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Abstract

Model merging is the process of combining
models from various domains into a single
model with multi-domain capabilities, and the
challenge is to resolve parameter conflicts. To
reduce the possibility of parameter conflicts,
the pruning method is used to remove parame-
ters from a model. The recent method utilizes a
domain-independent pruning technique which
is based on the assumption that there is little
variation between different model parameters.
We found that because domain-independent
methods remove some domain-specific param-
eters, they are ineffective when there are sig-
nificant distinctions in model parameters. In
this paper, we address the challenge of merging
models with significant distinctions by propos-
ing a two-stage method called DPPA. First, we
introduce Dynamically Pruning (DP) to dis-
cover domain-specific significant parameters
and remove redundant ones. Subsequently, to
enhance the capability in the domain, we pro-
pose Dynamical Partition Amplification (DPA),
which amplifies significant parameters during
the merging process. The results of the experi-
ments demonstrate that our approach performs
outstandingly, improving model merging per-
formance by almost 20%. We will share our
code on GitHub.

1 Introduction

Model merging, referred to as model fusion, is a
method that merges models from diverse domains
into a single model with multi-domain capabili-
ties. The challenge in this task is how to resolve
parameter conflicts. On one hand, the predominant
methods (Yang et al., 2023a; Yadav et al., 2023;
Jin et al., 2023) focus on dealing with conflicting
parameters in the merging stage. On the other hand,
to reduce the possibility of parameter conflicts, the
pruning method is used to remove parameters from
a model.

The recent method (Yu et al., 2023b) utilizes a
domain-independent pruning technique which is
based on the assumption that there is little variation
between different model parameters. Exceptional
results have been achieved in situations with little
model differences. With the development of train-
ing techniques and data, the difference between
state-of-the-art models and base models in vari-
ous domains is becoming increasingly significant.
However, utilizing existing methods to merge com-
plex models causes significant performance degra-
dation. We found that because domain-independent
methods remove some domain-specific parameters,
they are ineffective when there are significant dis-
tinctions in model parameters.

In this paper, we address the challenge of merg-
ing models with significant distinctions by propos-
ing a two-stage method called DPPA. First, we
introduce Dynamically Pruning (DP) to discover
domain-specific significant parameters and remove
redundant ones. Subsequently, to enhance the ca-
pability in the domain, we propose Dynamical Par-
tition Amplification (DPA), which amplifies signif-
icant parameters during the merging process. It is
noted that our approach is used for the delta param-
eter difference between the fine-tuned model and
the base model.

Dynamically Pruning (DP) is employed to adjust
the pruning rate based on the significance of dif-
ferent linear layers. A simple and effective way to
measure significance is based on the magnitude of
the parameter. OWL (Yin et al., 2023) observes that
the significance of parameters varies across differ-
ent layers. We believe in scenarios at high pruning
rates, it is important to enhance the refinement of
the parameter’s significance and modify the prun-
ing rate at the linear layers level. For example,
As illustrated in Figure 1, it is apparent that the Q
and K linear layers in layer 0 hold more significant
values when compared to other linear layers. Our
approach considers the linear layer (such as Q, K,
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Figure 1: Within the figure’s left segment, it is visible that Dynamically Pruning (DP) method modifies the pruning
rate at both layer and linear layer levels, distinguishing it from magnitude pruning. On the figure’s right segment,
we can see the integration of DP and Dynamical Partition Amplification (DPA), paralleled with the drop and rescale
operations inherent in the DARE system. This integration enhances complex model performance after the pruning

process significantly.

V, O in Attention and up/down sampling in MLP)
as the minimum unit for adjusting pruning rates
and modifies these rates based on the significance
of the parameters.

Moreover, Dynamical Partition Amplification
(DPA) is a rescaling method that dynamically am-
plifies partitions of parameters based on the varying
significance of the parameters. It is built upon the
pruning approach. Firstly, we partition parame-
ters according to different degrees of significance.
Secondly, considering the interactive influence be-
tween parameters, we employ two methods of ini-
tialization. Lastly, we prioritize amplifying pa-
rameters of high significance in the order of their
significance. We adopt the initialization method
with superior performance as our final result.

