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ABSTRACT

In this work, we present ELF (Evolving LLM-Based Schemas for Mid-Vision
Feedback), a framework that integrates schema evolution with Mid Vision Feed-
back (MVF) for visual learning. We leverage Large Language Models (LLMs)
to automatically generate schemas: executable semantic programs operating over
sets of context categories (e.g., ”animate” or ”inanimate”). We integrate schemas
into visual processing via MVF, a method that utilizes top-down feedback connec-
tions to inform mid-level visual processing with high-level contextual knowledge.
To optimize these schemas we utilize EvoPrompt, an evolutionary algorithm that
refines schemas through iterative search, resulting in improvements in accuracy
and contextual consistency. We demonstrate the effectiveness of ELF across mul-
tiple datasets and multiple architectures for the task of object classification.

1 INTRODUCTION

Figure 1: A) Contexts within a schema have various relations (e.g., containment, overlap, exclusiv-
ity) with other contexts defined within the schema. A schema might, for instance, include animate
and inanimate contexts, with a subset of animate context relations shown here. B) Some contexts
will be more useful to vision processing than others. This may be based in part on how reliably that
context can be visually detected, and how that context interacts with the object categories.

Feedback plays a primary role in biological vision; in fact, the majority of neural connections in the
visual cortex are top-down, rather than bottom-up, connections (Markov et al., 2014). These top-
down connections are thought to convey information of higher level expectation, and neurons of the
visual cortex use both higher level expectation as well as lower level visual information in producing
their representations.

We employ in this work a mechanism - Mid-Vision Feedback (MVF) (Maynord et al., 2023) - which
emulates the feedback systems in biological vision, where high-level context informs lower-level
visual processing. Unlike traditional feed-forward architectures, where information flows only from
low-level pixels to high-level abstract concepts, MVF introduces top-down feedback connections
that integrate contextual knowledge into mid-level visual processing - see Figure 2. In the MVF
framework, specific affine transformations (i.e., linear transformation and possible bias) are applied
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to feature vectors at mid-level layers of a artificial neural network, based on the expected context
(e.g., ”animate” vs. ”inanimate”). This contextual ”hint” improves classification performance of the
network.

Schemas are cognitive structures that help individuals organize and interpret information based on
prior knowledge and experiences (Rumelhart, 2017; Axelrod, 1973). They influence how we per-
ceive new stimuli by providing a framework for understanding and responding to the world around
us. In biological systems, schemas help filter and organize sensory information, enabling faster and
more accurate recognition by linking incoming stimuli to expected patterns (Bar, 2007).

While this process of applying high level contextual understanding to lower level processes is af-
forded significant resources in biological vision, contemporary vision architectures by-and-large do
not involve similar dynamics. In artificial vision systems, leveraging schemas derived from language
or contextual knowledge can allow the model to impose meaningful constraints on mid-level visual
representations. These constraints could reduce noise, enhance feature relevance, and enable more
precise predictions by narrowing the focus to contextually significant visual features. By aligning
mid-level representations with higher-order schemas, vision models can improve generalization and
efficiency, particularly in environments with numerous or overlapping categories. While schemas
are of use across a variety of vision tasks, for the purposes of this work, we apply ELF to object
classification.

Figure 2: Illustration of feedback within
MVF. This consists of a conventional
architecture run in a feedforward fash-
ion for object classification - this in-
volves arrows shown in black. In ad-
dition to object classification, a context
head is added to the output of the net-
work, shown in red. This context pre-
diction is then fed back to an intermedi-
ate layer of the network, and integrated
with that layer’s feature representations.
The network is then rerun with this con-
textual biasing incorporated, enhancing
object classification performance.

