to different parameters. Our key idea
behind PAST is to promote sparsity in parameters that significantly contribute to
privacy leakage. In particular, we construct the adaptive weight for each parameter
based on its privacy sensitivity, i.e., the gradient of the loss gap with respect to the
parameter. Using PAST, the network shrinks the loss gap between members and
non-members, leading to strong resistance to privacy attacks. Extensive experi-
ments demonstrate the superiority of PAST, achieving a state-of-the-art balance in
the privacy-utility trade-off.

1 INTRODUCTION

Modern neural networks are trained in an over-parameterized regime where the parameters of the
model exceed the size of the training set (Zhang et al., 2021). While the huge amount of parameters
empowers the models to achieve impressive performance across various tasks, the strong capacity
also makes them particularly vulnerable to membership inference attacks (MIAs) (Shokri et al.,
2017). In MIAs, attackers aim to detect if a sample is utilized in the training of a target model.
Membership inference can cause security and privacy concerns in cases where the target model is
trained on sensitive information, like health care (Paul et al., 2021), financial service (Mahalle et al.,
2018), and DNA sequence analysis (Arshad et al., 2021). Therefore, it is of great importance to
design robust training algorithms for over-parameterized models to defend against MIAs.

The main challenge of protecting against MIAs stems from the extensive number of model param-
eters, allowing to easily disclose the information of training data (Tan et al., 2022a). Therefore,
previous works reduce the over-complexity of neural networks by weight regularization, like ℓ1 or
ℓ2 regularization. These regularization techniques impose uniform penalties on all parameters with
large values, reducing the overfitting to the training data. However, if not all parameters contribute
equally to the risk of leaking sensitive information, the uniform penalties can lead to a suboptimal
tradeoff between model utility and privacy. The question is:

Are all parameters equally important in terms of privacy risk?

In this work, we answer this question by an empirical analysis of parameter sensitivity in terms of
privacy risk. In particular, we take the loss gap between member and non-member examples as a
proxy for privacy risk and compute its gradient with respect to each model parameter. We find that
only a small fraction of parameters substantially impact the privacy risk, whereas the majority have
little effect. Thus, applying uniform penalties to all parameters is inefficient to defend against MIAs
and may unnecessarily restrict the model’s capacity.

To address this issue, we propose Privacy-Aware Sparsity Tuning (PAST), a simple fix to ℓ1 reg-
ularization that employs adaptive penalties to different parameters in a deep neural network. The
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key idea behind PAST is to promote sparsity in parameters that significantly contribute to privacy
leakage. In particular, we modulate the intensity of ℓ1 regularization for model parameters based on
their privacy sensitivity, i.e., the gradient of the loss gap with respect to the parameters. In effect,
our method not only stringently regularizes sensitive parameters, but also maintains the model utility
by sparing less sensitive parameters from excessive regularization. Trained with the proposed regu-
larization, the network shrinks the loss gap between members and non-members, leading to strong
resistance to privacy attacks.

To verify the effectiveness of our method, we conduct extensive evaluations on five datasets, in-
cluding Texas100 (Texas Department of State Health Services, 2006), Purchase100 (Kaggle, 2014),
CIFAR-10/100 (Krizhevsky et al., 2009), and ImageNet (Russakovsky et al., 2015) datasets. The
results demonstrate our methods can improve utility-privacy trade-offs across a variety of attacks
based on neural networks, metrics, and data augmentation. For example, our method significantly
diminishes the attack advantage of loss attack from 14.8% to 5.2% - a relative reduction of 64.9%
in privacy risk, whilst preserving the test accuracy.

Our contributions are summarized as follows:

• We empirically analyze the importance of model parameters in privacy risk. We show that
only a few parameters substantially impact the privacy risk, whereas the majority have little
effect. This suggests that the MIA defense can focus on a few important parameters.

• We introduce PAST – a simple and effective regularization method, which promotes spar-
sity in parameters that significantly contribute to privacy leakage. We show that PAST can
effectively improve the utility-privacy trade-offs across a variety of attacks.

• We perform ablation studies that lead to an improved understanding of our method. In par-
ticular, we contrast with alternative methods (e.g., ℓ1 or ℓ2 regularization) and demonstrate
the advantages of PAST. We hope that our insights inspire future research to further explore
weight regularization for MIA defense.

2 PRELIMINARIES

2.1 BACKGROUND

Setup In this paper, we study the problem of membership inference attacks in K-class classifica-
tion tasks. Let the feature space be X ⊂ Rd and the label space be Y = {1, . . . ,K}. Let us denote
by (x, y) ∈ (X ×Y) an example containing an instance x and a real-valued label y. Given a training
dataset S = {(xn, yn)}Ni=1 i.i.d. sampled from the data distribution P , our goal is to learn a model
hθ with trainable parameters θ ∈ Rp, that minimizes the following expected risk:

R(hθ) = E(x,y)∼P [L(hθ(x), y)] (1)

where E(x,y)∼P denotes the expectation over the data distribution P and L is a conventional loss
function (such as cross-entropy loss) for classification. In modern deep learning, the neural network
hθ is typically over-parameterized, allowing to easily disclose the information of training data (Tan
et al., 2022a).

