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Abstract

Model merging is the process of combining001
models from various domains into a single002
model with multi-domain capabilities, and the003
challenge is to resolve parameter conflicts. To004
reduce the possibility of parameter conflicts,005
the pruning method is used to remove parame-006
ters from a model. The recent method utilizes a007
domain-independent pruning technique which008
is based on the assumption that there is little009
variation between different model parameters.010
We found that because domain-independent011
methods remove some domain-specific param-012
eters, they are ineffective when there are sig-013
nificant distinctions in model parameters. In014
this paper, we address the challenge of merging015
models with significant distinctions by propos-016
ing a two-stage method called DPPA. First, we017
introduce Dynamically Pruning (DP) to dis-018
cover domain-specific significant parameters019
and remove redundant ones. Subsequently, to020
enhance the capability in the domain, we pro-021
pose Dynamical Partition Amplification (DPA),022
which amplifies significant parameters during023
the merging process. The results of the experi-024
ments demonstrate that our approach performs025
outstandingly, improving model merging per-026
formance by almost 20%. We will share our027
code on GitHub.028

1 Introduction029

Model merging, referred to as model fusion, is a030

method that merges models from diverse domains031

into a single model with multi-domain capabili-032

ties. The challenge in this task is how to resolve033

parameter conflicts. On one hand, the predominant034

methods (Yang et al., 2023a; Yadav et al., 2023;035

Jin et al., 2023) focus on dealing with conflicting036

parameters in the merging stage. On the other hand,037

to reduce the possibility of parameter conflicts, the038

pruning method is used to remove parameters from039

a model.040

The recent method (Yu et al., 2023b) utilizes a 041

domain-independent pruning technique which is 042

based on the assumption that there is little variation 043

between different model parameters. Exceptional 044

results have been achieved in situations with little 045

model differences. With the development of train- 046

ing techniques and data, the difference between 047

state-of-the-art models and base models in vari- 048

ous domains is becoming increasingly significant. 049

However, utilizing existing methods to merge com- 050

plex models causes significant performance degra- 051

dation. We found that because domain-independent 052

methods remove some domain-specific parameters, 053

they are ineffective when there are significant dis- 054

tinctions in model parameters. 055

In this paper, we address the challenge of merg- 056

ing models with significant distinctions by propos- 057

ing a two-stage method called DPPA. First, we 058

introduce Dynamically Pruning (DP) to discover 059

domain-specific significant parameters and remove 060

redundant ones. Subsequently, to enhance the ca- 061

pability in the domain, we propose Dynamical Par- 062

tition Amplification (DPA), which amplifies signif- 063

icant parameters during the merging process. It is 064

noted that our approach is used for the delta param- 065

eter difference between the fine-tuned model and 066

the base model. 067

Dynamically Pruning (DP) is employed to adjust 068

the pruning rate based on the significance of dif- 069

ferent linear layers. A simple and effective way to 070

measure significance is based on the magnitude of 071

the parameter. OWL (Yin et al., 2023) observes that 072

the significance of parameters varies across differ- 073

ent layers. We believe in scenarios at high pruning 074

rates, it is important to enhance the refinement of 075

the parameter’s significance and modify the prun- 076

ing rate at the linear layers level. For example, 077

As illustrated in Figure 1, it is apparent that the Q 078

and K linear layers in layer 0 hold more significant 079

values when compared to other linear layers. Our 080

approach considers the linear layer (such as Q, K, 081
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Figure 1: Within the figure’s left segment, it is visible that Dynamically Pruning (DP) method modifies the pruning
rate at both layer and linear layer levels, distinguishing it from magnitude pruning. On the figure’s right segment,
we can see the integration of DP and Dynamical Partition Amplification (DPA), paralleled with the drop and rescale
operations inherent in the DARE system. This integration enhances complex model performance after the pruning
process significantly.