Contexts in object detection can enhance a classifier’s
ability to distinguish different objects by providing ad-
ditional relational information. These contexts are linked
to the dataset’s classes and the broader world, an example
context being the distinction between animate and inan-
imate objects. See Figure 1 for an example context set
and relations. Within the animate category, ontological
structures like mammals, marine animals, and birds can
be introduced, with relations that sometimes overlap (e.g.,
seals as marine mammals) but remain distinct from others
(e.g., birds have no overlap with marine animals). These
contexts exhibit different visual characters — e.g., mam-
mals tend to have with skin and four limbs, while birds
have feathers — that can bias object detection by guiding
the classifier. The space of possible contexts which might
be considered can be quite large.

We derive an initial unrefined context set from a Large
Language Model (LLM), which generates a hierarchical
ontology reflecting the structure of the visual world. The
production of the schema is shown by the LLM to Schema
arrow in Figure 3. By providing the LLM with an ontol-
ogy of classes from a vision dataset and a prompt describ-
ing the learning task, the LLM maps each class to a set of
class-derived contexts that aid in distinguishing between
classes. This automated approach, instead of relying on
human engineering, reduces labor overhead and avoids
potential biases introduced by manual context creation.

From this initial context set, the LLM derives a set of
initial schemas. See the schema within Figure 3 for a
simplified illustration. ELF schemas essentially act as a
decision-making engine that interprets visual data based
on contexts and applies them to modulate the underlying
feature representations in the vision network. The goal is
to ensure that object predictions are not just based on raw
visual features but are guided by meaningful, high-level
context associations.
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Figure 3: High level overview of the structure of ELF. This involves Evolution, shown in green,
which operates using an LLM, and is applied over schemas and a vision network. The Language
component both provides the initial context seed (LLM to Schema), and guides the evolutionary
search. The vision Feedback component both provides context detections to schemas, and takes
expectations produced by schemas. These expectations are then used to bias the perceptual process.
As the process of ELF is iterative, the interactions between all ELF components involve cycles.
Connection a seeds the schema set with an initial LLM derived seed set. Connection b feeds de-
tected visual context into the schema. Connection c uses schema information in biasing the vision
network. Connection d applies an evolutionary process over ELF components, employing an LLM,
and updating schemas and the vision component.

As the exploratory space for schemas is large, we employ EvoPrompt (Chen et al., 2024). Evo-
Prompt is conventionally used in architecture search; in this work we use it in schema search.
EvoPrompt facilitates the exploratory search by leveraging an evolutionary approach with an LLM
crossover function to generate and refine candidate schemas. The relation between ELF components
and evolutionary search is illustrated in green in Figure 3.

Candidate schemas produced by EvoPrompt capture a hierarchy of representation. This is integrated
into visual processing through Mid-Vision Feedback (MVF), a feedback mechanism that maps the
hierarchical language-derived representations onto visual features. This process, illustrated by the
red arrows in Figure 3, allows the LLM to adjust visual processing by aligning representations
with task-relevant cues. By incorporating language-driven contextual adjustments, ELF produces
improvements to both accuracy and contextual consistency.

1.1 CONTRIBUTIONS

The primary contributions of this work are as follows:

• We introduce a method for the automatic production of schemas: executable semantic
programs and ranking over contexts, generated via LLM and evolutionary search.

• We integrate vision and language through a novel, biologically inspired approach, using
Mid-Vision Feedback to apply hierarchical structures from language to the vision system.
This differentiates our work from flat-hierarchy models commonly used in vision research.

• We demonstrate the utility of ELF over multiple datasets and architectures. We will pub-
licly release schemas which have been demonstrated to be transferable across architecture
types, architecture sizes, and across related datasets. We will also release ELF, which al-
lows for the production of schemas for arbitrary domains.
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2 RELATED WORK