The base model we employ in our paper is
LLaMA 2 (Touvron et al., 2023b). We focus on
three distinct domains: Mathematics, Finance, and
Law. The results of the experiment show that our
method only keeps 20% of domain-specific param-
eters while yielding performance comparable to
other methods that maintain up to 90% of parame-
ters. This demonstrates that our method removes
redundancy and maintains domain-specific param-
eters effectively. Furthermore, our method displays
outstanding performance, leading to a significant

improvement of nearly 20% in model merging per-
formance. We conduct experiments in the scenar-
ios of both three-domain and two-domain merging,
and the results show that the impact of the extra
domain on our approach is essentially insignificant.
We further substantiate the viability of DPA on
other pruning methods. Although it doesn’t yield a
level of performance equal to DPPA, it moderately
enhances performance.

2 Related Work

2.1 Pruning Technique

Traditional pruning techniques aim to reduce the
number of parameters in a model (Zhu et al., 2023).
There have been several studies conducted on this
topic, both in the era of pre-trained language mod-
els and before (Hubara et al., 2021; Mozer and
Smolensky, 1988; Han et al., 2015a; Lin et al.,
2019). Howeyver, progress in these studies has been
relatively slow in the era of large language models,
as pruning requires a substantial amount of data
for fine-tuning, which is not feasible for such mod-
els. To tackle this issue, LORA fine-tuning was
proposed by Ma et al. (2023) to restore the original
performance. Recently, some studies have shifted
their focus to pruning methods that do not necessi-
tate fine-tuning. For instance, SparseGPT (Frantar



and Alistarh, 2023) utilizes the Hessian matrix for
pruning and reduces reconstruction error through
subsequent weight updates. Wanda (Sun et al.,
2023) combines weight magnitudes with input acti-
vations to retain parameters that better align with
the current data distribution. DSOT (Zhang et al.,
2023c) proposes a parameter adjustment method
to minimize the discrepancy between the source
model parameters and the pruned model param-
eters. OWL (Yin et al., 2023) introduces non-
uniform layered sparsity, which is advantageous
for higher pruning rates.

2.2 Special Domain Fine-tune Model

Since the advent of the machine learning era, mod-
els have required adjustments on specific data to
achieve desired performance. In the era of pre-
trained language models, this approach has been
slightly modified. Researchers first pre-train a gen-
eral model and then fine-tune it on domain-specific
data, with the primary goal of leveraging the capa-
bilities of the pre-trained model. This is even more
crucial in the era of large language models, result-
ing in the development of numerous models in dif-
ferent domains. For example, in the code domain
(Roziere et al., 2023; Yu et al., 2023c; Luo et al.,
2023b), mathematics domain (Luo et al., 2023a;
Yue et al., 2023; Yu et al., 2023a; Gou et al., 2023;
Yuan et al., 2023), medical domain (Kweon et al.,
2023; Chen et al., 2023; Toma et al., 2023), and
finance domain (Zhang et al., 2023a; Yang et al.,
2023b; Xie et al., 2023).

Although we have obtained many fine-tuned
models in specific domains, if we want a single
model to have the capability to handle multiple
domains, the fundamental approach is to fine-tune
the model on all domain data together. However,
this requires a significant amount of computational
resources. Therefore, model fusion methods have
gained attention.

2.3 Model Merge

The mainstream model fusion methods can be di-
vided into four sub-domains: alignment (Li et al.,
2016), model ensemble (Pathak et al., 2010), mod-
ule connection (Freeman and Bruna, 2017), and
weight averaging (Wang et al., 2020). Among these
methods, only weight averaging reduces the num-
ber of model parameters, while the others require
the coexistence of model parameters from multi-
ple domains (Li et al., 2023b). Within the weight
averaging sub-domain, there are also several ap-

proaches, such as subspace weight averaging (Li
et al., 2023a), SWA(Izmailov et al., 2018), and task
arithmetic (Ilharco et al., 2023). We are particu-
larly interested in the task arithmetic sub-domain
because it does not require the fusion of multiple
models during the training process. Instead, it only
requires obtaining the weights of a fully trained
model.

