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Abstract
We develop a family of fast variational methods for sequential control in dynamical settings
where an agent is incentivized to maximize information gain. We consider the case of optimal
control in continuous nonlinear dynamical systems that prohibit exact evaluation of the
mutual information (MI) reward. Our approach couples efficient message-passing inference
with variational bounds on the MI objective under Gaussian projections. We also develop a
Gaussian mixture approximation that enables exact MI evaluation under constraints on the
component covariances. We validate our methodology in nonlinear systems with superior
and faster control compared to standard particle-based methods. We show our approach
improves the accuracy and efficiency of one-shot robotic learning with intrinsic MI rewards.

1. Introduction

Real world optimal experimental design (Blackwell, 1950; Bernardo, 1979) requires fast
and flexible uncertainty quantification in complex environments. Pioneering work by
Lindley (Lindley, 1956) suggests a Bayesian approach that maximizes mutual informa-
tion (MI) (Cover and Thomas, 2006; MacKay et al., 2003), which lacks a closed-form in
many real-world settings (Paninski, 2003). Existing work approximates MI using variational
methods (Poole et al., 2019), Monte Carlo (Drovandi et al., 2013, 2014; Solonen et al., 2012),
discretizations (Kim et al., 2014), and explore these approximations in a BOED setting (Huan
and Marzouk, 2016; Kleinegesse and Gutmann, 2019).

This work extends variational BOED (Pacheco and Fisher, 2019; Foster et al., 2019) by
modeling an evolving latent state driven by control inputs. Mutny et al. (2023) consider a
similar discrete setting whereas our method applies to continuous latent states. In this way,
our setting is more closely aligned with that of stochastic optimal control (Kushner et al.,
2001; Bertsekas, 2012). Our setting subsumes a range of applications, e.g., active simultaneous
localization and mapping (Active SLAM) (Durrant-Whyte and Bailey, 2006; Stachniss et al.,
2005; Carlone et al., 2014), active information acquisition (Atanasov et al., 2014; Charrow
et al., 2014) and early work on childhood detection of social contingency (Movellan, 2005).
MI is also an effective intrinsic reward for RL tasks when extrinsic rewards are sparse or
lacking (Fischer and Tas, 2020; Mohamed and Jimenez Rezende, 2015).

1



We address the computational aspects of control in this work by developing variational
techniques for approximate inference and decision-making. We numerically evaluate our
methods in different experiments. In all cases we observe multiple orders of magnitude speedup
over sequential Monte Carlo (SMC) and accuracy comparable to numerical evaluation.

2. Information control

We formulate optimal information control as an instance of stochastic control with MI rewards.
We consider an optimal control problem for the dynamical system with latent variables
XT

0 = X0, . . . , XT , observations Y T
1 , and joint PDF: p(XT

0 , Y
T
1 | dT1 ) = p(X0)

∏T
t=1 p(Xt |

Xt−1, dt)p(Yt | Xt). Control inputs dt ∈ D modulate the transition dynamics p(Xt | Xt−1, dt).
The optimal information control problem is an instance of stochastic optimal control (Bert-
sekas, 2012) where we learn a policy π that optimizes cumulative MI over the sequence:

π∗ = argmax
π

I(XT
1 ;Y

T
1 | π). (1)

Solving this optimization problem in either open-loop (Atkinson et al., 2007; Ryan et al.,
2016; Beck et al., 2018) or closed-loop (Huan and Marzouk, 2016; Drovandi et al., 2013;
Solonen et al., 2012) manner is NP-hard in general (Bertsekas, 2012), necessitating a greedy
approximation. Furthermore, the global MI control objective in Eqn. (1) decomposes as a
sum of conditional MI terms:

max
π

I(X1;Y1 | π) +
T∑
t=2

I(Xt;Yt | Y t−1
1 , π) (2)

A derivation of the above is provided in the Appendix.

Greedy Information Control A key property of Eqn. (2) is that each term depends on
only a single latent state Xt. This suggests a simple greedy approximation at each time t:

d∗t = argmax
d

H(Xt | Ht−1, d)−H(Xt | Yt,Ht−1, d) = argmax
d

E
[
log

p(Xt | Yt,Ht−1, d)

p(Xt | Ht−1, d)

]
. (3)

We denote the history data until time t as Ht−1 = {yt−1
1 , dt−1

1 }, where yt−1
1 are realized

measurements and dt−1
1 are decisions taken. This dependence on realized observations induces

a closed-loop sequential decision-making process. This greedy approach is not optimal in
general, but it yields efficient high-quality approximate decisions in complex environments.