Membership Inference Attacks Given a data point (x, y) and a trained target model hS , attackers
aim to identify if (x, y) is one of the members in the training set S, which is called membership
inference attacks (MIAs) (Shokri et al., 2017; Yeom et al., 2018; Salem et al., 2019). In MIAs,
it is generally assumed that attackers can query the model predictions hθ(x) for any instance x.
Here, we focus on standard black-box attacks (Irolla & Châtel, 2019), where attackers can access
the knowledge of model architecture and the data distribution P .

In the process of attack, the attacker has access to a query set Q = {(zi,mi)}Ji=1, where zi denotes
the i-th data point (xi, yi) and mi is the membership attribute of the given data point (xi, yi) in the
training dataset S, i.e., mi = I[(xi, yi) ∈ S]. In particular, the query set Q contains both member
(training) and non-member samples, drawn from the data distribution P . Then, the attacker A can
be formulated as a binary classifier, which predicts mi ∈ {0, 1} for a given example (xi, yi) and a
target model hθ: A(xi, yi;hθ) → {0, 1}.
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Figure 1: (a) Loss gaps and attack advantage during standard training. The attack advantage in-
creases synchronously with the loss gap during the training process, showing the privacy leakage
of over-parameterization, and thus we consider the loss gap as a proxy; (b) The privacy sensitivity
distribution across parameters. Only a small fraction of parameters substantially impacts the privacy
risk. (The cumulative sensitivity in the top 20% parameters exceeds 89.27% of the total.)

Weight regularization The privacy risk of deep neural networks is often associated with their
over-parameterized nature. Intuitively, the huge amount of parameters enables the model to encap-
sulate extensive information of the training data, potentially leading to unintended privacy leakages.
Previous work shows theoretically that increasing the number of model parameters renders them
more vulnerable to membership inference attacks (Tan et al., 2022b). To address this issue, weight
regularization is typically employed to alleviate the membership inference, such as ℓ1 and ℓ2 regu-
larizations (Hoerl & Kennard, 1970; Tibshirani, 1996; Schmidt et al., 2007). Formally, the weight
regularization can be formalized as:

Rreg(hθ) = E(x,y)∼P [L(hθ(x), y)] + λR(hθ) (2)

where L(·) denotes the classification loss, λ is the hyperparameter that controls the importance
of the regularization term, and R(θ) is typically chosen to impose a penalty on the complexity
of hθ. For example, ℓ1 and ℓ2 regularizations penalize the norm of model parameters as follows:
R(hθ) = ∥θ∥rr, where r denotes the order of the norm.

Previous work (Tan et al., 2022b) shows that one can reduce vulnerability to MIAs by reducing
the number of effective parameters, such as utilizing the sparsification effect of ℓ1 regularization.
However, this comes at the cost of inferior generalization performance (utility) due to the “double
descent” effect (Belkin et al., 2019; 2020; Dar et al., 2021), wherein generalization error decreases
with increased overparameterization. This challenge stems from the uniform penalty applied to all
parameters, ignoring their potentially varying importance in terms of privacy leakage.

3 METHOD: PRIVACY-AWARE SPARSITY TUNING

In this section, we start by analyzing the privacy sensitivity of model parameters and find that most
parameters contribute only marginally to the privacy risk. Subsequently, we design a weighted ℓ1
regularization that takes into account the privacy sensitivity of each parameter.

3.1 MOTIVATION

In this part, we aim to figure out whether the model parameters are equally important in terms of
privacy risk. In particular, we perform standard training with ResNet-18 (He et al., 2016) on CIFAR-
10 (Krizhevsky et al., 2009). We train the models using SGD with a momentum of 0.9, a weight
decay of 0.0005, and a batch size of 128. We set the initial learning rate to 0.01 and decrease it
using a cosine scheduler (Loshchilov & Hutter, 2017) throughout the training. In the analysis, we
construct the datasets of members Sm and nonmembers Sn by randomly sampling two subsets with
10000 examples each from the training set and the test set, respectively.

3
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Loss gaps as proxy of privacy risk In this study, we use the loss gap between
member and non-member examples as a proxy for privacy risk: G(Sm,Sn;hθ) =∣∣∣ 1
|Sm|

∑
(x,y)∈Sm

L(hθ(x), y)− 1
|Sn|

∑
(x,y)∈Sn

L(hθ(x), y)
∣∣∣. Specifically, we calculate the differ-

ence between the average losses of members and non-members. A larger loss gap indicates a higher
privacy risk, as it suggests the model is more susceptible to membership inference attacks (MIAs).
It has been shown that the loss function can determine the optimal attacks in membership inference
(Sablayrolles et al., 2019). As demonstrated in Figure 1a, the model training increases both the
attack advantage (See the definition in Section 4.1) and the loss gap simultaneously, supporting the
use of the loss gap as a proxy for the privacy risk.