The task arithmetic approach suggests that there
is a domain-specific offset between the fine-tuned
model weights and the base model weights. By
adding or subtracting these offsets from multiple
domains, it is possible to fuse or selectively ex-
clude the capabilities of certain domains. Subse-
quent works have explored the application of task
arithmetic to LORA (Zhang et al., 2023b; Chitale
et al., 2023; Chronopoulou et al., 2023), as well
as how to better fuse models and reduce conflicts
between parameters. Ortiz-Jiménez et al. (2023)
achieved this by scaling the coefficients of different
models during the fusion process to mitigate con-
flicts between models. Yang et al. (2023a) further
proposed adjusting the scaling coefficients at the
model hierarchy level to address conflicts caused
during model fusion at a finer granularity. Yadav
et al. (2023) selected which model weights to re-
tain at specific positions by comparing the absolute
values of conflicting weights. Jin et al. (2023) ad-
justed the entire conflicting vector in vector space
to ensure that the L2 distance between this vector
and multiple original vectors remains equal.

2.4 Federated Learning

Federated learning is a setup where multiple clients
collaborate to solve machine learning problems, co-
ordinated by a central aggregator. This setup also
allows for decentralized training data to ensure the
privacy of data on each device (Zhang et al., 2021).
Model fusion methods naturally possess the ability
to combine locally trained models. Furthermore,
since the central aggregator receives locally trained
weights, there is no need to worry about data leak-
age issues.

3 Methodology

The purpose of our approach is to merge models
from diverse domains into a single model with
multi-domain capabilities. Therefore, we first re-
view the definition of model merging.

Our approach consists of four parts, as shown in
Fig. 1. First, we calculate the delta parameter, sig-



nifying the weight disparity between the fine-tuned
models and the Base model. Second, we imple-
ment a variant of the magnitude pruning technique,
referred to as DP, which discovers domain-specific
significant parameters and removes redundant ones.
This technique prunes the delta parameter to reduce
parameter conflicts during model merging. Subse-
quently, we introduce a rescaling method, DPA,
to amplify the significant parameters, resulting in
enhanced performance. Conclusively, we merge
the parameters from various fine-tuned models and
incorporate them into the base model, thus yielding
a single model with multi-domain capabilities.

3.1 Model Merging Problem

The purpose of model merging is to enhance the
capability of a single model by combining models
from multiple domains. Specifically, for models
M?' ~ M¥, each associated with different domains
D' ~ DF, where each domain comprises a set of
tasks D' = {T} ~ T:}. Here, k represents the
number of domains, 7 represents a specific domain,
and n represents the number of tasks within that
domain.

By merging M ~ MPF, we obtain the integrated
model M™, which possesses the ability to handle
tasks from D' ~ D* simultaneously.

3.2 Delta Parameter

For each model in each domain, we find the cor-
responding pre-trained model, known as the base
model MB. For domain i, we have the weights
W7 of the model M? and the weights W2 of the
base model. We define the delta parameter as the
transition of the parameter space distribution from
the base model to the fine-tuned model, represented
as A’ = WP — W' Analyzing the delta parame-
ter enables a deeper understanding of the changes
brought about by the fine-tuning process.

3.3 DPPA

First, we introduce Dynamically Pruning (DP) to
discover domain-specific significant parameters
and remove redundant ones. Subsequently, to en-
hance the capability in the domain, we propose
Dynamical Partition Amplification (DPA), which
amplifies significant parameters during the merging
process.

3.3.1 DP: Dynamically Pruning

We propose using linear layers as the minimum
unit and adjusting the pruning rate based on the sig-

nificance of different linear layers. Here, the linear
layers, such as Q, K, V, and O in Attention, and
up/down sampling in MLP, are more fine-grained
units compared to model layers. We first describe
how to define the significance of parameters and
then explain the method for adjusting the pruning
rate.

