

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GPATTERN-BENCH: BENCHMARKING GENE SPATIAL PATTERN CLASSIFICATION IN SUBCELLULAR SPATIAL TRANSCRIPTOMICS

Anonymous authors

Paper under double-blind review

## ABSTRACT

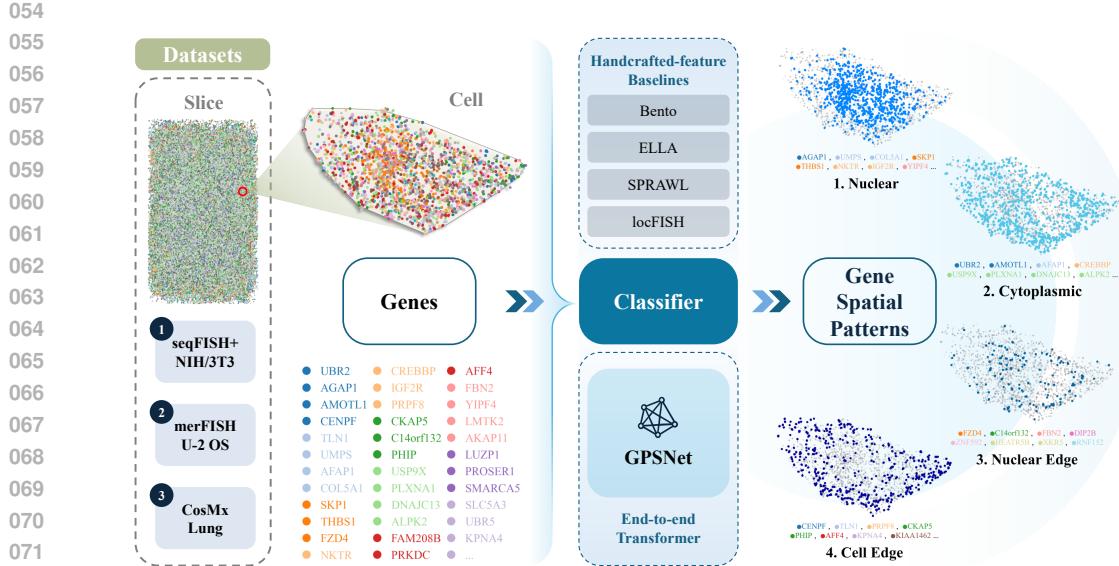
Subcellular transcriptomics technologies have revolutionized our ability to study gene expression and its spatial context at single-cell resolution. One fundamental yet underexplored task is *gene spatial pattern classification*, which involves predicting localization patterns for genes within a single cell. To this end, we introduce *GPattern-Bench*, a novel benchmark for this task that unifies evaluation across four established baselines on three diverse datasets, comprising 43 million RNA molecules across 101,000 cells. Given the suboptimal performance of existing machine learning methods, we also develop *GPSNet*, a transformer-based architecture tailored for efficient modeling of spatial transcriptomics data. To address the computational challenges of modeling thousands of RNA molecules in a single cell, we propose a KNN-attention mechanism as a plug-in module for the transformer architecture, enabling the model to efficiently capture spatial dependencies. Extensive experiments on GPattern-Bench demonstrate that GPSNet outperforms existing methods by a significant margin in both accuracy and inference speed, achieving an average F1-macro score of 70% across the three datasets, a relative improvement of over 30% compared to the best baseline. We believe GPattern-Bench will facilitate future research in this area, and GPSNet can serve as a strong deep-learning baseline for future methods. We will publicly release GPattern-Bench and GPSNet to the community.

## 1 INTRODUCTION

Spatial transcriptomics (ST) has revolutionized our understanding of cellular organization by enabling the measurement of gene expression while preserving spatial localization information (Williams et al., 2022; Moses & Pachter, 2022; Tian et al., 2023). Recent technological advances, such as MERFISH (Chen et al., 2015), CosMx (NanoString Technologies, 2024), and PHOTON (Rajachandran et al., 2025), have further improved imaging resolution to the subcellular level, as fine as  $0.1 \sim 0.2 \mu\text{m}$ . This unprecedented resolution provides researchers with a better understanding of the intricate spatial distribution patterns of individual gene mRNAs within cells, where distinct spatial patterns reflect functional specialization and cellular organization (Cassella & Ephrussi, 2022; Benjamin et al., 2024).

Gene spatial pattern classification is an emerging but underexplored problem that quantitatively classifies the spatial distribution of mRNA molecules for each gene within individual cells. As illustrated in Figure 1, given a set of mRNA molecules with their spatial coordinates and gene identities in a single cell, the goal of this multi-label classification problem is to classify each gene into one or more predefined spatial patterns, such as *nuclear*, *cytoplasmic*, *membrane*, or *granular*. Accurately identifying these patterns is essential for understanding cellular functions, including localized protein synthesis and polarity establishment (Lawrence & Singer, 1986); developmental processes, such as asymmetric cell division (Taliaferro et al., 2014; Martin & Ephrussi, 2009); and disease mechanisms, where disrupted mRNA localization contributes to neurodegeneration (Romo et al., 2018) and other pathological conditions (Taliaferro et al., 2014).

To this end, we propose **GPattern-Bench**, a comprehensive benchmark for gene spatial pattern classification in subcellular spatial transcriptomics. To our knowledge, this is the first benchmark



**Figure 1: Gene spatial pattern classification in subcellular spatial transcriptomics.** The task is to perform multi-label classification on genes within a single cell, assigning them to predefined spatial patterns such as *nuclear*, *cytoplasmic*, or *granular* based on their mRNA locations. To address this, we introduce **GPattern-Bench**, a comprehensive benchmark built from three high-resolution datasets and four baselines, and propose **GPSNet**, a novel transformer-based model that sets a new state-of-the-art in performance and efficiency.

specifically designed for this task. The benchmark is constructed from three high-resolution datasets from diverse biological contexts: NIH/3T3 fibroblast cells (Eng et al., 2019), U-2 OS cells (Mah et al., 2024), and CosMx Lung tissue (He et al., 2022). These datasets vary significantly in scale, gene counts, spatial patterns, and species, providing a robust testbed for evaluating computational methods. In total, the benchmark includes **43 million** RNA molecules in **101,000** cells. To facilitate direct comparisons, we adapt and evaluate four representative baseline methods on this benchmark: (a) **Bento** (Mah et al., 2024), which leverages random forests and tensor decomposition to define subcellular domains; (b) **ELLA** (Wang & Zhou, 2024), a probabilistic framework that uses non-homogeneous Poisson processes along unified radial coordinates to estimate spatial patterns via kernel-based intensity functions; (c) **SPRAWL** (Bierman et al., 2024), a non-parametric statistical method that computes rank and permutation-based scores for gene spatial patterns; and (d) **locFISH** (Samacoits et al., 2018), which extracts hand-crafted spatial features and employs random forest classification to identify RNA localization patterns. We also implement a unified evaluation protocol using metrics such as AUC, Accuracy, F1-score, and inference speed to facilitate direct comparisons.

Furthermore, we identified that existing machine learning methods show suboptimal performance in both prediction accuracy and inference speed on this task. For example, Bento (Mah et al., 2024) relies on predefined pattern categories and requires accurate nuclear boundary annotations, which can introduce bias and depend on segmentation quality. ELLA (Wang & Zhou, 2024) uses probabilistic modeling but struggles with scalability for extremely large datasets due to its computational intensity with kernel optimization. SPRAWL (Bierman et al., 2024) is limited to specific rank and permutation-based statistical tests, restricting its flexibility for detecting novel or complex spatial patterns. locFISH (Samacoits et al., 2018) depends on hand-crafted features that may not capture intricate spatial relationships beyond predefined classes. Fundamentally, these methods either restrict analysis to human-crafted features or fail to leverage the full spatial context available in modern high-resolution datasets by using pairwise distance metrics or grid-based representations.

Self-attention mechanisms, which have shown powerful capabilities for capturing long-range dependencies in language and vision tasks (Vaswani et al., 2017; Dosovitskiy et al., 2020), offer a promising direction for modeling complex spatial dependencies among entire cells containing hun-

108 dreds of thousands of molecules in an end-to-end manner. Hence, we propose **GPSNet**, an end-to-  
 109 end method relying on an encoder-decoder transformer architecture specifically designed to over-  
 110 come these limitations. The key innovation is our KNN-attention mechanism, which reduces the  
 111 quadratic complexity of standard self-attention by restricting each RNA molecule to attend only to  
 112 its K-nearest neighbors. Our comprehensive experiments demonstrate that GPSNet consistently sets  
 113 a new state-of-the-art, achieving the highest prediction accuracy in terms of AUC, Accuracy, and  
 114 F1-score, along with fast inference speed across all three datasets, when compared with previous  
 115 machine learning-based methods.