Most parameters contribute only marginally to the privacy risk We measure the privacy
sensitivity of a parameter θi by the gradient of the loss gap with respect to the parameter:
∇θi(G(Sm,Sn;hθ)). Figure 1b illustrates the privacy sensitivity distribution of model parame-
ters. The results show that only a small fraction of parameters substantially impact the privacy risk,
whereas the majority have little effect. For example, 97% of the parameters have privacy sensitiv-
ities lower than 0.1. The cumulative sensitivity in the top 20% parameters exceeds 89.27% of the
total. These findings suggest that applying uniform penalties to all parameters is inefficient to defend
against MIAs and may unnecessarily restrict the model’s capacity. Instead, the weight regularization
can be more efficiently applied by focusing on the most sensitive parameters rather than the entire
parameter set. We proceed by introducing our method, targeting this problem.

3.2 METHOD

In the previous analysis, we demonstrate that the privacy risk can be alleviated by reducing the num-
ber of effective parameters with weight regularization techniques. Moreover, we show that most
parameters contribute only marginally to the privacy risk, suggesting that the weight regularization
can be focused on the most sensitive parameters. Thus, our key idea is to promote sparsity specifi-
cally within the subset of parameters that significantly contribute to privacy leakage.

Privacy-Aware Sparsity Tuning In this work, we introduce Privacy-Aware Sparsity Tuning
(dubbed PAST), a simple fix to ℓ1 regularization that employs adaptive penalties to different pa-
rameters in a deep neural network. Formally, the objective function of PAST is given by:

RPAST(hθ) = E(x,y)∼P [L(hθ(x), y)] + λR(hθ)

= E(x,y)∼P [L(hθ(x), y)] + λ
∑
i

γi|θi| (3)

where λ is the hyperparameter that controls the importance of the regularization term and γi denotes
the adaptive weight of the parameter θi. We expect larger weights for those parameters with higher
privacy sensitivity, and smaller weights for those with lower sensitivity. Using the ℓ1 norm, the
regularization can encourage those sensitive parameters to be zero, thereby improving the defense
performance against MIAs.

In particular, we modulate the intensity of ℓ1 regularization for model parameters based on their
privacy sensitivity, i.e., the gradient of the loss gap with respect to the parameters. Let Sm and
Sn denote the subsets of members and non-members, respectively. For notation shorthand, we use
Gθ to denote the loss gap G(Sm,Sn;hθ) of the model hθ on Sm and Sn. Then, we compute the
normalized privacy sensitivity of each parameter θi in its associated module (e.g., linear layer):

γi =
|M(θi)|∇θiGθ∑
θj∈M(θi)

∇θjGθ
,

where M(θi) denotes the associated module of the parameter θi. Equipped with the adaptive weight,
the final regularization of PAST is :

R(hθ) =
∑
i

γα
i |θi|, (4)

where α is the focusing parameter that adjusts the rate at which sensitive parameters are up-
weighted. When α = 0, the regularization is equivalent to the standard ℓ1 regularization. As α

4
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Figure 2: (a) Weight distribution before (Base) and after regularization (Ours). Weights of Ours is
clearly more concentrated around 0 and thus is sparser compared to the base; (b) Gini index (criterion
for sparsity) during the regularization process. The Gini index continues decreasing during tuning,
which also demonstrates the sparsity effect of PAST; (c) Loss gap throughout the whole training
process. The regularization (beginning at epoch 100) quickly reduces the loss gap, leading to strong
resistance to privacy attacks.

increases, the regularization puts more focus on the few parameters with high privacy sensitivity.
The adaptive weight enables to relax the penalties for insensitive parameters while imposing stricter
penalties on sensitive parameters. Note that the γi does not require a gradient in backpropagation,
so it is detached from the computational graph, leading to efficient implementation of PAST.

Implementation of tuning Standard ℓ1 regularization is usually employed from the beginning of
model training to alleviate the overfitting. This makes it challenging to achieve a good tradeoff be-
tween privacy and utility, as a strict regularization degrades the model’s capacity for generalization.
Instead, we propose to employ the regularization after the model convergence in the training with
the classification loss. In particular, we first train the model using the loss (Equation (3)) with λ = 0
until convergence. Then, we increase the value of λ to tune the model with the regularized loss. The
tuning mechanism allows our method to be compatible with trained models, instead of requiring
retraining from scratch.

By applying our method during tuning, we not only stringently regularize sensitive parameters
but also preserve model utility by sparing less sensitive parameters from excessive regulariza-
tion. Specifically, Figures 2a and 2b confirm the effectiveness of our method in mitigating over-
parameterization both intuitively and quantitatively: after PAST tuning, more parameters are con-
centrated around 0 in the weight distribution, and the Gini index—a measure of sparsity—also sig-
nificantly decreases. Figure 2c further illustrates the impact of our tuning on the loss gap, which
sharply declines after the beginning of tuning at epoch 100, demonstrating the method’s ability to
quickly reduce the loss gap and enhance resistance to privacy attacks.

4 EXPERIMENTS

4.1 SETUP

Datasets In our evaluation, we employ five datasets: Texas100 (Texas Department of State Health
Services, 2006), Purchase100 (Kaggle, 2014), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
ImageNet (Russakovsky et al., 2015). Following previous work (Liu et al., 2024b), we split each
dataset into six subsets, with each subset alternately serving as the training, testing, or inference set
for the target and shadow models. The inference set was used by our method and adversarial training
algorithms that incorporate adversary loss—such as Mixup+MMD (Li et al., 2021) and adversarial
regularization (Nasr et al., 2018). In our method, the inference set was used to obtain the comparison
information between members and non-members.

