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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) strengthens LLM rea-
soning but training often oscillates between entropy collapse and entropy explo-
sion. We trace both hazards to the mean-baseline used in value-free RL (e.g.,
GRPO & DAPO), which improperly penalizes negative-advantage samples un-
der reward outliers. We propose Quantile Advantage Estimation (QAE), replac-
ing the mean with a group-wise K-quantile baseline. QAE induces a response-
level, two-regime gate: on hard queries (p ≤ 1−K) it reinforces rare successes,
while on easy queries (p > 1−K) it targets remaining failures. Under first-order
softmax updates, we prove two-sided entropy safety, giving lower/upper bounds
on one-step entropy change that curb explosion and prevent collapse. Empiri-
cally, this minimal modification stabilizes entropy, sparsifies credit assignment
(with tuned K, roughly 80% of responses receive zero advantage), and yields
sustained pass@1 gains on Qwen3-8B/14B-Base and Qwen3-30B-A3B across
AIME’24/’25 and AMC’23. These results identify baseline design—rather than
token-level heuristics—as the primary mechanism for scaling RLVR.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024; DeepSeek-AI et al.,
2025; Yang et al., 2025a) enhances Large Language Models (LLMs) by rewarding verifiable cor-
rectness (Phan et al., 2025; Rein et al., 2023). Yet reward-driven optimization often triggers entropy
collapse (Yu et al., 2025; Cui et al., 2025): the policy distribution sharpens prematurely, suppress-
ing exploration and ultimately limiting performance. This exposes a fundamental tension between
maximizing reward and preserving policy diversity during RLVR fine-tuning.

Prior work focuses almost exclusively on preventing collapse, e.g., uplifting low-probability tokens
(Yu et al., 2025), penalizing collapse-inducing tokens (Cui et al., 2025), or preserving policy di-
versity by primarily learning from negative samples (Zhu et al., 2025). While effective at avoiding
collapse, these methods address only one side of the problem and largely overlook its symmetric
counterpart: entropy explosion. Uncontrolled entropy growth is equally harmful, leading to ineffi-
cient exploration and stalled progress.

This risk is practical, not merely theoretical. On Qwen3-8B-Base with DAPO, Figure 1 (left) shows
that Clip-Higher averts collapse but induces an early entropy spike (steps 10 → 80) that, while
not immediately harming performance, creates long-term instability. After step 100, entropy re-
mains high and volatile, while performance plateaus. These dynamics highlight key shortcomings of
unconstrained entropy growth: (i) higher policy entropy does not guarantee continued effective ex-
ploration—performance can plateau despite ongoing behavioral variability reflected in high entropy;
and (ii) the initial entropy spike indicates a period of over-exploration that, though not immediately
destructive, ultimately undermines the model’s ability to consolidate learning from high-reward rea-
soning trajectories. The dual challenge, therefore, is to avoid both premature convergence (collapse)
and unproductive, signal-degrading divergence (explosion). Merely avoiding collapse is therefore
insufficient—effective RLVR requires keeping entropy within a productive range.

We address this dual challenge with Quantile Advantage Estimation (QAE), which dynamically
regulates policy entropy by replacing the conventional mean reward baseline with a group-wise K-
quantile. The key idea is that the baseline choice controls how many samples receive positive vs.
negative advantages, which directly impacts exploration behavior. Specifically, a lower K marks
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Figure 1: Entropy–performance dynamics on Qwen3-8B-Base. Left: DAPO with Clip-Higher
prevents early collapse but triggers an early entropy spike (steps 10–80) and a later performance
plateau. Right: our quantile baseline (QAE) stabilizes policy entropy and sustains pass@1 gains by
steering training into a balanced exploration regime.

more samples as having positive advantage, encouraging the model to exploit these successful pat-
terns and reducing entropy. Conversely, a higher K makes fewer samples appear successful, pushing
the model to diversify its behavior patterns, thereby increasing entropy. By tuning the quantile pa-
rameter K, we can control the exploration-exploitation balance. As shown in Figure 1 (right), with
an appropriately chosen K, this mechanism steers training toward a stable entropy regime — neither
collapsing nor exploding — enabling sustained performance gains beyond the prior plateau. This
mechanism has a striking empirical consequence: it naturally sparsifies updates. With a tuned K,
roughly 80% of responses receive zero advantage. This concentrates computational effort on the
most informative samples and revealing a deep redundancy in standard mean-baseline approaches.