V, O in Attention and up/down sampling in MLP)082

as the minimum unit for adjusting pruning rates083

and modifies these rates based on the significance084

of the parameters.085

Moreover, Dynamical Partition Amplification086

(DPA) is a rescaling method that dynamically am-087

plifies partitions of parameters based on the varying088

significance of the parameters. It is built upon the089

pruning approach. Firstly, we partition parame-090

ters according to different degrees of significance.091

Secondly, considering the interactive influence be-092

tween parameters, we employ two methods of ini-093

tialization. Lastly, we prioritize amplifying pa-094

rameters of high significance in the order of their095

significance. We adopt the initialization method096

with superior performance as our final result.097

The base model we employ in our paper is098

LLaMA 2 (Touvron et al., 2023b). We focus on099

three distinct domains: Mathematics, Finance, and100

Law. The results of the experiment show that our101

method only keeps 20% of domain-specific param-102

eters while yielding performance comparable to103

other methods that maintain up to 90% of parame-104

ters. This demonstrates that our method removes105

redundancy and maintains domain-specific param-106

eters effectively. Furthermore, our method displays107

outstanding performance, leading to a significant108

improvement of nearly 20% in model merging per- 109

formance. We conduct experiments in the scenar- 110

ios of both three-domain and two-domain merging, 111

and the results show that the impact of the extra 112

domain on our approach is essentially insignificant. 113

We further substantiate the viability of DPA on 114

other pruning methods. Although it doesn’t yield a 115

level of performance equal to DPPA, it moderately 116

enhances performance. 117

2 Related Work 118

2.1 Pruning Technique 119

Traditional pruning techniques aim to reduce the 120

number of parameters in a model (Zhu et al., 2023). 121

There have been several studies conducted on this 122

topic, both in the era of pre-trained language mod- 123

els and before (Hubara et al., 2021; Mozer and 124

Smolensky, 1988; Han et al., 2015a; Lin et al., 125

2019). However, progress in these studies has been 126

relatively slow in the era of large language models, 127

as pruning requires a substantial amount of data 128

for fine-tuning, which is not feasible for such mod- 129

els. To tackle this issue, LORA fine-tuning was 130

proposed by Ma et al. (2023) to restore the original 131

performance. Recently, some studies have shifted 132

their focus to pruning methods that do not necessi- 133

tate fine-tuning. For instance, SparseGPT (Frantar 134
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and Alistarh, 2023) utilizes the Hessian matrix for135