116 Our contributions include:  
 117

- 118 1. **GPattern-Bench**: We formalize the problem of gene spatial pattern classification and pro-  
 119 pose the first benchmark for this task. The benchmark is curated from three high-resolution  
 120 subcellular datasets with diverse biological contexts and scales.
- 121 2. **GPSNet**: We propose a novel transformer architecture with KNN-attention that efficiently  
 122 captures local and global spatial dependencies among RNA molecules, enabling accurate  
 123 classification of gene spatial patterns. The model demonstrates superior classification per-  
 124 formance and inference efficiency compared to existing methods.
- 125 3. **Experiments and Baselines**: We adapt and evaluate four representative baseline methods  
 126 on this benchmark with a comprehensive experimental setup, providing a unified evaluation  
 127 protocol for this field.

## 129 2 G PATTERN-BENCH

### 132 2.1 PROBLEM SETTINGS

134 We formalize gene spatial pattern classification at the level of detected genes within each cell. Let  
 135  $V$  denote the gene vocabulary and  $C$  the set of spatial pattern classes. A cell  $i$  contains a variable  
 136 number  $L_i$  of RNA molecules, represented as a set  $R_i = \{r_{i,1}, r_{i,2}, \dots, r_{i,L_i}\}$ , where each molecule  
 137  $r_{i,\ell}$  is a tuple  $(g_{i,\ell}, \mathbf{p}_{i,\ell})$  with:

- 138 •  $g_{i,\ell} \in V$ : the gene identity/class of the molecule;
- 139 •  $\mathbf{p}_{i,\ell} = (x_{i,\ell}, y_{i,\ell}) \in \mathbb{R}^2$ : the 2D coordinates of the molecule in a cell-centric frame.

141 Define the gene-presence mask for cell  $i$  as  $\mathbf{m}_i \in \{0, 1\}^{|V|}$ , where  $m_i[j] = 1$  if and only if gene  $v_j$   
 142 is detected in  $R_i$  (i.e.,  $\exists \ell : g_{i,\ell} = v_j$ ). The learning target for cell  $i$  is the gene-pattern pairs binary  
 143 mask  $\mathbf{Y}_i \in \{0, 1\}^{|V| \times |C|}$  where:

$$145 \quad 146 \quad Y_i[j, k] = \begin{cases} 1 & \text{if gene } v_j \text{ exhibits pattern } c_k \text{ in cell } i, \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

148 Multiple patterns may be true for the same gene, making it a multi-label classification task. Given a  
 149 set of RNA molecules  $R_i$  in a cell  $i$ , the model predicts scores  $\hat{\mathbf{Y}}_i \in [0, 1]^{|V| \times |C|}$  for all gene-pattern  
 150 pairs in that cell. In practice, binarized predictions are obtained by thresholding the scores per class.

### 153 2.2 METRICS

155 We evaluate multi-label performance with several metrics, which are first computed for each pattern  
 156 class independently and then macro-averaged. This approach ensures a balanced evaluation despite  
 157 potential class imbalance.

158 **Notation.** Let there be  $N$  instances (present cell–gene pairs) and  $C$  pattern classes. For each  
 159 instance  $i$  and class  $c$ , the ground-truth label is  $y_{ic} \in \{0, 1\}$  and the model’s predicted score is  
 160  $s_{ic} \in [0, 1]$ . For each class  $c$ , let  $TP_c, FP_c, TN_c, FN_c$  be the true/false positive/negative counts  
 161 aggregated over all  $N$  instances.

162 **Table 1: Summary of benchmark datasets.** Avg. RNAs/cell indicates the average number of RNA  
 163 molecules per cell.

| 165 <b>Dataset</b>               | 166 # RNA             | 167 # Cell         | 168 # Gene | 169 <b>Avg.</b><br>170 <b>RNAs/Cell</b> | 171 # Pattern | 172 <b>Technology</b> | 173 <b>Specie</b> |
|----------------------------------|-----------------------|--------------------|------------|-----------------------------------------|---------------|-----------------------|-------------------|
| 174 NIH/3T3 (Eng et al., 2019)   | 175 2,724,808         | 176 179            | 177 3,721  | 178 15,222                              | 179 4         | 180 seqFISH+          | 181 Mouse         |
| 181 U-2 OS (Mah et al., 2024)    | 182 10,634,467        | 183 1,022          | 184 130    | 185 10,405                              | 186 4         | 187 MERFISH           | 188 Human         |
| 189 CosMx Lung (He et al., 2022) | 190 30,370,769        | 191 100,149        | 192 960    | 193 303                                 | 194 3         | 195 CosMx SMI         | 196 Human         |
| 197 <b>Total</b>                 | 198 <b>43,730,044</b> | 199 <b>101,350</b> | 200 -      | 201 <b>431</b>                          | 202 -         | 203 -                 | 204 -             |

172 **Area Under the ROC Curve (AUC).** For each class  $c$ , we compute the Receiver Operating Characteristic (ROC) curve by varying the decision threshold over the scores  $s_{ic}$ . The Area Under this Curve,  $AUC_c$ , is reported. It is probabilistically equivalent to the likelihood that a randomly chosen positive instance receives a higher score than a randomly chosen negative one. If a class contains only positive or only negative instances in the evaluation set, its AUC is undefined.

177 **F1-score and Accuracy.** For threshold-dependent metrics, we first determine an optimal, class-specific threshold  $\tau_c^*$  that maximizes the F1-score. This is achieved by evaluating the precision-recall curve for each class.

- 181 1. For each class  $c$ , we compute the precision-recall curve from the scores  $s_{ic}$  and labels  $y_{ic}$ .
- 182 2. We calculate the F1-score at each point on the curve and identify the threshold  $\tau_c^*$  that
- 183 yields the maximum F1-score,  $F1_c^*$ .
- 184 3. Using this optimal threshold  $\tau_c^*$ , we binarize the predictions ( $\hat{y}_{ic} = \mathbb{1}[s_{ic} \geq \tau_c^*]$ ) and
- 185 compute the corresponding Accuracy ( $ACC_c$ ).

187 The final reported metrics are  $F1_{macro}$ ,  $ACC_{macro}$ , and  $AUC_{macro}$ , which are the means of the respective per-class scores.

### 190 2.3 DATASET CONSTRUCTION AND OVERVIEW

192 We curated three high-resolution spatial transcriptomics datasets to establish a robust benchmark  
 193 for gene spatial pattern classification. These datasets vary in scale, species, and spatial resolution,  
 194 providing a comprehensive evaluation ground for our proposed method.

195 **NIH/3T3 fibroblast cells (Eng et al., 2019).** This dataset profiles 3,721 genes in 179 murine  
 196 fibroblast cells using seqFISH+ technology, with a total of 2.7M molecules. The dataset captures 4  
 197 distinct spatial patterns labeled by Bento (Mah et al., 2024): *cell edge, cytoplasmic, nuclear, nuclear*  
 198 *edge*. This dataset features a very high number of RNAs per cell ( $\sim 15k$ ), presenting a challenge for  
 199 efficient inference and long-context transformer training.

201 **U-2 OS cells (Mah et al., 2024).** Containing 10M molecules across 1,022 human osteosarcoma  
 202 cells measured by MERFISH (Chen et al., 2015), this dataset includes 130 genes and 4 spatial  
 203 patterns labeled by Bento (Mah et al., 2024): *cell edge, cytoplasmic, nuclear, nuclear edge*. It  
 204 represents a balanced benchmark with a relatively high number of RNAs per cell.

206 **CosMx Lung (He et al., 2022).** This large-scale human lung tissue dataset contains over 30M  
 207 molecules across 100k cells from a cancerous tissue, profiling 980 genes with 3 spatial patterns:  
 208 *nuclear, membrane, cytoplasmic*, using CosMx SMI (NanoString Technologies, 2024). Its massive  
 209 scale tests the scalability and accuracy of computational methods.

210 Numerical statistics of each dataset are summarized in Table 1. And, more details about data pre-  
 211 processing and pattern annotation are provided in Appendix B.2.