Calculating MI reward The instantaneous MI, or the greedy objective (Eqn. (3)) is
not directly observed and cannot be computed in most settings (Mafi et al., 2011; Still and
Precup, 2012; Mazzaglia et al., 2022). A simple approach to approximating MI in this setting
is via a nested Monte Carlo (NMC) estimator. Given joint posterior samples {(xit, yit)}Ni=1 ∼
p(Xt, Yt | Ht−1, d) we have the NMC estimate: ÎN = 1

N

∑N
i=1 log

p(yit|xi
t)

1
N−1

∑
j ̸=i p(y

i
t|x

j
t )

. NMC

estimators of MI are consistent, asymptotically unbiased, and admit a central limit theorem.
However, they require posterior samples and exhibit significant finite sample bias that decays
slowly (Zheng et al., 2018; Rainforth et al., 2018) making them impractical in many settings.
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3. Variational MI control

We detail our variational approach to greedy information control in a general context.
We start by motivating our approach with existing work in sequential Bayesian optimal
experimental design (BOED) (Pacheco and Fisher, 2019; Foster et al., 2018, 2019). We then
describe the difficulties of time-varying latent variables in the dynamic control problem and
extensions of BOED that require alternative variational approximations for the MI objective.
After that, we provide details of our approach including the use of assumed density filtering
(ADF) and expectation propagation (EP) inference. We show how these mechanisms yield
computationally efficient variational MI approximations for control. We drop the history
data Ht−1 unless necessary to reduce the notation for the rest of the paper.

3.1 Variational BOED to greedy information control

The (greedy) sequential BOED objective optimizes instantaneous MI as d∗t = argmaxdt H(X)−
H(X | Yt, dt). Agakov and Barber (2004) lower bound MI by Gibbs’ inequality while other
work explores upper bounds (Poole et al., 2019; Foster et al., 2019). We build on these ideas
in the sequel to derive variational control in the dynamic setting. Variations of BOED exist
where X is time-varying (e.g. Xt) but the decision variable modulates only the observation
model (Williams et al., 2007; Shamaiah et al., 2010).

Unlike the static BOED setting, the control model of Sec. 2 incorporates decision controls
that modulate dynamics via p(Xt | Xt−1, dt). Both entropy terms in the instantaneous
(greedy) MI objective of Eqn. (3) involve the control variate dt, and neither can be computed
in closed-form. We replace both terms with cross-entropies over variational distributions,

I(Xt;Yt | dt) ≈ Hpdt
(q(Xt | dt))−Hpdt

(q(Xt | Yt, dt)). (4)

The approximation in Eqn. (4) is neither an upper- nor a lower-bound on MI, but is instead
an approximation. This approximation was previously explored in the context of implicit
likelihood models (Foster et al., 2019). Despite the simple form of the approximation in
Eqn. (4), optimizing and evaluating it remains challenging, which we address next.

3.2 Estimating the variational MI approximation

Figure 1: ADF and MI
evaluation.

The entropy terms in the variational approximation of instantaneous
MI (Eqn. (4)) require expectations w.r.t. the joint posterior over
state and measurement p(Xt, Yt | dt). This distribution is not
available in practice so we perform approximate variational inference
via assumed density filtering (ADF) (Murphy, 2012). Fig. 1 provides
a depiction of the stages of ADF inference and MI approximation
in our method.

Prediction Step Given a history of observations and decisions Ht−1 we maintain an ap-
proximation of the posterior, qt−1(Xt−1) ≈ p̂t−1(Xt−1 | Ht−1) where qt−1(Xt−1) is a member
of the exponential family, e.g., a Gaussian distribution. For each hypothesized control variable
dt the prediction step computes an augmented distribution as Eqn. (5). This augmented
distribution is a local approximation to the predictive distribution and is not an exponential
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family in general so its entropy cannot be calculated easily.

p̂t|t−1(Xt, Yt | dt) = p(Yt | Xt)

∫
qt−1(Xt−1)p(Xt | Xt−1, dt) dXt−1. (5)

Moment-matching Step Given the augmented distribution in Eqn. (5) the greedy MI
surrogate objective becomes,

Ip̂t|t−1
(Xt;Yt | dt) ≈ Hp̂t|t−1

(qm(Xt))−Hp̂t|t−1
(qc(Xt | Yt)) ≡ Ip̂t|t−1

(q). (6)

Cross entropy is an expectation w.r.t. the augmented distribution p̂t instead of the true filter
as in Eqn. (3). Finding the optimal variational distribution for Eqn. (6) is a non-convex
optimization. We take the approach of (Foster et al., 2019) and minimize an upper bound
on the absolute error,

|Ip̂t|t−1
− Ip̂t|t−1

(q)| ≤ min
qm

Hp̂t|t−1
(qm(Xt)) + min

qc
Hp̂t|t−1

(qc(Xt | Yt)) + C (7)

where C is a constant that does not affect the result of optimization. Standard ap-
proaches solved this by (stochastic) gradient descent. However, for Gaussian approximations
q
(dt)
t|t−1(Xt, Yt) = N (m,Σ) we show that this bound can be efficiently solved via moment-

matching. That this moment-matching step is optimal is not obvious, and is stated in the
following theorem.

Theorem 3.1. Let the joint q(X,Y ) = N (m,Σ) match the moments of any target distribution
p̂(X,Y ). Then the marginal qm(X) =

∫
q(X, y)dy and conditional qc(X | Y ) = q(X,Y )/q(Y )

minimize the upper bound Eqn. (7).