2.1 TOP-DOWN METHODS IN COMPUTER VISION

Previous works have explored the significance of feedback in biological sensory perception and its
parallels in computer vision (Kveraga et al., 2007; Markov et al., 2014; Gilbert & Sigman, 2007;
Kreiman & Serre, 2020; Gilbert & Li, 2013; Paneri & Gregoriou, 2017). Feedback models have
also been shown to better organize mid-level visual features like animacy vs. inanimacy (Long
et al., 2018) and texture representation (Jagadeesh & Gardner, 2022), aligning more closely with
human perception (Harrington & Deza, 2021). In existing computer vision methods, feedback is
typically implemented through recurrent connections (Caswell et al., 2016; Pinheiro & Collobert,
2014; Zamir et al., 2016), but alternatives like hierarchical rectified Gaussians (Hu & Ramanan,
2016) and graphical models (Yao et al., 2012) have been explored to enable top-down and bottom-
up information flow, improving tasks such as keypoint localization and scene understanding. In
this work we adapt the approach from Mid-Vision Feedback (Maynord et al., 2023), an emulation
of the feedback systems in biological vision, where high-level context informs lower-level visual
processing.

2.2 EVOLUTIONARY METHODS

Evolutionary algorithms have been widely used in various machine learning tasks (Chen et al., 2019;
Lopes et al., 2022; Zhou et al., 2021; Zhang et al., 2021), particularly in neural architecture search
(NAS) and optimization (Elsken et al., 2018; Ci et al., 2021; Zhu et al., 2019). EvoPrompting
(Chen et al., 2024), a recent approach, applies evolutionary strategies to search for architectures by
leveraging adaptive mutation and crossover operators from Large Language Models (LLMs). We
adopt a similar evolutionary search approach as in EvoPrompting, but with a different search space,
where our search space is over schemas rather than complex Pytorch operations. As schemas offer
a more tractable search space, our method does not require soft prompting and we use GPT-4 out of
the box.

3 METHODS

ELF consists of Evolution, Language, and Feedback components integrated together for application
to a given vision task. In Section 3.1 we overview the vision component of an ELF system, and
the MVF modifications necessary to effectively integrate it with the full system. In Section 3.2 we
overview the LLM based generation of schemas, which provide the high level contextual biases
which are then fed into the vision component. Finally, we overview the evolutionary training com-
ponent in Section 3.3, whose purpose is to facilitate a process of iterative refinement of schemas,
within a communication loop between the language and vision feedback components. The final re-
sult of an ELF system is then a schema, refined through evolutionary search to be optimized, and a
vision system attuned to that schema such that performance on the vision task is maximized.

3.1 MID-VISION FEEDBACK

Mid-Vision Feedback (MVF) is a feedback mechanism designed to bias mid-level feature represen-
tations in neural networks towards alignment with high-level context expectations. MVF operates
through the application of affine transformations (i.e., linear transformation and possible bias) ap-
plied to mid-level features during network runtime. These transformations are context-specific and
selectively amplify or dampen certain characteristics.

MVF’s training process is divided into two stages. In the first stage, the base network is trained
independently, for both the base task and the task of predicting context labels (as per (Maynord
et al., 2023)). In the second stage, affine transformations are introduced at the injection level (the
level whose features are being modulated), via the feedback loop shown in Figure 2. During back-
propagation, gradients are then passed through both the base network and the affine transformations,
allowing the entire system to adapt to the context-specific modifications. Training is broken into 2
stages because this produces better performance than training in a single stage - intuitively, this may
be because during training, affine transformations operate over a more stable target.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Illustration of the evolutionary search for schemas. After initializing the search with
a handful of GPT-4 generated schemas, the meta-learning loop begins. In 1), the LLM synthesizes
new schemas from an existing schema set. In 2), the candidate schemas are integrated into MVF and
used in both biasing and training the vision network. In 3), we keep the top schemas which produced
the highest accuracies. In 4), we send the schemas to the LLM, an the evolutionary process proceeds
to the next iteration.

During inference, MVF continues to apply context-specific affine transformations to mid-level fea-
tures. These transformations are informed by context expectations, which can come from any source,
such as those contexts which are predicted by the base network itself and then interpreted through
a schema (described in Section 3.2.3). This top-down feedback mechanism ensures that mid-level
visual representations are more consistent with high-level context, leading to improved accuracy and
contextual consistency.