We trace both early entropy spikes and late plateaus to the mean-baseline in value-free RL; substi-
tuting a K-quantile baseline (QAE) implements a response-level gate that routes updates to rare suc-
cesses on hard queries and to remaining failures on easy ones. We prove a two-sided entropy safety
guarantee and derive a discriminative objective that explains the observed stability, which leads to
significant pass@1 gains and solid pass@16 performance. Empirically, the one-line swap boosts
Clip-Higher (Yu et al., 2025) on QWEN3-8B/14B-BASE, pairs well with Clip-Cov/KL-Cov
(Cui et al., 2025) on QWEN3-8B-BASE, and works with GSPO (Zheng et al., 2025) on QWEN3-
30B-A3B-BASE, yielding consistent pass@1 gains and strong pass@16 on AIME’24, AIME’25,
and AMC’23. Overall, QAE reframes entropy regulation as a baseline-design problem rather than
a token-level tuning problem.

2 PRELIMINARIES

In this section, we review the policy optimization algorithms that form the foundation of our work,
starting with Proximal Policy Optimization (PPO) and its value-free variants, GRPO and DAPO.

Proximal Policy Optimization (PPO) PPO (Schulman et al., 2017) is a foundational on-policy
algorithm that stabilizes training by constraining policy updates to a trust region around the previous
policy πθold . It maximizes a clipped surrogate objective:

JPPO(θ) = E(q,a)∼D,o∼πθold (·|q)

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (1)

where rt(θ) =
πθ(ot|q,o<t)
πθold (ot|q,o<t)

is the probability ratio. The advantage Ât is typically estimated by a
value network, and ϵ is the clipping hyperparameter (e.g., 0.2).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Group Relative Policy Optimization (GRPO) To eliminate the need for a value network,
GRPO (Shao et al., 2024) adapts the PPO objective by proposing a relative advantage estimator.
For each query, GRPO samples a group of G responses {oi}Gi=1 from πθold . Each response is as-
signed a binary reward Ri based on its correctness against a ground-truth answer a. The advantage
for the i-th sample is then estimated by normalizing its reward against the group’s statistics:

Âi =
Ri − mean({Rk}Gk=1)

std({Rk}Gk=1)
, where Ri =

{
1.0 if is equivalent(a,oi),

0.0 otherwise.
(2)

GRPO further incorporates a KL divergence penalty against πref to regularize the policy update.

Dynamic Sampling Policy Optimization (DAPO) We use DAPO (Yu et al., 2025), a state-of-
the-art value-free method, as our baseline. DAPO refines GRPO with several key modifications. It
removes the KL penalty but introduces an asymmetric clipping range (1− ϵlow, 1 + ϵhigh), allowing
larger updates for advantageous actions. The objective is also normalized at the token level:

JDAPO(θ) =E (q,a)∼D,

{oi}G
i=1∼πθold (·|q)

[
1

Z

G∑
i=1

|oi|∑
t=1

min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ϵlow, 1 + ϵhigh

)
Âi,t

)]
where Z =

∑G
i=1 |oi| is the total number of tokens in the group, and the advantage Ât,i is computed

as in GRPO. Crucially, DAPO employs a dynamic sampling constraint:
0 < |{oi | is equivalent(a,oi)}| < G.

This ensures that each training batch contains both positive and negative examples, guaranteeing a
meaningful advantage signal and stable gradients.

3 THE ENTROPY DILEMMA IN RL SCALING: FROM COLLAPSE TO
EXPLOSION

Policy entropy is central to reinforcement learning, governing the exploration–exploitation trade-off.
This balance is especially fragile in RLVR for large models. When entropy is too low, the policy
converges prematurely to suboptimal behaviors (entropy collapse); when it is too high, uncontrolled
stochasticity attenuates learning signals (entropy explosion). Navigating this entropy dilemma is
therefore pivotal for scaling RLVR.