pruning and reduces reconstruction error through136

subsequent weight updates. Wanda (Sun et al.,137

2023) combines weight magnitudes with input acti-138

vations to retain parameters that better align with139

the current data distribution. DSOT (Zhang et al.,140

2023c) proposes a parameter adjustment method141

to minimize the discrepancy between the source142

model parameters and the pruned model param-143

eters. OWL (Yin et al., 2023) introduces non-144

uniform layered sparsity, which is advantageous145

for higher pruning rates.146

2.2 Special Domain Fine-tune Model147

Since the advent of the machine learning era, mod-148

els have required adjustments on specific data to149

achieve desired performance. In the era of pre-150

trained language models, this approach has been151

slightly modified. Researchers first pre-train a gen-152

eral model and then fine-tune it on domain-specific153

data, with the primary goal of leveraging the capa-154

bilities of the pre-trained model. This is even more155

crucial in the era of large language models, result-156

ing in the development of numerous models in dif-157

ferent domains. For example, in the code domain158

(Rozière et al., 2023; Yu et al., 2023c; Luo et al.,159

2023b), mathematics domain (Luo et al., 2023a;160

Yue et al., 2023; Yu et al., 2023a; Gou et al., 2023;161

Yuan et al., 2023), medical domain (Kweon et al.,162

2023; Chen et al., 2023; Toma et al., 2023), and163

finance domain (Zhang et al., 2023a; Yang et al.,164

2023b; Xie et al., 2023).165

Although we have obtained many fine-tuned166

models in specific domains, if we want a single167

model to have the capability to handle multiple168

domains, the fundamental approach is to fine-tune169

the model on all domain data together. However,170

this requires a significant amount of computational171

resources. Therefore, model fusion methods have172

gained attention.173

2.3 Model Merge174

The mainstream model fusion methods can be di-175

vided into four sub-domains: alignment (Li et al.,176

2016), model ensemble (Pathak et al., 2010), mod-177

ule connection (Freeman and Bruna, 2017), and178

weight averaging (Wang et al., 2020). Among these179

methods, only weight averaging reduces the num-180

ber of model parameters, while the others require181

the coexistence of model parameters from multi-182

ple domains (Li et al., 2023b). Within the weight183

averaging sub-domain, there are also several ap-184

proaches, such as subspace weight averaging (Li 185

et al., 2023a), SWA(Izmailov et al., 2018), and task 186

arithmetic (Ilharco et al., 2023). We are particu- 187

larly interested in the task arithmetic sub-domain 188

because it does not require the fusion of multiple 189

models during the training process. Instead, it only 190

requires obtaining the weights of a fully trained 191

model. 192

The task arithmetic approach suggests that there 193

is a domain-specific offset between the fine-tuned 194

model weights and the base model weights. By 195

adding or subtracting these offsets from multiple 196

domains, it is possible to fuse or selectively ex- 197

clude the capabilities of certain domains. Subse- 198

quent works have explored the application of task 199

arithmetic to LORA (Zhang et al., 2023b; Chitale 200

et al., 2023; Chronopoulou et al., 2023), as well 201

as how to better fuse models and reduce conflicts 202

between parameters. Ortiz-Jiménez et al. (2023) 203

achieved this by scaling the coefficients of different 204

models during the fusion process to mitigate con- 205

flicts between models. Yang et al. (2023a) further 206

proposed adjusting the scaling coefficients at the 207

model hierarchy level to address conflicts caused 208

during model fusion at a finer granularity. Yadav 209

et al. (2023) selected which model weights to re- 210

tain at specific positions by comparing the absolute 211

values of conflicting weights. Jin et al. (2023) ad- 212

justed the entire conflicting vector in vector space 213

to ensure that the L2 distance between this vector 214

and multiple original vectors remains equal. 215

2.4 Federated Learning 216

Federated learning is a setup where multiple clients 217

collaborate to solve machine learning problems, co- 218

ordinated by a central aggregator. This setup also 219

allows for decentralized training data to ensure the 220

privacy of data on each device (Zhang et al., 2021). 221

Model fusion methods naturally possess the ability 222

to combine locally trained models. Furthermore, 223

since the central aggregator receives locally trained 224

weights, there is no need to worry about data leak- 225

age issues. 226

3 Methodology 227

The purpose of our approach is to merge models 228

from diverse domains into a single model with 229

multi-domain capabilities. Therefore, we first re- 230

view the definition of model merging. 231

Our approach consists of four parts, as shown in 232

Fig. 1. First, we calculate the delta parameter, sig- 233
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nifying the weight disparity between the fine-tuned234