Training details We train the models using SGD with a momentum of 0.9, a weight decay of
0.0005, and a batch size of 128. We set the initial learning rate to 0.01 and drop it using a cosine
scheduler (Loshchilov & Hutter, 2017) with Tmax = epochs. For CIFAR-10, we conduct training
using an 18-layer ResNet (He et al., 2016), with 100 epochs of standard training and 50 epochs of
sparse tuning. In the case of ImageNet and CIFAR-100, we employ a 121-layer DenseNet (Huang
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Figure 3: Comparisons of five defense mechanisms on CIFAR-10 dataset utilizing Resnet18 archi-
tecture. Each subplot is allocated to a distinct attack method, wherein individual curves represent the
performance of a defense mechanism under different hyperparameter settings. The horizontal axis
represents the target models’ test accuracy (the higher the better), and the vertical axis represents
the corresponding attack advantage (defined in Definition 5, the lower the better). To underscore the
disparity between the defense methods and the vanilla (undefended model), we plot the dotted line
originating from the vanilla results.

et al., 2017) with 100 epochs of standard training and 20 epochs of sparse tuning. For Texas100 and
Purchase100, training is performed using MLPs as described in previous studies (Nasr et al., 2018;
Jia et al., 2019), with 100 epochs of standard training and 20 epochs of sparse tuning.

Hyperparameter Tuning In our approach to hyperparameter tuning, we align with the protocols
established by previous work (Chen et al., 2022). In particular, we employ hyperparameter tuning
focused on a single hyperparameter, α defined in Equation (4). Through a detailed grid search on
a validation set, we adjust α to achieve an optimal balance. This process involves evaluating the
privacy-utility implications at various levels of α and then selecting the value that aligns with our
specific privacy/utility objectives, thereby enabling precise management of the model’s privacy and
utility. For the overall regularization strength λ in Equation (3), we fix it to different values based on
the dataset. Specifically, for CIFAR-10, the scale factor is 0.001; for CIFAR-100, it is 0.0001. For
other datasets, we set it as 1e-05.

Attack models In our study, we experiment with three classes of MIA: (1) Neural Network-based
Attack (NN) (Shokri et al., 2017; Hu et al., 2022), which leverages the full logits prediction as
input for attacking the neural network model. (2) Metric-based Attack, employing specific met-
ric computations followed by a comparison with a preset threshold to ascertain the data record’s
membership. The metrics we chose for our experiments include Correctness (Correct), Loss (Yeom
et al., 2018), Confidence, Entropy (Salem et al., 2019), and Modified-Entropy (M-entropy) (Song
& Mittal, 2021). (3) Augmentation-based Attack (Choquette-Choo et al., 2021), utilizing prediction
data derived through data augmentation techniques as inputs for a binary classifier model. In this
category, we specifically implemented rotation and translation augmentations.

For the details of the attack, we assume the most powerful black-box adaptive attack scenario: the
adversary has complete knowledge of our defense mechanism and selected hyperparameters. To
implement this, we train shadow models with the same settings used for our target models.

Defense baselines We compare PAST with eight defense methods: RelaxLoss (Chen et al.,
2022), Mixup+MMD (Li et al., 2021), Adversarial Regularization (AdvReg) (Nasr et al., 2018),

6
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Figure 4: Comparisons of seven defense mechanisms on CIFAR-100 dataset utilizing Densenet121
architecture. Each subplot is allocated to a distinct attack method, wherein individual curves rep-
resent the performance of a defense mechanism under different hyperparameter settings. The hor-
izontal axis represents the target models’ test accuracy (the higher the better), and the vertical axis
represents the corresponding attack advantage (defined in Definition 5, the lower the better). To
underscore the disparity between the defense methods and the vanilla (undefended model), we plot
the dotted line originating from the vanilla results.

Dropout Srivastava et al. (2014), Label Smoothing Guo et al. (2017), Confidence Penalty Pereyra
et al. (2017), ℓ1 regularization and ℓ2 regularization (Shokri et al., 2017), .

Evaluation metrics To comprehensively assess our method’s impact on privacy and utility, we
employ three evaluation metrics that encapsulate utility, privacy, and the balance between the two.
Utility is gauged by the test accuracy of the target model. Privacy is measured through the attack
advantage (Yeom et al., 2018):

Adv(A) := Pr(A(hS(x), y) = 1|m = 1)

− Pr(A(hS(x), y) = 1|m = 0) (5)
= 2Pr(A(hS(x), y) = m)− 1

where the notations are defined in Section 2.1. To assess the trade-off between utility and privacy,
we utilize the P1 score (Paul et al., 2021), which is defined as:

P1 = 2× Acc × (1− Adv)
Acc + (1− Adv)

(6)

where Acc denotes test accuracy and Adv denotes attack advantage on the target model.