### 213 2.4 BASELINES

215 We adapted four state-of-the-art methods as baselines for comparison in our GPattern-Bench:  
 (a) **Bento** (Mah et al., 2024), (b) **ELLA** (Wang & Zhou, 2024), (c) **SPRAWL** (Bierman et al.,

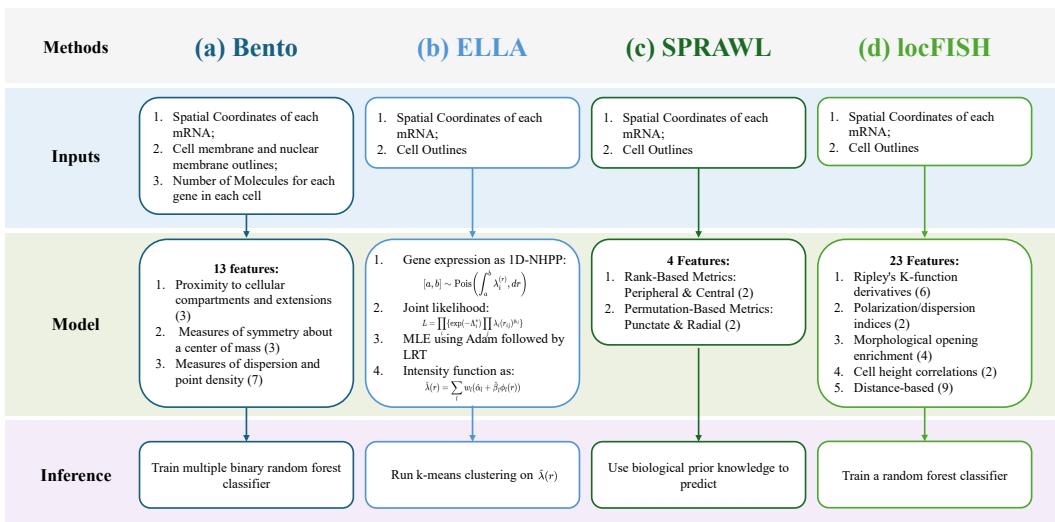


Figure 2: **Methodology of baselines.** a) Bento extracts 13 spatial features from ST data with both cell and nuclear boundaries, and leverages random forests for pattern classification, b) ELLA models gene expression as a 1D NHPP with Adam-optimized intensity functions and performs clustering to derive results, c) SPRAWL computes 4 rank/permutation metrics to score localization patterns, and d) locFISH derives 23 spatial features and applies random forest classification.

2024), and (d) **locFISH** (Samacoits et al., 2018). In Figure 2, we illustrate and compare these four baselines in terms of the data they use as **inputs**, how they **model** gene expression, and how they perform **inference** from the modeling.

We notice that ELLA, SPRAWL, and locFISH use only RNA coordinates and cell outlines as input, while Bento requires additional information such as RNA and cell/nuclear boundaries. Bento, SPRAWL, and locFISH extract handcrafted spatial features from the input data and apply random forest classification or directly predict using biological prior knowledge, whereas ELLA models gene expression as a 1D non-homogeneous Poisson point process (NHPP) with Adam-optimized intensity functions and performs clustering to derive results. Detailed (re)implementations for each baseline are provided in Appendix B.2.1.

### 3 GPSNET

To address the low prediction accuracy and slow inference speed of existing methods, we propose the **Gene Pattern Spatial Network** (GPSNet), shown in Figure 3. GPSNet is a novel transformer-based architecture specifically designed to model the complex interactions between gene identity and the spatial context of RNA molecules within single cells. Its key innovation is the introduction of a KNN-attention mechanism that enables efficient modeling of local spatial relationships while maintaining scalability to large numbers of molecules. It is an end-to-end deep learning model that does not rely on handcrafted features and effectively leverages modern GPU hardware.

#### 3.1 ARCHITECTURE

**Components.** GPSNet utilizes a modern encoder-decoder transformer-based architecture designed to effectively capture the large number of complex interactions between gene identity and the spatial arrangement of RNA molecules within single cells. GPSNet employs five core components: (1) a coordinate encoding MLP, (2) a gene embedding layer, (3) a transformer encoder with KNN-attention, (4) a transformer decoder with interleaved self-attention and cross-attention, and (5)

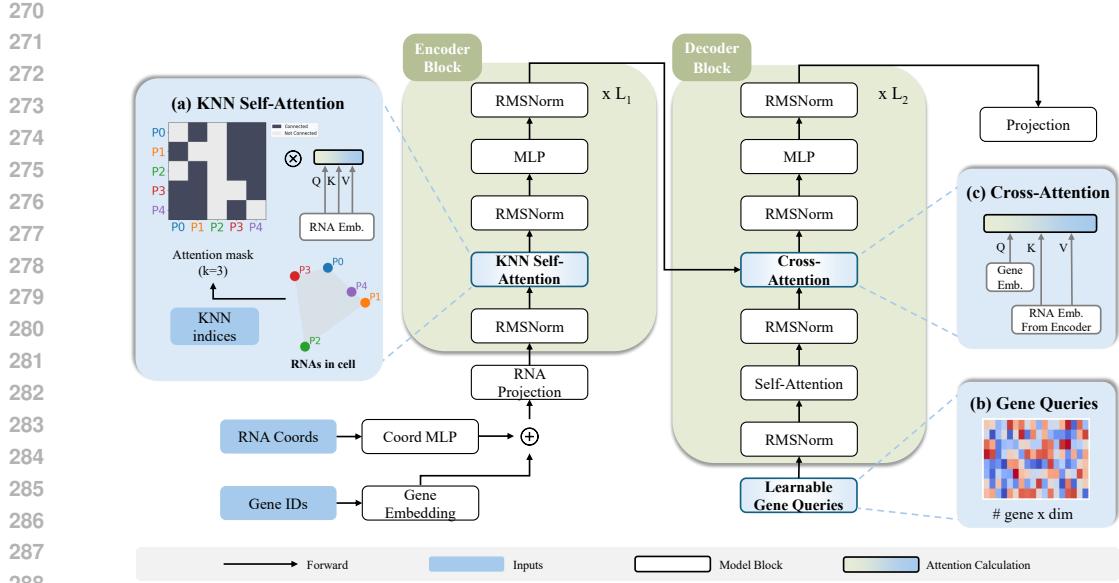


Figure 3: **The architecture of GPSNet.** The model takes RNA molecules, defined by their gene type and spatial coordinates, as input. These are converted into embeddings and processed by a transformer encoder-decoder structure. The final output is a multi-label prediction of gene spatial patterns. The key components of our architecture are: (a) **KNN Self-Attention** in the encoder to efficiently model spatial relationships between neighboring molecules, (b) **Learnable Pattern Queries** in the decoder that act as prototypes for different spatial patterns, and (c) **Cross-Attention**, which allows the decoder to aggregate gene embeddings from the encoder’s RNA representation of the cell. Residual connections in the transformer blocks are omitted for clarity.

a multi-label classification head. RMSNorm (Zhang & Sennrich, 2019) and GELU (Hendrycks & Gimpel, 2016) activations are used throughout the model.

**Forward Pass.** The forward pass through GPSNet consists of four stages:

1. **Embedding:** The coordinates and gene classes of each RNA molecule are projected into a shared embedding space using the coordinate MLP and gene embedding layer, respectively. These are summed to create initial representations:  $\mathbf{H}^{(0)} = \{\mathbf{h}_1^{(0)}, \mathbf{h}_2^{(0)}, \dots, \mathbf{h}_L^{(0)}\}$ .
2. **Encoder:** The transformer encoder processes these representations using  $N$  layers of KNN-attention to capture spatial contexts. Each layer updates the representations as  $\mathbf{H}^{(l)} = \text{EncoderLayer}(\mathbf{H}^{(l-1)})$ .
3. **Decoder:** The transformer decoder takes learnable gene queries  $\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_C\}$  (where  $C$  is the number of gene classes) and attends to the encoder outputs through cross-attention:  $\mathbf{O} = \text{Decoder}(\mathbf{Q}, \mathbf{H}^{(N)})$ . Self-attention within the decoder allows gene queries to interact. These two types of attention are interleaved in each decoder layer.
4. **Classification:** The decoder outputs are passed through a classification head consisting of a linear layer followed by a sigmoid activation to produce multi-label predictions:  $\hat{\mathbf{Y}} = \sigma(\mathbf{W}\mathbf{O} + \mathbf{b})$ .

### 3.2 KNN-ATTENTION MECHANISM

KNN-attention is proposed to handle two unique challenges of spatial transcriptomics data:

**2D/3D Spatial Structure of Molecules.** RNAs, unlike natural language tokens or image pixels, are points that exist in continuous 2D or 3D space. Biologically, different parts of cells can have very distinct biological functions, and RNAs located far apart are less likely to influence each other.

