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ABSTRACT

Subcellular transcriptomics technologies have revolutionized our ability to study
gene expression and its spatial context at single-cell resolution. One fundamen-
tal yet underexplored task is gene spatial pattern classification, which involves
predicting localization patterns for genes within a single cell. To this end, we in-
troduce GPattern-Bench, a novel benchmark for this task that unifies evaluation
across four established baselines on three diverse datasets, comprising 43 million
RNA molecules across 101,000 cells. Given the suboptimal performance of ex-
isting machine learning methods, we also develop GPSNet, a transformer-based
architecture tailored for efficient modeling of spatial transcriptomics data. To ad-
dress the computational challenges of modeling thousands of RNA molecules in
a single cell, we propose a KNN-attention mechanism as a plug-in module for
the transformer architecture, enabling the model to efficiently capture spatial de-
pendencies. Extensive experiments on GPattern-Bench demonstrate that GPSNet
outperforms existing methods by a significant margin in both accuracy and infer-
ence speed, achieving an average F1-macro score of 70% across the three datasets,
a relative improvement of over 30% compared to the best baseline. We believe
GPattern-Bench will facilitate future research in this area, and GPSNet can serve
as a strong deep-learning baseline for future methods. We will publicly release
GPattern-Bench and GPSNet to the community.

1 INTRODUCTION

Spatial transcriptomics (ST) has revolutionized our understanding of cellular organization by
enabling the measurement of gene expression while preserving spatial localization informa-
tion (Williams et al.l 2022; Moses & Pachter, [2022; [Tian et al., |2023). Recent technological ad-
vances, such as MERFISH (Chen et al., 2015)), CosMx (NanoString Technologies, |[2024), and PHO-
TON (Rajachandran et al.,2025)), have further improved imaging resolution to the subcellular level,
as fine as 0.1 ~ 0.2 ym. This unprecedented resolution provides researchers with a better un-
derstanding of the intricate spatial distribution patterns of individual gene mRNAs within cells,
where distinct spatial patterns reflect functional specialization and cellular organization (Cassella &
Ephrussi, [2022; [Benjamin et al., [2024]).

Gene spatial pattern classification is an emerging but underexplored problem that quantitatively
classifies the spatial distribution of mRNA molecules for each gene within individual cells. As illus-
trated in Figure|l| given a set of mRNA molecules with their spatial coordinates and gene identities
in a single cell, the goal of this multi-label classification problem is to classify each gene into one
or more predefined spatial patterns, such as nuclear, cytoplasmic, membrane, or granular. Accu-
rately identifying these patterns is essential for understanding cellular functions, including localized
protein synthesis and polarity establishment (Lawrence & Singer, |1986); developmental processes,
such as asymmetric cell division (Taliaferro et al.| 2014} [Martin & Ephrussi, 2009); and disease
mechanisms, where disrupted mRNA localization contributes to neurodegeneration (Romo et al.,
2018)) and other pathological conditions (Taliaferro et al., [2014)).

To this end, we propose GPattern-Bench, a comprehensive benchmark for gene spatial pattern
classification in subcellular spatial transcriptomics. To our knowledge, this is the first benchmark
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Figure 1: Gene spatial pattern classification in subcellular spatial transcriptomics. The task is to
perform multi-label classification on genes within a single cell, assigning them to predefined spatial
patterns such as nuclear, cytoplasmic, or granular based on their mRNA locations. To address
this, we introduce GPattern-Bench, a comprehensive benchmark built from three high-resolution
datasets and four baselines, and propose GPSNet, a novel transformer-based model that sets a new
state-of-the-art in performance and efficiency.

specifically designed for this task. The benchmark is constructed from three high-resolution datasets
from diverse biological contexts: NIH/3T3 fibroblast cells (Eng et al., |2019), U-2 OS cells (Mah
et al., |2024), and CosMx Lung tissue (He et al., 2022). These datasets vary significantly in scale,
gene counts, spatial patterns, and species, providing a robust testbed for evaluating computational
methods. In total, the benchmark includes 43 million RNA molecules in 101,000 cells. To facilitate
direct comparisons, we adapt and evaluate four representative baseline methods on this benchmark:
(a) Bento (Mah et al., 2024), which leverages random forests and tensor decomposition to define
subcellular domains; (b) ELLA (Wang & Zhou, [2024), a probabilistic framework that uses non-
homogeneous Poisson processes along unified radial coordinates to estimate spatial patterns via
kernel-based intensity functions; (c) SPRAWL (Bierman et al. [2024), a non-parametric statistical
method that computes rank and permutation-based scores for gene spatial patterns; and (d) loc-
FISH (Samacoits et al.| [2018]), which extracts hand-crafted spatial features and employs random
forest classification to identify RNA localization patterns. We also implement a unified evaluation
protocol using metrics such as AUC, Accuracy, Fl-score, and inference speed to facilitate direct
comparisons.

