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Abstract

We present Knowledge Distillation with Meta001
Learning (MetaDistil), a simple yet effective002
alternative to traditional knowledge distilla-003
tion (KD) methods where the teacher model004
is fixed during training. We show the teacher005
network can learn to better transfer knowledge006
to the student network (i.e., learning to teach)007
with the feedback from the performance of the008
distilled student network in a meta learning009
framework. Moreover, we introduce a pilot010
update mechanism to improve the alignment011
between the inner-learner and meta-learner in012
meta learning algorithms that focus on an im-013
proved inner-learner. Experiments on various014
benchmarks show that MetaDistil can yield015
significant improvements compared with tradi-016
tional KD algorithms and is less sensitive to017
the choice of different student capacity and hy-018
perparameters, facilitating the use of KD on019
different tasks and models.1020

1 Introduction021

With the prevalence of large neural networks with022

millions or billions of parameters, model compres-023

sion is gaining prominence for facilitating efficient,024

eco-friendly deployment for machine learning ap-025

plications. Among techniques for compression,026

knowledge distillation (KD) (Hinton et al., 2015)027

has shown effectiveness in both Computer Vision028

and Natural Language Processing tasks (Hinton029

et al., 2015; Romero et al., 2015; Zagoruyko & Ko-030

modakis, 2017; Tung & Mori, 2019; Peng et al.,031

2019; Ahn et al., 2019; Park et al., 2019; Passalis032

& Tefas, 2018; Heo et al., 2019; Kim et al., 2018;033

Shi et al., 2021; Sanh et al., 2019; Jiao et al., 2019;034

Wang et al., 2020b). Previous works often train035

a large model as the “teacher”; then they fix the036

teacher and train a “student” model to mimic the037

behavior of the teacher, in order to transfer the038

knowledge from the teacher to the student.039

1The code will be released upon acceptance.

However, this paradigm has the following draw- 040

backs: (1) The teacher is unaware of the stu- 041

dent’s capacity. Recent studies in pedagogy sug- 042

gest student-centered learning, which considers 043

students’ characteristics and learning capability, 044

has shown effectiveness improving students’ per- 045

formance (Cornelius-White, 2007; Wright, 2011). 046

However, in conventional knowledge distillation, 047

the student passively accepts knowledge from the 048

teacher, without regard for the student model’s 049

learning capability and performance. Recent 050

works (Park et al., 2021; Shi et al., 2021) intro- 051

duce student-aware distillation by jointly training 052

the teacher and the student with task-specific objec- 053

tives. However, there is still space for improvement 054

since: (2) The teacher is not optimized for dis- 055

tillation. In previous works, the teacher is often 056

trained to optimize its own inference performance. 057

However, the teacher is not aware of the need to 058

transfer its knowledge to a student and thus usu- 059

ally does so suboptimally. A real-world analogy is 060

that a PhD student may have enough knowledge to 061

solve problems themselves, but requires additional 062

teaching training to qualify as a professor. 063

To address these two drawbacks, we pro- 064

pose Knowledge Distillation with Meta Learn- 065

ing (MetaDistil), a new teacher-student distillation 066

framework using meta learning (Finn et al., 2017) 067

to exploit feedback about the student’s learning 068

progress to improve the teacher’s knowledge trans- 069

fer ability throughout the distillation process. On 070

the basis of previous formulations of bi-level op- 071

timization based meta learning (Finn et al., 2017), 072

we propose a new mechanism called pilot update 073

that aligns the learning of the bi-level learners (i.e., 074

the teacher and the student).We illustrate the work- 075

flow of MetaDistil in Figure 1. The teacher in 076

MetaDistil is trainable, which enables the teacher to 077

adjust to its student network and also improves its 078

“teaching skills.” Motivated by the idea of student- 079

centered learning, we allow the teacher to adjust 080
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Figure 1: The workflow of MetaDistil. (1) We perform experimental knowledge distillation on a selection of
training batches. Instead of updating the student S, we make a temporary copy S′ and update S′. (2) We calculate
a Cross-Entropy loss LCE of S′ on samples from a separate quiz set. We calculate the gradients of LCE with
respect to the parameters of T and update T by gradient descent. (3) We discard S′ and use the updated T to
perform actual knowledge distillation and update S.