324 Therefore, global self-attention, which allows every molecule to attend to every other molecule, is  
 325 not biologically appropriate. KNN-attention addresses this by restricting attention to local neighborhoods,  
 326 allowing the model to focus on spatially relevant interactions.  
 327

328 **Large Number of Molecules in a Single Cell.** A single cell can contain thousands to tens of  
 329 thousands of RNA molecules, making the  $O(L^2)$  complexity of standard self-attention infeasible.  
 330 This is the main computational challenge in applying vanilla transformers to large sets of RNA  
 331 molecules within a cell. The KNN-attention mechanism addresses the  $O(L^2)$  complexity bottleneck  
 332 of standard self-attention by reducing it to  $O(LK)$ , making it feasible to process complex and large  
 333 cells with over 10,000 molecules.  
 334

## 335 4 EXPERIMENTS

### 336 4.1 MAIN RESULTS

340 **Table 2: Performance comparison across datasets and methods.** Best results are **bolded** and  
 341 second best are underlined. For a fair comparison, we report the validation time of our method  
 342 and ELLA using one GPU with a batch size of 1. \*NIH/3T3 and U-2 OS were labeled by Bento;  
 343 hence, Bento is not evaluated on these datasets. <sup>†</sup>For ELLA evaluation on the CosMx Lung, due  
 344 to computational constraints with the large dataset scale ( $\sim 100,000$  cells), we conducted random  
 345 sampling for approximation.

| 346 <b>Dataset</b> | 347 <b>Method</b>     | 348 <b>AUC (%)<math>\uparrow</math></b> | 349 <b>ACC (%)<math>\uparrow</math></b> | 350 <b>F1-Score (%)<math>\uparrow</math></b> | 351 <b>Validation Time<math>\downarrow</math></b> |
|--------------------|-----------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------|---------------------------------------------------|
| 352 NIH/3T3        | Bento*                | -                                       | -                                       | -                                            | 7 min 38 s                                        |
|                    | 353 ELLA              | 50.16                                   | 77.35                                   | 11.11                                        | 23 hr 53 min 24 s                                 |
|                    | 354 SPRAWL            | <u>67.33</u>                            | <u>80.43</u>                            | 23.58                                        | <u>5 min 9 s</u>                                  |
|                    | 355 locFISH           | 62.53                                   | <u>65.55</u>                            | <u>32.90</u>                                 | 13 min 20 s                                       |
|                    | 356 GPSNet (Ours)     | <b>90.22</b>                            | <b>84.35</b>                            | <b>71.02</b>                                 | <b>15 s</b>                                       |
| 357 U-2 OS         | Bento*                | -                                       | -                                       | -                                            | <u>7 min 8 s</u>                                  |
|                    | 358 ELLA              | 50.17                                   | 78.36                                   | 6.29                                         | 2 d 16 hr 26 min                                  |
|                    | 359 SPRAWL            | <u>68.94</u>                            | <u>78.98</u>                            | 21.09                                        | 27 min 21 s                                       |
|                    | 360 locFISH           | 60.17                                   | 63.25                                   | <u>34.15</u>                                 | 1 d 8 hr 13 min                                   |
|                    | 361 GPSNet (Ours)     | <b>92.52</b>                            | <b>87.88</b>                            | <b>73.48</b>                                 | <b>26 s</b>                                       |
| 362 CosMx Lung     | Bento                 | 65.92                                   | 68.18                                   | <u>51.72</u>                                 | 2 d 3 hr 40 min                                   |
|                    | 363 ELLA <sup>†</sup> | 65.57                                   | 53.36                                   | 25.27                                        | > 100 d                                           |
|                    | 364 SPRAWL            | 54.01                                   | 60.27                                   | 42.86                                        | <u>1 hr 2 min</u>                                 |
|                    | 365 locFISH           | <u>73.42</u>                            | <u>69.76</u>                            | 49.69                                        | 2 d 13 hr 51 min                                  |
|                    | 366 GPSNet (Ours)     | <b>83.09</b>                            | <b>78.08</b>                            | <b>68.26</b>                                 | <b>3 min 6 s</b>                                  |

367 Table 2 presents a comprehensive performance comparison between GPSNet and the four baseline  
 368 methods across all three datasets. GPSNet consistently outperforms all baselines on every metric  
 369 and dataset, demonstrating its effectiveness for gene spatial pattern classification.

370 In terms of accuracy, no single baseline consistently performs best. For instance, locFISH achieves  
 371 the highest F1-score among baselines on NIH/3T3 and U-2 OS, while Bento is the top performer on  
 372 CosMx Lung, suggesting that existing methods may be specialized to certain data characteristics.  
 373 In contrast, GPSNet demonstrates superior and robust performance across the board. It achieves a  
 374 30.6% relative F1-score improvement over Bento on the challenging CosMx Lung dataset, a 125.9%  
 375 improvement over locFISH on NIH/3T3, and a 113.1% improvement over locFISH on U-2 OS.

376 Regarding inference speed, GPSNet is significantly faster than all baselines across all datasets. Base-  
 377 line methods exhibit a wide range of inference times, from several minutes to multiple days, with  
 378 none approaching GPSNet’s efficiency. On the smallest dataset, NIH/3T3, GPSNet completes in-  
 379 ference in just 15 seconds, while the next fastest, SPRAWL, takes over 5 minutes. On the largest  
 380 dataset, CosMx Lung, where SPRAWL cannot perform in a reasonable time, GPSNet finishes the  
 381 evaluation in 3 minutes. This efficiency, combined with its high accuracy, makes GPSNet a highly  
 382 scalable and practical solution for analyzing large and complex spatial transcriptomics data. These

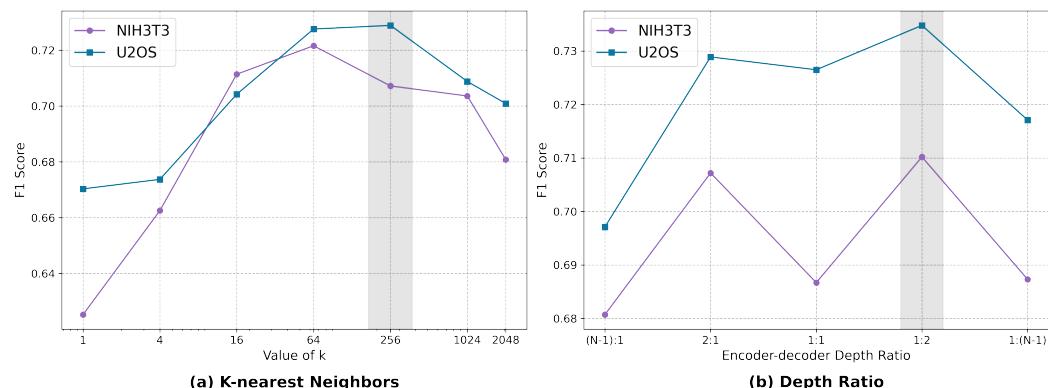
378 results suggest that GPSNet’s integrated approach provides a more comprehensive solution for gene  
 379 spatial pattern classification.  
 380

## 381 4.2 ABLATION STUDY 382

383 We conducted extensive ablation studies on the NIH/3T3 and U-2 OS datasets to understand the  
 384 contributions of GPSNet’s key components. Detailed numerical results of the ablation study are  
 385 provided in Appendix D.  
 386

387 **Value of K in KNN-attention.** We investigated the impact of the neighborhood size  $K$  in KNN-  
 388 attention. We observed that performance generally improves as  $K$  increases. For U-2 OS, per-  
 389 formance peaks at  $K = 256$  and then declines, suggesting that an excessively large neighborhood can  
 390 introduce noise. For the NIH/3T3 dataset, performance ceases to improve at  $K = 64$  and slightly  
 391 drops at  $K = 256$ . However, to maintain consistency across datasets and balance performance with  
 392 computational efficiency, we selected  $K = 256$  as the value for all experiments, as it offers a strong  
 393 trade-off.  
 394

395 **Encoder-Decoder Depth Ratio.** We studied the effect of the encoder-decoder depth ratio. To  
 396 ensure a fair comparison, we kept the total number of layers  $N$  constant while varying the ratio  
 397 of encoder to decoder layers. We found that for both NIH/3T3 and U-2 OS, an unbalanced ‘2:1’  
 398 or ‘1:2’ ratio shows similar performance and is better than the balanced ‘1:1’ configuration. This  
 399 suggests that a slightly asymmetrical architecture can be effective. Our final models use the 2:1 ratio  
 400 for all datasets.  
 401