3.2 LANGUAGE

Large Language Models have shown an impressive ability to detect visually useful contexts and
attributes for object classification (Menon & Vondrick, 2022), and have proven adept at writing
executable code referencing real-world visual entities (Gupta & Kembhavi, 2023). We aim to exploit
both of these strengths, using LLMs to generate schemas that function as executable code, and
encode contextual information that is useful for object classification.

3.2.1 SCHEMA DEFINITION

In our approach, schemas serve as executable structures composed of a (potentially nested) sequence
of conditional statements containing context categories. These statements when satisfied invoke
context-specific modulations over the mid-level features of the vision network, guided by MVF. See
the schema within Figure 5 for an example, where in classifying a bird, contexts such as ”nature”,
”branch”, and ”sky” might be relevant.
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Figure 5: Conceptual illustration of the impact of affine application over injection level features.
When it is determined through the schema in use that several contexts should be applied (e.g.,
branch, nature, sky), then their corresponding affine transformation (i.e., linear transformation and
possible bias) are applied over injection level features in the vision architecture (affine transforma-
tions are here denoted ”A” and color coded according to context). After feature vector modulation
the characteristics of the context associated with that affine transformation are more prominent.

3.2.2 SCHEMA INITIALIZATION

The initial set of schemas is generated automatically by prompting an LLM with an ontology of ob-
ject classes from the target vision dataset. These classes, along with a task description (e.g. classify
the prominent entity in an image), guide the LLM to produce a set of context categories relevant to
differentiating the objects in the dataset. The output of this initialization step is a context ontology,
where each object class is mapped to some set of contexts. The initialization also produces some ini-
tial schema candidates, creating a foundation for schema refinement. This automatic generation of
schemas reduces the need for manual engineering and ensures that the contexts reflect both semantic
and visual distinctions relevant to the task at hand.

3.2.3 SCHEMA AND MVF INTEGRATION

The integration of our schemas into the vision network requires two forward passes. The initial
forward pass of the vision network over an input image produces a distribution over contexts, each
with associated probability scores. The names of each context along with the respective probability
scores are sent as arguments to the code contained within the schema. This code interprets these
arguments to produce a set of contexts with which to modulate the vision architecture through use
of MVF. The vision network is then run a second time with this schema modulation to produce
object predictions.

See Figure 5 for an example. An image of a Baltimore Oriole is fed in a first pass to the vision
network, producing a distribution of context detections. These context detections are fed to a can-
didate schema, producing the output feedback biases of {bias(nature), bias(branch), bias(sky)}.
We fetch and apply the affine transformations associated with each of these contexts, biasing the
features in alignment with the contexts detected.

3.3 EVOLUTIONARY TRAINING

Given the candidate schemas provided by GPT-4 at initialization, we use an evolutionary algorithm
inspired by EvoPrompting (Chen et al., 2024) to generate improved schemas that best contribute

6
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to the vision task. The primary objective is to iteratively search for optimal schemas that enhance
the accuracy. The schema refinement process begins with A) evaluation based on classification
performance. Promising schemas are then selected for B) crossover and mutation. This process is
then iterated. This is outlined in Figure 4, and detailed in the rest of this subsection.

A) Evaluation and Selection: Each schema is evaluated based on its contribution to object classi-
fication accuracy (the ”fitness” metric). We integrate each candidate schema into the vision network
trained after stage one with MVF, as depicted in Figure 5. After finishing stage two training, the
schemas producing the highest accuracies are selected for the next iteration.

B) Schema Crossover and Mutation: As in EvoPrompting, the GPT-4 model is employed as
an adaptive mutation and crossover operator to produce child schemas. The GPT-4 is responsible
for generating these variations, leveraging its pre-trained knowledge of object categories and their
relations to produce novel candidate schemas. These crossover and mutation operations allow the
exploration of new schemas that might not be obvious through manual design.