Dahlke et al. (2023) recently demonstrated a similar result for exponential families
satisfying specific conditions. We provide a novel proof for the Gaussian case in the Appendix.
We also show that Eqn. (6) is closed-form at the moment-matching solution.

Update Step. After the control dt with maximum (approximate) MI, empirically evaluated
via Eqn. (6), is selected and executed, a realized measurement is obtained yt ∼ p(Yt |
Xt) from the environment. Then, an ADF update is performed to yield an exponential
family approximation qt ≈ p̂t(Xt | Ht+1) via KL-projection (e.g. moment-matching in the
exponential family). Moreover, we extend the ADF-driven variational approach to the
Expectation propagation (EP) inference for more accurate inference results. We demonstrate
the accuracy of inference for both the ADF and EP in Fig. 2b, under a fixed decision-state-
measurement trajectory to compare with the baseline and the ground truth.

4. Information control for GMM-Gaussian dynamical systems

We consider a general class of GMM-Gaussian control model, i.e.,

p(XT
0 , Y

T
1 | dT1 ) = N (X0 | m0,Σ0)

T∏
t=1

N (Yt | FXt, R)

K∑
k=1

wk,dtN (Xt | Ak,dtXt−1, Qk,dt). (8)

The filter distribution at time t is a GMM with O(Kt) components, making inference NP-hard.
Besides, this model also generalizes since the Gaussian mixture is considered a universal
density approximator (Maz’ya and Schmidt, 1996) and linear Gaussian observations can
easily be extended to a Gaussian mixture model, making this a good candidate for general
study, which is widely used for model-based learning of dynamical systems (Khansari-Zadeh
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Figure 2: (a) One-step decision-making experiment. MI estimations of the K2 = 16-component GMM
by five methods, with diamond character marking the decision each method will take respectively. It
also validates our theorem on the upper bound yellow ≥ orange ≥ blue. (b) Posterior inference of
the same decision trajectory for different methods, grayscale bars representing the filter distribution
given by the numerical approximation method (approximate the true filter distribution) (c) Ratio of
cumulative MI against the optimal MI estimated by numerical approximation (d) Runtime v.s. the
number of decisions, with each decision bounded to an 8-component GMM dynamic transition.

and Billard, 2011; Hersch et al., 2008). In Sec. 4.1, we include an application of the general
solution in Sec. 3.2 to this model with Gaussian approximation, as well as an upper bound on
the MI. Besides, we propose the development of a constrained Gaussian mixture variational
family in Sec. 4.2, which allows the analytic calculation of MI under the variational projection.
We observe that our methods indicate orders of magnitude speedup in decision-making when
in an online sequential decision-making process(c.f. Fig. 2d).

4.1 Gaussian MI approximation

We apply ADF and EP as discussed in Sec. 3.2 with standard Gaussian variational approxi-
mations. We refer to these baseline Gaussian methods as simply "ADF-Gaussian" and "EP"
in experimental results of Sec. 5. Following the prediction step in Sec. 3.2 conducted under
this model, we can upper bound the MI w.r.t the augmented distribution p̂t|t−1(Xt, Yt | dt)
by its Gaussian approximation, q(dt)t|t−1(Xt, Yt), i.e., Ip̂t|t−1

(Xt;Yt | dt) ≤ I
q
(dt)

t|t−1

(Xt;Yt | dt).

We officially state and prove this proposition in the Appendix. In fact, it holds independent
of the state dynamical transitions, provided the measurement model is a linear Gaussian
distribution. Note that the bound is w.r.t. the local approximation under the augmented
distribution as opposed to the true filter. To better adapt to the true GMM filter distribution
we develop a specialized approach based on GMM projections outlined next.

4.2 Constrained GMM MI approximation

At each time t − 1, we maintain an ensemble of K Gaussians, qt−1(Xt−1 | St−1 = k) =
N (Xt−1 | µ̂k,t−1, Σ̂k,t−1) with qt−1(St−1 = k) = πk,t−1. The posterior distribution is
qt−1(Xt−1) =

∑K
i=1 π̂i,t−1N (Xt−1 | µ̂i,t−1, Σ̂i,t−1).

Prediction step. This yields a K2-component GMM augmented distribution for each
control variate, denoted as p̂t|t−1(Xt, Yt, St = k | dt).

Constrained GMM moment-matching step. We constrain the variational approxi-
mation to factorize as: q

(dt)
t|t−1(Xt, Yt, St = k) = ωkN (Yt|η, P )N (Xt|FkYt,Mk). The Gaussian
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Figure 3: (a) Environment with the target (star) and agent. (b) The exact-reward-only mode can get
stuck in an oscillation. (c) MI-empowered reward and ADF inference find the target. (d) Distance
between the robot and the mean value of the correct door at the last step. Our ADF method with
an MI-empowered reward achieves almost the same accuracy in reaching the correct door as the
near-optimal PF approximation with an MI-empowered reward. And it is more stable than the
explicit-only methods.