414 **Figure 4: Ablation studies of GPSNet.** (a) **Effect of KNN neighborhood size K.** We chose  $K =$   
 415 256 for all datasets to balance performance and efficiency. (b) **Effect of encoder-decoder depth**  
 416 **ratio.** We chose a 1:2 encoder-decoder layer ratio for optimal performance. Our choice is in the  
 417 gray box.  
 418  
 419

## 420 4.3 VISUALIZATION 421

422 In Figure 5, we show a representative visualization result comparing GPSNet predictions with  
 423 ground truth and baseline methods on a sample from the U-2 OS dataset.  
 424

## 425 5 RELATED WORK 426

427 **Gene Spatial Pattern Classification.** Recent technological advancements in spatial transcriptomics  
 428 have dramatically improved spatial resolution from tissue-level to subcellular-level measure-  
 429 ments, with technologies like MERFISH, SeqFISH+, and VisiumHD achieving resolutions as fine as  
 430 0.1-2.0  $\mu\text{m}$ . This enables the precise measurement of gene expression at the subcellular level, cre-  
 431 ating new computational challenges for analyzing intracellular mRNA localization patterns. Early  
 432 methods focused on tissue-level analysis, such as identifying spatially variable genes (Review &

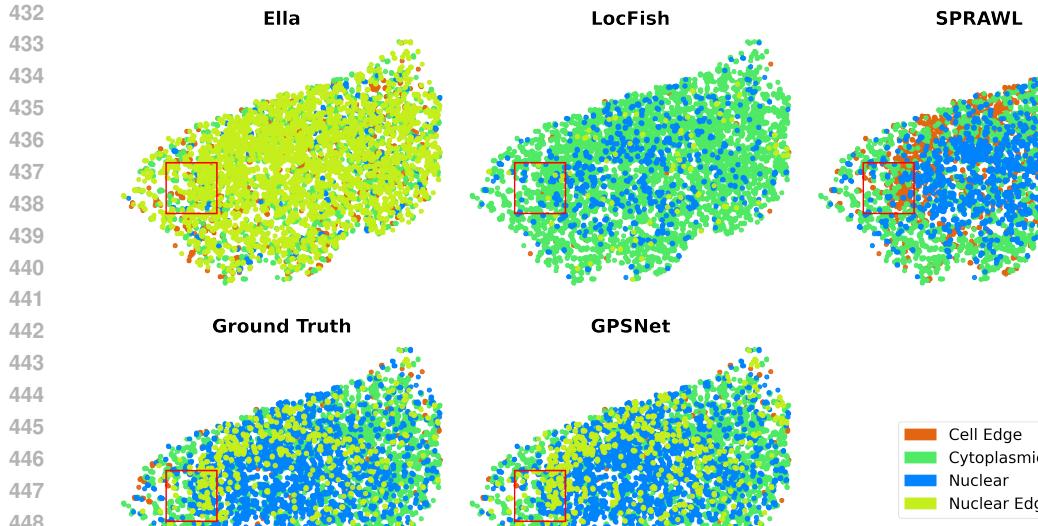


Figure 5: **Comparison of gene spatial pattern prediction on a U-2 OS sample on ground truth and four methods.** GPSNet more accurately recovers the complex pattern geometry compared to baseline methods.

Methods, 2024), but are insufficient for subcellular analysis. Current subcellular methods can be categorized into feature-based approaches like Bento (Mah et al., 2024) and locFISH (Samacoits et al., 2018), which extract hand-crafted features for classification, and statistical modeling approaches like SPRAWL (Bierman et al., 2024) and ELLA (Wang & Zhou, 2024), which use mathematical models to quantify spatial patterns. GPattern-Bench provides a systematic evaluation framework that highlights the respective strengths and weaknesses of these state-of-the-art approaches.

**Transformers in Biology.** Transformers have revolutionized computational biology, demonstrating remarkable success in protein structure prediction (Jumper et al., 2021), single-cell analysis (Yang et al., 2022), genome analysis (Avsec et al., 2025), and spatial omics (Yang et al., 2022). Their self-attention mechanism is uniquely powerful for modeling long-range dependencies, making them theoretically ideal for spatial data. However, the  $O(L^2)$  complexity of standard transformers has limited their application to large-scale spatial transcriptomics datasets, where  $L$  (the number of RNA molecules) can exceed 100,000 per sample. Recent adaptations using graph-based transformers (Madhu et al., 2025) have attempted to address this. Our GPSNet introduces a physically-grounded KNN-attention mechanism inspired by sliding-window attention (Beltagy et al., 2020) that leverages the inherent spatial locality of biological interactions, providing an efficient and interpretable solution for modeling subcellular spatial transcriptomics data.

## 6 CONCLUSION

We introduced GPattern-Bench, a comprehensive benchmark for gene spatial pattern classification, featuring three diverse datasets and four strong baselines to facilitate future comparisons. To improve prediction accuracy and efficiency, we designed GPSNet, a novel transformer architecture with KNN-attention that effectively handles large-scale spatial transcriptomics data. Extensive experiments demonstrate that GPSNet outperforms all baseline methods across all datasets and metrics, with particularly significant gains on large-scale data, in terms of both prediction accuracy and inference speed. We hope our benchmark and model will stimulate future research in spatial transcriptomics analysis, especially at the subcellular resolution.

486 ETHICS STATEMENT  
487488 This research utilizes publicly available datasets. The cell lines used in our benchmark (NIH3T3, U-  
489 2OS and CosMx Lung) are standard, commercially available cell lines. All data is fully anonymized  
490 and was obtained from previously published studies. No new data was collected for this study. The  
491 advancements in spatial transcriptomics analysis from this research have the potential to accelerate  
492 the understanding of complex biological processes and diseases, such as cancer and developmental  
493 disorders. By providing more accurate and efficient tools for analyzing gene expression patterns  
494 within their spatial context, this work could ultimately contribute to the development of novel diag-  
495 nóstic methods and therapeutic strategies, improving human health.496  
497 REPRODUCIBILITY STATEMENT  
498499 To ensure the reproducibility of our results and to facilitate future research, the source code for our  
500 proposed GPSNet model, the implementation of the baseline methods, and the complete GPattern-  
501 Bench benchmark datasets will be made publicly available. The repository will include the pro-  
502 cessed datasets, training scripts, evaluation scripts, and detailed instructions for reproducing the  
503 experiments presented in this paper. All hyperparameters and model configurations are described in  
504 the experimental section of this paper.505  
506 REFERENCES  
507508 Žiga Avsec, Natasha Latysheva, Jun Cheng, Guido Novati, Kyle R Taylor, Tom Ward, Clare Bycroft,  
509 Lauren Nicolaisen, Eirini Arvaniti, Joshua Pan, et al. Alphagenome: advancing regulatory variant  
510 effect prediction with a unified dna sequence model. *bioRxiv*, 2025. 9  
511 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.  
512 *arXiv preprint arXiv:2004.05150*, 2020. 9  
513  
514 Katherine Benjamin, Aneesha Bhandari, Jessica D Kepple, Rui Qi, Zhouchun Shang, Yanan Xing,  
515 Yanru An, Nannan Zhang, Yong Hou, Tanya L Crockford, et al. Multiscale topology classifies  
516 cells in subcellular spatial transcriptomics. *Nature*, 2024. 1  
517 Rob Bierman, Jui M Dave, Daniel M Greif, and Julia Salzman. Statistical analysis supports pervasive  
518 rna subcellular localization and alternative 3'utr regulation. *Elife*, 12:RP87517, 2024. 2, 4, 9, 12  
519  
520 Adina R Buxbaum, Gal Haimovich, and Robert H Singer. In the right place at the right time:  
521 visualizing and understanding mrna localization. *Nature reviews Molecular cell biology*, 16(2):  
522 95–109, 2015. 12  
523  
524 Lucia Cassella and Anne Ephrussi. Subcellular spatial transcriptomics identifies three mechanisti-  
525 cally different classes of localizing rnas. *Nature Communications*, 2022. 1  
526  
527 Kok Hao Chen, Alistair N Boettiger, Jeffrey R Moffitt, Siyuan Wang, and Xiaowei Zhuang. Spatially  
528 resolved, highly multiplexed rna profiling in single cells. *Science*, 2015. 1, 4  
529  
530 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
531 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
532 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*  
533 *arXiv:2010.11929*, 2020. 2  
534  
535 Chee-Huat Linus Eng, Michael Lawson, Qian Zhu, Ruben Dries, Nouha Koulena, Yodai Takei,  
536 Jina Yun, Ciara Cronin, Christoph Karp, Guo-Cheng Yuan, and Long Cai. Transcriptome-scale  
537 super-resolved imaging in tissues by rna seqfish+. *Nature*, 2019. 2, 4  
538  
539 Shanshan He, Ruchir Bhatt, Carl Brown, Emily A Brown, Derek L Buhr, Kan Chantranuvatana,  
Patrick Danaher, Dwayne Dunaway, Ryan G Garrison, Gary Geiss, et al. High-plex imaging of  
rna and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. *Nature*  
*biotechnology*, 2022. 2, 4