Over multiple generations, the schemas are iteratively refined. Each generation is evaluated and
tuned, and the schemas with the highest accuracies are preserved for the next generation. This
process of mutation and selection iterates until the halting condition is reached: when object classi-
fication has not improved for a certain number of generations.

4 EXPERIMENTS

In this section we describe our experiments designed to evaluate the effectiveness of ELF. We con-
ducted our evaluations across three datasets — CIFAR100Krizhevsky et al. (2009), ImageNet-1K
(Deng et al., 2009), and Caltech101Fei-Fei et al. (2004). We evaluate a total of five models, in-
cluding scaled-down versions of ResNet20He et al. (2016), ShuffleNet(Sandler et al., 2018), and
MobileNet(Zhang et al., 2018), as well as the popular ViT-B/16 (Parmar et al., 2018) and ResNet50
architectures. We present experiments evaluating the extent to which evolutionary methods are suit-
able for schema discovery (Table 4.1). Experiments are also presented to evaluate the transferability
of discovered schemas to different datasets and architectures (Table 4.2). We also assess the distri-
bution of performance benefits across context categories (see Figure 8).

We compute feedback margins - the improvement in performance provided by introducing feedback
- as follows: A model consisting only of stage 1 training (no affine transformations or schema
feedback) is trained until convergence. A second model with both stage 1 and stage 2 (stage 2
involving affine transformations and schema) is trained until convergence. The feedback margin is
then the difference in accuracies between these two models. Note that for both the stage 1 model,
and the model trained with stage 2 in addition, context prediction is included in training.

4.1 EVOLUTIONARY PROMPTING OVER CIFAR100

We apply the method described in Section 3 over the CIFAR 100 dataset. To make the evolutionary
search process tractable, we adopt scaled-down pre-trained vision networks - namely, scaled-down
ResNet20, MobileNet, and ShuffleNet - each of which we adapt to take inputs of size 32×32. Below
we list information on the dataset, and implementation details further below.

CIFAR100 We apply the full ELF search for useful schemas over CIFAR100, a popular dataset of
60, 000 RGB images with 100 object classes, with 600 images per class. Our GPT-4 produced initial
context ontology consists of 35 different contexts, some examples of which are animal, vehicle,
plant, cat, etc. For this initial context ontology, there exists anywhere between 1200 and 30, 000
images per context. We note that these contexts go beyond the 20 original superclasses of the
CIFAR100 dataset that were hand-engineering.

Implementation Details As in the original MVF work (Maynord et al., 2023), we adopt two
stages of training, with two separate optimizers. The base network is trained before the beginning
of the evolutionary process for 15 epochs with a base learning rate of 0.001 and batch size 256 with
an input resolution of size 32. The evolutionary process takes place starting from weights initialized

7
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after the end of stage one. The search starts with a set of 5 context schema seeds. We run the
evolutionary method for 10 rounds with 10 prompts per round, producing 12 candidate schemas per
prompt. This means a total of 1200 candidate schemas are generated. However, we apply early
stopping, meaning this limit is practically never reached.

Base Stage 1 MVF ELF
ResNet20 60.66% 60.43% 65.12% 68.13%

ShuffleNet 61.94% 60.91% 63.76% 68.25%
MobileNet 64.56% 64.54% 65.92% 70.03%

Table 1: Accuracies across a Cifar-100 validation set, for multiple model architectures. We com-
pare the results of ELF against a network involving only stage 1 training (Stage 1) and against a
network making use of a single feedback operation as in Maynord et al. (2023) (MVF). We also
include results for the model trained without a context classification loss (Base). Stage 1 training
is equivalent to base training, with the addition of a context classification loss term. The difference
in performance between Base and Stage 1 shows the degree to which accuracy differences are due
to the addition of a context loss - the impact is small. (Due to computational limitations the test set
numbers are still processing, but the final numbers will be computed by rebuttal period.)