4.2 RESULTS

Can PAST improve privacy-utility trade-off ? In Figure 3 and Figure 4, we plot privacy-utility
curves to show the privacy-utility trade-off. The horizontal axis represents the performance of the
target model, and the vertical axis represents the attack advantage defined in Equation (5). A salient
observation is that our method drastically improves the privacy-utility trade-off. In particular, for
these points that perform better than vanilla for utility (the area to the right of the dotted line),
the privacy-utility curves of our methods are always below those of others. This means we can
always obtain the highest privacy for any utility requirement higher than the undefended model. For
example, on the CIFAR10, we focus on the hyperparameter α corresponding to the model with the
lowest attack advantage with the constrain condition that test accuracy is better than vanilla, then
our method with adaptive regularization can decrease the attack advantage of loss-metric-based from
14.8% to 5.2% compared with MixupMMD (the most powerful defense under our condition above).
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Table 1: P1 score (Equation (6)) evaluated on target models trained on different datasets. The bold
indicates the best results. Here, “w/o” denotes undefended models.

Datasets Texas Purchase CIFAR-10 CIFAR-100 ImageNet

PAST 0.572 0.812 0.784 0.575 0.438
w/o 0.557 0.792 0.638 0.360 0.350
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Figure 5: (a) Utility-privacy trade-offs for fixed/ours adaptive weights and ℓ1/ℓ2 regularizations.
Dots in each color represent the performance of a tuning mechanism under different hyperparameter
settings. The horizontal axis represents the test accuracy (the higher the better), and the vertical axis
represents the average attack advantage (defined in Definition 5, the lower the better. Results w/o
average are in Appendix A) across various attack methods. PAST (L1+Ours) outperformed others;
(b) Utility-privacy trade-offs (by tuning α) for different λ. The x-axis and y-axis are the same as (a).
Within a certain range (λ = 0.0005, 0.001 here), the trade-off curve remains stable.

Is PAST effective with different datasets? To ascertain the efficacy of our proposed method
across heterogeneous data, we have executed a series of experiments on a diverse array of datasets,
encompassing tabular and image datasets. For results shown in Table 1, we have set the adjustment
α of PAST to a constant value, specifically α = 2.5. To assess the privacy-utility balanced perfor-
mance, we use the highest attack advantage of all attack methods to calculate the P1 score From the
results, we observe that both of our methods yield a consistent improvement in the P1 score.

How does α affect utility and privacy? In Figure 6a, we conduct an ablation study to examine
the impact of the coefficient α in our method on both utility and privacy (and the effect on loss gap is
reported and analyzed in Appendix C). The analysis is based on CIFAR-100. As is shown in Figure
6a, our findings are in alignment with the insights provided in Section 3.2. As the α decreases, the
effect of the loss gap becomes less significant, leading to a gradual decrease in adaptation strength.
On the other hand, a smaller α value brings our loss function closer to the conventional regulariza-
tion, thereby increasing the privacy risk. Conversely, A larger α leads to stronger regularization on
sensitive parameters, culminating in underfitting, which consequently diminishes accuracy.

What’s the difference between PAST and ℓ1/ℓ2 regularization? We compare our method with
ℓ1/ℓ2 regularization on CIFAR-100 (by fixing the adaptive weight γi in Equation (3) to a constant ),
and present the results in Figure 5a. Specifically, we used four combinations during tuning: ℓ1 reg-
ularization (L1), ℓ1 regularization + adaptive weight (L1+Ours), ℓ2 regularization (L2), and ℓ2 reg-
ularization + adaptive weight (L2+Ours). For the ℓ1/ℓ2 regularization, we adjust the regularization
weight λ to achieve the desired utility-privacy trade-off. Dots of each color in Figure 5a represent the
performance of a tuning mechanism under different hyperparameter settings. As observed, PAST
(L1+Ours) outperformed the others. This demonstrates the importance of incorporating adaptive
regularization weights in achieving robust defense against MIAs.

How does λ affect PAST? λ in Equation (4) represents a base level of regularization applied to
all weights, similar to the influence in ℓ1 regularization. We fixed λ at different values ({0.0001,
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Table 2: P1 score (defined in Equation (6)) evaluated on target models tuned on defended models.
The bold indicates the best results. Here, “w/o” denotes the original defended model by other
methods. PAST consistently achieves higher P1 scores compared to the original defended methods

Pretrain Defense AdvReg CCL LabelSmoothing MixupMMD RelaxLoss

PAST 0.784 0.806 0.808 0.825 0.808
w/o PAST 0.720 0.657 0.674 0.755 0.744
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Figure 6: (a) Effect of α on utility (test accuracy) and privacy (average attack advantage). Both
accuracy (ACC) and attack advantage decrease as alpha increases, in alignment with the insights
provided in 3.2; (b) Effect of tuning epochs on utility and privacy. The defense effectiveness stabi-
lizes at an optimal level after 20 epochs, and the classification accuracy gradually improves, peaking
at around 50 epochs; (c) Time consumption of PAST and other methods. Each bar stands for a
method, Ours are comparable to standard training(Base)

0.0005, 0.001, 0.002}) on CIFAR-10 and adjusted alpha to plot a utility-privacy curve for each λ
(In Figure 5b). Within a certain range (λ = 0.0005, 0.001 here), the trade-off curve remains stable;
however, when λ is too large, the trade-off cannot achieve high utility (e.g., λ = 0.002 here). On
the other hand, when λ is too small, the overall regularization strength is too weak, resulting in an
effect closer to the base, which leads to higher privacy leakage (e.g., λ = 0.0001 here)