its output based on the performance of the student081

model on a “quiz set,” which is a separate reserved082

data split from the original training set. For each083

training step, we first copy the student S to S′ and084

update S′ by a common knowledge distillation loss.085

We call this process a “teaching experiment.” In086

this way, we can obtain an experimental student087

S′ that can be quizzed. Then, we sample from088

the quiz set, and calculate the loss of S′ on these089

samples. We use this loss as a feedback signal090

to meta-update the teacher by calculating second091

derivatives and performing gradient descent (Finn092

et al., 2017). Finally, we discard the experimental093

subject S′ and use the updated teacher to distill into094

the student S on the same training batches. The095

use of meta learning allows the teacher model to096

receive feedback from the student in a completely097

differentiable way. We provide a simple and in-098

tuitive approach to explicitly optimize the teacher099

using the student’s quiz performance as a proxy.100

To test the effectiveness of MetaDistil, we con-101

duct extensive experiments on text and image clas-102

sification tasks. MetaDistil outperforms knowl-103

edge distillation by a large margin, verifying the104

effectiveness and versatility of our method. Also,105

our method achieves state-of-the-art performance106

compressing BERT (Devlin et al., 2019) on the107

GLUE benchmark (Wang et al., 2019) and shows108

competitive results compressing ResNet (He et al.,109

2016) and VGG (Simonyan & Zisserman, 2015)110

on CIFAR-100 (Krizhevsky et al., 2009). Addi-111

tionally, we design experiments to analyze and ex-112

plain the improvement. Ablation studies show the113

effectiveness of our proposed pilot update and dy-114

namic distillation. Also, compared to conventional115

KD, MetaDistil is more robust to different student116

capacity and hyperparameters, which is probably117

because of its ability to adjust its parameters. 118

2 Related Work 119

Knowledge Distillation Recently, many at- 120

tempts have been made to accelerate large neural 121

networks (Xu et al., 2020; Zhou et al., 2020, 2021). 122

Knowledge distillation is a prominent method for 123

training compact networks to achieve comparable 124

performance to a deep network. Hinton et al. (2015) 125

first introduced the idea of knowledge distillation 126

to exploit the “dark knowledge” (i.e., soft label dis- 127

tribution) from a large teacher model as additional 128

supervision for training a smaller student model. 129

Since its introduction, several works (Romero et al., 130

2015; Zagoruyko & Komodakis, 2017; Tung & 131

Mori, 2019; Park et al., 2019; Sun et al., 2019; 132

Jiao et al., 2019) have investigated methods that 133

align different latent representations between the 134

student and teacher models for better knowledge 135

transfer. In the context of knowledge distillation, 136

MetaDistil shares some common ideas with the line 137

of work that utilizes a sequence of intermediate 138

teacher models to make the teacher network better 139

adapt to the capacity of the student model through- 140

out the training process, including teacher assistant 141

knowledge distillation (TAKD) (Mirzadeh et al., 142

2020) and route constraint optimization (RCO) (Jin 143

et al., 2019). However, the intermediate teach- 144

ers are heuristically selected independently of the 145

training process and the evolution of the teacher 146

network is discrete. In contrast, MetaDistil em- 147

ploys meta learning to make the teacher model 148

adapt to the current state of the student model and 149

provide a continuously evolving meta-teacher that 150

can better teach the student. Concurrently, Park 151

et al. (2021) and Shi et al. (2021) propose to update 152

the teacher model jointly with the student model 153

2



with task specific objectives (e.g., cross-entropy154

loss) during the KD process and add constraints155

to keep student and teacher similar to each other.156

Their approaches makes the teacher model aware157

of the student model by constraining the teacher158

model’s capacity. However, the teacher models in159

their methods are still not optimized for knowl-160

edge transfer. In addition, Zhang et al. (2018)161

introduced deep mutual learning where multiple162

models learn collaboratively and teach each other163

throughout the training process. While it is focused164

on a different setting where different models have165

approximately the same capacity and are learned166

from scratch, it also encourages the teacher model167

to behave similarly to the student model. Differ-168

ent from all aforementioned methods, MetaDistil169

employs meta learning to explicitly optimize the170

teacher model for better knowledge transfer ability,171

and leads to improved performance of the resulting172

student model.173

Meta Learning The core idea of meta learning174

is “learning to learn,” which means taking the opti-175

mization process of a learning algorithm into con-176

sideration when optimizing the learning algorithm177

itself. Meta learning typically involves a bi-level178

optimization process where the inner-learner pro-179

vides feedback for optimization of the meta-learner.180

Successful applications of meta learning include181

learning better initialization (Finn et al., 2017), ar-182

chitecture search (Liu et al., 2019), learning to op-183

timize the learning rate schedule (Baydin et al.,184

2018), and learning to optimize (Andrychowicz185

et al., 2016). These works typically aim to ob-186

tain an optimized meta-learner (i.e., the teacher187

model in MetaDistil), while the optimization of the188

inner-learner (i.e., the student model in MetaDis-189

til), is mainly used to provide learning signal for190

the meta optimization process. This is different191

from the objective of knowledge distillation where192

an optimized student model is the goal. Recently,193

there have been a few works investigating using194

this bi-level optimization framework to obtain a195

better inner-learner. For example, meta pseudo196

labels (Pham et al., 2020) uses meta learning to197

optimize a pseudo label generator for better semi-198

supervised learning; meta back-translation (Pham199

et al., 2021) meta-trains a back-translation model200

to better train a machine translation model. These201

methods adapt the same bi-level optimization pro-202

cess as previous works where the goal is to obtain203

an optimized meta-learner. In these approaches,204

during each iteration, the meta-learner is optimized 205

for the original inner-learner and then applied to 206

the updated inner-learner in the next iteration. This 207

leads to a mismatch between the meta-learner and 208

the inner-learner, and is therefore suboptimal for 209

learning a good inner-learner. In this paper, we 210

introduce a pilot update mechanism, which is a 211

simple and general method for this kind of prob- 212

lem, for the inner-learner to mitigate this issue and 213

make the updated meta-learner better adapted to 214

the inner-learner. 215

Meta Knowledge Distillation Recently, some 216

works on KD take a meta approach. Pan et al. 217

(2020) proposed a framework to train a meta- 218

teacher across domains that can better fit new do- 219

mains with meta-learning. Then, traditional KD is 220

performed to transfer the knowledge from the meta- 221

teacher to the student. Liu et al. (2020) proposed a 222

self-distillation network and utilizes meta-learning 223

to train a label-generator, which is a fusion of deep 224

layers in the network, to generate more compatible 225

soft targets for shallow layers. Different from the 226

above, MetaDistil is a general knowledge distilla- 227

tion method that exploits meta-learning to allow 228

the teacher to learn to teach dynamically. Instead 229

of merely training a meta-teacher, our method uses 230

meta-learning throughout the procedure of knowl- 231

edge transfer, making the teacher model compatible 232

for the student model for every training example 233

during each training stage. 234

3 Knowledge Distillation with Meta 235

Learning 236

An overview of MetaDistil is presented in Figure 1. 237

MetaDistil includes two major components. First, 238

the meta update enables the teacher model to re- 239

ceive the student model’s feedback on the distilla- 240

tion process, allowing the teacher model to “learn 241

to teach” and provide distillation signals that are 242

more suitable for the student model’s current ca- 243

pacity. The pilot update mechanism ensures a finer- 244

grained match between the student model and the 245

meta-updated teacher model. 246

3.1 Background 247

3.1.1 Knowledge Distillation 248

Knowledge distillation algorithms aim to exploit 249

the hidden knowledge from a large teacher network, 250

denoted as T , to guide the training of a shallow 251

student network, denoted as S. To help transfer the 252

knowledge from the teacher to the student, apart 253

3



from the original task-specific objective (e.g., cross-254

entropy loss), a knowledge distillation objective255

which aligns the behavior of the student and the256

teacher is included to train the student network.257

Formally, given a labeled dataset D of N samples258

D = {(x1, y1) , . . . , (xN , yN )}, we can write the259

loss function of the student network as follows,260

LS (D; θS ; θT ) =
1

N

N∑
i=1

[αLT (yi, S (xi; θS))