Furthermore, we identified that existing machine learning methods show suboptimal performance in
both prediction accuracy and inference speed on this task. For example, Bento (Mah et al.| [2024)
relies on predefined pattern categories and requires accurate nuclear boundary annotations, which
can introduce bias and depend on segmentation quality. ELLA (Wang & Zhou, 2024)) uses proba-
bilistic modeling but struggles with scalability for extremely large datasets due to its computational
intensity with kernel optimization. SPRAWL (Bierman et al., [2024) is limited to specific rank and
permutation-based statistical tests, restricting its flexibility for detecting novel or complex spatial
patterns. locFISH (Samacoits et al.,|2018)) depends on hand-crafted features that may not capture in-
tricate spatial relationships beyond predefined classes. Fundamentally, these methods either restrict
analysis to human-crafted features or fail to leverage the full spatial context available in modern
high-resolution datasets by using pairwise distance metrics or grid-based representations.

Self-attention mechanisms, which have shown powerful capabilities for capturing long-range de-
pendencies in language and vision tasks (Vaswani et al.| 2017} |Dosovitskiy et al [2020), offer a
promising direction for modeling complex spatial dependencies among entire cells containing hun-
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dreds of thousands of molecules in an end-to-end manner. Hence, we propose GPSNet, an end-to-
end method relying on an encoder-decoder transformer architecture specifically designed to over-
come these limitations. The key innovation is our KNN-attention mechanism, which reduces the
quadratic complexity of standard self-attention by restricting each RNA molecule to attend only to
its K-nearest neighbors. Our comprehensive experiments demonstrate that GPSNet consistently sets
a new state-of-the-art, achieving the highest prediction accuracy in terms of AUC, Accuracy, and
Fl-score, along with fast inference speed across all three datasets, when compared with previous
machine learning-based methods.

Our contributions include:

1. GPattern-Bench: We formalize the problem of gene spatial pattern classification and pro-
pose the first benchmark for this task. The benchmark is curated from three high-resolution
subcellular datasets with diverse biological contexts and scales.

2. GPSNet: We propose a novel transformer architecture with KNN-attention that efficiently
captures local and global spatial dependencies among RNA molecules, enabling accurate
classification of gene spatial patterns. The model demonstrates superior classification per-
formance and inference efficiency compared to existing methods.

3. Experiments and Baselines: We adapt and evaluate four representative baseline methods
on this benchmark with a comprehensive experimental setup, providing a unified evaluation
protocol for this field.

2 GPATTERN-BENCH

2.1 PROBLEM SETTINGS

We formalize gene spatial pattern classification at the level of detected genes within each cell. Let
V' denote the gene vocabulary and C' the set of spatial pattern classes. A cell ¢ contains a variable
number L; of RNA molecules, represented as a set R; = {Ti,l JT8.2s - T L }, where each molecule
ri.0is a tuple (g; ¢, pi,e) With:

* g;¢ € V' the gene identity/class of the molecule;

* Pie = (TigVie) € R2: the 2D coordinates of the molecule in a cell-centric frame.

Define the gene-presence mask for cell i as m; € {0,1}V'|, where m;[j] = 1 if and only if gene v,
is detected in R; (i.e., 3¢ : g; o = v;). The learning target for cell 7 is the gene-pattern pairs binary

mask Y; € {0, 1}VI*I€l where:

Yilj, k] = )

1 if gene v; exhibits pattern ¢y, in cell i,
0 otherwise.

Multiple patterns may be true for the same gene, making it a multi-label classification task. Given a

set of RNA molecules R; in a cell 4, the model predicts scores Y, e [0, 1]VIXI€T for all gene—pattern
pairs in that cell. In practice, binarized predictions are obtained by thresholding the scores per class.

2.2 METRICS

We evaluate multi-label performance with several metrics, which are first computed for each pattern
class independently and then macro-averaged. This approach ensures a balanced evaluation despite
potential class imbalance.

