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Abstract
Speech-language pathologists (S-LPs) routinely use phonetic
transcription to profile and describe the characteristics of a
child’s speech in the assessment of speech sound disorders
(SSDs). The literature identifies phonetic transcription as a
demanding perceptual skill, with accuracy and reliability de-
pendent on experience, available resources, and the nature of
SSDs. Automatic speech recognition and segmentation tech-
niques, which recognize, transcribe, and align audio file con-
tent, have been identified as a possible tool to improve the ac-
curacy and efficiency of the auditory perceptual transcription
undertaken by S-LPs. In this paper, we propose a model to au-
tomate phonetic transcriptions and perform forced alignment
for childhood-disordered speech. Utilizing the state-of-the-art
wav2vec 2.0 acoustic model and advanced post-processing
algorithms, our model achieves a phoneme error rate of 0.15
and an F1 Score of 82% on the UltraSuite dataset. These re-
sults suggest a level of accuracy greater than what has been
reported for auditory-perceptual transcription in the clinical
setting.

Introduction
Speech sound disorder (SSD) is an umbrella term that de-
scribes a heterogeneous group of individuals who have
difficulties in producing speech, thereby interfering with
communication (Carter, Paul, and Marchman 2014). It is
the most prevalent communication disorder in young chil-
dren, affecting approximately 3-6% of Australian preschool-
ers and accounting for up to 75% of a pediatric speech-
language pathologist’s (S-LP) caseload (Lewis et al. 2011).
Early identification and intervention are crucial to mini-
mizing long-term consequences, which may include lower
academic success, decreased social interaction, and an in-
creased risk of juvenile delinquency (Catts 1993).

Evidence-based practice guidelines recommend S-LPs
use phonetic transcription, based on the International Pho-
netic Alphabet, to identify and classify a child’s speech pat-
terns. This process is fundamental to informing the diagno-
sis of the SSDs and subsequent selection of the most ef-
fective intervention approach and tracking therapy progress
(Network 2017). However, the accuracy of phonetic tran-
scription, as a profession-specific skill, is limited by S-LPs’
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experience, available time, and perceptual bias (Mallaband
2024). Whilst the transcriber’s experience can be addressed
through practice and training to some extent (Titterington
and Bates 2021), there remain intrinsic challenges in using
phonetic transcription to identify markers of speech impair-
ments (Gibbon and Lee 2017).

With advances in artificial intelligence (AI), a grow-
ing body of literature has acknowledged its potential value
in supporting S-LPs in generating phonetic transcription
(Duffy 2016; Li et al. 2020; Naeini et al. 2024). This task is
commonly facilitated by adapting automatic speech recogni-
tion (ASR) (Bhardwaj et al. 2022). Recent studies (Yi et al.
2020; Yue et al. 2020; Hernandez et al. 2022) have fine-
tuned the latest transformer-based acoustic models and lan-
guage models (Baevski et al. 2020; Radford et al. 2023)
on disordered adult speech, achieving remarkable perfor-
mance. Some studies have explored phoneme-level recog-
nition (Shahin and Ahmed 2024) and reported good average
performance for typically developing children and second-
language learners. However, these models usually experi-
ence a significant drop in performance when applied to
speech from children with SSDs (McKechnie et al. 2018).
This drop is due to the high variability in the acoustic and
linguistic characteristics of disordered childhood speech, as
well as the limited availability of annotated speech corpora
for this population (O’Shaughnessy 2024).

Forced alignment, which involves identifying the onset
and offset time of phonemes, has been demonstrated as an
effective approach to improve the quality and transparency
of phoneme recognition (Shabber and Bansal 2024). Re-
cent studies highlight that forced alignment allows phoneme
labels to align more accurately with their correspond-
ing acoustic features, enabling AI models to learn more
phoneme-specific information and improve recognition ac-
curacy (Graves and Schmidhuber 2005; Graves et al. 2006;
Kalinli 2012).

In this paper, we present a model that simultaneously
performs both phonetic transcription and forced alignment
effectively on childhood-disordered speech, hereinafter re-
ferred to as the phoneme segmenter. To automate pho-
netic transcription, we adapt the advanced acoustic self-
supervised learning model, wav2vec 2.0, in a novel way.
While wav2vec 2.0 is traditionally used for word-level ASR
with connectionist temporal classification (CTC), our adap-



tation focuses on phoneme-level transcription to capture
subtle phonetic issues characteristic of children with speech
sound disorders. We develop a novel algorithm for forced
alignment. Furthermore, we develop and evaluate a transfer
learning approach to address the challenge of data scarcity
in disordered childhood speech corpora. This method facili-
tates the integration of AI into routine clinical speech analy-
sis.