models and the Base model. Second, we imple-235

ment a variant of the magnitude pruning technique,236

referred to as DP, which discovers domain-specific237

significant parameters and removes redundant ones.238

This technique prunes the delta parameter to reduce239

parameter conflicts during model merging. Subse-240

quently, we introduce a rescaling method, DPA,241

to amplify the significant parameters, resulting in242

enhanced performance. Conclusively, we merge243

the parameters from various fine-tuned models and244

incorporate them into the base model, thus yielding245

a single model with multi-domain capabilities.246

3.1 Model Merging Problem247

The purpose of model merging is to enhance the248

capability of a single model by combining models249

from multiple domains. Specifically, for models250

M1 ∼ Mk, each associated with different domains251

D1 ∼ Dk, where each domain comprises a set of252

tasks Di = {T i
1 ∼ T i

n}. Here, k represents the253

number of domains, i represents a specific domain,254

and n represents the number of tasks within that255

domain.256

By merging M1 ∼ Mk, we obtain the integrated257

model Mm, which possesses the ability to handle258

tasks from D1 ∼ Dk simultaneously.259

3.2 Delta Parameter260

For each model in each domain, we find the cor-261

responding pre-trained model, known as the base262

model MB . For domain i, we have the weights263

W i of the model M i and the weights WB of the264

base model. We define the delta parameter as the265

transition of the parameter space distribution from266

the base model to the fine-tuned model, represented267

as ∆i = WB −W i. Analyzing the delta parame-268

ter enables a deeper understanding of the changes269

brought about by the fine-tuning process.270

3.3 DPPA271

First, we introduce Dynamically Pruning (DP) to272

discover domain-specific significant parameters273

and remove redundant ones. Subsequently, to en-274

hance the capability in the domain, we propose275

Dynamical Partition Amplification (DPA), which276

amplifies significant parameters during the merging277

process.278

3.3.1 DP: Dynamically Pruning279

We propose using linear layers as the minimum280

unit and adjusting the pruning rate based on the sig-281

nificance of different linear layers. Here, the linear 282

layers, such as Q, K, V, and O in Attention, and 283

up/down sampling in MLP, are more fine-grained 284

units compared to model layers. We first describe 285

how to define the significance of parameters and 286

then explain the method for adjusting the pruning 287

rate. 288

Within the framework of OWL (Yin et al., 2023), 289

the significance of a parameter is defined as the 290

value exceeding the average weight magnitude by 291

N-fold. We claim that this approach loses informa- 292

tion when there is significant variation in the model 293

parameters because it ignores the information about 294

the magnitude of these parameters. Thus, we rede- 295

fine significance. It now considers the accumulated 296

magnitudes of parameters that are N times larger 297

than the average magnitude. This improvement 298

contains more comprehensive information about 299

weight parameters. Based on empirical findings 300

from OWL, we set N to 5. This approach allows 301

us to determine the significance of parameters on 302

both the model layer and the linear layer levels. 303

Once the significance of the parameters has been 304

determined, we adjust the pruning rate accordingly. 305

Following the principle that higher parameter sig- 306

nificance corresponds to lower pruning rates, we 307

define the pruning rate fluctuation at the model 308

level as: 309

dif(∆l) = −sig(∆l) +
1

n

n∑
l=1

sig(∆l) (1) 310

where dif represents the difference between sig- 311

nificance and its mean. For simplicity, we reduce 312

domain-specific ∆i to ∆, thus ∆l represents pa- 313

rameters in model layer l, sig() represents the sig- 314

nificance of the parameter, and n represents the 315

number of model layers, respectively. 316

Furthermore, since the number of parameters in 317

different linear layers may vary, we introduce a 318

weighting factor for the parameter significance, as 319

shown: 320

mean(∆lj) =

∑n
l=1

∑m
j=1 sig(∆lj) ∗ ∥∆lj∥0∑n
l=1

∑m
j=1 ∥∆lj∥0

(2) 321322

dif ′(∆lj) = −sig(∆lj) +mean(∆lj), (3) 323

where ∆lj represents parameters in model layer 324

l linear layer j, m represents the number of lin- 325

ear layers in the model layer, ∥X∥0 represents the 326

parameter count of X , respectively. 327
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Figure 2: We utilize green and orange lines to represent
the trajectories of the amplification rate search. Among
them, the blue star represents the optimal rate searched
at a 90% pruning parameter, while the red star represents
the optimal rate searched at an 80% pruning parameter.
The contour lines depict the specific performance in the
mathematical domain.