Notation. Let there be N instances (present cell-gene pairs) and C' pattern classes. For each
instance ¢ and class ¢, the ground-truth label is y;c € {0,1} and the model’s predicted score is
sic € [0,1]. For each class ¢, let TP., FP.,TN., F N, be the true/false positive/negative counts
aggregated over all [V instances.
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Table 1: Summary of benchmark datasets. Avg. RNAs/cell indicates the average number of RNA
molecules per cell.

Dataset ‘ # RNA #Cell # Gene RNIZ‘;%Cell # Pattern | Technology Specie
NIH/3T3 (Eng et al.|[2019) 2,724,808 179 3,721 15,222 4 seqFISH+  Mouse
U-2 OS (Mah et al.{[2024) 10,634,467 1,022 130 10,405 4 MERFISH  Human
CosMx Lung (He et al.[[2022) | 30,370,769 100,149 960 303 3 CosMx SMI  Human

Total | 43,730,044 101350 - 431 -

Area Under the ROC Curve (AUC). For each class ¢, we compute the Receiver Operating Char-
acteristic (ROC) curve by varying the decision threshold over the scores s;.. The Area Under this
Curve, AUC,, is reported. It is probabilistically equivalent to the likelihood that a randomly chosen
positive instance receives a higher score than a randomly chosen negative one. If a class contains
only positive or only negative instances in the evaluation set, its AUC is undefined.

F1-score and Accuracy. For threshold-dependent metrics, we first determine an optimal, class-
specific threshold 7 that maximizes the F1-score. This is achieved by evaluating the precision-recall
curve for each class.

1. For each class ¢, we compute the precision-recall curve from the scores s;. and labels ;..

2. We calculate the Fl-score at each point on the curve and identify the threshold 7 that
yields the maximum F1-score, F17.

3. Using this optimal threshold 7., we binarize the predictions (§;. = 1[s;c > 77]) and
compute the corresponding Accuracy (ACC,).

The final reported metrics are F'1a¢r0, ACCracro, and AUCpacr0, Which are the means of the respec-
tive per-class scores.

2.3 DATASET CONSTRUCTION AND OVERVIEW

We curated three high-resolution spatial transcriptomics datasets to establish a robust benchmark
for gene spatial pattern classification. These datasets vary in scale, species, and spatial resolution,
providing a comprehensive evaluation ground for our proposed method.

NIH/3T3 fibroblast cells (Eng et al., 2019). This dataset profiles 3,721 genes in 179 murine
fibroblast cells using seqFISH+ technology, with a total of 2.7M molecules. The dataset captures 4
distinct spatial patterns labeled by Bento (Mah et al.,[2024)): cell edge, cytoplasmic, nuclear, nuclear
edge. This dataset features a very high number of RNAs per cell (~ 15k), presenting a challenge for
efficient inference and long-context transformer training.

U-2 OS cells (Mah et al., 2024). Containing 10M molecules across 1,022 human osteosarcoma
cells measured by MERFISH (Chen et all [2015), this dataset includes 130 genes and 4 spatial
patterns labeled by Bento (Mah et al., 2024): cell edge, cytoplasmic, nuclear, nuclear edge. It
represents a balanced benchmark with a relatively high number of RNAs per cell.

CosMx Lung (He et al., 2022). This large-scale human lung tissue dataset contains over 30M
molecules across 100k cells from a cancerous tissue, profiling 980 genes with 3 spatial patterns:
nuclear, membrane, cytoplasmic, using CosMx SMI (NanoString Technologies, 2024). Its massive
scale tests the scalability and accuracy of computational methods.

Numerical statistics of each dataset are summarized in Table E} And, more details about data pre-
processing and pattern annotation are provided in Appendix

2.4 BASELINES

We adapted four state-of-the-art methods as baselines for comparison in our GPattern-Bench:
(a) Bento (Mah et all [2024), (b) ELLA (Wang & Zhoul 2024), (c) SPRAWL (Bierman et al.,
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Figure 2: Methodology of baselines. a) Bento extracts 13 spatial features from ST data with both
cell and nuclear boundaries, and leverages random forests for pattern classification, b) ELLA models
gene expression as a 1D NHPP with Adam-optimized intensity functions and performs clustering to
derive results, c) SPRAWL computes 4 rank/permutation metrics to score localization patterns, and
d) locFISH derives 23 spatial features and applies random forest classification.