Methodology
Phoneme Segmenter
In this paper, we introduced a phoneme segmenter, as illus-

trated in Figure 1. The key innovation of this pipeline lies
in adapting the state-of-the-art wav2vec 2.0 model, origi-
nally developed for ASR, for the task of generating pho-
netic transcriptions and performing forced alignment. Our
code is publicly available online.

Code —
https://github.com/YingLi001/phoneme-segmenter

To automate phonetic transcription for childhood-
disordered speech, we fine-tuned the wav2vec2-xls-r
pre-trained model on an SSD dataset. The model was pre-
trained on 436,000 hours of unlabeled speech data sam-
pled at 16kHz, covering 128 different languages. During
pre-training, the model acquired latent representations of
multiple languages. However, these representations required
additional specialization through fine-tuning on a specific
“downstream” task to achieve effective performance.

In this study, we kept the feature extractor unchanged,
fine-tuned the learned representations with labeled datasets,
and added a randomly initialized fully connected (FC) layer
on top of the Transformer architecture for phoneme predic-
tion. To optimize the model, we minimized the CTC loss
(Graves et al. 2006).

LCTC = − log
∑

π∈Align(Y )

T∏
t=1

P (πt | X) (1)

where,

•
∑

π∈Align(Y ) represents the summation over all possible
alignment paths π for the target sequence Y ;

•
∏T

t=1 denotes the product of probabilities over all time
steps t, where T is the length of the input sequence;

• P (πt | X) is the probability of observing the token πt at
time step t, given the input sequence X .

It is calculated based on the phoneme error rate (PER),
which is derived from the Levenshtein distance, which
quantifies the minimum number of single-character ed-
its—substitutions, insertions, or deletions—needed to trans-
form the predicted phoneme sequence into the actual se-
quence.

Algorithm 1 describes our proposed method for forced
alignment. Given phoneme predictions from the model us-
ing CTC collapse, which merged consecutive identical la-
bels that were not separated by a blank symbol, a bias factor

β was introduced to adjust the boundaries of each phoneme.
This is because the recognized phonemes might be located
closer to either the start or the end of the true segment due
to frame-based prediction and contextual information.

The rationale for not using the existing forced alignment
models was based on several key considerations. First, the
existing segmentation models (Kreuk et al. 2020; Kreuk,
Keshet, and Adi 2020) trained on datasets of normal adult
speakers tended to introduce higher errors when applied to
disordered speech in children. Second, our work focused
on phonemes, the smallest unit of speech that can differ-
entiate one word element from another. As phoneme dura-
tion in children can be short, segmentation models tended to
overlook segments with short duration during the aligning
of boundaries. This oversight often results in forced align-
ment errors. Finally, we observed notable improvements in
phoneme recognition and segmentation by incorporating an
advanced wav2vec 2.0 model (wav2vec2-xls-r). Given
these considerations and the need for sensitivity in detecting
subtle yet diagnostically significant phonemes, we decided
to develop an algorithm for disordered childhood speech.

Algorithm 1: Forced Alignment

1: procedure FORCEDALIGNMENT(timedTokenList, sec-
onds, β)

2: timedTokenList is a list of tuples of labels and their
timings

3: seconds is the duration of the speech sample in sec-
onds

4: β is the bias factor, which is positive and smaller
than 1.

5: FA← new List
6: for ii in range of length timedTokenList do
7: if ii equals length of timedTokenList - 1 then
8: upper← seconds
9: lower← timedTokenList[ii - 1][time] * (1 -

β) + timedTokenList[ii][time] * β
10: else if ii equals 0 then
11: upper← timedTokenList[ii + 1][time] * β +

timedTokenList[ii][time] * (1 - β)
12: lower← 0
13: else
14: upper← timedTokenList[ii + 1][time] * β +

timedTokenList[ii][time] * (1 - β)
15: lower← timedTokenList[ii - 1][time] * (1 -

β) + timedTokenList[ii][time] * β
16: end if
17: Append tuple (timedTokenList[ii][label], lower,

upper) to FA
18: end for
19: return FA
20: end procedure

We further developed a post-processing method, referred
to as cleaning, to consolidate successive duplicate segments
that often arise due to model overfitting. The final output of
the phoneme segmenter model consisted of an aligned pho-
netic transcription accompanied by a spectrogram, as illus-
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Figure 1: Architecture of the proposed phoneme segmenter.
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trated in Figure 1. This visualization method was designed
to enhance the explainability of the automated results, and
providing S-LPs with clearer insights to support decision-
making.

Transfer Learning
Transfer learning (TL) is a technique designed to leverage
knowledge from a source domain to improve the learning
of a predictive function in a target domain, as illustrated in
Figure 2. Inspired by recent studies (Christensen et al. 2013;
Fainberg et al. 2016; Smith et al. 2017), we applied TL to
enhance the performance of the phoneme segmenter on a
childhood-disordered speech corpus. Specifically, we trans-
ferred the knowledge encoded in the wav2vec 2.0 model,
pre-trained on normal adult speech and fine-tuned on disor-
dered adult speech, to a disordered childhood speech corpus.