540 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*  
 541 *arXiv:1606.08415*, 2016. 6

542

543 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,  
 544 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate  
 545 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021. 9

546 Jeanne Bentley Lawrence and Robert H Singer. Intracellular localization of messenger rnas for  
 547 cytoskeletal proteins. *Cell*, 45(3):407–415, 1986. 1

548

549 Hiren Madhu, João Felipe Rocha, Tinglin Huang, Siddharth Viswanath, Smita Krishnaswamy, and  
 550 Rex Ying. Heist: A graph foundation model for spatial transcriptomics and proteomics data.  
 551 *arXiv preprint arXiv:2506.11152*, 2025. 9

552 Clarence K Mah, Noorsher Ahmed, Nicole A Lopez, Dylan C Lam, Avery Pong, Alexander Monell,  
 553 Colin Kern, Yuanyuan Han, Gino Prasad, Anthony J Cesnik, et al. Bento: a toolkit for subcellular  
 554 analysis of spatial transcriptomics data. *Genome Biology*, 2024. 2, 4, 9, 12

555 Kelsey C Martin and Anne Ephrussi. mrna localization: gene expression in the spatial dimension.  
 556 *Cell*, 2009. 1

557

558 Lambda Moses and Lior Pachter. Museum of spatial transcriptomics. *Nature methods*, 19(5):534–  
 559 546, 2022. 1

560

561 NanoString Technologies. Cosmx spatial molecular imager, 2024. URL <https://nanosting.com/products/cosmx-spatial-molecular-imager/>. Accessed:  
 562 May 13, 2024. 1, 4

563 Shreya Rajachandran, Qianlan Xu, Qiqi Cao, Xin Zhang, Fei Chen, Sarah M Mangiameli, and Haiqi  
 564 Chen. Subcellular level spatial transcriptomics with photon. *Nature Communications*, pp. 4457,  
 565 2025. 1

566

567 Author Review and Coauthor Methods. Categorization of 33 computational methods to detect spa-  
 568 tially variable genes. *bioRxiv*, 2024. doi: 10.1101/2024.05.29.596379. 8

569 Lindsay Romo, Emily S Mohn, and Neil Aronin. A fresh look at huntingtin mrna processing in  
 570 huntington’s disease. *Journal of Huntington’s Disease*, 7(2):101–108, 2018. 1

571

572 Aubin Samacoits, Racha Chouaib, Adham Safieddine, Abdel-Meneem Traboulsi, Wei Ouyang,  
 573 Christophe Zimmer, Marion Peter, Edouard Bertrand, Thomas Walter, and Florian Mueller. A  
 574 computational framework to study sub-cellular rna localization. *Nature Communications*, 9(1):  
 575 4584, 2018. 2, 5, 9

576

577 J Matthew Taliaferro, Eric T Wang, and Christopher B Burge. Genomic analysis of rna localization.  
 578 *RNA biology*, 11(8):1040–1050, 2014. 1

579

580 Luyi Tian, Fei Chen, and Evan Z Macosko. The expanding vistas of spatial transcriptomics. *Nature*  
 581 *Biotechnology*, 41(6):773–782, 2023. 1

582

583 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 584 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*  
 585 *tion processing systems*, 2017. 2

586

587 Jade Xiaoqing Wang and Xiang Zhou. Ella: Modeling subcellular spatial variation of gene expres-  
 588 sion within cells in high-resolution spatial transcriptomics. *bioRxiv*, 2024. 2, 4, 9

589

590 Cameron G Williams, Hyun Jae Lee, Takahiro Asatsuma, Roser Vento-Tormo, and Ashraful Haque.  
 591 An introduction to spatial transcriptomics for biomedical research. *Genome medicine*, 14(1):68,  
 592 2022. 1

593

594 Fan Yang, Wenchuan Wang, Fang Wang, Yuan Fang, Duyu Tang, Junzhou Huang, Hui Lu, and  
 595 Jianhua Yao. scbert as a large-scale pretrained deep language model for cell type annotation of  
 596 single-cell rna-seq data. *Nature Machine Intelligence*, 2022. 9

597

598 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in neural infor-*  
 599 *mation processing systems*, 32, 2019. 6

594 APPENDIX  
595596 This appendix provides the following additional information:  
597

598     • Appendix A: Use of LLM.  
 599     • Appendix B: Implementation details for datasets, baselines, and hardware/software config-  
 600         urations.  
 601     • Appendix C: Hyperparameters for training GPSNet.  
 602     • Appendix D: Numerical results of the ablation study on GPSNet.  
 603     • Appendix E: Biological meanings of the spatial patterns used in the GPattern-Bench  
 604         dataset.  
 605     • Appendix F: Class distribution of gene spatial patterns in each dataset of GPattern-Bench.  
 606     • Appendix G: Additional visualizations of gene spatial pattern predictions on all datasets.

610  
611 A USE OF LLM STATEMENT  
612613 We used a Large Language Model (LLM) to assist with grammar checking.  
614615  
616 B IMPLEMENTATION DETAILS  
617618 B.1 HARDWARE AND SOFTWARE CONFIGURATIONS  
619620 All experiments were conducted on a server equipped with four NVIDIA A40 GPUs. All models  
621 were implemented using PyTorch 2.7.  
622623 B.2 DATASETS IMPLEMENTATION  
624625 The NIH/3T3, U-2 OS, and CosMx Lung datasets are all publicly accessible. Cell and nuclear  
626 boundaries for the NIH/3T3 and U-2 OS datasets were obtained from previously processed segmen-  
627 tations (Mah et al., 2024). For the CosMx Lung dataset, we performed cell and nuclear segmentation  
628 from the corresponding TIFF images and assigned the resulting boundaries to cells within each field  
629 of view.  
630631 We randomly partitioned the datasets into training, validation, and test sets using an 80:10:10 ratio  
632 based on fields of view. This approach ensures that the methods must demonstrate cross-slice gener-  
633 alization capabilities and effectively handle batch effects across different imaging regions. Statistics  
634 are shown in Figure 6.  
635636 B.2.1 BASELINES IMPLEMENTATION  
637638 To ensure a fair comparison, all baseline methods were evaluated using standardized preprocessing  
639 in which benchmark spatial transcriptomics datasets (seqFISH+, MERFISH, CosMx) were con-  
640 verted to extract molecular coordinates, cell boundaries, and nucleus boundaries when available.  
641642 **SPRAWL.** SPRAWL was installed via PyPI and required converting data into HDF5 format.  
 643 SPRAWL computes three scores per gene-cell pair: peripheral (tendency toward the cell membrane),  
 644 central (tendency toward the cell center), and punctate/radial (clustering patterns). These continu-  
 645 ous scores were mapped to our discrete labels using thresholds: high peripheral and low central  
 646 scores indicated cell edge localization; low peripheral and high central scores indicated nuclear lo-  
 647 calization; significantly negative peripheral and non-significant central scores indicated cytoplasmic  
 648 patterns; and significantly positive radial and punctate scores indicated polarized localization. This  
 649 mapping is supported by established knowledge of subcellular RNA localization patterns (Buxbaum  
 650 et al., 2015) and the SPRAWL methodology (Bierman et al., 2024).  
651

648     **ELLA.** ELLA was implemented using Poetry for dependency management, following the official  
 649 documentation. Data preparation involved converting AnnData objects to pickle files and then generating  
 650 JSON files via command-line tools. ELLA outputs five clusters that were mapped to our  
 651 categories: the red cluster (nuclear), the yellow cluster (nuclear edge), the green cluster (cytoplas-  
 652 mic), the blue cluster (cell membrane), and the fifth cluster (mixed patterns). When implementing  
 653 ELLA on the CosMx lung dataset, the large scale of the test data ( $\sim 100,000$  cells) presented compu-  
 654 tational challenges, with an estimated runtime exceeding 100 days for the full dataset. To make  
 655 the analysis feasible, we performed random sampling to reduce the dataset to 2,000 cells. This sam-  
 656 pling approach is reasonable since ELLA processes one gene at a time to generate consistent spatial  
 657 patterns across all cells.  
 658