Within the framework of OWL (Yin et al., 2023),
the significance of a parameter is defined as the
value exceeding the average weight magnitude by
N-fold. We claim that this approach loses informa-
tion when there is significant variation in the model
parameters because it ignores the information about
the magnitude of these parameters. Thus, we rede-
fine significance. It now considers the accumulated
magnitudes of parameters that are N times larger
than the average magnitude. This improvement
contains more comprehensive information about
weight parameters. Based on empirical findings
from OWL, we set N to 5. This approach allows
us to determine the significance of parameters on
both the model layer and the linear layer levels.

Once the significance of the parameters has been
determined, we adjust the pruning rate accordingly.
Following the principle that higher parameter sig-
nificance corresponds to lower pruning rates, we
define the pruning rate fluctuation at the model
level as:

Aif(B0) = —sig(An) + - > sig(Ay) (D)
=1

where dif represents the difference between sig-
nificance and its mean. For simplicity, we reduce
domain-specific A’ to A, thus A; represents pa-
rameters in model layer [, sig() represents the sig-
nificance of the parameter, and n represents the
number of model layers, respectively.

Furthermore, since the number of parameters in
different linear layers may vary, we introduce a
weighting factor for the parameter significance, as
shown:

mean(Ay;) = Z?:l Z;n=1 sig(Agj) ”Aleo
l7) — > =
’ S 1A,

2)

dif'(Ayy) = —sig(Ayy) +mean(Ayy),  (3)

where A;; represents parameters in model layer
[ linear layer j, m represents the number of lin-
ear layers in the model layer, ||.X ||, represents the
parameter count of X, respectively.
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Figure 2: We utilize green and lines to represent
the trajectories of the amplification rate search. Among
them, the blue star represents the optimal rate searched
at a 90% pruning parameter, while the red star represents
the optimal rate searched at an 80% pruning parameter.
The contour lines depict the specific performance in the
mathematical domain.

Finally, we define the maximum value of pruning
rate fluctuation, denoted as A, based on previous
experimental findings, and set it to 0.08. By con-
sidering both the fluctuation within the linear layer
level and layer level, we derive the final pruning
rate for each linear layer as follows:

T * A
norm(z) = maz abs(x) 4)

O = a+norm(dif(A;)) + norm(dif’(Alj)),

)
where « represents original pruning rates, abs rep-
resents absolute value.

3.3.2 DPA: Dynamical Partition Amplification

After DP, we obtain the pruned delta parameters at
various pruning rates. Our goal moving forward is
to enhance performance while ensuring a consis-
tent pruning rate. As the scaling rate increases, the
model’s performance shows a gradual decline after
an initial rise. This pattern is consistently observed
across various pruning rates, as illustrated in Fig. 2.
Moreover, we postulate that during the fine-tuning
stage, parameters with substantial deviations sig-
nificantly influence the model’s performance.
Therefore, we propose DPA, a method that dy-
namically modifies the enhancement factors for
each division parameter at different pruning rates.
We take into account two initialization methods to
accomplish this dynamic adaptation and ultimately

find the best outcomes. We select the initialization
method with the best results as the final solution.

Method 1 We adjust the parameters in the 90%
pruning rate partition by setting the rest to zero.
The resulting curve of this method is illustrated
by the green line in Fig. 2. We surmise that par-
titions with elevated pruning rates hold a greater
degree of significance. Consequently, the prece-
dence in sorting partitions is primarily influenced
by their respective pruning rates. Illustratively, the
parameters within the 90% pruning rate section are
perceived as having a higher value compared to
those within the 80% pruning rate partition. Upon
the acquisition of the ideal amplification ratio, we
progressively incorporate parameters from the 80%
pruning rate partition, scaling only the newly in-
cluded parameters.

Method 2 We employ the partition that aligns
with the target pruning rate directly during the ad-
justment of the 90% partition. The resulting curve
of this method is illustrated by the line in
Fig. 2. We recognize that Method 1 generates
excessively large amplification factors for more
significant partitions, thereby causing a substan-
tial displacement in the parameter space of parti-
tions with lower pruning rates. This shift ultimately
decreases performance when integrating parame-
ters from partitions with lower pruning rates. In
this strategy, when modifying more critical parti-
tions, we consider the parameter distribution of less
significant partitions. This method outperforms
Method 1 when the pruning rate aim is high.