+ (1− α)LKD (T (xi; θT ) , S (xi; θS))]

(1)

261

where α is a hyper-parameter to control the relative262

importance of the two terms; θT and θS are the263

parameters of the teacher T and student S, respec-264

tively. LT refers to the task-specific loss and LKD265

refers to the knowledge distillation loss which mea-266

sures the similarity of the student and the teacher.267

Some popular similarity measurements include the268

KL divergence between the output probability dis-269

tribution, the mean squared error between student270

and teacher logits, the similarity between the stu-271

dent and the teacher’s attention distribution, etc.272

We do not specify the detailed form of the loss273

function because MetaDistil is a general frame-274

work that can be easily applied to various kinds of275

KD objectives as long as the objective is differen-276

tiable with respect to the teacher parameters. In the277

experiments of this paper, we use mean squared278

error between the hidden states of the teacher and279

the student for both our method and the KD base-280

line since recent study Kim et al. (2021) finds that281

it is more stable and slightly outperforms than KL282

divergence.283

3.1.2 Meta Learning284

In meta learning algorithms that involve a bi-level285

optimization problem (Finn et al., 2017), there ex-286

ists an inner-learner fi and a meta-learner fm. The287

inner-learner is trained to accomplish a task T or288

a distribution of tasks with help from the meta-289

learner. The training process of fi on T with the290

help of fm is typically called inner-loop, and we291

can denote f ′i(fm) as the updated inner-learner af-292

ter the inner-loop. We can express f ′i as a function293

of fm because learning fi depends on fm. In return,294

the meta-learner is optimized with a meta objective,295

which is generally the maximization of expected296

performance of the inner-learner after the inner-297

loop, i.e., f ′i(fm). This learning process is called a298

meta-loop and is often accomplished by gradient299

descent with derivatives of L(f ′i(fm)), the loss of 300

updated inner-leaner on some held-out support set 301

(i.e., the quiz set in our paper). 302

3.2 Methodology 303

3.2.1 Pilot Update 304

In the original formulation of meta learning (Finn 305

et al., 2017), the purpose is to learn a good meta- 306

learner fm that can generalize to different inner- 307

learners fi for different tasks. In their approach, the 308

meta-learner is optimized for the “original” inner- 309

learner at the beginning of each iteration and the 310

current batch of training data. The updated meta- 311

learner is then applied to the updated inner-learner 312

and a different batch of data in the next iteration. 313

This behavior is reasonable if the purpose is to opti- 314

mize the meta-learner. However, in MetaDistil, we 315

only care about the performance of the only inner- 316

learner, i.e., the student. In this case, this behavior 317

leads to a mismatch between the meta-learner and 318

the inner-learner, and is therefore suboptimal for 319

learning a good inner-learner. Therefore, we need 320

a way to align and synchronize the learning of the 321

meta- and inner-learner, in order to allow an up- 322

date step of the meta-learner to have an instant 323

effect on the inner-learner. This instant reflection 324

prevents the meta-learner from catastrophic forget- 325

ting (McCloskey & Cohen, 1989). To achieve this, 326

we design a pilot update mechanism. For a batch 327

of training data x, we first make a temporary copy 328

of the inner-learner fi and update both the copy f ′i 329

and the meta learner fm on x. Then, we discard 330

f ′i and update fi again with the updated fm on the 331

same data x. This mechanism can apply the im- 332

pact of data x to both fm and fi at the same time, 333

thus aligns the training process. Pilot update is a 334

general technique that can potentially be applied 335

to any meta learning application that optimizes the 336

inner-learner performance. We will describe how 337

we apply this mechanism to MetaDistil shortly and 338

empirically verify the effectiveness of pilot update 339

in Section 4.2. 340

3.2.2 Learning to Teach 341

In MetaDistil, we would like to optimize the 342

teacher model, which is fixed in traditional KD 343

frameworks. Different from previous deep mu- 344

tual learning (Zhang et al., 2018) methods that 345

switch the role between the student and teacher 346

network and train the original teacher model with 347

soft labels generated by the student model or re- 348

cent works (Shi et al., 2021; Park et al., 2021) that 349
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Algorithm 1 Knowledge Distillation with Meta Learning (MetaDistil)
Require: student θS , teacher θT , train set D, quiz setQ
Require: λ, µ: learning rate for the student and the teacher
1: while not done do
2: Sample batch of training data x ∼ D
3: Copy student parameter θS to student θ′S
4: Update θ′S with x and θT : θ′S ← θ′S − λ∇θ′SLS(x; θS ; θT )
5: Sample a batch of quiz data q ∼ Q
6: Update θT with q and θ′S : θT ← θT − µ∇θTLT (q, θ′S(θT ))
7: Update original θS with x and the updated θT : θS ← θS − λ∇θSLS(x; θS ; θT )
8: end while