How does the number of tuning epochs affect PAST? We evaluated the impact of different
sparse training epochs on the utility-privacy trade-off (the effect on loss gap is reported and ana-
lyzed in Appendix C). Specifically, we conducted experiments on CIFAR-10, varying the number
of epochs across {5, 10, · · · , 75}. The curves of test accuracy and attack advantage over epochs are
plotted in Figure 6b, with the dotted line representing attack advantage and the solid line represent-
ing test accuracy. As the number of epochs increases, the advantage stabilizes at an optimal level
after 20 epochs, and the classification accuracy gradually improves, peaking at around 50 epochs.
Overall, it shows that few epochs are sufficient to achieve reasonable performance, and more epochs
lead to more stable outcomes.

Combined with other defenses As mentioned in Section 3.2, our method is applied during the
fine-tuning phase, as the loss gap can more accurately reflect member information in a roughly
converged model. Due to this characteristic, our approach is independent of other defense methods
applied during the pre-training phase and can be used on top of existing defenses. We conducted
experiments with various defense methods on CIFAR-10 using ResNet18 (50 epochs sparse training
with α = 1.5). As shown in Table 2, after PAST, the model consistently achieves higher P1 scores
compared to the original defense methods.

Time consumption The time consumption of PAST is comparable to standard training, since it
introduces no additional processes (it only requires an extra gradient backpropagation during each
tuning epoch to obtain the gradients for non-members). We report the time consumption of various
defense methods in Figure 6c (time was recorded for DenseNet121 on CIFAR-100 using a single
RTX 4090 GPU.), where our method takes 1374 seconds, and the standard training (base) takes
1245 seconds. Our approach increases the time consumption of standard training by only 10.4%.
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5 RELATED WORK

Overparameterization in generalization and privacy Overparameterization, where models have
significantly more parameters than training examples, has been shown to have a complex relation-
ship with generalization and privacy. While traditional theories suggest that overparameterization
increases overfitting and generalization error, recent research reveals that it can sometimes reduce
error under certain conditions, such as in high-dimensional ridgeless least squares problems (Belkin
et al., 2020). This phenomenon, known as “double descent”, suggests that beyond a critical point,
increasing model complexity may lead to better generalization (Belkin et al., 2019; Dar et al., 2021;
Hastie et al., 2022). However, from a privacy perspective, overparameterization has been empir-
ically proven to increase vulnerability to membership inference attacks (MIAs) (Leemann et al.,
2023; Dionysiou & Athanasopoulos, 2023). Large language models, in particular, are susceptible to
these attacks, with attackers able to extract sensitive training data (Carlini et al., 2021; Mireshghal-
lah et al., 2022). Theoretical evidence also indicates that there is a clear parameter-privacy trade-off,
where an increase in the number of parameters amplifies the privacy risks by enhancing model
memorization (Yeom et al., 2018; Tan et al., 2022b). Consequently, while overparameterization can
sometimes improve generalization, its impact on privacy remains a significant concern, especially
in the context of MIAs.

Overparameterization in MIA defenses To mitigate the privacy risks associated with overpa-
rameterization, several defense mechanisms have been proposed. One effective approach is net-
work pruning, where unnecessary parameters are removed to reduce model complexity. Research
shows that pruning not only preserves utility but also significantly reduces the risk of privacy leak-
age, in scenarios including MIA (Huang et al., 2020; Wang et al., 2021) and Unlearning (Hooker
et al., 2019; Wang et al., 2022; Ye et al., 2022b; Liu et al., 2024a). Additionally, techniques com-
bining pruning with federated unlearning have demonstrated effectiveness in protecting privacy by
selectively forgetting specific data during the training process (Wang et al., 2022). Regulariza-
tion methods, such as ℓ2 regularization (Kaya et al., 2020), sparsification (Bagmar et al., 2021)
and dropout (Galinkin, 2021), also play a critical role in defending against MIAs by discouraging
the model from overfitting to training data. Interestingly, while overparameterization generally in-
creases privacy risks, when paired with appropriate regularization, it can maintain both utility and
privacy (Tan et al., 2023). Furthermore, studies indicate that initialization strategies and ensemble
methods can further alleviate privacy risks on over-parameterized model (Rezaei et al., 2021; Ye
et al., 2024). These techniques illustrate that even in overparameterized models, privacy risks can
be mitigated through careful design, preserving the balance between utility and privacy.

6 CONCLUSION

In this paper, we introduce Privacy-aware Sparsity Tuning (PAST), a novel approach to mitigating
membership inference attacks (MIAs) by adaptively regularizing model parameters based on the loss
gap between member and non-member data. By promoting sparsity in parameters with large privacy
sensitivity, the model shrinks the loss gap between members and non-members, leading to strong
resistance to privacy attacks. Extensive experiments demonstrate that PAST effectively balances pri-
vacy and utility, providing state-of-the-art performance in the privacy-utility trade-off. This method
is straightforward to implement with existing deep learning frameworks and requires minimal mod-
ifications to the training scheme. We hope that our insights into Privacy-aware regularization inspire
further research to explore parameter regularization techniques for enhancing privacy in machine
learning models.