Finally, we define the maximum value of pruning328

rate fluctuation, denoted as λ, based on previous329

experimental findings, and set it to 0.08. By con-330

sidering both the fluctuation within the linear layer331

level and layer level, we derive the final pruning332

rate for each linear layer as follows:333

norm(x) =
x ∗ λ

maxabs(x)
(4)334

335
Θlj = α+ norm(dif(∆l)) + norm(dif ′(∆lj)),

(5)336

where α represents original pruning rates, abs rep-337

resents absolute value.338

3.3.2 DPA: Dynamical Partition Amplification339

After DP, we obtain the pruned delta parameters at340

various pruning rates. Our goal moving forward is341

to enhance performance while ensuring a consis-342

tent pruning rate. As the scaling rate increases, the343

model’s performance shows a gradual decline after344

an initial rise. This pattern is consistently observed345

across various pruning rates, as illustrated in Fig. 2.346

Moreover, we postulate that during the fine-tuning347

stage, parameters with substantial deviations sig-348

nificantly influence the model’s performance.349

Therefore, we propose DPA, a method that dy-350

namically modifies the enhancement factors for351

each division parameter at different pruning rates.352

We take into account two initialization methods to353

accomplish this dynamic adaptation and ultimately354

find the best outcomes. We select the initialization 355

method with the best results as the final solution. 356

Method 1 We adjust the parameters in the 90% 357

pruning rate partition by setting the rest to zero. 358

The resulting curve of this method is illustrated 359

by the green line in Fig. 2. We surmise that par- 360

titions with elevated pruning rates hold a greater 361

degree of significance. Consequently, the prece- 362

dence in sorting partitions is primarily influenced 363

by their respective pruning rates. Illustratively, the 364

parameters within the 90% pruning rate section are 365

perceived as having a higher value compared to 366

those within the 80% pruning rate partition. Upon 367

the acquisition of the ideal amplification ratio, we 368

progressively incorporate parameters from the 80% 369

pruning rate partition, scaling only the newly in- 370

cluded parameters. 371

Method 2 We employ the partition that aligns 372

with the target pruning rate directly during the ad- 373

justment of the 90% partition. The resulting curve 374

of this method is illustrated by the orange line in 375

Fig. 2. We recognize that Method 1 generates 376

excessively large amplification factors for more 377

significant partitions, thereby causing a substan- 378

tial displacement in the parameter space of parti- 379

tions with lower pruning rates. This shift ultimately 380

decreases performance when integrating parame- 381

ters from partitions with lower pruning rates. In 382

this strategy, when modifying more critical parti- 383

tions, we consider the parameter distribution of less 384

significant partitions. This method outperforms 385

Method 1 when the pruning rate aim is high. 386

3.4 Model Merging with DPPA 387

After applying DPPA, we integrate parameters de- 388

rived from distinct models. In Section 2.3, we 389

refer to multiple existing methodologies for model 390

fusion. However, our primary objective is to en- 391

hance the pruning technique. As such, we employ 392

AdaMerging (Yang et al., 2023a), a state-of-the-art 393

merging approach, to confirm the parameter inte- 394

gration following the pruning process. It is worth 395

mentioning that models destined for merging via 396

fine-tuning originate from an identical pre-trained 397

model, as existing fusion techniques do not support 398

the integration of heterogeneous models. 399

Thus, we get the final merging model: 400

Wm = WB +Σk
i=1DPPA(∆i) (6) 401
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4 Experiments402

4.1 Experimental Setup403

Pre-Trained Backbone and Fine-tune Models404

We have taken into consideration the need to fine-405

tune the same base model for different domains and406

the impact of the base model’s performance. There-407

fore, we have decided to choose LLaMa 2(Tou-408

vron et al., 2023b) as the base model, instead409

of LLaMa(Touvron et al., 2023a), Mistral(Jiang410

et al., 2023), or other pre-trained models. For the411

three domains, mathematics, finance, and law, we412

have selected three models with good performance,413

namely Abel(Chern et al., 2023), Finance-chat, and414

Law-chat(Cheng et al., 2023).415

Datasets For each domain, we have chosen416

two datasets. In the mathematics domain, we417

have selected GSM8k(Cobbe et al., 2021) and418

MATH(Hendrycks et al., 2021). We evaluate the419

models’ performance using zero-shot accuracy and420

utilize the testing script provided by Abel(Chern421

et al., 2023). As for the finance domain, we have422

chosen FiQA_SA(Maia et al., 2018) and FPB(Malo423

et al., 2014). As for the law domain, we have424

chosen SCOTUS (Spaeth et al., 2020) and the425

UNFAIR_ToS (Lippi et al., 2019). Similarly, we426

evaluate the models’ performance using zero-shot427

accuracy. Since AdaptLLM(Cheng et al., 2023)428

does not provide a testing script, we consider the429

multiple-choice question to be correct when the430

predicted sentence contains the correct choice.431

Evaluation Metric To evaluate the correlation432

between the pruned and dense model, we formu-433

lated the Task-Ratio metric. Furthermore, to ex-434

hibit the model’s generalization proficiency within435

each domain, we decided to use two datasets. We436

established the Domain-Ratio as a measure for437

gauging the specialized capability of the pruned438

model within a particular domain. The formula for439

Domain-Accuracy is as follows:440

Task-Ratioj =
R(Mpruned, Tj)