update the teacher model with a task-specific loss350

during the KD process, MetaDistil explicitly op-351

timizes the teacher model in a “learning to teach”352

fashion, so that it can better transfer its knowledge353

to the student model. Concretely, the optimization354

objective of the teacher model in the MetaDistil355

framework is the performance of the student model356

after distilling from the teacher model. This “learn-357

ing to teach” paradigm naturally fits the bi-level358

optimization framework in meta learning literature.359

In the MetaDistil framework, the student net-360

work θS is the inner-learner and the teacher net-361

work θT is the meta-learner. For each training step,362

we first copy the student model θS to an “experi-363

mental student” θ′S . Then given a batch of training364

examples x and the learning rate λ, the experimen-365

tal student is updated in the same way as conven-366

tional KD algorithms:367

θ′S(θT ) = θS − λ∇θSLS(x; θS ; θT ). (2)368

To simplify notation, we will consider one gradi-369

ent update for the rest of this section, but using370

multiple gradient updates is a straightforward ex-371

tension. We observe that the updated experimental372

student parameter θ′S , as well as the student quiz373

loss lq = LT (q, θ′S(θT )) on a batch of quiz sam-374

ples q sampled from a held-out quiz set Q, is a375

function of the teacher parameter θT . Therefore,376

we can optimize lq with respect to θT by a learning377

rate µ:378

θT ← θT − µ∇θTLT
(
q, θ′S(θT )

)
(3)379

We evaluate the performance of the experimental380

student on a separate quiz set to prevent overfitting381

the validation set, which is preserved for model382

selection. Note that the student is never trained on383

the quiz set and the teacher only performs meta-384

update on the quiz set instead of fitting it. We do385

not use a dynamic quiz set strategy because other-386

wise the student would have been trained on the387

quiz set and the loss would not informative. After 388

meta-updating the teacher model, we then update 389

the “real” student model in the same way as de- 390

scribed in Equation 2. Intuitively, optimizing the 391

teacher network θT with Equation 3 is maximizing 392

the expected performance of the student network 393

after being taught by the teacher with the KD objec- 394

tive in the inner-loop. This meta-objective allows 395

the teacher model to adjust its parameters to better 396

transfer its knowledge to the student model. We 397

apply the pilot update strategy described in Sec- 398

tion 3.2.1 to better align the learning of the teacher 399

and student. The complete algorithm is shown in 400

Algorithm 1. 401

4 Experiments 402

4.1 Experimental Setup 403

We evaluate MetaDistil on two commonly used 404

classification benchmarks for knowledge distilla- 405

tion in both Natural Language Processing and Com- 406

puter Vision (see Appendix A). 407

Settings For NLP, we evaluate our proposed ap- 408

proach on the GLUE benchmark (Wang et al., 409

2019). Specifically, we test on MRPC (Dolan 410

& Brockett, 2005), QQP2 and STS-B (Conneau 411

& Kiela, 2018) for Paraphrase Similarity Match- 412

ing; SST-2 (Socher et al., 2013) for Sentiment 413

Classification; MNLI (Williams et al., 2018), 414

QNLI (Rajpurkar et al., 2016) and RTE (Wang 415

et al., 2019) for the Natural Language Inference; 416

CoLA (Warstadt et al., 2019) for Linguistic Ac- 417

ceptability. Following previous studies (Sun et al., 418

2019; Jiao et al., 2019; Xu et al., 2020), our goal 419

is to distill BERT-Base (Devlin et al., 2019) into 420

a 6-layer BERT with the hidden size of 768. The 421

reported results are in the same format as on the 422

GLUE leaderboard. For MNLI, we report the re- 423

sults on MNLI-m and MNLI-mm, respectively. For 424

2https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs
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Method #Param. Speed-up
GLUE (Wang et al., 2019)

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

Dev Set

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 58.9 84.6/84.9 91.6/87.6 91.2 88.5/91.4 71.4 93.0 90.2/89.8
BERT-6L (student) (Turc et al., 2019) 66M 1.94× 53.5 81.1/81.7 89.2/84.4 88.6 86.9/90.4 67.9 91.1 88.1/87.9

Pretraining Distillation

TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 54.0 84.5/84.5 90.6/86.3 91.1 88.0/91.1 73.4 93.0 90.1/89.6
MiniLM (Wang et al., 2020b) 66M 1.94× 49.2 84.0/ - 88.4/ - 91.0 - /91.0 71.5 92.0 -
MiniLM v2 (Wang et al., 2020a) 66M 1.94× 52.5 84.2/ - 88.9/ - 90.8 - /91.1 72.1 92.4 -

Task-specific Distillation

KD† (Hinton et al., 2015) 66M 1.94× 54.1 82.6/83.2 89.6/85.2 89.2 87.3/90.9 67.7 91.2 88.6/88.2
PKD† (Sun et al., 2019) 66M 1.94× 54.5 82.7/83.3 89.4/84.7 89.5 87.8/90.9 67.6 91.3 88.6/88.1
TinyBERT w/o DA† 66M 1.94× 52.4 83.6/83.8 90.5/86.5 89.8 87.6/90.6 67.7 91.9 89.2/88.7
RCO† (Jin et al., 2019) 66M 1.94× 53.6 82.4/82.9 89.5/85.1 89.7 87.4/90.6 67.6 91.4 88.7/88.3
TAKD† (Mirzadeh et al., 2020) 66M 1.94× 53.8 82.5/83.0 89.6/85.0 89.6 87.5/90.7 68.5 91.4 88.2/88.0
DML† (Zhang et al., 2018) 66M 1.94× 53.7 82.4/82.9 89.6/85.1 89.6 87.4/90.3 68.4 91.5 88.4/88.1
ProKT† (Shi et al., 2021) 66M 1.94× 54.3 82.8/83.2 90.7/86.3 89.7 87.9/90.9 68.4 91.3 88.9/88.6
SFTN† (Park et al., 2021) 66M 1.94× 53.6 82.4/82.9 89.8/85.3 89.5 87.5/90.4 68.5 91.5 88.4/88.5
MetaDistil (ours) 66M 1.94× 58.6 83.5/83.8 91.1/86.8 90.4 88.1/91.0 69.4 92.3 89.4/89.1

w/o pilot update 66M 1.94× 56.3 83.0/83.4 90.6/86.6 89.9 88.0/88.5 67.7 92.0 89.2/89.0