3.1 THE TWO PERILS OF POLICY ENTROPY

Entropy collapse. Well documented in RLVR (Yu et al., 2025; Cui et al., 2025; Zhu et al., 2025),
collapse occurs when the policy becomes overly deterministic too early. The resulting loss of explo-
ration traps training in narrow reasoning modes and limits generalization.

Entropy explosion. At the other extreme, the policy becomes overly stochastic: gradients are
swamped by noise, credit assignment deteriorates, and learning turns unstable and inefficient—an
equally limiting regime that has been comparatively underexplored (Ahmed et al., 2019; Geist et al.,
2019; Haarnoja et al., 2018; Xu et al., 2021; Zhang et al., 2025).

The dilemma. Most prior work targets collapse alone. Treating it as the sole bottleneck is a
critical oversight: in practice, mitigating collapse with existing techniques can inadvertently induce
explosion. Addressing only one side is insufficient; effective RLVR requires keeping policy entropy
within a productive, stable range. We next analyze the mechanisms that drive entropy explosion and
motivate our remedy.

3.2 AN ANALYSIS OF ENTROPY EXPLOSION IN RLVR

To investigate the drivers of entropy explosion, we analyze a prevalent class of value-free RL meth-
ods that apply policy gradients at the token level. We use DAPO (Yu et al., 2025) as a representative
case, focusing on its Clip-Highermechanism—a token-level control designed to prevent entropy
collapse but, as we will show, one that also illustrates the pitfalls of fine-grained control. Unless oth-
erwise noted, we follow the recommended configurations in Yu et al. (2025); full details appear in
Appendix D.1.
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Figure 2: DAPO training dynamics on Qwen3–8B. Left: without Clip-Higher; Right: with
Clip-Higher. In both settings we observe two phases—an early correlated growth between
anthropomorphic token frequency and pass@1, followed by a decoupling then plateau. While
Clip-Higher averts collapse, it does not prevent the later performance stall.
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Figure 3: Evolution of high-entropy token usage under DAPO (steps 20/80/200). Early training
exhibits diverse anthropomorphic tokens (e.g., wait, perhaps); by steps 80–200 the distribution ho-
mogenizes around rigid reasoning templates (e.g., so, let), indicating reduced exploratory diversity
consistent with entropy explosion.

Observation 1: Token-level control does not guarantee sustained reasoning gains. In Fig-
ure 2, Clip-Higher triggers an early spike (steps 20–80) in anthropomorphic tokens—proposed
by Yang et al. (2025b) as markers of “aha-moment” reasoning—that coincides with sharp pass@1
gains. However, after step 150, anthropomorphic token frequency returns toward baseline while
performance plateaus. Thus, although Clip-Higher mitigates early collapse, its rapid escalation
is coupled with an entropy explosion, which is correlated with the observed limitations in scaling.

Observation 2: Token-level control yields homogenized, low-quality exploration. To probe the
stall, we examine the distribution of high-entropy tokens at steps 20, 80, and 200 (cf. Figure 3). Early
in training, diverse markers such as wait and perhaps are frequent. By step 80, usage concentrates
on assertive, formulaic tokens like so and let. This convergence reflects a loss of diversity in high-
entropy states: the model increasingly relies on rigid reasoning templates rather than exploring
alternatives, aligning with the observed plateau.

Table 1: Different
ϵhigh values in DAPO.
ϵhigh AIME24

0.20 32.29−18.6%

0.22 34.90−12.1%

0.24 34.17−13.9%

0.26 40.63+2.4%

0.28 39.69

Observation 3: Entropy explosion is disproportionately driven by
negative-advantage samples. We decompose entropy dynamics by sam-
ple advantage, where positive-advantage samples contribute positive up-
dates and negative-advantage samples contribute non-positive updates.
As shown in Figure 4 (Left), entropy growth is dominated by negative-
advantage samples, which show both the steepest increase and the largest
share of entropy early in training. Positive-advantage samples remain com-
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Figure 4: Quantile baseline reshapes weighting and entropy dynamics. Left: policy entropy over
training split by advantage sign—negative-advantage samples drive the surge. Middle/Right: query-
level weights vs. success rate p; GRPO & DAPO use symmetric

√
p(1− p) weighting, whereas our

method applies a thresholded scheme (K=0.4).

paratively stable. This imbalance indicates over-exploration induced by negative-advantage samples
in the early phase, followed by insufficient exploitation later.