marginal on Y is invariant to mixture component allowing marginal moments η and P to
be computed directly from the target distribution. GMM MI cannot be easily calculated
in general but our constrained GMM ensures that the MI has a simple form, which can
be verified by direct calculation. We minimize KL by moment-matching and compute the
corresponding MI of the moment-matched constrained GMM distribution. Note that a
fixed-component Gaussian ensemble is in the exponential family thus ADF/EP updates are
easily computed (Heskes and Zoeter, 2002; Pacheco and Sudderth, 2012). We therefore have
a surrogate MI objective,

I
q
(dt)

t|t−1

({Xt, St};Yt) =
K∑
k=1

ωk

[
H

q
(dt)

t|t−1

(Xt | St = k)−H
q
(dt)

t|t−1

(Xt | Yt, St = k)

]
. (9)

The result is a mixture of marginal and conditional Gaussian entropies, each of which has
a closed form. The resulting estimator appears similar to but differs from, the application
of Jensen’s inequality to compute GMM entropy. Moreover, we have a useful upper bound,
I
q
(dt)

t|t−1

({Xt, St};Yt) ≥ I
q
(dt)

t|t−1

(Xt;Yt) ≥ Ip̂t|t−1
(Xt;Yt | dt). Our surrogate does not bound the

desired true posterior MI Ipt|t−1
, but performs well empirically (c.f. Fig. 2a). We observe that

our methods yield comparatively high-quality decision selections in a sequential decision-
making process, which leads to near-optimal MI evaluation, against PF (Particle Filtering)
baseline, presented as Fig. 2c.

5. MI-empowered one-shot continuous POMDP

We adopt the basic environmental setup as Porta et al. (Porta et al., 2006) but focus on
a one-shot POMDP learning problem to underline the need for efficiency and accuracy.
The robot’s objective is to reach the correct door by navigating the corridor (taking actions
to move left, right, and enter), as Fig. 3a. We defer the detailed settings to the appendix
because of the space limitation, but we want to note that, keeping track of the belief state, i.e.,
the posterior distribution bt = p(Xt | Ht+1) is infeasible since it is a GMM and the number
of components grows exponentially. We applied the method introduced in the previous
sections to efficiently address the intractable inference problem and the decision-making
problem to achieve the target. We illustrate part of the results from Fig. 3b to Fig. 3d.
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Appendix A. Global MI control objective

For convenience, we restate the MI control objective from the main text (Eqn. (1)) here:

π∗ = argmax
π

I(XT
1 ;Y

T
1 | π). (10)

We will show that this decomposes into a sum of objectives across time, each of which
depends only on a single latent state Xt, as in Eqn. (2). For simplicity of notation, we drop
the dependence on the policy π. The derivation makes use of the MI chain rule Cover and
Thomas (2006), namely for three random variables A,B,C the MI decomposes as:

I(A; {B,C}) = I(A;B) + I(A;C|B), (11)

By the MI chain rule on variables Y T
1 the MI control objective in Eqn. (10) decomposes

additively as:

I(XT
1 ;Y

T
1 ) = I(XT

1 ;Y1) + I(XT
1 ;Y

T
2 |Y1)

= I(XT
1 ;Y1) + I(XT

1 ;Y2|Y1) + I(XT
1 ;Y

T
3 |Y1)

. . .

= I(XT
1 ;Y1) +

T∑
t=2

I(XT
1 ;Yt|Y t−1

1 ). (12)

The chain rule is further applied on variables XT
1 for each term in Eqn. (12). Taking the

first term as an example we have,

I(XT
1 ;Y1) = I(X1;Y1) +

T∑
t=2

I(Xt;Y1|Xt−1
1 ) = I(X1;Y1). (13)

The last equality holds since
∑T

t=2 I(Xt;Y1|Xt−1
1 ) = 0 because Yt ⊥⊥ Xi ̸=t|Xt by the

observation model p(yt | xt). Continuing repeated application of the chain rule and the
aforementioned independence each term in Eqn. (12) simplifies as,

I(XT
1 ;Yt | Y t−1

1 ) = I(Xt;Yt | Y t−1
1 ) + I({Xi}i∈{1,...,T}\t;Yt | Y t−1

1 , Xt) = I(Xt;Yt | Y t−1
1 ).

(14)
Combining these steps we have the decomposed global MI objective,

I(XT
1 ;Y

T
1 ) = I(X1;Y1) +

T∑
t=2

I(Xt;Yt|Y t−1
1 ). (15)

One detail not discussed in the main text due to space limitations is that our model includes
an initial state X0, which does not appear in the MI objective Eqn. (15). There is no
observation associated with this initial state X0 so it is simply marginalized out for each
d1 ∈ D during the initial control step at t = 1. Explicitly incorporating the decision variable
we see that the initial decision d1 modulates the prior entropy H(X1 | d1) in the first term
I(X1;Y1 | d1) = H(X1 | d1) − H(X1 | Y1, d1) and so is accounted for even when X0 is
marginalized out of the objective.
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Appendix B. Moment-matching in Gaussian case

We propose the Theorem 3.1 and claim that Eqn. (6) takes a closed-form solution at the
moment-matching case. Due to the space limit, we defer the proof here.