3.4 Model Merging with DPPA

After applying DPPA, we integrate parameters de-
rived from distinct models. In Section 2.3, we
refer to multiple existing methodologies for model
fusion. However, our primary objective is to en-
hance the pruning technique. As such, we employ
AdaMerging (Yang et al., 2023a), a state-of-the-art
merging approach, to confirm the parameter inte-
gration following the pruning process. It is worth
mentioning that models destined for merging via
fine-tuning originate from an identical pre-trained
model, as existing fusion techniques do not support
the integration of heterogeneous models.

Thus, we get the final merging model:

W™ =w5 4+ 3k DPPA(AY) (6)



4 [Experiments

4.1 Experimental Setup

Pre-Trained Backbone and Fine-tune Models
We have taken into consideration the need to fine-
tune the same base model for different domains and
the impact of the base model’s performance. There-
fore, we have decided to choose LLaMa 2(Tou-
vron et al., 2023b) as the base model, instead
of LLaMa(Touvron et al., 2023a), Mistral(Jiang
et al., 2023), or other pre-trained models. For the
three domains, mathematics, finance, and law, we
have selected three models with good performance,
namely Abel(Chern et al., 2023), Finance-chat, and
Law-chat(Cheng et al., 2023).

Datasets For each domain, we have chosen
two datasets. In the mathematics domain, we
have selected GSM8k(Cobbe et al., 2021) and
MATH(Hendrycks et al., 2021). We evaluate the
models’ performance using zero-shot accuracy and
utilize the testing script provided by Abel(Chern
et al., 2023). As for the finance domain, we have
chosen FIQA_SA(Maia et al., 2018) and FPB(Malo
et al.,, 2014). As for the law domain, we have
chosen SCOTUS (Spaeth et al., 2020) and the
UNFAIR_ToS (Lippi et al., 2019). Similarly, we
evaluate the models’ performance using zero-shot
accuracy. Since AdaptLLM(Cheng et al., 2023)
does not provide a testing script, we consider the
multiple-choice question to be correct when the
predicted sentence contains the correct choice.

Evaluation Metric To evaluate the correlation
between the pruned and dense model, we formu-
lated the Task-Ratio metric. Furthermore, to ex-
hibit the model’s generalization proficiency within
each domain, we decided to use two datasets. We
established the Domain-Ratio as a measure for
gauging the specialized capability of the pruned
model within a particular domain. The formula for
Domain-Accuracy is as follows:

R(Mpruneda Tj)

Task-Ratio; =
» a 10] R(Mdenseu 71])

(7

Domain-Ratio = ’\l/ II_, Task-Ratioj,  (8)

where R(M,T) represents the performance of
model M on task T', M je,,se refers to the fine-tuned
model, M;.yneq represents the pruned model, and
T represents task j within the given domain, re-
spectively. According to the formula, the Domain-
Ratio of the dense model is 100%.

Implementation Details In our study, we em-
ployed the vLLM framework for reasoning. For
the datasets GSM8k and MATH, we set the batch
size to 32. As for the FiIQA_SA, FPB, SCOTUS,
and UNFAIR_ToS datasets, we set the batch size to
1. We utilized a greedy decoding approach with a
temperature of 0. The maximum generation length
for all tasks was set to 2048. Our experiments were
conducted using the NVIDIA Tesla A100 GPU.

4.2 Baseline Method

We establish two methods without pruning, two
methods of pruning-base, and one of randomly
deleting and scaling as baseline. they are described
below:

* Model Soups (Wortsman et al., 2022) calcu-
late the average value by adding all model
parameters.

* LM-Cocktail (Xiao et al., 2023) weighted the
models from different domains and chose the
optimal result.

* Magnitude (Han et al., 2015b) sorts weights
based on their absolute values, keeping
weights with larger absolute values and re-
moving weights with smaller ones.

* OWL (Yin et al., 2023) building upon magni-
tude pruning, this method considers that pa-
rameter significance varies across different
layers of the model.