Datasets
We used two datasets specifically designed for SSDs. The
first dataset is UltraSuite (Eshky et al. 2019), an acoustic and
ultrasound data collection featuring recordings from chil-
dren aged 5 to 12 years with typically developing speech,
as well as children aged 5 to 13 years with various SSDs,
including childhood apraxia of speech, phonological delay,
and articulation disorder. All speech files are sampled at
22.05 kHz with 16-bit sample resolution. In this study, we
only used the SSD instances in the UltraSuite dataset for
training and evaluating the proposed method.

The second dataset is TORGO (Rudzicz, Namasivayam,
and Wolff 2012), an acoustic and articulatory speech corpus
consisting 8 dysarthric speakers, aged 16 to 50 years, and 7
age-matched control speakers. It includes non-words, words,
and sentences, of which words and sentences are used in this
study. The individual wave file is encoded in the linear PCM
format at 16kHz, which was used to evaluate the TL.

While our primary focus was on child speakers, we
also utilized the popular TIMIT dataset (Garofolo et al.
1993) to demonstrate the benefits of TL. This is a standard
acoustic-phonetic corpus used for the evaluation of speech-
related tasks. It consists of 6,300 utterances produced by 630
healthy adult American speakers from 8 dialect regions. The
corpus contains approximately 5 hours of speech recordings
that are stored in 16-bit and 16kHz waveform files, asso-
ciated orthographic transcriptions of the words the person
said, and time-aligned phonetic transcriptions.

Dataset TRAIN TEST
SSD TD SSD TD

UltraSuite 1870 - 804 -
TIMIT - 4620 - 1280
TORGO 1588 1928 636 619

Table 1: Distribution of the instances included in this study
from the preprocessed UltraSuite, TIMIT, and TORGO
datasets.
Note: TD represents individuals with typical speech.

Data Pre-processing
To ensure compatibility with the wav2vec 2.0 model, we
downsampled all raw audio files of SSD instances in the
UltraSuite dataset from 22.05 kHz to 16 kHz. Addition-
ally, since the UltraSuite dataset lacks a predefined training
and test split, we allocated 70% of instances to the train-
ing set and 30% to the test set. As detailed in Table 1, only
SSD instances from UltraSuite dataset were utilized to eval-
uate the performance of phoneme segmenter on childhood-
disordered speech.

To facilitate efficient data loading, we used the datasets li-
brary in the Hugging Face. Since the UltraSuite dataset was
not directly available within the library’s offerings, we de-
veloped a custom data-loading script. In this script, each au-
dio sample from the UltraSuite was treated as an individual
instance with several attributes. The key attributes are out-
lined below, with non-essential attributes excluded during



Exp Model Dataset PER P R F1 R-value
1 Zhu, Zhang, and Jurgens† UltraSuite 0.20 0.45 0.73 0.55 0.35
2 Ribeiro et al.∗ UltraSuite 0.63 0.75 0.70 0.73 0.76
3 Phoneme Segmenter UltraSuite 0.15 0.82 0.82 0.82 0.85

4 Phoneme Segmenter TL
TIMIT
TORGO
UltraSuite

0.12 0.85 0.86 0.86 0.88

Table 2: Results of phoneme recognition and alignment experiments, including comparisons with baseline methods. ∗ is mea-
sured by word error rate instead of PER. † indicates an evaluation by ourselves.

preprocessing to simplify data handling. During this phase,
the necessary components such as the tokeniser, feature ex-
tractor, processor, and data collator were created, enabling
efficient handling and analysis of complex speech datasets
for model training and evaluation.

In total, the dictionary included 61 ARPABET phonemes
(Seneff and Zue 1988) and three special tokens, “[UNK]”,
“[PAD]” and “|” for “unknown”, “padding” and “ ’ ” respec-
tively.

• File: Path of the audio file.

• Text: The transcription for the audio file.

• Phonetic Detail: Phonetic transcription formatted
as ‘<start sample> <stop sample> <phoneme>
<new line>’, where ‘start sample’ and ‘stop sample’
are the integer sample numbers marking the start and stop
of the phoneme segment, respectively, and ‘phoneme’
represents a single sound unit using ARPABET symbols.

Evaluation Measures
The proposed phoneme segmenter architecture was evalu-
ated using two key aspects: phoneme recognition perfor-
mance and forced alignment performance.

Phoneme Recognition Phoneme recognition perfor-
mance was assessed using the PER, where lower values
indicate better performance. The PER is calculated as:

PER =
D + S + I

N
, (2)

where D represents deletions, S substitutions, I insertions,
and N the total number of phonemes.