B.1 Proof of theorem 3.1

For the Gaussian case, we claim that q(dt)t|t−1(Xt, Yt) = N (m,Σ) by moment-matching p̂t|t−1(Xt, Yt)

yields optimal Gaussian q∗m =
∫
q
(dt)
t|t−1(Xt, yt)dyt and q∗c =

q
(dt)

t|t−1
(Xt,Yt)∫

q
(dt)

t|t−1
(xt,Yt)dxt

.

Proof Recall the upper bound on MI error as Eqn. (7),

|Ip̂t|t−1
− Ip̂t|t−1

(q)| ≤ min
qm

Hp̂t|t−1
(qm(Xt)) + min

qc
Hp̂t|t−1

(qc(Xt | Yt)) + C. (16)

For Gaussian marginal and conditional,

qm(Xt) = N (µ,Q) and qc(Xt | Yt) = N (AYt + b,Γ), (17)

the optimal Gaussian q∗m that minimizes marginal cross-entropy is given by moment-
matching Murphy (2012),

q∗m = argmin
qm

Hp̂t|t−1
(qm(Xt))−Hp̂t|t−1

(Xt)︸ ︷︷ ︸
constant

= argmin
qm

KL(p̂t|t−1 ∥ qm), (18)

so

µ∗ = Ep̂t|t−1
[Xt] and Q∗ = Covp̂t|t−1

(Xt). (19)

For simplicity, we drop the p̂t|t−1 in the expectation and covariance calculations in the
following of this proof. Now we consider the conditional objective:

q∗c = argmin
qc

Hp̂t|t−1
(qc(Xt | Yt))

α(A, b,Γ) ≡ min
A,b,Γ

E [− logN (Xt | AYt + b,Γ)]

= min
A,b,Γ

1

2
log | Γ | +E

[
1

2
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )

]
. (20)

First, we solve for b,

∇b α = ∇bE

[
1

2
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )

]
= E

[
Γ−1(Xt − b−AYt)(−∇b b)

]
= −E

[
Γ−1(Xt − b−AYt)

]
= 0

b∗ = E [(Xt −AYt)] . (21)
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Second, we solve for A,

∇A α = ∇AE

[
1

2
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )

]
= 0

0 = E
[
XtY

T
t − bY T

t −AYtY
T
t

]
Backsubstitute b∗

0 = E
[
XtY

T
t − E [(Xt −AYt)]Y

T
t −AYtY

T
t

]
= E

[
XtY

T
t

]
− E [Xt]E

[
Y T
t

]
+AE [Yt]E

[
Y T
t

]
−AE

[
YtY

T
t

]
= Cov(Xt, Yt)−ACov(Yt, Yt)

A∗ = Cov(Xt, Yt)Cov(Yt, Yt)
−1 (22)

Back substitute into b∗,

b∗ = E [Xt −AYt] = E [Xt]− Cov(Xt, Yt)Cov(Yt, Yt)
−1E [Yt] . (23)

The full conditional mean is then,

A∗Yt + b∗ = Cov(Xt, Yt)Cov(Yt, Yt)
−1Yt + E [Xt]− Cov(Xt, Yt)Cov(Yt, Yt)

−1E [Yt]

= E [Xt] + Cov(Xt, Yt)Cov(Yt, Yt)
−1(Yt − E [Yt]) (24)

Solve for conditional covariance Γ,

∇Γ α = ∇Γ
1

2
log | Γ | +1

2
E
[
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )
]

= Γ− E
[
(Xt − b−AYt)(Xt − b−AYt)

T )
]
= 0

Γ∗ = E
[
(Xt − b−AYt)(Xt − b−AYt)

T )
]

(25)

Back substitute A∗Yt + b∗,

Γ∗ = E[(Xt − E [Xt]− Cov(Xt, Yt)Cov(Yt, Yt)
−1(Yt − E [Yt])

(Xt − E [Xt]− Cov(Xt, Yt)Cov(Yt, Yt)
−1(Yt − E [Yt])

T ]

= Cov(Xt, Xt)− Cov(Xt, Yt)Cov(Yt, Yt)
−1Cov(Xt, Yt)

T . (26)

Now we consider q
(dt)
t|t−1(Xt, Yt) = N (m,Σ) moment-matched to p̂t|t−1(Xt, Yt),

m =

[
mX

mY

]
=

[
Ep̂t|t−1

[Xt]

Ep̂t|t−1
[Yt]

]
Σ =

[
ΣX ΣXY

ΣT
XY ΣY

]
=

[
Covp̂t|t−1

(Xt, Xt) Covp̂t|t−1
(Xt, Yt)

Covp̂t|t−1
(Xt, Yt)

T Covp̂t|t−1
(Yt, Yt)

]
(27)

Thus,
qm = N (mX ,ΣX) = N (µ∗, Q∗) = argmin

qm
Hp̂t|t−1

(qm(Xt)). (28)