2024), and (d) locFISH (Samacoits et al., 2018). In Figure 2} we illustrate and compare these four
baselines in terms of the data they use as inputs , how they model gene expression, and how they

perform inference from the modeling.

We notice that ELLA, SPRAWL, and locFISH use only RNA coordinates and cell outlines as in-
put, while Bento requires additional information such as RNA and cell/nuclear boundaries. Bento,
SPRAWL, and locFISH extract handcrafted spatial features from the input data and apply random
forest classification or directly predict using biological prior knowledge, whereas ELLA models
gene expression as a 1D non-homogeneous Poisson point process (NHPP) with Adam-optimized
intensity functions and performs clustering to derive results. Detailed (re)implementations for each

baseline are provided in Appendix

3 GPSNET

To address the low prediction accuracy and slow inference speed of existing methods, we propose
the Gene Pattern Spatial Network (GPSNet), shown in Figure 3] GPSNet is a novel transformer-
based architecture specifically designed to model the complex interactions between gene identity
and the spatial context of RNA molecules within single cells. Its key innovation is the introduction
of a KNN-attention mechanism that enables efficient modeling of local spatial relationships while
maintaining scalability to large numbers of molecules. It is an end-to-end deep learning model that
does not rely on handcrafted features and effectively leverages modern GPU hardware.

3.1 ARCHITECTURE

Components. GPSNet utilizes a modern encoder-decoder transformer-based architecture de-
signed to effectively capture the large number of complex interactions between gene identity and
the spatial arrangement of RNA molecules within single cells. GPSNet employs five core compo-
nents: (1) a coordinate encoding MLP, (2) a gene embedding layer, (3) a transformer encoder with
KNN-attention, (4) a transformer decoder with interleaved self-attention and cross-attention, and (5)
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Figure 3: The architecture of GPSNet. The model takes RNA molecules, defined by their gene
type and spatial coordinates, as input. These are converted into embeddings and processed by a
transformer encoder-decoder structure. The final output is a multi-label prediction of gene spatial
patterns. The key components of our architecture are: (a) KNN Self-Attention in the encoder
to efficiently model spatial relationships between neighboring molecules, (b) Learnable Pattern
Queries in the decoder that act as prototypes for different spatial patterns, and (c) Cross-Attention,
which allows the decoder to aggregate gene embeddings from the encoder’s RNA representation of
the cell. Residual connections in the transformer blocks are omitted for clarity.

a multi-label classification head. RMSNorm (Zhang & Sennrich, 2019) and GELU (Hendrycks &
Gimpell, 2016) activations are used throughout the model.

Forward Pass. The forward pass through GPSNet consists of four stages:

1. Embedding: The coordinates and gene classes of each RNA molecule are projected into a
shared embedding space using the coordinate MLP and gene embedding layer, respectively.

These are summed to create initial representations: H(®) = {h(lo)7 héo), ceey h(LO)}.

2. Encoder: The transformer encoder processes these representations using N layers of
KNN-attention to capture spatial contexts. Each layer updates the representations as
H® = EncoderLayer(H(~1),

3. Decoder: The transformer decoder takes learnable gene queries Q = {q1,q2,...,9¢}
(where C'is the number of gene classes) and attends to the encoder outputs through cross-
attention: O = Decoder(Q, H(™)). Self-attention within the decoder allows gene queries
to interact. These two types of attention are interleaved in each decoder layer.

4. Classification: The decoder outputs are passed through a classification head consisting of

a linear layer followed by a sigmoid activation to produce multi-label predictions: Y =
(WO + b).

3.2 KNN-ATTENTION MECHANISM
KNN-attention is proposed to handle two unique challenges of spatial transcriptomics data:
2D/3D Spatial Structure of Molecules. RNAs, unlike natural language tokens or image pixels,

are points that exist in continuous 2D or 3D space. Biologically, different parts of cells can have
very distinct biological functions, and RNAs located far apart are less likely to influence each other.
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Therefore, global self-attention, which allows every molecule to attend to every other molecule, is
not biologically appropriate. KNN-attention addresses this by restricting attention to local neigh-
borhoods, allowing the model to focus on spatially relevant interactions.