Limitations In this work, we focus on the popular black-box setting, where attackers can access
the model outputs. So, the effectiveness of our method in defending against other types of MIAs
(such as label-only attacks, white-box attacks) remains unexplored. Moreover, while our method
can improve the MIA defense with high predictive performance, our method cannot fully break the
trade-off between utility and MIA defense, which might be a potential direction for future work.
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Figure 7: Utility-privacy trade-offs of different epochs on CIFAR-10. Each subplot is allocated to
a distinct attack method, wherein individual curves represent the performance of a defense mecha-
nism under different hyperparameter settings. The horizontal axis represents the target models’ test
accuracy (the higher the better), and the vertical axis represents the corresponding attack advantage
(defined in Definition 5, the lower the better). To underscore the disparity between the defense meth-
ods and the vanilla (undefended model), we plot the dotted line originating from the vanilla results.

A FULL ABLATION RESULT FOR PAST

Here in Figure 7, we present the detailed results of ablation study (fixed/ours adaptive weights and
ℓ1/ℓ2 regularizations). under different attack methods on CIFAR-100 (in the main text, only the
average performance across various attack methods is shown due to layout constraints). It can be
observed that the performance varies under different attack methods, but the overall utility-privacy
trade-off of PAST evidently surpasses others.

B DIFFERENCE FROM OPTIMIZING TO LOSS GAP

0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72
ACC

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Av
er

ag
e 

At
ta

ck
 A

dv

Ours(infer)
LossGap(infer)
Ours
LossGap
Base

Figure 8: The utility-privacy trade-offs of Ours
and LossGap (directly optimizing member-nonmember
loss gap), “infer” refer to the privacy leakage of infer-
ence set

In this section, we compare the differ-
ences between PAST and directly optimiz-
ing the loss gap. We use the loss gap be-
tween members and non-members directly
as a regularization term and add it to the
loss function. The utility-privacy trade-
off curves are shown in Figure 8, where
our method (Ours) clearly outperforms the
direct optimization of the loss gap (Loss-
Gap). Additionally, we point out that di-
rectly optimizing the loss gap leads to pri-
vacy leakage in the inference set (as shown
by LossGap (infer) in the figure), whereas
our method does not (as shown by Ours
(infer) in the figure).

C LOSS GAP FOR DIFFERENT
EPOCHS/ALPHAS

In the main text, the ablation on tuning the epoch and alpha only reports the changes in utility (test
accuracy) and privacy (attack advantage). Here, we supplement with the changes in the privacy
proxy loss gap as alpha (in Figure 9a) and epoch (in Figure 9b) varies, showing that the results here
are consistent with the insights provided in Section 3.2.
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Figure 9: (a) The member-nonmember loss gap varies with different alpha values. As alpha in-
creases, the loss gap continuously decreases, validating the effect of PAST in shrinking the loss
gap. (b) The loss gap varies with different epochs. As the number of epochs increases, the loss gap
decreases rapidly, reaching nearly its minimum after just 5 epochs. This demonstrates that PAST’s
effect in shrinking the loss gap can be achieved with only a few epochs.
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Figure 10: Variation of privacy sensitivity for each module in PAST

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Black-box

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Correct

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Confidence

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Entropy

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Modified entropy

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Cross entropy loss

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Translation

0 20 40 60 80 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 G
ap

s

Rotation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

At
ta

ck
 A

dv
an

ta
ge

0.00

0.05

0.10

0.15

0.20

0.25

0.30

At
ta

ck
 A

dv
an

ta
ge

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

At
ta

ck
 A

dv
an

ta
ge

0.00

0.05

0.10

0.15

0.20

0.25

0.30

At
ta

ck
 A

dv
an

ta
ge

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

At
ta

ck
 A

dv
an

ta
ge

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

At
ta

ck
 A

dv
an

ta
ge

0.0

0.1

0.2

0.3

0.4

At
ta

ck
 A

dv
an

ta
ge

0.0

0.1

0.2

0.3

0.4

At
ta

ck
 A

dv
an

ta
ge

Figure 11: The variation of the loss gap and the attack advantage across various attacks during
standard training. During standard training, the loss gap monotonically increases in sync with the
attack advantage across various attacks. This indicates that the loss gap, as a privacy proxy, can
effectively capture the effects of various attacks.

D FOR WHICH LAYERS AND MODULES ARE MORE EFFECTIVE?

As an example, we illustrate the average grad-gap dynamics during the PAST process across dif-
ferent modules of the ResNet18 model in Figure 10. It can be observed that the deeper layers are
more effective than the earlier ones, and batch normalization (BN) and linear layers contribute more
significantly than convolutional layers. Notably, the loss gap of all convolutional layers in the third
and fourth blocks almost stabilizes at zero.

E RATIONALE AND GENERALIZABILITY OF THE LOSS GAP AS A PRIVACY
PROXY.

To clarify the rationale for using the loss gap as a proxy risk for privacy, we theoretically characterize
that the loss gap is positively correlated with the attack advantage.

Proposition E.1. Let ϵ be a random variable denoting loss, such that ϵ ∼ N(µS , σ
2
S) when m = 1

and ϵ ∼ N(µD, σ2
D) when m = 0. Then the loss gap (µD − µS) is positively correlated with the

attack advantage, defined in Equation (5).