The conditional Gaussian from the joint q
(dt)
t|t−1 are,

qc = N (Xt | mX +ΣXY Σ
−1
Y (Yt −mY )︸ ︷︷ ︸

A∗Yt+b∗

,ΣX − ΣXY Σ
−1
Y ΣT

XY︸ ︷︷ ︸
Γ∗

) = argmin
qc

Hp̂t|t−1
(qc). (29)

Therefore, moment-matching the augmented distribution to a joint Gaussian distribution
yields optimal Gaussian marginal and conditional approximations that minimize an upper
bound on the error.
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B.2 Closed-form solution for MI

Having computed the moment matching distribution q we must compute the MI approxima-
tion as,

Ip̂t|t−1
(q) ≡ Hp̂t|t−1

(qm(Xt))−Hp̂t|t−1
(qc(Xt | Yt)). (30)

It is not immediately obvious that these cross-entropies can be calculated in closed-form.
However, it can be showed that for a moment-match Gaussian distribution, each entropy
term can be easily calculated. In fact the cross-entropy terms equate to Gaussian entropy.

Theorem B.1. Given q
(dt)
t|t−1(Xt, Yt) = N (m,Σ), which moment-matches p̂t|t−1(Xt, Yt),

Ip̂t|t−1
(q) ≡ Hp̂t|t−1

(qm(Xt))−Hp̂t|t−1
(qc(Xt | Yt)) has a closed-form solution, where qm and

qc are marginal and conditional distribution of q(dt)t|t−1 respectively.

Proof Given that qm and qc are Gaussian distributions, we have proved in theorem 3.1 that
they share the same joint distribution. Thus, we have

Ip̂t|t−1
(q) = Hp̂t|t−1

(qt|t−1(Xt))−Hp̂t|t−1
(qt|t−1(Xt | Yt)). (31)

Since qm and qc are both Gaussian distributions, w.l.o.g., we prove that Hp̂t|t−1
(qt|t−1(Xt))

has a closed-form solution, and it applies to Hp̂t|t−1
(qt|t−1(Xt | Yt)). Assume the dimension

of ΣX is k,

Hp̂t|t−1
(qt|t−1(Xt)) = −Ep̂t|t−1

[logN (Xt | mX ,ΣX)]

= −Ep̂t|t−1
[−k

2
log 2π − 1

2
log | ΣX | −1

2
(Xt −mX)TΣ−1

X (Xt −mX)]

=
k

2
log 2π +

1

2
log | ΣX | +1

2
Ep̂t|t−1

[(Xt −mX)TΣ−1
X (Xt −mX)]

(32)

We assume that ΣX is a valid covariance matrix, thus it could be decomposed as ΣX = LLT .

Ep̂t|t−1
[(Xt −mX)TΣ−1

X (Xt −mX)] = Ep̂t|t−1
[(L−1Xt − L−1mX)T (L−1Xt − L−1mX)] (33)

Let C ≡ Ep̂t|t−1
[(L−1Xt − L−1mX)(L−1Xt − L−1mX)T ], and Ep̂t|t−1

[L−1Xt] = L−1mX . By
definition,

C = Cov(L−1Xt, L
−1Xt) = L−1Cov(Xt, Xt)︸ ︷︷ ︸

ΣX

L−T = I. (34)

Therefore,
Ep̂t|t−1

[(Xt −mX)TΣ−1
X (Xt −mX)] = tr(C) = k. (35)

Summing terms up, we have a closed-form solution for

Hp̂t|t−1
(qt|t−1(Xt)) =

k

2
log 2π +

1

2
log | ΣX | +k

2
. (36)

A similar result applies to H, but replace ΣX with ΣX − ΣXY Σ
−1
Y ΣT

XY

Hp̂t|t−1
(qt|t−1(Xt | Yt)) =

k

2
log 2π +

1

2
log | ΣX − ΣXY Σ

−1
Y ΣT

XY | +k

2
. (37)

Ip̂t|t−1
(q) =

1

2
log | ΣX | −1

2
log | ΣX − ΣXY Σ

−1
Y ΣT

XY | . (38)
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Appendix C. Algorithm statement of sequential variational information
control

Algorithm 1 provides a complete statement of our proposed method for sequential variational
MI control in the greedy setting. The algorithm is provided for, both, EP and ADF inference
with relevant components to each denoted by color. ADF is a special case of EP, consisting
of only the first forward pass of inference, and is denoted in (red). Additional (blue) lines are
specific to EP as the iterate forward-and-backward message updates. The MI approximation
and decision selection are equivalent for both cases.