Large Number of Molecules in a Single Cell. A single cell can contain thousands to tens of
thousands of RNA molecules, making the O(L?) complexity of standard self-attention infeasible.
This is the main computational challenge in applying vanilla transformers to large sets of RNA
molecules within a cell. The KNN-attention mechanism addresses the O(L?) complexity bottleneck
of standard self-attention by reducing it to O (LK), making it feasible to process complex and large
cells with over 10,000 molecules.

4 EXPERIMENTS

4.1 MAIN RESULTS

Table 2: Performance comparison across datasets and methods. Best results are bolded and
second best are underlined. For a fair comparison, we report the validation time of our method
and ELLA using one GPU with a batch size of 1. *NIH/3T3 and U-2 OS were labeled by Bento;
hence, Bento is not evaluated on these datasets. TFor ELLA evaluation on the CosMx Lung, due
to computational constraints with the large dataset scale (~100,000 cells), we conducted random
sampling for approximation.

Dataset | Method | AUC (%)1 ACC (%)t F1-Score(%)1 | Validation Time |
Bento* - - - 7 min 38 s
ELLA 50.16 77.35 11.11 23 hr 53 min 24 s
NIH/3T3 SPRAWL 67.33 80.43 23.58 S5min9s
locFISH 62.53 65.55 32.90 13 min 20 s
GPSNet (Ours) 90.22 84.35 71.02 15s
Bento* - - - 7 min 8 s
ELLA 50.17 78.36 6.29 2 d 16 hr 26 min
U-20S SPRAWL 68.94 78.98 21.09 27 min 21 s
locFISH 60.17 63.25 34.15 1d 8 hr 13 min
GPSNet (Ours) 92.52 87.88 73.48 26s
Bento 65.92 68.18 51.72 2 d 3 hr 40 min
ELLAT 65.57 53.36 25.27 >100d
CosMx Lung | SPRAWL 54.01 60.27 42.86 1 hr 2 min
locFISH 73.42 69.76 49.69 2d 13 hr 51 min
GPSNet (Ours) 83.09 78.08 68.26 3min6s

Table [2| presents a comprehensive performance comparison between GPSNet and the four baseline
methods across all three datasets. GPSNet consistently outperforms all baselines on every metric
and dataset, demonstrating its effectiveness for gene spatial pattern classification.

In terms of accuracy, no single baseline consistently performs best. For instance, locFISH achieves
the highest F1-score among baselines on NIH/3T3 and U-2 OS, while Bento is the top performer on
CosMx Lung, suggesting that existing methods may be specialized to certain data characteristics.
In contrast, GPSNet demonstrates superior and robust performance across the board. It achieves a
30.6% relative F1-score improvement over Bento on the challenging CosMx Lung dataset, a 125.9%
improvement over locFISH on NIH/3T3, and a 113.1% improvement over locFISH on U-2 OS.

Regarding inference speed, GPSNet is significantly faster than all baselines across all datasets. Base-
line methods exhibit a wide range of inference times, from several minutes to multiple days, with
none approaching GPSNet’s efficiency. On the smallest dataset, NIH/3T3, GPSNet completes in-
ference in just 15 seconds, while the next fastest, SPRAWL, takes over 5 minutes. On the largest
dataset, CosMx Lung, where SPRAWL cannot perform in a reasonable time, GPSNet finishes the
evaluation in 3 minutes. This efficiency, combined with its high accuracy, makes GPSNet a highly
scalable and practical solution for analyzing large and complex spatial transcriptomics data. These
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results suggest that GPSNet’s integrated approach provides a more comprehensive solution for gene
spatial pattern classification.

4.2 ABLATION STUDY

We conducted extensive ablation studies on the NIH/3T3 and U-2 OS datasets to understand the
contributions of GPSNet’s key components. Detailed numerical results of the ablation study are
provided in Appendix

Value of K in KNN-attention. We investigated the impact of the neighborhood size K in KNN-
attention. We observed that performance generally improves as K increases. For U-2 OS, perfor-
mance peaks at K = 256 and then declines, suggesting that an excessively large neighborhood can
introduce noise. For the NIH/3T3 dataset, performance ceases to improve at K = 64 and slightly
drops at K = 256. However, to maintain consistency across datasets and balance performance with
computational efficiency, we selected K = 256 as the value for all experiments, as it offers a strong
trade-off.