R(Mdense, Tj)
(7)441

442

Domain-Ratio = n

√
Πn

j=1Task-Ratioj , (8)443

where R(M,T ) represents the performance of444

model M on task T , Mdense refers to the fine-tuned445

model, Mpruned represents the pruned model, and446

Tj represents task j within the given domain, re-447

spectively. According to the formula, the Domain-448

Ratio of the dense model is 100%.449

Implementation Details In our study, we em- 450

ployed the vLLM framework for reasoning. For 451

the datasets GSM8k and MATH, we set the batch 452

size to 32. As for the FiQA_SA, FPB, SCOTUS, 453

and UNFAIR_ToS datasets, we set the batch size to 454

1. We utilized a greedy decoding approach with a 455

temperature of 0. The maximum generation length 456

for all tasks was set to 2048. Our experiments were 457

conducted using the NVIDIA Tesla A100 GPU. 458

4.2 Baseline Method 459

We establish two methods without pruning, two 460

methods of pruning-base, and one of randomly 461

deleting and scaling as baseline. they are described 462

below: 463

• Model Soups (Wortsman et al., 2022) calcu- 464

late the average value by adding all model 465

parameters. 466

• LM-Cocktail (Xiao et al., 2023) weighted the 467

models from different domains and chose the 468

optimal result. 469

• Magnitude (Han et al., 2015b) sorts weights 470

based on their absolute values, keeping 471

weights with larger absolute values and re- 472

moving weights with smaller ones. 473

• OWL (Yin et al., 2023) building upon magni- 474

tude pruning, this method considers that pa- 475

rameter significance varies across different 476

layers of the model. 477

• DARE (Yu et al., 2023b) suggests that after 478

pruning, the sum of parameter values should 479

remain the same. Therefore, it initially per- 480

forms random pruning and then expands the 481

remaining parameters based on the pruning 482

rate to achieve the original sum of parameter 483

values. 484

4.3 Main Result of DPPA 485

The results of the dense model and two methods 486

without pruning are shown in Table 2. The results 487

of the pruning methods are shown in Table 1. We 488

compare the results of DPPA with two magnitude- 489

based pruning methods, as well as compare the 490

results of DARE. The experimental results show 491

that our approach retains only 20% of the specific 492

domain parameters, yet achieves comparable per- 493

formance to other methods that retain 90% of the 494

specific domain parameters. Due to space limita- 495

tion, we place the completed experimental table 496
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Sparse ratio Magnitude OWL DARE DPPA

Math-Dense
10% 96.46 96.69 96.64 -
80% 80.12 77.11 87.41 97.08
90% 53.41 54.09 73.44 86.85

Fin-Dense
10% 90.81 89.12 91.04 -
80% 71.04 74.92 84.01 96.65
90% 54.71 56.74 82.90 92.11

Law-Dense
10% 95.74 110.74 116.02 -
80% 113.98 124.97 79.93 116.02
90% 84.35 121.42 69.33 110.55

Table 1: Domain-Ratio of different pruning methods at
various pruning rates. Additional results under different
pruning rates and the performance on a single dataset
are presented in Appendix C.

Domains Dense Model Soups LM-Cocktail

Math 100 15.99 76.96
Fin 100 79.46 78.80
Law 100 93.98 105.77

Table 2: Domain-Ratio of dense model and two methods
without pruning.

in Appendix C. The comparison of the results of497

the two initialization methods in DPA is placed in498

Appendix A.499

4.4 Abnormal Situations in Law Domain500

We believe that our method can achieve perfor-501

mance levels as close as possible to the dense502

model itself. However, for some tasks that require503

performance beyond what the dense model can of-504

fer, our method may not be as effective. In contrast505

to the expected results from normal pruning, in506

the law domain, the pruned models significantly507

outperformed the dense model. The best perfor-508

mance was observed in the range of 120-140% of509

the dense model’s performance, as pruning rates510

varied from 10% to 90%. We attribute this phe-511

nomenon to two factors: first, the relatively low512

performance of the law domain finetune model it-513

self, and second, the possibility that the model was514

in a local minimum, causing any offset introduced515

by pruning to enhance the model’s performance.516

4.5 The Effectiveness of DP517

As shown in Table 3, DP achieves better perfor-518

mance at high pruning rates. This is because DP519

adjusts the significance of linear layer parameters520

within each layer, allowing for the retention of521

Domains Magnitude OWL DP

Math 53.41 54.09 54.97
Fin 54.71 56.74 62.06
Law 84.35 121.42 110.55

Table 3: Domain-Ratio of DP at a pruning rate of 90%.

Domains DARE DARE+DPA DPPA

Math 73.44 83.63 86.85
Fin 82.90 85.08 92.11
Law 69.33 120.89 110.55

Table 4: Domain-Ratio of DARE using DPA at a prun-
ing rate of 90%.

more crucial parameters at high pruning rates. 522

4.6 The Generality of DPA 523

We investigated the generality of the DPA method 524

by applying it to the state-of-the-art method, DARE. 525

Considering that the DARE method already ampli- 526

fies the parameters and achieves significant ampli- 527

fication at high pruning rates (5 times for 80% and 528

10 times for 90%), we modified the approach to 529

dynamic reduction instead. Following the method- 530

ology, we conducted experiments, and the results 531

are presented in Table 4. 532

4.6.1 When can DP replace DARE? 533

According to the DARE paper, the method’s per- 534

formance is not satisfactory when the maximum 535

float value of the deviation between the parameters 536

and the base model exceeds 0.03. Our observa- 537

tions indicate that the larger the offset, the poorer 538

the performance. This is evident from the parame- 539

ter offset presented in Table 5. Certainly, we will 540

present more comprehensive results in Appendix B. 541

When DARE falls below 90% performance at a 542

pruning rate of 90%, our method can serve as a 543

viable alternative. 544

4.7 Why DPPA is Useful? 545

To investigate this question, we analyzed the Delta 546

parameters, as shown in Fig 3. We explored the re- 547

lationship between the remaining parameters after 548

Model Min 10% 90% Max

Math-Dense -0.01733 -0.00114 0.00114 0.02014
Fin-Dense -0.02612 -0.00160 0.00160 0.02011
Law-Dense -0.02185 -0.00158 0.00158 0.02027