* DARE (Yu et al., 2023b) suggests that after
pruning, the sum of parameter values should
remain the same. Therefore, it initially per-
forms random pruning and then expands the
remaining parameters based on the pruning
rate to achieve the original sum of parameter
values.

4.3 Main Result of DPPA

The results of the dense model and two methods
without pruning are shown in Table 2. The results
of the pruning methods are shown in Table 1. We
compare the results of DPPA with two magnitude-
based pruning methods, as well as compare the
results of DARE. The experimental results show
that our approach retains only 20% of the specific
domain parameters, yet achieves comparable per-
formance to other methods that retain 90% of the
specific domain parameters. Due to space limita-
tion, we place the completed experimental table



Sparse ratio Magnitude @ OWL  DARE DPPA
Math-Dense

10% 96.46 96.69 96.64 -
80% 80.12 77.11 87.41 97.08
90% 53.41 54.09 73.44 86.85
Fin-Dense

10% 90.81 89.12 91.04 -
80% 71.04 74.92 84.01 96.65
90% 54.71 56.74 82.90 92.11
Law-Dense

10% 95.74 110.74  116.02 -
80% 113.98 12497 79.93 116.02
90% 84.35 12142  69.33 110.55

Table 1: Domain-Ratio of different pruning methods at
various pruning rates. Additional results under different
pruning rates and the performance on a single dataset
are presented in Appendix C.

Domains Dense Model Soups LM-Cocktail
Math 100 15.99 76.96
Fin 100 79.46 78.80
Law 100 93.98 105.77

Table 2: Domain-Ratio of dense model and two methods
without pruning.

in Appendix C. The comparison of the results of
the two initialization methods in DPA is placed in
Appendix A.

4.4 Abnormal Situations in Law Domain

We believe that our method can achieve perfor-
mance levels as close as possible to the dense
model itself. However, for some tasks that require
performance beyond what the dense model can of-
fer, our method may not be as effective. In contrast
to the expected results from normal pruning, in
the law domain, the pruned models significantly
outperformed the dense model. The best perfor-
mance was observed in the range of 120-140% of
the dense model’s performance, as pruning rates
varied from 10% to 90%. We attribute this phe-
nomenon to two factors: first, the relatively low
performance of the law domain finetune model it-
self, and second, the possibility that the model was
in a local minimum, causing any offset introduced
by pruning to enhance the model’s performance.

4.5 The Effectiveness of DP

As shown in Table 3, DP achieves better perfor-
mance at high pruning rates. This is because DP
adjusts the significance of linear layer parameters
within each layer, allowing for the retention of

Domains Magnitude @ OWL DP

Math 53.41 54.09 54.97
Fin 54.71 56.74  62.06
Law 84.35 12142  110.55

Table 3: Domain-Ratio of DP at a pruning rate of 90%.

Domains DARE DARE+DPA  DPPA
Math 73.44 83.63 86.85
Fin 82.90 85.08 92.11
Law 69.33 120.89 110.55

Table 4: Domain-Ratio of DARE using DPA at a prun-
ing rate of 90%.

more crucial parameters at high pruning rates.

4.6 The Generality of DPA

We investigated the generality of the DPA method
by applying it to the state-of-the-art method, DARE.
Considering that the DARE method already ampli-
fies the parameters and achieves significant ampli-
fication at high pruning rates (5 times for 80% and
10 times for 90%), we modified the approach to
dynamic reduction instead. Following the method-
ology, we conducted experiments, and the results
are presented in Table 4.

4.6.1 When can DP replace DARE?

According to the DARE paper, the method’s per-
formance is not satisfactory when the maximum
float value of the deviation between the parameters
and the base model exceeds 0.03. Our observa-
tions indicate that the larger the offset, the poorer
the performance. This is evident from the parame-
ter offset presented in Table 5. Certainly, we will
present more comprehensive results in Appendix B.
When DARE falls below 90% performance at a
pruning rate of 90%, our method can serve as a
viable alternative.