Proof. The membership advantage of Aloss is (as defined in Equation (5)):

Adv =Pr(A = 1|m = 1)− Pr(A = 1|m = 0) (7)
=Pr(ϵ ⩽ τ |m = 1)− Pr(ϵ ⩽ τ |m = 0) (8)

=Φ(
τ − µS

σS
)− Φ(

τ − µD

σD
) (9)

where Φ(·) is the cumulative distribution function of standard normal distribution. Note that Pr(A =
1|m = 0) is false positive rates of the adversary, which is expected to be controlled at a small value
Leemann et al. (2023); Tan et al. (2022b). Assume τ is chosen such that Φ( τ−µD

σD
) = α, then we

have:

Adv = Φ{Φ
−1(α)σD + µD − µS

σS
} − α (10)

Since ∂(Adv)
∂(µD−µS) = 1

σS
ϕ{Φ−1(α)σD+µD−µS

σS
} > 0, this implies that the loss gap (µD − µS) is

positively correlated with the attack advantage Adv.
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Figure 12: The change of privacy sensitivity distribution during PAST. We fixed the x-axis as pa-
rameter index and the y-axis as privacy sensitivity, reporting results for epochs 1, 25, and 50. It can
be observed that privacy sensitivity indeed migrates, while the overall privacy sensitivity decreases
over time.
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Figure 13: (a) The sensitivity distribution of FC parameters for standard training (Normal) and
PAST. PAST has fewer privacy-sensitive parameters, indicating that it remains effective even if
privacy migration occurs, as the overall sensitivity is reduced. (b) The sensitivity distribution of
parameters across all layers (layer 1-4 and the fc layer). Within each layer, the finding that “only a
small fraction of parameters substantially impacts privacy risk” remains significant. This indicates
that the finding is not merely due to parameters closer to the output layer naturally having more
influence on gradients and results.

In terms of generalizability of using the loss gap as a proxy for privacy risk, we empirically demon-
strate the effectiveness of the loss gap as a privacy proxy by showing its relationship with the attack
advantage across various attack methods. Specifically, in Figures 1a and 11, we observe that during
standard training, the loss gap monotonically increases in sync with the attack advantage, suggesting
that the loss gap can capture different aspects of the model’s output and behavior.

F ADDITIONAL RESULTS

F.1 DOES PRIVACY MIGRATE AMONG PARAMETERS?

We analyzed the changes in privacy sensitivity during the PAST training process and confirmed the
existence of privacy migration. Specifically, we plotted the distribution of privacy sensitivity (y-
axis) against parameter index (x-axis) at the 1st, 25th, and 50th epochs during training on the fully
connected (fc) layer of ResNet18 trained on CIFAR-10. The results, shown in Figure 12, confirm
that privacy migrates from heavily regularized parameters to others during PAST.

The migration of privacy sensitivity does not affect the effectiveness of our method. Our proposed
regularization focuses on parameters deemed ”important” in each epoch, and these parameters can
change dynamically. As shown in Figure 13a, we compare the privacy sensitivity distributions of
models trained with PAST versus standard training. The results indicate a significant reduction in
the overall privacy sensitivity (with the mean reduced from 0.0223 to 0.0088), demonstrating the
robustness of our method in mitigating privacy risks.
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Figure 14: AUC vs. Test Accuracy curves and TPR@0.1%FPR vs. Test Accuracy curves for
RMIA (Zarifzadeh et al., 2024), LiRA (Carlini et al., 2022) and Attack R (Ye et al., 2022a). The
x-axis represents Test Acc (higher is better), and the y-axis represents attack effectiveness (lower is
better). It can be observed that PAST achieves a trade-off positioned in the bottom right, demon-
strating strong performance.

F.2 PRIVACY SENSITIVITY WITHIN EACH LAYER

In this section, we provide empirical evidence to show that the phenomenon—where only a small
fraction of parameters substantially impacts privacy risk—exists within each layer of the neural net-
work, rather than being solely attributed to differences between layers. Using a ResNet18 model
trained on CIFAR-10 as an example, we demonstrate the privacy sensitivity distribution of param-
eters within each layer, as shown in Figure 13b. The observation that ”only a small fraction of
parameters substantially impacts privacy risk” holds true within each layer, indicating that this find-
ing is not merely due to natural differences in gradients across layers.

F.3 ADDITIONAL RESULTS OF ATTACK METHODS AND EVALUATION METRICS

We have added results for new MIA methods: RMIA (Zarifzadeh et al., 2024), LiRA (Carlini et al.,
2022) and Attack R (Ye et al., 2022a). Here, following the setting in RMIA, we conducted exper-
iments on ResNet18 trained on CIFAR-10, using AUC and TPR@0.1%FPR as metrics. By tuning
the hyperparameters of each defense method, we plot utility-privacy trade-off curves in Figure 14,
where the horizontal axis represents the target models’ test accuracy (the higher the better), and the
vertical axis represents the corresponding metric (AUC or TPR@0.1%FPR, the lower the better). It
can be observed that PAST demonstrates strong performance under both metrics and outperforms
other defenses.
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