Test Set

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 52.1 84.6/83.4 88.9/84.8 90.5 71.2/89.2 66.4 93.5 87.1/85.8

Pretraining Distillation

DistilBERT (Sanh et al., 2019) 66M 1.94× 45.8 81.6/81.3 87.6/83.1 88.8 69.6/88.2 54.1 92.3 71.0/71.0
TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 51.1 84.3/83.4 88.8/84.5 91.6 70.5/88.3 70.4 92.6 86.2/84.8

Task-specific Distillation

KD (Turc et al., 2019) 66M 1.94× - 82.8/82.2 86.8/81.7 88.9 70.4/88.9 65.3 91.8 -
PKD (Sun et al., 2019) 66M 1.94× 43.5 81.5/81.0 85.0/79.9 89.0 70.7/88.9 65.5 92.0 83.4/81.6
BERT-of-Theseus (Xu et al., 2020) 66M 1.94× 47.8 82.4/82.1 87.6/83.2 89.6 71.6/89.3 66.2 92.2 85.6/84.1
ProKT (Shi et al., 2021) 66M 1.94× - 82.9/82.2 87.0/82.3 89.7 70.9/88.9 - 93.3 -
TinyBERT‡ (Jiao et al., 2019) 66M 1.94× 47.5 83.0/82.6 87.9/82.8 89.8 70.9/88.6 66.8 93.1 85.8/84.6
DML† (Zhang et al., 2018) 66M 1.94× 48.5 82.6/81.6 86.5/81.2 89.5 70.7/88.7 66.3 92.7 85.5/84.0
RCO† (Jin et al., 2019) 66M 1.94× 48.2 82.3/81.2 86.8/81.4 89.3 70.4/88.7 66.5 92.6 85.3/84.1
TAKD† (Mirzadeh et al., 2020) 66M 1.94× 48.4 82.4/81.7 86.5/81.3 89.4 70.6/88.8 66.8 92.9 85.4/84.1
SFTN† (Park et al., 2021) 66M 1.94× 48.1 82.1/81.3 86.5/81.2 89.6 70.2/88.4 66.3 92.7 85.1/84.2
MetaDistil (ours) 66M 1.94× 50.7 83.8/83.2 88.7/84.7 90.2 71.1/88.9 67.2 93.5 86.1/85.0

w/o pilot update 66M 1.94× 49.1 83.3/82.8 88.2/84.1 89.9 71.0/88.7 66.6 93.5 85.9/84.6

Table 1: Experimental results on the development set and the test set of GLUE. Numbers under each dataset
indicate the number of training samples. All student models have the same architecture of 66M parameters, 6
Transformer layers and 1.94× speed-up. The test results are from the official test server of GLUE. The best results
for the task-specific setting are marked with boldface. Results reported by us are average of 3 runs with different
seeds. †Results reported by us. The student is initialized with a 6-layer pretrained BERT (Turc et al., 2019) thus
has a better performance than the original implementation. ‡TinyBERT has data augmentation (DA).

MRPC and QQP, we report both F1 and accuracy.425

For STS-B, we report Pearson and Spearman cor-426

relation. The metric for CoLA is Matthew’s corre-427

lation. The other tasks use accuracy as the metric.428

Following previous works (Sun et al., 2019; Turc429

et al., 2019; Xu et al., 2020), we evaluate MetaDis-430

til in a task-specific setting where the teacher model431

is fine-tuned on a downstream task and the stu-432

dent model is trained on the task with the KD loss.433

We do not choose the pretraining distillation set-434

ting since it requires significant computational re-435

sources. We implement MetaDistil based on Hug-436

ging Face Transformers (Wolf et al., 2020).437

Baselines For comparison, we report the results 438

of vanilla KD and patient knowledge distilla- 439

tion (Sun et al., 2019). We also include the re- 440

sults of progressive module replacing (Xu et al., 441

2020), a state-of-the-art task-specific compression 442

method for BERT which also uses a larger teacher 443

model to improve smaller ones like knowledge 444

distillation. In addition, according to Turc et al. 445

(2019), the reported performance of current task- 446

specific BERT compression methods is underesti- 447

mated because the student model is not appropri- 448

ately initialized. To ensure fair comparison, we 449

re-run task-specific baselines with student models 450

initialized by a pretrained 6-layer BERT model 451
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and report our results in addition to the official452