Table 5: The offset of different models from the base
model at different position proportions.
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Figure 3: After analyzing the pruned parameters of the financial model, it is evident that there is a higher parameter
count in the initial and final 0, 31 layers, while the middle 17 layers have fewer parameters. Additionally, in the Q,
K, V components, it is observed that 90% of the parameters are concentrated in certain dimensions. To facilitate
observation, we have amplified the value by a factor of 1000.

Method & Pruning Rate Math Fin Law

DARE 90% 7.89 51.48 53.86
DPPA 90% 89.95 85.24 122.08

DARE 80% 32.61 74.49 78.11
DPPA 80% 91.28 95.20 146.23

Table 6: Domain-Ratio of the model that combines
domains mathematics, finance and law.

Method & Pruning Rate Math Fin

DARE 90% 21.10 64.88
DPPA 90% 89.25 79.40

DARE 80% 58.43 77.16
DPPA 80% 92.75 95.45

Table 7: Domain-Ratio of the model that combines
domains mathematics and finance.

DP at different pruning rates and different linear549

layers. The graph indicates that although DP is an550

unstructured pruning method, it exhibits some char-551

acteristics of structured pruning in the results of552

high pruning rates for the Delta parameters. This di-553

mension partitioning provides some interpretability554

for the distribution of parameter space in specific555

domains. Therefore, when we use DPA, by ampli-556

fying the parameters, we strengthen the weights of557

the domain in these dimensions and restore certain558

capabilities.559

4.8 Main Result of Merge Methods560

We validate the effectiveness of our pruning method561

for the task of model fusion by integrating models.562

In Table 6, we present the merging results for three563

domains, while in Table 7, we showcase the merg-564

ing results for two domains. We choose pruning565

rates of 80% and 90% to compare the results of566

model merging, as shown in the Table 7. Based on 567

the results, our method demonstrates an improve- 568

ment of nearly 20% in performance compared to 569

DARE at the same pruning rate. This finding sub- 570

stantiates the efficacy of our pruning approach in 571

the context of complex model fusion. 572

By comparing the results in Table 6 and Table 573

7, It can be observed that the integration of a fine- 574

tuned model from an additional domain consider- 575

ably influences the performance of DARE, causing 576

significant performance deterioration. In compari- 577

son, our method achieves comparable performance. 578

Upon augmenting an additional domain, there has 579

been a decrease in performance in other domains at 580

varying pruning rates. This outcome is consistent 581

with expectations because parameter conflicts are 582

a common issue with model merging, invariably 583

resulting in performance degradation. 584

5 Conclusions 585

In this study, we introduce a pruning method called 586

DP, which is an improved approach based on am- 587

plitude pruning to enhance performance at higher 588

pruning rates. Subsequently, we propose DPA, 589

which focuses on dynamically amplifying parti- 590

tions of parameters based on their varying levels of 591

significance. Using DPPA, we address the chal- 592

lenge of model merging in complex fine-tuned 593

models. The experimental results show that our 594

approach only keep 20% of the specific domain pa- 595

rameters, while achieves comparable performance 596

to other methods that retain 90% of the specific 597

domain parameters. Furthermore, our method also 598

achieves a significant improvement of nearly 20% 599

in model merging. Additionally, we investigate the 600

underlying reasons behind the effectiveness of our 601

proposed method. 602
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Limitations603

Our method performs less effectively than DARE604

on fine-tuned models with minimal differences605

compared to the original model.606

DAP requires a longer time to find the optimal607

ratio.608

While it mitigates parameter conflicts in model609

fusion, there remains the issue of performance610

degradation.611
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Model Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max

Math-Dense -0.0173 -0.0011 -0.0007 -0.0004 -0.0002 1.175e-08 0.0002 0.0004 0.0007 0.0011 0.0201
Fin-Dense -0.0261 -0.0016 -0.0010 -0.0006 -0.0003 0.0 0.0003 0.0006 0.0010 0.0016 0.0201
Law-Dense -0.0218 -0.0015 -0.0010 -0.0006 -0.0003 0.0 0.0003 0.0006 0.0010 0.0015 0.0202

Table 9: The offset of different models from the base model at different position proportions.