Observation 4: Tuning token-level hyperparameters is insufficient. One might lower the
token-level high clip threshold ϵhigh to curb update magnitude. Table 1 (varying ϵhigh from 0.20 to
0.28) shows only marginal effects: performance peaks near ϵhigh = 0.26, but the overall improve-
ment is limited and the late-stage plateau persists. Simply adjusting token-level clipping cannot
resolve the core exploration–exploitation tension.

TAKEAWAY

Our analysis indicates that fine-grained, token-level controls provide a temporary fix with
notable side effects:
• They prevent entropy collapse but can inadvertently induce a performance-limiting en-

tropy explosion.
• The explosion is mechanically rooted in the advantage baseline, which systematically

mishandles negative-advantage samples under reward outliers.
• The issue is therefore a baseline-design flaw, not a hyperparameter tuning problem at the

token level.

4 METHOD: QUANTILE-BASED ADVANTAGE ESTIMATION FOR ENTROPY
REGULATION

Building on the analysis in Section 3, we identify the advantage baseline as the primary source of
instability in RLVR. Value-free methods such as GRPO (Shao et al., 2024) and DAPO (Yu et al.,
2025) use an empirical mean baseline that is sensitive to reward outliers: a few high-reward samples
can inflate the baseline, turning otherwise competent responses into negative-advantage examples
and penalizing useful exploration, which induces entropy collapse.

We address this by quantile-based advantage estimation. Replacing the mean with a distributional
quantile yields a baseline that is (i) statistically robust and (ii) explicitly controllable. A single
hyperparameter K∈(0, 1) shifts the update focus between exploration and exploitation.

4.1 FORMULATION AND INTUITION

For a query q, sample G responses {(oi, Ri)}Gi=1 with oi ∼ πold(· | q) and binary rewards Ri ∈
{0, 1}. Let

p(q) :=
1

G

G∑
i=1

Ri

5
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be the empirical success rate under πold. Define the group empirical CDF

F̂q(x) :=
1

G

G∑
j=1

1{Rj ≤ x},

and the (right-continuous) K-quantile baseline

bK(q) := QK({Rj}Gj=1) = inf{x : F̂q(x) ≥ K}, K ∈ (0, 1).

We then define the standardized advantage

Âi =
Ri − bK(q)

std({Rj}Gj=1) + ε
, ε > 0, (3)

where ε prevents division by zero when p ∈ {0, 1}. For binary rewards, the baseline reduces to a
threshold on p(q):

bK(q) =

{
0, p(q) ≤ 1−K,

1, p(q) > 1−K.
(4)

This yields two regimes governed by the difficulty threshold 1−K:

• Hard (exploitation-focused), p(q) ≤ 1−K. The baseline is 0. Incorrect responses (R = 0)
have Â = 0, while rare correct responses (R = 1) receive Â > 0, reinforcing nascent successful
trajectories.

• Easy (exploration-focused), p(q) > 1−K. The baseline is 1. Correct responses have Â = 0,
while remaining failures (R = 0) yield Â < 0, discouraging residual failure modes on already-
solved queries.

Hence K acts as a direct lever that regulates policy entropy by switching updates between rare
successes (hard) and remaining failures (easy).

4.2 GRADIENT ANALYSIS

We adopt the discriminative perspective of GRPO introduced by DisCO (Li et al., 2025), which
separates a query-level weight from a discriminative term. Let π+

old(· | q) and π−
old(· | q) denote

the conditional distributions of responses with rewards 1 and 0, respectively. For a response o,
let s+θ (o, q) and s−θ (o, q) denote score functions based on token-normalized policy ratios for posi-
tive/negative examples (see Appendix C.2 for exact forms).