numbers in the original papers. We also com-453

pare against deep mutual learning (DML) (Zhang454

et al., 2018), teacher assistant knowledge distilla-455

tion (TAKD) (Mirzadeh et al., 2020), route con-456

straint optimization (RCO) (Jin et al., 2019), proxi-457

mal knowledge teaching (ProKT) (Shi et al., 2021),458

and student-friendly teacher network (SFTN) (Park459

et al., 2021), where the teacher network is not fixed.460

For reference, we also present results of pretraining461

distilled models including DistilBERT (Sanh et al.,462

2019), TinyBERT (Jiao et al., 2019), MiniLM v1463

and v2 (Wang et al., 2020b,a). Note that among464

these baselines, PKD (Sun et al., 2019) and The-465

seus (Xu et al., 2020) exploit intermediate features466

while TinyBERT and the MiniLM family use both467

intermediate and Transformer-specific features. In468

contrast, MetaDistil uses none of these but the469

vanilla KD loss (Equation 1).470

Training Details For training hyperparameters,471

we fix the maximum sequence length to 128 and the472

temperature to 2 for all tasks. For our method and473

all baselines (except those with officially reported474

numbers), we perform grid search over the sets of475

the student learning rate λ from {1e-5, 2e-5, 3e-5},476

the teacher learning rate µ from {2e-6, 5e-6, 1e-5},477

the batch size from {32, 64}, the weight of KD loss478

from {0.4, 0.5, 0.6}. We randomly split the original479

training set to a new training set and the quiz set480

by 9 : 1. For RCO, we select four unconverged481

teacher checkpoints as the intermediate training482

targets. For TAKD, we use KD to train a teacher483

assistant model with 10 Transformer layers.484

4.2 Experimental Results485

We report the experimental results on both the486

development set and test set of the eight GLUE487

tasks (Wang et al., 2019) in Table 1. MetaDis-488

til achieves state-of-the-art performance under the489

task-specific setting and outperforms all KD base-490

lines. Notably, without using any intermediate491

or model-specific features in the loss function,492

MetaDistil outperforms methods with carefully de-493

signed features, e.g., PKD and TinyBERT (without494

data augmentation). Compared with other meth-495

ods with a trainable teacher (Zhang et al., 2018;496

Mirzadeh et al., 2020; Jin et al., 2019; Shi et al.,497

2021), our method still demonstrates superior per-498

formance. As we analyze, with the help of meta499

learning, MetaDistil is able to directly optimize the500

teacher’s teaching ability thus yielding a further501

improvement in terms of student accuracy. Also, 502

we observe a performance drop by replacing pilot 503

update with a normal update. This ablation study 504

verifies the effectiveness of our proposed pilot up- 505

date mechanism. Moreover, MetaDistil achieves 506

very competitive results on image classification as 507

well, as described in Section A.2. 508

5 Analysis 509

5.1 Why Does MetaDistil Work? 510

We investigate the effect of meta-update for each 511

iteration. We inspect (1) the validation loss of S′ 512

after the teaching experiment and that of S after 513

the real distillation update, and (2) the KD loss, 514

which describes the discrepancy between student 515

and teacher, before and after the teacher update. 516

We find that for 87% of updates, the student 517

model’s validation loss after real update (Line 7 in 518

Algorithm 1) is smaller than that after the teaching 519

experiment (Line 4 in Algorithm 1), which would 520

be the update to the student S in the variant without 521

pilot update. This confirms the effectiveness of the 522

pilot update mechanism on better matching the 523

student and teacher model. 524

Moreover, we find that in 91% of the first half 525

of the updates, the teacher becomes more similar 526

(in terms of logits distributions) to the student after 527

the meta-update, which indicates that the teacher is 528

learning to adapt to a low-performance student (like 529

an elementary school teacher). However, in the 530

second half of MetaDistil, this percentage drops to 531

63%. We suspect this is because in the later training 532

stages, the teacher needs to actively evolve itself 533

beyond the student to guide the student towards 534

further improvement (like a university professor). 535

Finally, we try to apply a meta-learned teacher to 536

a conventional static distillation and also to an un- 537

familiar student. We describe the results in details 538

in Section A.3. 539

5.2 Hyper-parameter Sensitivity 540

A motivation of MetaDistil is to enable the teacher 541

to dynamically adjust its knowledge transfer in an 542

optimal way. Similar to Adam (Kingma & Ba, 543

2015) vs. SGD (Sinha & Griscik, 1971; Kiefer 544

et al., 1952) for optimization, with the ability of 545

dynamic adjusting, it is natural to expect MetaDistil 546

to be more insensitive and robust to changes of the 547

settings. Here, we evaluate the performance of 548

MetaDistil with students of various capability, and 549
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Figure 2: Results with different
student architectures.
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Figure 4: Results with different tem-
perature.

a wide variety of hyperparameters, including loss550

weight and temperature.551

Student Capability To investigate the perfor-552

mance of MetaDistil under different student ca-553

pacity, we experiment to distill BERT-Base into554

BERT-6L, Medium, Small, Mini and Tiny (Turc555

et al., 2019) with conventional KD and MetaDis-556

til. We plot the performance with the student’s557

parameter number in Figure 2. Additionally, we558

show results for different compression ratio in Ap-559

pendix B.560

Loss Weight In KD, tuning the loss weight is non-561

trivial and often requires hyperparameter search.562

To test the robustness of MetaDistil under different563

loss weights, we run experiments with different α564

(Equation 1). As shown in Figure 3, MetaDistil565

consistently outperforms conventional KD and is566

less sensitive to different α.567

Temperature Temperature is a re-scaling trick568

introduced in Hinton et al. (2015). We try different569

temperatures and illustrate the performance of KD570

and MetaDistil in Figure 4. MetaDistil shows better571

performance and robustness compared to KD.572

5.3 Limitation573

Like all meta learning algorithms, MetaDistil in-574

evitably requires two rounds of updates involv-575

ing both first and second order derivatives. Thus,576

MetaDistil requires additional computational time577

and memory than a normal KD method, which can578

be a limitation of our method. We compare the579

Method PKD (2019) ProKT (2021) MetaDistil (ours)

Training Time (Best) 13 min. 25 min. 31 min.
Training Time (Match) 13 min. 18 min. 16 min.
Memory Cost 4.2 GB 6.8 GB 11.4 GB

Best Acc/F1 89.4/84.7 90.7/86.3 91.1/86.8

Table 2: Comparison of training time and memory
cost of MetaDistil with the baselines. “Training Time
(Best)” denotes the training time for each method to
achieve its own best performance on the development
set. “Training Time (Match)” denotes the training time
for each method to match the best performance of PKD
on the development set. The batch size is 4. All experi-
ments are conducted on a single Nvidia V100 GPU.