Sparse ratio Magnitude OWL DP DARE

gsm8k
0.1 0.59893859 0.595905989 0.589082638 0.587566338
0.2 0.593631539 0.592873389 0.59893859 0.585291888
0.3 0.590598939 0.589082638 0.594389689 0.586808188
0.4 0.578468537 0.579984837 0.588324488 0.567096285
0.5 0.584533738 0.589840788 0.587566338 0.563305534
0.6 0.578468537 0.574677786 0.570128886 0.557240334
0.7 0.546626232 0.542835481 0.545109932 0.558756634
0.8 0.501137225 0.495072024 0.489006823 0.53525398
0.9 0.343442002 0.342683851 0.351781653 0.498104625

MATH
0.1 0.1208 0.122 0.129 0.1236
0.2 0.1218 0.1212 0.1232 0.1298
0.3 0.125 0.1232 0.1238 0.1274
0.4 0.1262 0.1258 0.1276 0.1264
0.5 0.122 0.125 0.1248 0.1216
0.6 0.1254 0.124 0.1194 0.1184
0.7 0.1176 0.1148 0.1142 0.1134
0.8 0.0996 0.0934 0.095 0.111
0.9 0.0646 0.0664 0.0668 0.0842

FiQA_SA
0.1 0.608510638 0.595744681 0.595744681 0.629787234
0.2 0.612765957 0.642553191 0.629787234 0.621276596
0.3 0.629787234 0.646808511 0.621276596 0.634042553
0.4 0.629787234 0.621276596 0.629787234 0.625531915
0.5 0.582978723 0.561702128 0.34893617 0.561702128
0.6 0.595744681 0.540425532 0.54893617 0.685106383
0.7 0.540425532 0.510638298 0.195744681 0.587234043
0.8 0.519148936 0.557446809 0.493617021 0.570212766
0.9 0.365957447 0.395744681 0.438297872 0.574468085

Table 10: All pruning result for three domain.

Sparse ratio Magnitude OWL DP DARE

FPB
0.1 0.642268041 0.631958763 0.58556701 0.62371134
0.2 0.620618557 0.616494845 0.611340206 0.634020619
0.3 0.597938144 0.608247423 0.628865979 0.627835052
0.4 0.610309278 0.609278351 0.601030928 0.644329897
0.5 0.590721649 0.57628866 0.605154639 0.611340206
0.6 0.597938144 0.579381443 0.579381443 0.615463918
0.7 0.534020619 0.550515464 0.537113402 0.607216495
0.8 0.460824742 0.477319588 0.471134021 0.586597938
0.9 0.387628866 0.38556701 0.416494845 0.567010309

UNFAIR_ToS
0.1 0.191860465 0.238372093 0.26744186 0.203488372
0.2 0.284883721 0.279069767 0.186046512 0.191860465
0.3 0.25 0.261627907 0.209302326 0.238372093
0.4 0.244186047 0.220930233 0.25 0.180232558
0.5 0.197674419 0.209302326 0.197674419 0.203488372
0.6 0.279069767 0.244186047 0.209302326 0.226744186
0.7 0.209302326 0.23255814 0.261627907 0.220930233
0.8 0.186046512 0.25 0.244186047 0.13372093
0.9 0.215116279 0.26744186 0.255813953 0.145348837

SCOTUS
0.1 0.216666667 0.233333333 0.233333333 0.3
0.2 0.316666667 0.283333333 0.283333333 0.266666667
0.3 0.283333333 0.25 0.283333333 0.266666667
0.4 0.266666667 0.316666667 0.35 0.25
0.5 0.25 0.233333333 0.35 0.166666667
0.6 0.316666667 0.35 0.3 0.116666667
0.7 0.35 0.35 0.35 0.233333333
0.8 0.316666667 0.283333333 0.25 0.216666667
0.9 0.15 0.25 0.216666667 0.15

Table 11: All pruning result for three domain.

B The Offset of Models 926

We presented ten different percentage values in 927

Table 9. 928

C Main Result of Various Pruning 929

Methods on Specific Tasks 930

We presented all pruning results in Table 10 and 931

Table 11. 932
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