Encoder-Decoder Depth Ratio. We studied the effect of the encoder-decoder depth ratio. To
ensure a fair comparison, we kept the total number of layers N constant while varying the ratio
of encoder to decoder layers. We found that for both NIH/3T3 and U-2 OS, an unbalanced ‘2:1’
or ‘1:2’ ratio shows similar performance and is better than the balanced ‘1:1° configuration. This
suggests that a slightly asymmetrical architecture can be effective. Our final models use the 2:1 ratio
for all datasets.
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Figure 4: Ablation studies of GPSNet. (a) Effect of KNN neighborhood size K. We chose K =
256 for all datasets to balance performance and efficiency. (b) Effect of encoder-decoder depth
ratio. We chose a 1:2 encoder-decoder layer ratio for optimal performance. Our choice is in the

gray box.

4.3  VISUALIZATION

In Figure [5] we show a representative visualization result comparing GPSNet predictions with
ground truth and baseline methods on a sample from the U-2 OS dataset.

5 RELATED WORK

Gene Spatial Pattern Classification. Recent technological advancements in spatial transcrip-
tomics have dramatically improved spatial resolution from tissue-level to subcellular-level measure-
ments, with technologies like MERFISH, SeqFISH+, and VisiumHD achieving resolutions as fine as
0.1-2.0 um. This enables the precise measurement of gene expression at the subcellular level, cre-
ating new computational challenges for analyzing intracellular mRNA localization patterns. Early
methods focused on tissue-level analysis, such as identifying spatially variable genes (Review &
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Figure 5: Comparison of gene spatial pattern prediction on a U-2 OS sample on ground truth
and four methods. GPSNet more accurately recovers the complex pattern geometry compared to
baseline methods.

2024), but are insufficient for subcellular analysis. Current subcellular methods can be cat-
egorized into feature-based approaches like Bento (Mah et al.,[2024)) and locFISH (Samacoits et al.|

2018)), which extract hand-crafted features for classification, and statistical modeling approaches

like SPRAWL (Bierman et all, 2024) and ELLA (Wang & Zhoul [2024), which use mathematical

models to quantify spatial patterns. GPattern-Bench provides a systematic evaluation framework
that highlights the respective strengths and weaknesses of these state-of-the-art approaches.

Transformers in Biology. Transformers have revolutionized computational biology, demonstrat-
ing remarkable success in protein structure prediction (Jumper et al., |2021), single-cell analy-
sis 2022), genome analysis (Avsec et al.,[2025), and spatial omics 2022).
Their self-attention mechanism is uniquely powerful for modeling long-range dependencies, making
them theoretically ideal for spatial data. However, the O(L?) complexity of standard transformers
has limited their application to large-scale spatial transcriptomics datasets, where L (the number
of RNA molecules) can exceed 100,000 per sample. Recent adaptations using graph-based trans-
formers (Madhu et al.,[2025) have attempted to address this. Our GPSNet introduces a physically-
grounded KNN-attention mechanism inspired by sliding-window attention (Beltagy et al., [2020)
that leverages the inherent spatial locality of biological interactions, providing an efficient and inter-
pretable solution for modeling subcellular spatial transcriptomics data.

6 CONCLUSION

We introduced GPattern-Bench, a comprehensive benchmark for gene spatial pattern classification,
featuring three diverse datasets and four strong baselines to facilitate future comparisons. To im-
prove prediction accuracy and efficiency, we designed GPSNet, a novel transformer architecture
with KNN-attention that effectively handles large-scale spatial transcriptomics data. Extensive ex-
periments demonstrate that GPSNet outperforms all baseline methods across all datasets and met-
rics, with particularly significant gains on large-scale data, in terms of both prediction accuracy
and inference speed. We hope our benchmark and model will stimulate future research in spatial
transcriptomics analysis, especially at the subcellular resolution.
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ETHICS STATEMENT

This research utilizes publicly available datasets. The cell lines used in our benchmark (NIH3T3, U-
20S and CosMx Lung) are standard, commercially available cell lines. All data is fully anonymized
and was obtained from previously published studies. No new data was collected for this study. The
advancements in spatial transcriptomics analysis from this research have the potential to accelerate
the understanding of complex biological processes and diseases, such as cancer and developmental
disorders. By providing more accurate and efficient tools for analyzing gene expression patterns
within their spatial context, this work could ultimately contribute to the development of novel diag-
nostic methods and therapeutic strategies, improving human health.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results and to facilitate future research, the source code for our
proposed GPSNet model, the implementation of the baseline methods, and the complete GPattern-
Bench benchmark datasets will be made publicly available. The repository will include the pro-
cessed datasets, training scripts, evaluation scripts, and detailed instructions for reproducing the
experiments presented in this paper. All hyperparameters and model configurations are described in
the experimental section of this paper.
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APPENDIX

This appendix provides the following additional information:

* Appendix [A} Use of LLM.