computational overheads of MetaDistil with other 580

methods in Table 2. Although our approach takes 581

more time to achieve its own peak performance, it 582

can match up the performance of PKD (Sun et al., 583

2019) with a similar time cost. The memory use 584

of our method is higher than PKD and ProKT (Shi 585

et al., 2021). However, this one-off investment can 586

lead to a better student model for inference, thus 587

can be worthy. 588

6 Discussion 589

In this paper, we present MetaDistil, a knowledge 590

distillation algorithm powered by meta learning 591

that explicitly optimizes the teacher network to 592

better transfer its knowledge to the student network. 593

The extensive experiments verify the effectiveness 594

and robustness of MetaDistil. 595
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Ethical Consideration596

MetaDistil focuses on improving the performance597

of knowledge distillation and does not introduce ex-598

tra ethical concerns compared to vanilla KD meth-599

ods. Nevertheless, we would like to point out that600

as suggested by Hooker et al. (2020), model com-601

pression may lead to biases that concern about fair-602

ness. Nevertheless, this is not a specific problem of603

our method and we would like to refer to a possible604

solution: the loyalty method proposed by Xu et al.605

(2021) to evaluate how much the student deriviate606

from the original teacher model.607
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A MetaDistil for Image Classification815

In addition to BERT compression, we also provide816

results on image classification. Also, we conduct817

experiments of static teaching and cross teaching,818

to further verify the effectiveness of MetaDistil of819

adapting to different students.820

A.1 Experimental Settings821

For CV, following the settings in Tian et al. (2020),822

we experiment with the image classification task on823

CIFAR-100 (Krizhevsky et al., 2009) with student-824

teacher combinations of different capacity and ar-825

chitectures, including ResNet (He et al., 2016) and826

VGG (Simonyan & Zisserman, 2015). Addition-827

ally, we run a distillation experiment between dif-828

ferent architectures (a ResNet teacher to a VGG829

student). We report the top-1 test accuracy of the830

compressed student networks. We inherit all hy-831

perparameters from Tian et al. (2020) except for832

the teacher learning rate, which is grid searched833

from {1e-4, 2e-4, 3e-4}. We randomly split the834

original training set to a new training set and the835

quiz set by 9 : 1. We compare our results with836

a state-of-the-art distillation method, CRD (Tian837

et al., 2020) and other commonly used knowledge838

distillation methods (Hinton et al., 2015; Romero839

et al., 2015; Zagoruyko & Komodakis, 2017; Tung840

& Mori, 2019; Peng et al., 2019; Ahn et al., 2019;841

Park et al., 2019; Passalis & Tefas, 2018; Heo et al.,842

2019; Kim et al., 2018) including ProKT (Shi et al.,843

2021) which has a trainable teacher.844

A.2 Image Recognition Results845

We show the experimental results of MetaDistil846

distilling ResNet (He et al., 2016) and VGG (Si-847

monyan & Zisserman, 2015) with five different848

teacher-student pairs. MetaDistil achieves com-849

parable performance to CRD (Tian et al., 2020),850

the current state-of-the-art distillation method on851

image classification while outperforming all other852

baselines with complex features and loss functions.853

Notably, CRD introduces additional negative sam-854

pling and contrastive training while our method855

achieves comparable performance without using856

these tricks. Additionally, we observe a substan-857

tial performance drop without pilot update, again858

verifying the importance of this mechanism.859

A.3 Static Teaching and Cross Teaching860

In MetaDistil, the student is trained in a dynamic861

manner. To investigate the effect of such a dynamic862

Teacher ResNet-56 ResNet-110 ResNet-110 VGG-13 ResNet-50∗

Student ResNet-20 ResNet-20 ResNet-32 VGG-8 VGG-8

Teacher 72.34 74.31 74.31 74.64 79.34
Student 69.06 69.06 71.14 70.36 70.36

KD (2015) 70.66 70.67 73.08 72.98 73.81
FitNet (2015) 69.21 68.99 71.06 71.02 70.69
AT (2017) 70.55 70.22 72.31 71.43 71.84
SP (2019) 69.67 70.04 72.69 72.68 73.34
CC (2019) 69.63 69.48 71.48 70.71 70.25
VID (2019) 70.38 70.16 72.61 71.23 70.30
RKD (2019) 69.61 69.25 71.82 71.48 71.50
PKT (2018) 70.34 70.25 72.61 72.88 73.01
AB (2019) 69.47 69.53 70.98 70.94 70.65
FT (2018) 69.84 70.22 72.37 70.58 70.29
ProKT (2021) 70.98 70.74 72.95 73.03 73.90
CRD (2020) 71.16 71.46 73.48 73.94 74.30
MetaDistil 71.25 71.40 73.35 73.65 74.42
w/o pilot update 71.02 70.96 73.31 73.48 74.05

Table 3: Experimental results on the test set of CIFAR-
100. The best and second best results are marked with
boldface and underline, respectively. All baseline re-
sults except ProKT are reported in Tian et al. (2020).
∗ResNet for ImageNet. Other ResNets are ResNet for
CIFAR (He et al., 2016).

Teacher Student Acc@1

KD (ResNet-110)
ResNet-32 (static) 73.08
ResNet-20 (static) 70.67

MetaDistil
ResNet-32 (dynamic) 73.35

(ResNet-110→ResNet-32)
ResNet-32 (static) 73.16
ResNet-20 (static, cross) 70.82

MetaDistil
ResNet-20 (dynamic) 71.40

(ResNet-110→ResNet-20)
ResNet-20 (static) 70.94
ResNet-32 (static, cross) 72.89

Table 4: Experimental results of static teaching and
cross teaching.

distillation process, we attempt to use the teacher 863

at the end of MetaDistil training to perform a static 864

conventional KD, to verify the effectiveness of our 865

dynamic distillation strategy. As shown in Table 4, 866

on both experiments, dynamic MetaDistil outper- 867

forms conventional KD and static distillation with 868

the teacher at the end of MetaDistil training. 869

As mentioned in Section 3.2, a meta teacher is 870

optimized to transfer its knowledge to a specific 871

student network. To justify this motivation, we 872

conduct experiments using a teacher optimized for 873

the ResNet-32 student to statically distill to the 874

ResNet-20 student, and also in reverse. As shown 875

in Table 4, the cross-taught students underperform 876

the static students taught by their own teachers 877

by 0.27 and 0.12 for ResNet-32 and ResNet-20, 878

respectively. This confirms our motivation that 879

the meta teacher in MetaDistil can adjust itself 880

according to its student. 881
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Method #Param. Speed-up CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