659     **Bento.** Bento was installed via bento-tools with careful dependency management. The imple-  
 660 mentation followed the Data Prep Guide to format transcript coordinates and cell segmentations for  
 661 Bento’s spatial analysis pipeline.  
 662

663     **locFISH.** locFISH was implemented through the big-fish package, which was originally designed  
 664 for microscopy images. We adapted it for Spatial Transcriptomics using the same two-stage strategy  
 665 as the original: first applying t-SNE dimensionality reduction followed by K-means clustering for  
 666 gene-cell pair classification, and then aggregating patterns across cells for gene-level profiling. The  
 667 feature extraction pipeline computes spatial statistics directly from transcript coordinates rather than  
 668 from pixel intensities.  
 669

670     All methods were evaluated using identical metrics, including multi-label accuracy, per-category  
 671 precision/recall, and overall classification performance, with consistent ground truth labels to ensure  
 672 reproducible comparisons.  
 673

## 674 C HYPERPARAMETERS FOR TRAINING GPSNET

675     With our hardware configuration, the training times for the NIH/3T3, U-2 OS, and CosMx Lung  
 676 datasets are approximately 5 minutes, 25 minutes, and 2 hours, respectively. We provide the detailed  
 677 hyperparameters used for training GPSNet in Table 3.  
 678

679     Table 3: **Hyperparameters for GPSNet across datasets.**

| 680     Config                 | 681     Dataset | 682     NIH/3T3 | 683     U-2 OS              | 684     CosMx Lung |
|--------------------------------|-----------------|-----------------|-----------------------------|--------------------|
| 685     encoder depth          |                 | 4               | 4                           | 6                  |
| 686     decoder depth          |                 | 8               | 8                           | 12                 |
| 687     attention heads        |                 |                 | 12                          |                    |
| 688     hidden dim             |                 |                 | 768                         |                    |
| 689     mlp ratio              |                 |                 | 4                           |                    |
| 690     model size             |                 | 130M            | 130M                        | 187M               |
| 691     optimizer              |                 |                 | AdamW                       |                    |
| 692     learning rate          |                 |                 | 1e-5                        |                    |
| 693     weight decay           |                 |                 | 0.03                        |                    |
| 694     optimizer momentum     |                 |                 | (0.9, 0.9)                  |                    |
| 695     batch size             |                 | 4               | 4                           | 64                 |
| 696     learning rate schedule |                 |                 | linear warmup then constant |                    |
| 697     warmup steps           |                 | 1000            | 1000                        | 5,000              |
| 698     epochs                 |                 | 10              | 5                           | 10                 |
| 699     precision              |                 |                 | bfloat16                    |                    |
| 700     max grad norm          |                 |                 | 1.0                         |                    |
| 701     gradient checkpointing |                 | True            | False                       | False              |

702 **D ABLATION STUDY**  
703704 This section provides the numerical results of our ablation studies on K in KNN-attention in Table 4  
705 and on the encoder-decoder depth in Table 5.  
706707 **Table 4: Ablation study of GPSNet on K in KNN-attention.** We fixed the encoder-decoder depth  
708 ratio to 1:2.  
709

| 710 <b>Dataset</b> | 711 <b>K</b> | 712 <b>AUC (%)<math>\uparrow</math></b> | 713 <b>ACC (%)<math>\uparrow</math></b> | 714 <b>F1-Score (%)<math>\uparrow</math></b> |
|--------------------|--------------|-----------------------------------------|-----------------------------------------|----------------------------------------------|
| 715 NIH/3T3        | 1            | 84.00                                   | 77.13                                   | 62.52                                        |
|                    | 4            | 87.08                                   | 80.46                                   | 66.25                                        |
|                    | 16           | 90.05                                   | 83.88                                   | 71.14                                        |
|                    | 64           | 90.77                                   | 84.84                                   | 72.16                                        |
|                    | 256          | 89.28                                   | 83.11                                   | 70.72                                        |
|                    | 1024         | 89.64                                   | 83.16                                   | 70.36                                        |
|                    | 2048         | 88.12                                   | 81.63                                   | 68.08                                        |
| 720 U-2 OS         | 1            | 88.44                                   | 83.04                                   | 67.03                                        |
|                    | 4            | 88.70                                   | 83.74                                   | 67.37                                        |
|                    | 16           | 90.77                                   | 85.64                                   | 70.42                                        |
|                    | 64           | 92.20                                   | 86.78                                   | 72.76                                        |
|                    | 256          | 92.45                                   | 86.63                                   | 72.89                                        |
|                    | 1024         | 91.69                                   | 86.58                                   | 70.88                                        |
|                    | 2048         | 90.95                                   | 85.47                                   | 70.09                                        |

725 **Table 5: Ablation study of GPSNet on encoder-decoder depth ratio.** We fix the value of K to  
726 256.  
727

| 729 <b>Dataset</b> | 730 <b>E:D Ratio</b> | 731 <b>AUC (%)<math>\uparrow</math></b> | 732 <b>ACC (%)<math>\uparrow</math></b> | 733 <b>F1-Score (%)<math>\uparrow</math></b> |
|--------------------|----------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------|
| 734 NIH/3T3        | (N-1):1              | 88.02                                   | 81.63                                   | 68.07                                        |
|                    | 2:1                  | 89.28                                   | 83.11                                   | 70.72                                        |
|                    | 1:1                  | 88.18                                   | 81.43                                   | 68.67                                        |
|                    | 1:2                  | 90.22                                   | 84.35                                   | 71.02                                        |
|                    | 1:(N-1)              | 88.23                                   | 81.68                                   | 68.73                                        |
| 736 U-2 OS         | (N-1):1              | 90.29                                   | 85.66                                   | 69.71                                        |
|                    | 2:1                  | 92.45                                   | 86.63                                   | 72.89                                        |
|                    | 1:1                  | 91.95                                   | 87.20                                   | 72.65                                        |
|                    | 1:2                  | 92.52                                   | 87.88                                   | 73.48                                        |
|                    | 1:(N-1)              | 91.41                                   | 86.34                                   | 71.71                                        |

741 **E BIOLOGICAL MEANING OF SPATIAL PATTERNS**  
742743 This section provides a brief biological explanation of the spatial patterns used in the GPattern-  
744 Bench dataset:  
745

- 746 • **Nuclear:** Genes that are predominantly localized within the cell’s nucleus.
- 747 • **Nuclear edge:** Genes that are localized at the periphery of the nucleus, often associated  
748 with the nuclear envelope.
- 749 • **Cell edge:** Genes found at the outer boundary of the cell, often involved in cell signaling  
750 and interaction with the extracellular environment.
- 751 • **Cytoplasmic:** Genes distributed throughout the cytoplasm, involved in various cellular  
752 processes such as metabolism and protein synthesis.
- 753 • **Membrane:** Genes associated with the cell membrane, playing roles in transport, signal-  
754 ing, and cell adhesion.

756 **F CLASS DISTRIBUTION OF GPATTERN-BENCH**  
757758 This section shows the distribution of gene spatial patterns in each dataset of GPattern-Bench in Fig-  
759 ure 7.  
760761 **G MORE PREDICTION VISUALIZATION**  
762763 This section provides additional visualizations of predictions on all datasets in Figure 8, Figure 9,  
764 and Figure 10.  
765766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809