4.7 Why DPPA is Useful?

To investigate this question, we analyzed the Delta
parameters, as shown in Fig 3. We explored the re-
lationship between the remaining parameters after

Model Min 10% 90% Max

Math-Dense  -0.01733  -0.00114 0.00114  0.02014
Fin-Dense -0.02612  -0.00160  0.00160 0.02011
Law-Dense  -0.02185 -0.00158  0.00158  0.02027

Table 5: The offset of different models from the base
model at different position proportions.
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Figure 3: After analyzing the pruned parameters of the financial model, it is evident that there is a higher parameter
count in the initial and final 0, 31 layers, while the middle 17 layers have fewer parameters. Additionally, in the Q,
K, V components, it is observed that 90% of the parameters are concentrated in certain dimensions. To facilitate
observation, we have amplified the value by a factor of 1000.

Method & Pruning Rate  Math Fin Law
DARE 90% 7.89 5148 53.86
DPPA 90% 89.95 8524 122.08
DARE 80% 32.61 7449  78.11
DPPA 80% 91.28 9520 146.23

Table 6: Domain-Ratio of the model that combines
domains mathematics, finance and law.

Method & Pruning Rate  Math Fin

DARE 90% 21.10 64.88
DPPA 90% 89.25 79.40
DARE 80% 5843 177.16
DPPA 80% 92.75 9545

Table 7: Domain-Ratio of the model that combines
domains mathematics and finance.

DP at different pruning rates and different linear
layers. The graph indicates that although DP is an
unstructured pruning method, it exhibits some char-
acteristics of structured pruning in the results of
high pruning rates for the Delta parameters. This di-
mension partitioning provides some interpretability
for the distribution of parameter space in specific
domains. Therefore, when we use DPA, by ampli-
fying the parameters, we strengthen the weights of
the domain in these dimensions and restore certain
capabilities.

4.8 Main Result of Merge Methods

We validate the effectiveness of our pruning method
for the task of model fusion by integrating models.
In Table 6, we present the merging results for three
domains, while in Table 7, we showcase the merg-
ing results for two domains. We choose pruning
rates of 80% and 90% to compare the results of

model merging, as shown in the Table 7. Based on
the results, our method demonstrates an improve-
ment of nearly 20% in performance compared to
DARE at the same pruning rate. This finding sub-
stantiates the efficacy of our pruning approach in
the context of complex model fusion.

By comparing the results in Table 6 and Table
7, It can be observed that the integration of a fine-
tuned model from an additional domain consider-
ably influences the performance of DARE, causing
significant performance deterioration. In compari-
son, our method achieves comparable performance.
Upon augmenting an additional domain, there has
been a decrease in performance in other domains at
varying pruning rates. This outcome is consistent
with expectations because parameter conflicts are
a common issue with model merging, invariably
resulting in performance degradation.

5 Conclusions

In this study, we introduce a pruning method called
DP, which is an improved approach based on am-
plitude pruning to enhance performance at higher
pruning rates. Subsequently, we propose DPA,
which focuses on dynamically amplifying parti-
tions of parameters based on their varying levels of
significance. Using DPPA, we address the chal-
lenge of model merging in complex fine-tuned
models. The experimental results show that our
approach only keep 20% of the specific domain pa-
rameters, while achieves comparable performance
to other methods that retain 90% of the specific
domain parameters. Furthermore, our method also
achieves a significant improvement of nearly 20%
in model merging. Additionally, we investigate the
underlying reasons behind the effectiveness of our
proposed method.



Limitations

Our method performs less effectively than DARE
on fine-tuned models with minimal differences
compared to the original model.

DAP requires a longer time to find the optimal
ratio.

While it mitigates parameter conflicts in model
fusion, there remains the issue of performance
degradation.
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Model Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max

Math-Dense  -0.0173  -0.0011  -0.0007 -0.0004  -0.0002  1.175e-08 0.0002 0.0004  0.0007 0.0011 0.0201
Fin-Dense -0.0261  -0.0016 -0.0010 -0.0006  -0.0003 0.0 0.0003  0.0006  0.0010 0.0016  0.0201
Law-Dense  -0.0218 -0.0015 -0.0010 -0.0006  -0.0003 0.0 0.0003  0.0006 0.0010 0.0015 0.0202

Table 9: The offset of different models from the base model at different position proportions.