Figure 6: For the purpose of visualization we run the evolutionary search for schemas for 20 rounds
(as opposed to the ceiling of 10 rounds performed for Tables 4.1 and 4.2), reporting the average
accuracy that an ELF model employing these schemas produces in each round, over multiple GPT
models. Numbers are from a ResNet20 model, over the CIFAR100 dataset. Selecting seeds known
to perform well or perform poorly had no noticeable impact on the final classification performance
after evolutionary search.

4.2 TRANSFER TO IMAGENET AND CALTECH101

As ImageNet and Caltech101 are too large to apply evolutionary search over, we take the schema
produced by the evolutionary search over CIFAR100, and integrate those schema during the training
of models over ImageNet and Caltech101 as in Section 3.2.3. We transfer the schemas produced in
Section 4.1 not just to different datasets but to larger models - the ViT-B/16 (Parmar et al., 2018)
network and the ResNet50 (Koonce & Koonce, 2021) network. The experimental details are largely
identical to those reported in Section 4.1, with the exception of the input resolution - all networks in
these experiments ingest images of size 224, and are pre-trained over ImageNet.

ImageNet We train over all of ImageNet-1K, and apply GPT-4 to map the ontology of its 1000
classes to the context ontology of 35 contexts which ELF produced over CIFAR100.

Caltech101 We train over all of Caltech-101, using GPT-4 to map the ontology of its 101 classes
to the context ontology of 35 contexts produced by ELF over CIFAR100. The context covering the
highest number of classes (vehicle/machine) spans 59 classes, and the context spanning the lowest

8
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Figure 7: Distribution of accuracy margins (positive implies net benefit to performance, negative
implies net damage to performance) where each context is applied on its own as in (Maynord et al.,
2023) - that is, each context is applied in isolation (in a separate model) along with its complement
(e.g. ”animal” and ”not animal”). The context is used to bias mid-level features based on its presence
in an image, or lack thereof. Numbers are reported for the ResNet20 model over CIFAR100.

Caltech101 ImageNet
Stage 1 MVF ELF Stage 1 MVF ELF

ResNet50 83.59% 84.19% 85.31% 65.90% 68.5% 69.01%
ViT-Bx16 84.12% 84.07% 85.93% 70.19% 70.56% 72.99%
ViT-Lx16 87.47% 86.72% 88.71% 72.91% 73.74% 75.64%

Table 2: Accuracies across Caltech101 and ImageNet datasets, for two larger model architectures.
In these experiments we transfer the schemas derived using CIFAR100 and the models listed in
Table 4.1. We compare the results of ELF against the network after Stage 1 training and against a
network making use of a single feedback operation as in Maynord et al. (2023) (MVF). The accuracy
increases between Stage 1 and ELF demonstrate the utility that ELF brings to the task of image
classification for larger models, and the transferability of schemas to across models and datasets.

number of classes (air vehicle) spans 1 class. As the Caltech101 dataset is relatively small in size
(anywhere between 40 to 800 images per class), we initialize the network from weights trained over
ImageNet (network weights trained over both object and context classification).

5 DISCUSSION

We observe in Table 4.1 large performance gains from the introduction of ELF. Our experiments
in Table 4.2 demonstrate the robustness and versatility of ELF, showcasing its ability to transfer
schemas derived from one model and dataset to different models and datasets while still providing
performance improvements.

As seen in Figure 6, with ELF GPT-4 leads to higher average accuracies across the evolutionary
search, showing that the schemas generated by GPT-4 are generally more useful than those from
older models. We observe GPT-4 exhibits a trend where as the number of rounds increases, the
schemas increase in length and complexity, which typically result in decreasing performance.

In Figure 8 we assess the distribution of benefits from the initial GPT-4 generated contexts, derived
from CIFAR100, which might be included in a schema. We observe that benefit is not restricted to a
small set of contexts, and that the benefits to ELF therefore do not derive from randomly generating
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a couple lucky context guesses. From the histogram, a general trend is that the closer to 50% data
coverage a context is, the more useful that context is to image classification (e.g. contexts such as
animal and nature are more useful than insect and small vehicle).