810

811

**Distribution of Cell Statistics by Data Split of U-2 OS**

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

**Distribution of Cell Statistics by Data Split of NIH3T3**

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

**Distribution of Cell Statistics by Data Split of CosMx Lung**

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

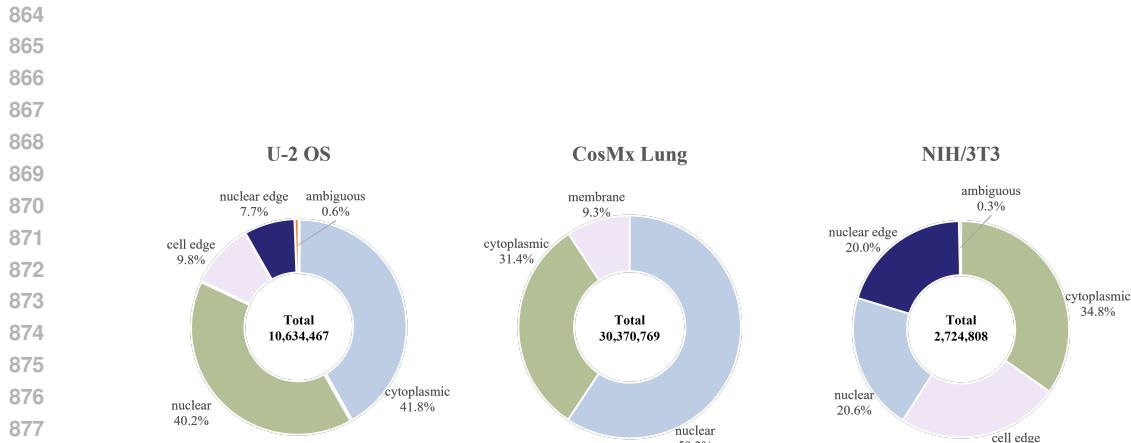
860

861

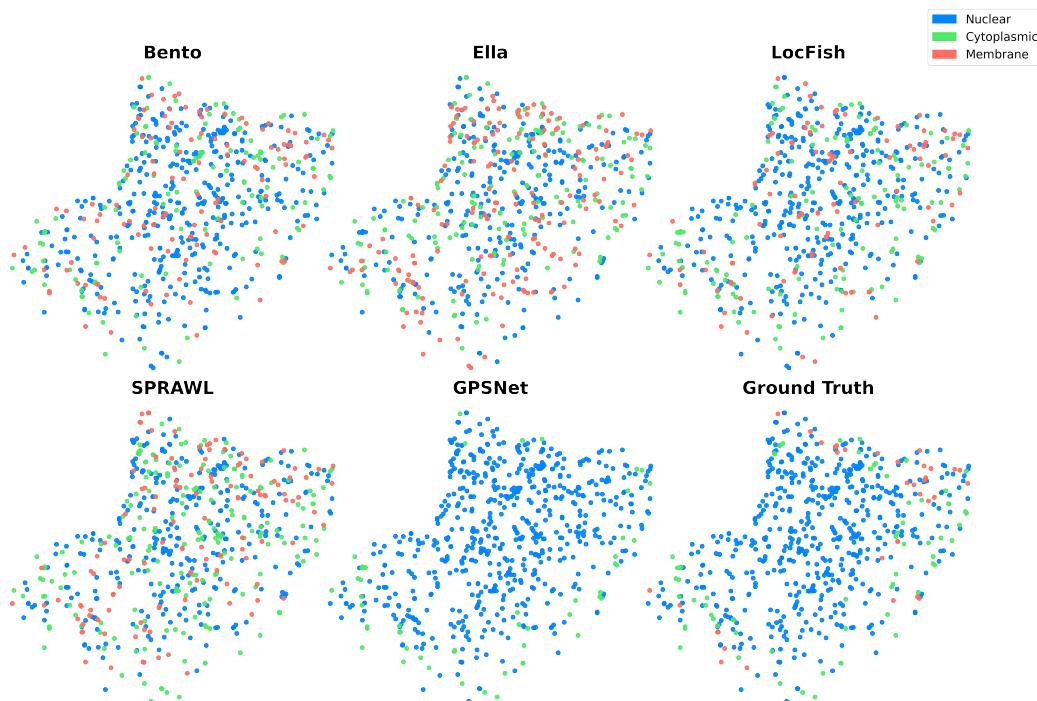
862

863

Figure 6: **Statistics of train/validation/test splits for each dataset.** We split each dataset into training, validation, and test sets with a ratio of 80%, 10%, and 10%, respectively. The splits are stratified to ensure that each split contains a representative distribution of gene spatial patterns.



880 Figure 7: **Distribution of gene spatial patterns in each dataset.** Ambiguous genes in U-2 OS and  
881 NIH/3T3 are genes that have two spatial patterns.



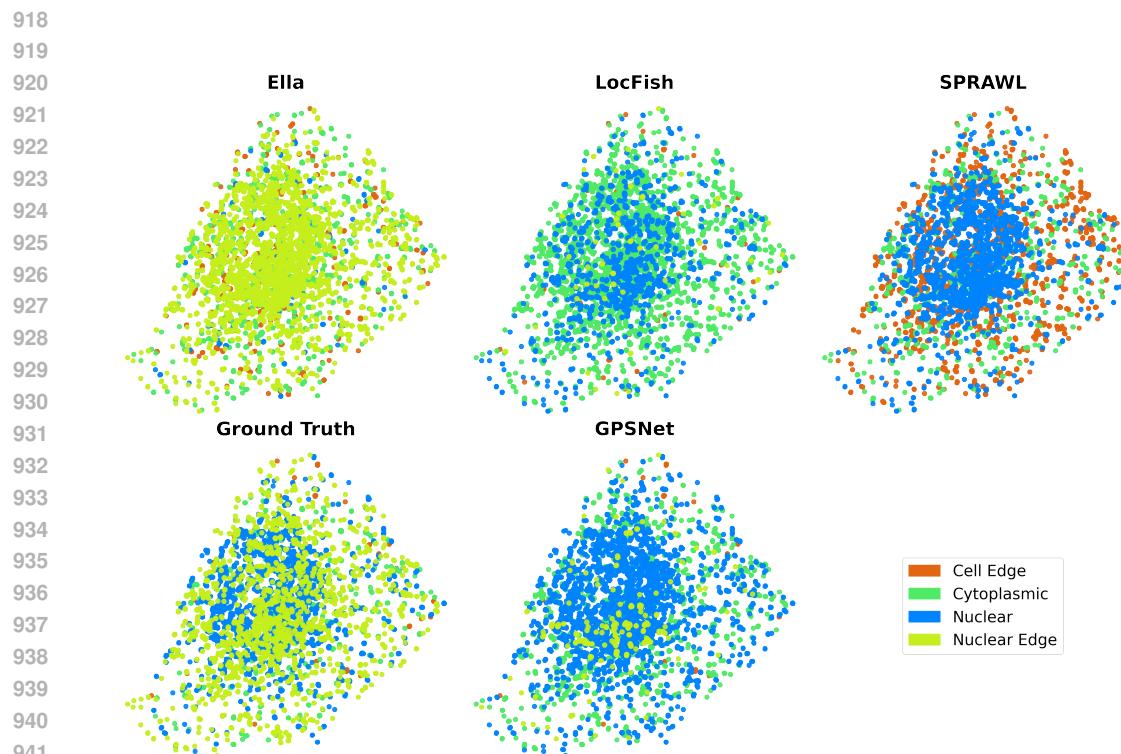


Figure 9: More comparison of prediction for gene spatial patterns on U-2 OS.

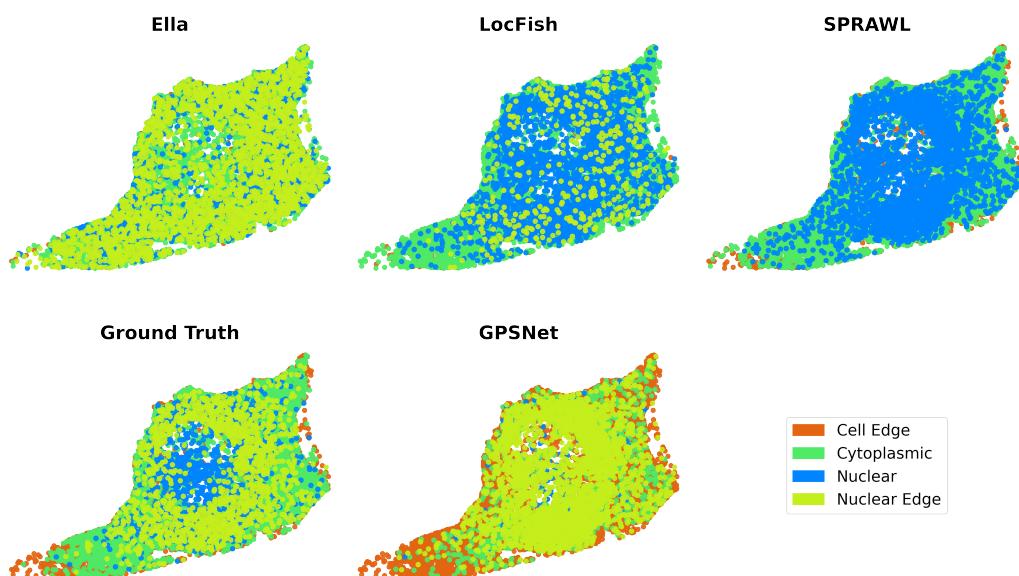


Figure 10: More comparison of prediction for gene spatial patterns on NIH/3T3.