Forced Alignment The performance of temporal align-
ment was evaluated using precision (P), recall (R), F1 Score
and R-value (Räsänen, Laine, and Altosaar 2009), calcu-
lated via the midpoint method (Mahr et al. 2021), where
higher values indicate better performance. The F1 Score is
defined as:

F1 Score =
2

Precision−1 + Recall−1 , (3)

where Precision represents the proportion of matched pre-
dictions correct; Recall the proportion of ground truths cor-
rectly classified.

Experimental Results
Phoneme Recognition
The phoneme recognition performance of SSD instances in
the UltraSuite dataset is presented in Table 2. The proposed
model demonstrated advanced performance on the Ultra-
Suite test set, achieving a PER of 0.15. Fine-tuning on the
UltraSuite dataset was completed in approximately 2 hours,
33 minutes, and 10 seconds on a Linux machine equipped
with a 16-core CPU and an NVIDIA GeForce RTX 4090
GPU with 24 GB of memory.

To demonstrate the superior performance of our proposed
method, we compared it with several baseline alternatives.
As shown in Table 2, we evaluated the model proposed by
Zhu, Zhang, and Jurgens on the UltraSuite dataset, achiev-
ing a PER of 0.2 after collapsing the 61 TIMIT phonemes
into the 39 CMU phoneme set. Since phoneme folding is
known to improve performance (Lee and Hon 1989), we an-
ticipate that our model would achieve a PER improvement
of at least 0.05. Additionally, we compared our results with
those reported by the UltraSuite team (Ribeiro et al. 2019),
where their model’s phoneme recognition performance was
measured using Word Error Rate (WER), which is generally
higher than PER. Despite the difference in evaluation met-
rics, our model demonstrated superior phoneme recognition
performance.
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Figure 3: The F1 value against bias factor β for the Ultra-
Suite and TL experiments, respectively.



Forced Alignment
The forced alignment performance of SSD instances in the
UltraSuite dataset was presented in Figure 3. The proposed
model achieved the highest F1 Score of 0.82 and an R-value
of 0.85 with β = 0.45, significantly outperforming the exist-
ing solutions (Ribeiro et al. 2019; Zhu, Zhang, and Jurgens
2022). The bias factor β = 0.45 suggests that the boundaries
originally closer to the end of the true segment have shifted
farther from the uppermost segment.

Transfer Learning
With TL using TIMIT, TORGO and UltraSuite datasets,
both phoneme recognition and forced alignment showed im-
provement. For phoneme recognition, as illustrated in Ta-
ble 2, PER decreased from 0.15 to 0.12. For forced align-
ment, as shown in Figure 3, the proposed phoneme seg-
menter achieved the highest F1 Score of 0.86 with β = 0.5,
representing a 4% increase. The unbiased factor β = 0.5 fur-
ther suggests that TL has enhanced alignment performance.
These results align with the conclusions of studies that have
demonstrated leveraging out-of-domain data can enhance
segmentation performance for childhood-disordered speech
(Christensen et al. 2013; Fainberg et al. 2016).

To better understand the improvements introduced by TL,
we visualized a representative sample in Figure 4. The sam-
ple, “orange”, was produced by an SSD child within the Ul-
traSuite dataset. Subplot (a) illustrates the phoneme recogni-
tion and alignment results without TL, whereas subplot (b)
presents the outcomes after applying TL. Subplot (c) dis-
plays the human-labeled phonetic transcription and times-
tamps. Notably, the alignment performance, especially for
the onset and offset timestamps of the phonemes “ih” and
“n” have been markedly improved with the application of
TL.

Conclusion
In this paper, we introduce a novel phoneme segmenter
designed to automate phonetic transcription and perform
forced alignment, specifically tailored for clinical applica-
tions in assessing speech sound disorders in children. Our
proposed method leverages wav2vec2-xls-r and we
conduct a comprehensive evaluation of our architecture by
assessing phoneme recognition and forced alignment with
and without the application of TL technique. We benchmark
our model against existing methods using the UltraSuite
dataset, achieving a competitive performance with a PER of
0.15 and an F1 Score of 82%. This result suggests that au-
tomatically generated phonetic transcriptions and phoneme
boundaries for children’s speech can be achieved with a
high level of accuracy. This may help improve the accuracy
currently reported in clinical settings, which rely solely on
auditory-perceptual methods (Mallaband 2024).

Overall, this research introduces a comprehensive auto-
mated solution for future clinical application, focusing not
only on transcribing what is said but also the precise tim-
ing of transitions between sounds. Future research will focus
on enhancing the robustness of our model by incorporating

clinical data and critical acoustic features, as well as includ-
ing additional benchmarks and comparing our AI models
with clinical assessments. This research is being conducted
within a knowledge translation framework with the ultimate
goal of applying the findings to clinical practice.
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