* Appendix B} Implementation details for datasets, baselines, and hardware/software config-
urations.

* Appendix [C} Hyperparameters for training GPSNet.
* Appendix |Df Numerical results of the ablation study on GPSNet.

* Appendix Biological meanings of the spatial patterns used in the GPattern-Bench
dataset.

* Appendix [} Class distribution of gene spatial patterns in each dataset of GPattern-Bench.
* Appendix [Gt Additional visualizations of gene spatial pattern predictions on all datasets.

A  USE OF LLM STATEMENT

We used a Large Language Model (LLM) to assist with grammar checking.

B IMPLEMENTATION DETAILS

B.1 HARDWARE AND SOFTWARE CONFIGURATIONS

All experiments were conducted on a server equipped with four NVIDIA A40 GPUs. All models
were implemented using PyTorch 2.7.

B.2 DATASETS IMPLEMENTATION

The NIH/3T3, U-2 OS, and CosMx Lung datasets are all publicly accessible. Cell and nuclear
boundaries for the NIH/3T3 and U-2 OS datasets were obtained from previously processed segmen-
tations (Mabh et al.,2024)). For the CosMx Lung dataset, we performed cell and nuclear segmentation
from the corresponding TIFF images and assigned the resulting boundaries to cells within each field
of view.

We randomly partitioned the datasets into training, validation, and test sets using an 80:10:10 ratio
based on fields of view. This approach ensures that the methods must demonstrate cross-slice gener-
alization capabilities and effectively handle batch effects across different imaging regions. Statistics
are shown in Figure[6]

B.2.1 BASELINES IMPLEMENTATION

To ensure a fair comparison, all baseline methods were evaluated using standardized preprocessing
in which benchmark spatial transcriptomics datasets (seqFISH+, MERFISH, CosMx) were con-
verted to extract molecular coordinates, cell boundaries, and nucleus boundaries when available.

SPRAWL. SPRAWL was installed via PyPI and required converting data into HDF5 format.
SPRAWL computes three scores per gene-cell pair: peripheral (tendency toward the cell membrane),
central (tendency toward the cell center), and punctate/radial (clustering patterns). These continu-
ous scores were mapped to our discrete labels using thresholds: high peripheral and low central
scores indicated cell edge localization; low peripheral and high central scores indicated nuclear lo-
calization; significantly negative peripheral and non-significant central scores indicated cytoplasmic
patterns; and significantly positive radial and punctate scores indicated polarized localization. This
mapping is supported by established knowledge of subcellular RNA localization patterns (Buxbaum
et al.,|2015) and the SPRAWL methodology (Bierman et al., [2024).
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ELLA. ELLA was implemented using Poetry for dependency management, following the official
documentation. Data preparation involved converting AnnData objects to pickle files and then gen-
erating JSON files via command-line tools. ELLA outputs five clusters that were mapped to our
categories: the red cluster (nuclear), the yellow cluster (nuclear edge), the green cluster (cytoplas-
mic), the blue cluster (cell membrane), and the fifth cluster (mixed patterns). When implementing
ELLA on the CosMx lung dataset, the large scale of the test data (~100,000 cells) presented com-
putational challenges, with an estimated runtime exceeding 100 days for the full dataset. To make
the analysis feasible, we performed random sampling to reduce the dataset to 2,000 cells. This sam-
pling approach is reasonable since ELLA processes one gene at a time to generate consistent spatial
patterns across all cells.

Bento. Bento was installed via bento-tools with careful dependency management. The imple-
mentation followed the Data Prep Guide to format transcript coordinates and cell segmentations for
Bento’s spatial analysis pipeline.

locFISH. locFISH was implemented through the big-fish package, which was originally designed
for microscopy images. We adapted it for Spatial Transcriptomics using the same two-stage strategy
as the original: first applying t-SNE dimensionality reduction followed by K-means clustering for
gene-cell pair classification, and then aggregating patterns across cells for gene-level profiling. The
feature extraction pipeline computes spatial statistics directly from transcript coordinates rather than
from pixel intensities.