Algorithm 1 Sequential Variational Information Control
Input: Start state x0,prior distribution x0 ∼ N(µ0,Σ0)
Output: A series of decisions D1:T

Initialization: α0(x0) = N(µ0,Σ0), β0:T−1 = 1
Let D[t] be the optimal decision at time t when the final step is t,1 ≤ t ≤ T
{// Estimate MI for each decision at time t}
for t = 1 to T do

for dt = 1 to K do
p̂t,dt(Xt, Yt) =

∫
αt−1(xt−1)p(Xt|xt−1, dt)p(Yt|Xt) dxt−1 {// Augmented predictive

distribution at time t}
qt,dt(Xt, Yt) = argminq KL(q||p̂t,dt) {// KL-projection}

end for
d∗t = argmaxdt∈{1,...,K} Ip̂t,dt (qt,dt) {// Choose decision with maximum MI per Sec. 3.2
or Sec. 4.2}
Execute decision d∗t and observe Yt = yt
{// ADF-update: (always do this)}
p̂t(Xt) ∝

∫
αt−1(xt−1)p(Xt | xt−1, d

∗
t )p(yt|Xt)d xt−1 {// Augmented filter distribution

at time t}
αt(Xt) = argminα KL(p̂t ∥α) {// KL-projection–forward message update}
{// EP-update: (only if doing EP)}
repeat

for i = 1 to t do
p̂i(Xi) =

∫
αi−1(xi−1)p(Xi | xi−1, d

∗
i )p(yi | Xi)βi(Xi) dxi−1

qi(Xi) = argminq KL(p̂i ∥ q)
αi(Xi) ∝ qi(Xi)

βi(Xi)
{// EP Forward message update}

end for
for i = (t− 1)to 0 do
p̂(Xi) =

∫
αi(Xi)p(xi+1 | xi, d∗i+1)p(yi+1 | xi+1, d

∗
i+1)βi+1(xi+1) dxi+1

qi(Xi) = argminq KL(p̂i ∥ q)
βi(Xi) ∝ qi(Xi)

αi(Xi)
{// EP Backward message update}

end for
until {αi, βi} converge

end for
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Appendix D. Moment-matching calculation of constrained GMM

At time t, let the approximated filter distribution q(Xt|yt1, dt1) =
∑K

i=1 πiN(Xt|µi,Σi), given
the GMM-Gaussian system, i.e.,

pd(Xt+1|Xt) =
N∑
i=1

wd(i)N(Xt+1|Ad,iXi, Cd,i), (39)

p(Yt+1|HXt+1, R), (40)

for a given decision d

p̂(Xt+1, Yt+1, St+1 = j) =

∫ K∑
i=1

πiN(Xt|µi,Σi)wjN(Xt+1|AjXt, Cj)p(Yt+1|HXt+1, R)dXt

=
K∑
i=1

πiwjN(Yt+1|HXt+1, R)N(Xt+1 | Ajµi, Cj +AjΣiA
T
j )

=
K∑
i=1

πiwjN(Yt+1|HXt+1, R)N(Xt+1 | mij , Pij) (41)

where we define Pij = Cj +AjΣiA
T
j , mij = Ajµi.

Applying constrained GMM projection to approximate p(Xt+1, Yt+1|St+1 = j) by

q(Xt+1, Yt+1, St+1 = j) = N(Yt+1|η, P )wjN(Xt+1|FjYt+1,Mj). (42)

We could first compute P as the projection of Covp̂(Y )–the covariance of Y under the
augmented distribution p̂(Y ):

p̂(Yt+1) =

K∑
i=1

πi

N∑
j=1

wj

∫
N(Yt+1 | Hxt+1, R)N(xt+1|mij , Pij)dxt+1

=
K∑
i=1

πi

N∑
j=1

wjN(Yt+1 | Hmij , R+HPijH
T ) (43)

Let

M =
K∑
i=1

πi

N∑
j=1

wj(Hmij),

V =

K∑
i=1

πi

N∑
j=1

wj [R+HPijH
T + (Hmij)(Hmij)

T ]−MMT (44)

P = Covp̂(Y ) = V

η = M (45)

To compute Fj and Mj , we consider

G(Fj ,Mj) ≡ min
Fj ,Mj

E [− logN (Xt | FjYt,Mj)]

= min
Fj ,Mj

1

2
log | Mj | +E

[
1

2
tr(M−1

j (Xt − FjYt)(Xt − FjYt)
T )

]
. (46)
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Solve for Fj ,

∇Fj G = ∇Fj E

[
1

2
tr(M−1

j (Xt − FjYt)(Xt − FjYt)
T )

]
= E

[
M−1

j (Xt − FjYt)(−∇Fj FjYt)
]

= −E
[
M−1

j (Xt − FjYt)Y
T
t

]
= 0

0 = E
[
XtY

T
t − FjYtY

T
t

]
F ∗
j = E

[
XtY

T
t

]
E
[
YtY

T
t

]−1

= {Cov(Xt, Yt) + E[Xt]E[Y T
t ]}{Cov(Yt, Yt) + E[Yt]E[Y T

t ]}−1 (47)

Solve for Mj ,

∇Mj G = ∇Mj

1

2
log | Mj | +

1

2
E
[
tr(M−1

j (Xt − FjYt)(Xt − FjYt)
T )
]

= Mj − E
[
(Xt − FjYt)(Xt − FjYt)

T )
]
= 0

M∗
j = E

[
(Xt − FjYt)(Xt − FjYt)

T )
]