6 CONCLUSION

In this paper, we introduce ELF (Evolving LLM-Based Schemas for Mid-Vision Feedback), a frame-
work that combines schema generation using Large Language Models with Mid Vision Feedback for
the purpose of improving visual processing. Using an evolutionary method, ELF refines schemas to
enhance classification accuracy. Our experiments demonstrate ELF’s utility, as well as ELF’s adapt-
ability in transfering schemas across architectures and datasets. These findings highlight ELF’s
potential to bridge language and vision, enhancing visual processing by aligning mid-level visual
representations with high-level contextual knowledge.
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A APPENDIX

A.1 ALL CONTEXTS

The contexts adopted in this work are listed as follows:

• aquatic mammals
• fish and marine life
• flowers
• food containers
• fruit and vegetables
• household electrical devices
• household furniture
• insects
• large carnivores
• large man made outdoor things
• large natural outdoor scenes
• large omnivores and herbivores
• medium sized mammals
• non insect invertebrates
• people
• reptiles
• small mammals
• trees
• vehicles
• fruit and vegetables 1
• insects and arachnids
• large mammals
• reptiles and amphibians
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• aquatic creatures

• birds

• vehicles

• buildings and man made structures

• furniture and household objects

• natural elements and landscapes

• animals

• plants and natural elements

• vehicles and machines

• buildings and infrastructure

• household objects

• animate

• inanimate

• nature and geology

• tools and instruments

• clothing and accessories

• food and drink

A.2 QUALITATIVE EXAMPLES

Below we show three example schema programs, along with the corresponding accuracies produced
as a result of their incorporation within the ResNet50 architecture over the CIFAR100 dataset.

Figure 8: Three qualitative examples of schemas produced through evolutionary search, with the
first (shortest) schema produced earlier in the search, the middle schema produced midway through
the search, and the final schema produced near the termination of the search.

A.3 LIMITATIONS

In the present evaluation we employed datasets with conventional ontologies, with categories famil-
iar to GPT-4. In a highly specialized setting involving specialized manufacturing equipment with
which GPT-4 has minimal understanding one challenge would be on seed context generation. One
work around to this could be hand engineering seed contexts, or employing an LLM model which
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was trained over domain specific text sources. However - as per the next response - we observe that
final performance is not highly sensitive to the initial seed context set, so the adaptation to highly
specialized domains may require little effort in adjustment.

A.4 MVF SUMMARY

Mid-Vision Feedback (MVF) is a feedback mechanism designed to enhance mid-level feature rep-
resentations in convolutional neural networks (CNNs) by aligning them with high-level categorical
expectations. This approach incorporates affine transformations and orthogonalization bias to im-
prove contextual consistency and overall accuracy. Affine transformations, defined as

f ′ = Af + b,

where f is the feature vector, A is the transformation matrix, and b is the bias vector, are applied
to features at designated ”injection” levels in the network. These transformations amplify or sup-
press specific feature characteristics based on the high-level context of the input, which selects the
appropriate affine transformation to apply. The context may be derived from an external system or
predicted by the network itself through a secondary logits classification head.

The effectiveness of these transformations relies on disentangling features associated with different
contexts, achieved through an orthogonalization bias during training. This bias is enforced by a
contrastive loss:

LO(F, Y ) =
1

|SF,Y |
∑

(f1,f2)∈SF,Y

max

(
0,

f1 · f2
∥f1∥∥f2∥

)
,

where
SF,Y = {(f1, f2) | fi ∼ U(Fci), YC(f1) ̸= YC(f2), I(f1) = I(f2)},

YC(f) is the context label for f , and Fci represents features for context ci. This loss penalizes
feature similarity across different contexts, encouraging angular separation and making mid-level
features more amenable to manipulation through context-driven affine transformations.