BERT-Base (teacher) (Devlin et al., 2019) 110M 1.00× 58.9 84.6/84.9 91.6/87.6 91.2 88.5/91.4 71.4 93.0 90.2/89.8

BERT4-KD† (Hinton et al., 2015) 55M 2.90× 32.5 80.5/80.9 87.2/83.1 87.5 86.6/90.4 65.2 90.2 84.5/84.2
BERT4-PKD† (Sun et al., 2019) 55M 2.90× 34.2 80.9/81.3 87.0/82.9 87.7 86.8/90.5 66.1 90.5 84.3/84.0
BERT4-ProKT† (Shi et al., 2021) 55M 2.90× 36.6 81.4/81.9 87.6/83.5 88.0 87.1/90.5 66.8 90.7 85.2/85.1
MetaDistil 4 (ours) 55M 2.90× 40.3 82.4/82.7 88.4/84.2 88.6 87.8/90.8 67.8 91.8 86.3/86.0

Table 5: Experimental results on the development set of GLUE in the setting of distilling BERT-base in to BERT4.
†Results reported by us. All results reported by us are average performance of 3 runs with different random seeds.

Method #Param. Speed-up CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K)

BERT-Large (teacher) (Devlin et al., 2019) 345M 1.00× 71.5 86.5/86.7 92.5/88.7 92.5 89.6/91.8 73.4 94.5 91.2/90.6

BERT6-KD† (Hinton et al., 2015) 66M 3.88× 58.8 82.8/83.0 89.6/85.0 89.5 87.5/91.0 68.0 91.1 88.5/88.4
BERT6-PKD† (Sun et al., 2019) 66M 3.88× 59.2 82.9/83.1 89.9/85.4 89.8 87.9/91.1 67.9 91.5 88.2/88.0
BERT6-ProKT† (Shi et al., 2021) 66M 3.88× 59.8 83.2/83.4 91.0/86.5 90.0 88.2/91.0 68.8 91.6 88.7/88.5
MetaDistil 6 (ours) 66M 3.88× 63.5 83.9/84.3 91.5/87.3 90.8 88.7/91.3 70.8 92.9 89.6/89.4

Table 6: Experimental results on the development set of GLUE in the setting of distilling BERT-large in to BERT6.
†Results reported by us. All results reported by us are average performance of 3 runs with different random seeds.

B Results of Different Compression882

Ratios883

In this section, we present additional experimen-884

tal results in settings with different compression885

ratios to further demonstrate the effectiveness of886

MetaDistil on bridging the gap between the student887

and teacher capacity. Specifically, we conduct ex-888

periments in the following two settings: (1) distill-889

ing BERT-base into a 4-layer BERT (110M→52M)890

and (2) distilling BERT-large into a 6-layer BERT891

(345M→66M). The results are shown in Table 4892

and Table 5, respectively. We can see that MetaDis-893

til consistently outperforms PKD and ProKT in894

both settings. This confirms the effectiveness of895

MetaDistil and also show its ability to adapt the896

teacher model to the student model, since the gap897

between teacher and student is even larger in these898

settings.899

C Distillation Dynamics900

We also investigate why MetaDistil works on901

the development sets of MNLI, SST, and MRPC,902

which are important tasks in GLUE that have a903

large, medium, and small training set, respectively.904

We illustrate the validation accuracy curves of905

the meta teacher and student models with training906

steps in Figure 5, and compare them to the student907

performance in conventional KD. We see the meta908

teacher maintains high accuracy in the first 5,000909

steps and then begins to slowly degrade. Starting910

from step 8,000, the teacher model underperforms911
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Figure 5: Learning dynamics of the student and teacher
in MetaDistil on the development set of MNLI.

the student while the student’s accuracy keeps in- 912

creasing. This verifies our assumption that a model 913

with the best accuracy is not necessarily the optimal 914

teacher. Also, MetaDistil is not naively optimizing 915

the teacher’s accuracy but its “teaching skills.” This 916

phenomenon suggests that beyond high accuracy, 917

there could be more important properties of a good 918

teacher that warrant further investigation. 919

D Improvement Analysis 920

While MetaDistil achieves improved student ac- 921

curacy on the GLUE benchmark, it is still not 922

very clear where the performance improvement 923

comes from. There are basically two possibliies: 924

(1) the student better mimics the teacher, and (2) 925

the changes of teacher helps student perform better 926

on hard examples that would be misclassified by 927

the student with vanilla KD. We conduct a series 928
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of analysis on the MRPC dataset.929

For the first assumption, we compute the pre-930

diction loyalty (Xu et al., 2021) of the student931

model distilled with either PKD and MetaDistil.932

For MetaDistil, we measure the loyalty with respect933

to both the original teacher and the final teacher.934

We find that there is no significant different be-935

tween between PKD and MetaDistil. This suggests936

that the improvement does not come from student937

better mimicing the teacher.938

For the second assumption, we first identify the939

examples in the quiz set for which our model gives940

correct predictions while the student distilled by941

PKD makes a wrong prediction. We then compute942

the loss (cross entropy) of the original teacher and943

the teacher updated by MetaDistil. We find the loss944

is substantially reduced by MetaDistil. In contrast,945

the overall loss of teacher on the dev set does not946

decreases. This shows that MetaDistil helps the947

teacher concentrate on hard examples that the stu-948

dent struggles in the quiz set and learn to perform949

better on these examples, thus able to better help950

student learning.951
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