= Cov(Xt, Xt) + E[Xt]E[XT
t ]− {Cov(Xt, Yt) + E[Xt]E[Y T

t ]}
{Cov(Yt, Yt) + E[Yt]E[Y T

t ]}−1{Cov(Yt, Xt) + E[Yt]E[XT
t ]} (48)

Moreover, we project Covp̂(Xt+1|St+1 = j) to Covq(Xt+1|St+1 = j) for MI estimation, which
is shown later.

p̂(Xt+1, Yt+1, St+1 = j) = ΣK
i=1 πiwjN(Yt+1|HXt+1, R)N(Xt+1|mij , Pij) (49)

p̂(Xt+1, Yt+1|St+1 = j) = ΣK
i=1 πiN(Yt+1|HXt+1, R)N(Xt+1|mij , Pij)

= ΣK
i=1 πiN

([
Xt+1

Yt+1

] ∣∣∣∣∣
[
mij

Hmij

]
,

[
Pij PijH

T

HPij R+HPijH
T

])
(50)

Let

µ̃t+1 = ΣK
i=1 πi

[
mij

Hmij

]
,

Ṽt+1 = ΣK
i=1 πi

{[
Pij PijH

T

HPij R+HPijH
T

]
+

[
mij

Hmij

] [
mij

Hmij

]T}
−µ̃t+1µ̃

T
t+1 (51)

Let

mj = ΣK
i=1 πimij , Vj = ΣK

i=1 πi[Pij +mijm
T
ij ]−mjm

T
j , (52)

then

Covp̂(Xt+1, Yt+1|St+1 = j) =

[
Vj VjH

T

HVj R+HVjH
T

]
, (53)

Cov−1
p̂ (Xt+1, Yt+1|St+1 = j) =

[
V −1
j +HTR−1H −HTR−1

−R−1H R−1

]
, (54)
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Covp̂(Xt+1|St+1 = j) = Vj . (55)

Since

Covq(Xt+1, Yt+1|St+1 = j) =

[
Mj + FjPF T

j FjP

PF T
j P

]
(56)

and

Covq−1(Xt+1, Yt+1|St+1 = j) =

[
M−1

j −M−1
j Fj

−F T
j M−1

j P−1 + F T
j M−1

j Fj

]
, (57)

Covq(Xt+1|St+1 = j) = Mj + FjPF T
j = Vj , (58)

and
Covq(Xt+1|Yt+1, St+1 = j) = Mj . (59)

Appendix E. MI-empowered one-shot POMDP learning

Environment and Challenge. We adopt the basic environmental setup as Porta et
al. Porta et al. (2006) but focus on a one-shot POMDP learning problem to underline the
need for efficiency and accuracy. Operated in the POMDP setting, the robot’s continuous
true positions Xt ∈ [−21, 21] are latent, but it receives continuous noisy measurements
Yt ∈ [0, 5] of the corridor width. The robot’s objective is to reach the correct door by
navigating the corridor (taking actions to move left, right, and enter), as Fig. 3a. This
simulated environment can be extended to real-world scenarios like fire rescue, where the
robot needs efficient localization and target-finding capabilities in unknown environments.
Given the belief state bt and reward function r(a,X), the optimal policy is learned by

π∗ = argmax
π

Ep(Yt|Ht)[Ebt [r(π(x), Xt = x) + future rewards]]. (60)

A straightforward and effective method is to apply a greedy reward. But we observe that,
with Ep(Yt|Ht)[Ebt [r(at, Xt = x)]] (greedy expected explicit reward) only, the performance of
the robot is not stable and it tends to get stuck at one place as Fig. 3b.

MI-empowered reward. Inspired by the intrinsically-motivated RL and curiosity-
driven RL, we modify the reward function by adding an MI term between the latent state
and measurement,

R(at) = Ep(Yt|Ht)[Ebt [r(at, Xt = x)]] + αI(Xt;Yt | at,Ht). (61)

The α value is a 0-1 value set to control the balance of exploration and exploitation, i.e., the
reward encourages the robot to explore more when it is not certain about its position but
prevents the robot from overly exploring when it has a near-precise belief of its position. In
practice, we set it to 0 when the variance of the belief state is below a threshold γ = 0.5.

Methodology. We approximate the belief state by a fixed-number Gaussian ensemble
by moment-matching and apply a Gaussian MI approximation shown in Sec. 4.1 to estimate
the MI term in Eqn. 61. As a comparison, we also implement PF with 3000 samples in this
space to approximate the truth. As shown in Fig. 3c, with MI-empowered reward, the robot
has the ability to address the oscillation problem in Fig. 3b. In our experiment, the robot
first explores the area for self-localization and then it moves to the target area when it is
equipped with the MI-empowered reward.
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Comparable accuracy and significant improvement in speeding up the process.
We terminate the process once the robot enters within the range of the correct door. To assess
the method’s accuracy, we collect the distance to the correct door at the last step (Fig. 3d)
in 11 runs and calculate the mean and + 1 STDEV. The result confirms the accuracy of our
method (ADF MI-empowered) is nearly as accurate as the PF with MI-empowered reward
and outperforms explicit-reward-only methods.
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