Training is divided into two stages. In Stage 1, the base network is trained with the orthogonalization
loss to separate features associated with different contexts. The loss function is:

L1(Y, P, F ) = λLO(F, Y ) + CE(Y, P ),

where CE(Y, P ) is the cross-entropy classification loss, and λ scales the orthogonalization term.
In Stage 2, affine transformations are introduced and optimized based on the context of each input.
These transformations, initialized as identity matrices with added noise, are trained alongside the
network parameters. The loss function for this stage is:

L2(Y, P, F ) = CE(Y, P ).

Affine transformations are selected during runtime by associating each input with a high-level con-
text ci, either predicted by the network or provided as ground truth. These transformations bias
mid-level features toward conformity with the selected context, enhancing their relevance for high-
level tasks.

MVF exploits CNNs’ tendency toward decoupled representations, where feature vector angles cor-
respond to characteristic types and magnitudes reflect variations. By disentangling features across
contexts, MVF enables precise control over mid-level representations, bridging the gap between
low-level signals and high-level symbolic reasoning. This feedback mechanism outperforms post-
hoc filtering by aligning feature representations during runtime rather than discarding inconsistent
predictions, achieving superior performance in context-sensitive tasks and allowing for the detection
of out-of-context objects.

A.5 EVOPROMPTING SUMMARY

EvoPrompting is a meta-learning framework that uses large language models (LMs) for code gen-
eration as adaptive mutation and crossover operators in an evolutionary neural architecture search
(NAS) pipeline. This approach iteratively improves prompts and LM performance through prompt-
tuning and evolutionary selection, enabling the discovery of diverse and high-performing neural
architectures.
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The NAS problem is formalized as searching for architectures c ∈ V ∗ (code samples in the LM’s
vocabulary V ), evaluated via a fitness function EVALT (c,D) : V ∗ ×D → R, where D is a dataset
for task T . The objective is to maximize the reward function:

arg max
C={c|c∼πθ},|C|=k

Ec∈C

[
E(x,y)∈D[EVALT (c,D)]

]
.

To address the intractability of this optimization, EvoPrompting employs a black-box evolutionary
algorithm. An LM, πθ, initialized with pre-trained parameters, serves as the mutation and crossover
operator, leveraging its pretraining on large code datasets for diverse and semantically valid archi-
tectures.

ALGORITHM OVERVIEW

EvoPrompting’s end-to-end algorithm consists of the following stages:

1. Initialization: The global population G is initialized to an empty list, and the initial population P
is seeded with a set of hand-designed architectures {c1, c2, . . . , cp}, each evaluated using the fitness
function EVALT (c,D).

2. Crossover and Mutation: A few-shot prompt is created using k examples randomly selected
from P . This prompt, combined with task-specific metrics, is used to guide the LM πθ to generate
n child architectures:

C = {cj | cj ∼ πθ(·|prompt)}.

3. Evaluation and Filtering: Child architectures are scored using:

fitness(c) = −model size(c)× validation error(c),

where architectures with validation error exceeding a threshold α are discarded.

4. Selection and Prompt-Tuning: The top p architectures with the highest fitness scores are se-
lected to form the new population P . The remaining child architectures are used to prompt-tune πθ

for the next round.

5. Iterative Evolution: Steps 2–4 are repeated over T rounds of evolution, gradually improving the
population and the LM’s ability to generate better architectures.

APPLICATIONS AND RESULTS

EvoPrompting was applied to the MNIST-1D dataset and the CLRS Algorithmic Reasoning Bench-
mark. On MNIST-1D, the algorithm discovered convolutional architectures superior to manually
designed baselines, producing smaller models with lower test error. On CLRS, EvoPrompting gen-
erated graph neural networks that outperformed state-of-the-art models on 21 out of 30 tasks while
maintaining competitive model sizes.

This framework demonstrates the potential of combining LMs with evolutionary techniques to solve
complex NAS problems and generalizes beyond architecture design to tasks requiring in-context
learning or prompt-tuning.
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