B The Offset of Models

Sparse ratio ~ Magnitude OWL DP DARE . .
s, We presented ten different percentage values in
0.1 059893859  0.595905989  0.589082638 0587566338  Table 9.

02 0.593631539  0.592873389  0.59893859  0.585291888

0.3 0.590598939  0.589082638  0.594389689  0.586808188

04 0.578468537  0.579984837  0.588324488  0.567096285 : : :

0.5 0.584533738  0.589840788  0.587566338  0.563305534 C Main Result of Various Pruning
0.6 0.578468537  0.574677786 0570128886  0.557240334 Methods on Specific Tasks

0.7 0.546626232  0.542835481  0.545109932  0.558756634

0.8 0.501137225  0.495072024  0.489006823  0.53525398 . .

0.9 0343442002 0.342683851 0351781653 0498104625  We presented all pruning results in Table 10 and
MATH Table 11.

0.1 0.1208 0.122 0.129 0.1236

02 0.1218 0.1212 0.1232 0.1298

0.3 0.125 0.1232 0.1238 0.1274

04 0.1262 0.1258 0.1276 0.1264

0.5 0.122 0.125 0.1248 0.1216

0.6 0.1254 0.124 0.1194 0.1184

0.7 0.1176 0.1148 0.1142 0.1134

0.8 0.0996 0.0934 0.095 0.111

0.9 0.0646 0.0664 0.0668 0.0842

FiQA_SA

0.1 0.608510638  0.595744681  0.595744681  0.629787234

02 0.612765957  0.642553191  0.629787234  0.621276596

0.3 0.629787234  0.646808511  0.621276596  0.634042553

04 0.629787234  0.621276596  0.629787234  0.625531915

0.5 0.582978723  0.561702128  0.34893617  0.561702128

0.6 0.595744681  0.540425532  0.54893617  0.685106383

0.7 0.540425532  0.510638298  0.195744681  0.587234043

0.8 0.519148936  0.557446809  0.493617021  0.570212766

0.9 0.365957447  0.395744681  0.438297872  0.574468085

Table 10: All pruning result for three domain.

Sparse ratio Magnitude OWL DP DARE
FPB

0.1 0.642268041  0.631958763  0.58556701  0.62371134
0.2 0.620618557  0.616494845  0.611340206  0.634020619
0.3 0.597938144  0.608247423  0.628865979  0.627835052
0.4 0.610309278  0.609278351  0.601030928  0.644329897
0.5 0.590721649  0.57628866  0.605154639  0.611340206
0.6 0.597938144  0.579381443  0.579381443  0.615463918
0.7 0.534020619  0.550515464  0.537113402  0.607216495
0.8 0.460824742  0.477319588  0.471134021  0.586597938
0.9 0.387628866  0.38556701  0.416494845  0.567010309
UNFAIR_ToS

0.1 0.191860465  0.238372093  0.26744186  0.203488372
0.2 0.284883721  0.279069767  0.186046512  0.191860465
0.3 0.25 0.261627907  0.209302326  0.238372093
0.4 0.244186047  0.220930233 0.25 0.180232558
0.5 0.197674419 0209302326  0.197674419  0.203488372
0.6 0.279069767  0.244186047  0.209302326  0.226744186
0.7 0.209302326  0.23255814  0.261627907  0.220930233
0.8 0.186046512 0.25 0.244186047  0.13372093
0.9 0.215116279  0.26744186  0.255813953  0.145348837
SCOTUS

0.1 0.216666667  0.233333333  0.233333333 0.3

0.2 0.316666667  0.283333333  0.283333333  0.266666667
0.3 0.283333333 0.25 0.283333333  0.266666667
0.4 0.266666667  0.316666667 0.35 0.25

0.5 0.25 0.233333333 0.35 0.166666667
0.6 0.316666667 0.35 0.3 0.116666667
0.7 0.35 0.35 0.35 0.233333333
0.8 0.316666667  0.283333333 0.25 0.216666667
0.9 0.15 0.25 0.216666667 0.15

Table 11: All pruning result for three domain.
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