All methods were evaluated using identical metrics, including multi-label accuracy, per-category
precision/recall, and overall classification performance, with consistent ground truth labels to ensure
reproducible comparisons.

C HYPERPARAMETERS FOR TRAINING GPSNET

With our hardware configuration, the training times for the NIH/3T3, U-2 OS, and CosMx Lung
datasets are approximately 5 minutes, 25 minutes, and 2 hours, respectively. We provide the detailed
hyperparameters used for training GPSNet in Table

Table 3: Hyperparameters for GPSNet across datasets.

Dataset NIH/3T3 U-20S CosMx Lung
Config

encoder depth 4 4 6
decoder depth 8 8 12
attention heads 12

hidden dim 768

mlp ratio 4

model size 130M 130M 187TM
optimizer AdamW

learning rate le-5

weight decay 0.03

optimizer momentum 0.9, 0.9)

batch size 4 4 64
learning rate schedule linear warmup then constant
warmup steps 1000 1000 5,000
epochs 10 5 10
precision bfloat16

max grad norm 1.0

gradient checkpointing True False False
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D ABLATION STUDY

This section provides the numerical results of our ablation studies on K in KNN-attention in Table 4]
and on the encoder-decoder depth in Table 5]

Table 4: Ablation study of GPSNet on K in KNN-attention. We fixed the encoder-decoder depth

ratio to 1:2.
Dataset | K | AUC(%)T ACC(%)T F1-Score (%)t
1 84.00 77.13 62.52
4 87.08 80.46 66.25
16 90.05 83.88 71.14
NIH/3T3 | 64 90.77 84.84 72.16
256 89.28 83.11 70.72
1024 89.64 83.16 70.36
2048 88.12 81.63 68.08
1 88.44 83.04 67.03
4 88.70 83.74 67.37
16 90.77 85.64 70.42
U-2 0S 64 92.20 86.78 72.76
256 92.45 86.63 72.89
1024 91.69 86.58 70.88
2048 90.95 85.47 70.09
Table 5: Ablation study of GPSNet on encoder-decoder depth ratio. We fix the value of K to

256.

Dataset | E:D Ratio | AUC (%)1 ACC (%)t F1-Score (%)t

(N-1):1 88.02 81.63 68.07

2:1 89.28 83.11 70.72

NIH/3T3 1:1 88.18 81.43 68.67
1:2 90.22 84.35 71.02

1:(N-1) 88.23 81.68 68.73

(N-1):1 90.29 85.66 69.71

2:1 92.45 86.63 72.89

U-208 1:1 91.95 87.20 72.65
1:2 92.52 87.88 73.48

1:(N-1) 91.41 86.34 71.71

E BIOLOGICAL MEANING OF SPATIAL PATTERNS

This section provides a brief biological explanation of the spatial patterns used in the GPattern-
Bench dataset:

Nuclear: Genes that are predominantly localized within the cell’s nucleus.

Nuclear edge: Genes that are localized at the periphery of the nucleus, often associated
with the nuclear envelope.

Cell edge: Genes found at the outer boundary of the cell, often involved in cell signaling
and interaction with the extracellular environment.

Cytoplasmic: Genes distributed throughout the cytoplasm, involved in various cellular
processes such as metabolism and protein synthesis.

Membrane: Genes associated with the cell membrane, playing roles in transport, signal-
ing, and cell adhesion.
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F CLASS DISTRIBUTION OF GPATTERN-BENCH

This section shows the distribution of gene spatial patterns in each dataset of GPattern-Bench in Fig-

ure[7]

G MORE PREDICTION VISUALIZATION

This section provides additional visualizations of predictions on all datasets in Figure [8] Figure [0
and Figure [10]
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Figure 6: Statistics of train/validation/test splits for each dataset. We split each dataset into
training, validation, and test sets with a ratio of 80%, 10%, and 10%, respectively. The splits are
stratified to ensure that each split contains a representative distribution of gene spatial patterns.
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Figure 7: Distribution of gene spatial patterns in each dataset. Ambiguous genes in U-2 OS and
NIH/3T3 are genes that have two spatial patterns.
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Figure 8: More comparison of prediction for gene spatial patterns on CosMx Lung.
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Figure 9: More comparison of prediction for gene spatial patterns on U-2 OS.
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Figure 10: More comparison of prediction for gene spatial patterns on NIH/3T3.
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