GRPO revisited. Li et al. (2025) show that the GRPO objective can be written as

JGRPO(θ) = Eq

[√
p(q)

(
1− p(q)

)︸ ︷︷ ︸
query weight

·Eo∼π+
old, o

′∼π−
old

[
s+θ (o, q)− s−θ (o

′, q)
]︸ ︷︷ ︸

discriminative term

]
, (5)

with a symmetric weight that down-weights both very easy and very hard queries (cf. Fig. 4).

Quantile-based objective. Under Eqs. 3–4, the standardized advantage is non-zero on only one
outcome type per regime. Substituting into a GRPO-style objective yields:

Proposition 4.1 (Quantile-regulated objective). Assume binary rewards, group size G≥ 2, and the
right-continuous empirical quantile. Using the standardized advantage in Eqs. 3–4, the learning
objective is (up to a constant factor depending on ε) equivalent to

JQuantile(θ) = Eq

[
1{p(q) ≤ 1−K}

√
p(q)

1−p(q) Eo∼π+
old(·|q)

s+θ (o, q)

− 1{p(q) > 1−K}
√

1−p(q)
p(q) Eo′∼π−

old(·|q)
s−θ (o

′, q)
]
. (6)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Remark. Please check Appendix C for all proofs. Compared to the GRPO objective in Eq. 5,
QAE makes two crucial changes: (i) it selectively nullifies one of the discriminative terms based on
query difficulty, and (ii) it replaces the symmetric, bell-shaped weight

√
p(1− p) with asymmetric,

monotonic factors—either
√
p/(1− p) for hard queries or

√
(1− p)/p for easy queries. This trans-

forms the update mechanism from focusing on moderately difficult problems to amplifying signals
from rare successes or residual failures (cf. Fig. 4).

4.3 THEORETICAL ANALYSIS: TWO-REGIME ENTROPY SAFETY

Setup. Adopt a bandit reduction in which producing a full response y to q is a single action. Let
π(· | q) be the current softmax policy and H(q) the token-averaged (length-normalized) policy en-
tropy. Let Â denote the GRPO/DAPO-style token-normalized advantage (Sec. 4.2); more generally,
write Ab(y, q) = r(y, q) − b(q) for the response-level advantage with baseline b(q). For binary re-
wards with group success rate p(q), we use the right-continuous K-quantile baseline bK(q) (Eq. 4),
i.e., bK(q) = 0 if p(q) ≤ 1−K and 1 otherwise. Under first-order logit updates of a softmax policy
with step size η > 0, the entropy–covariance identity (adapted from Cui et al. (2025)) yields,

∆H(q) ≈ −η Covy∼π(·|q)
(
log π(y | q), π(y | q)Ab(y, q)

)
, η > 0.

Baseline as a linear knob. For b∈ [0, 1], define Fq(b) := Covπ
(
log π, π (r − b)

)
for r ∈ {0, 1}.

By linearity,
Fq(b) = Fq(0)− bCovπ(log π, π), Covπ(log π, π) > 0

whenever π(· | q) is non-uniform. Hence ∆H(q; b) = −η Fq(b) is strictly increasing in b∈ [0, 1].
Proposition 4.2 (Two-regime entropy safety of K-quantile). Fix q and a non-uniform π(· | q).
Then:

1. Low-success (explosion-proof). If p(q) ≤ 1−K so bK(q) = 0, then for any baseline b∈ [0, 1]
(including the mean b=p(q) or token-level clipping/KL that keep b unchanged),

∆H(q; bK) ≤ ∆H(q; b).

2. High-success (collapse-proof). If p(q) > 1−K so bK(q) = 1, then for any b∈ [0, 1],

∆H(q; bK) ≥ ∆H(q; b).

Sequences vs. token-level controls. Existing token-level controls are one-sided: they rescale step
sizes but leave the response-level baseline b(q) unchanged, so they cannot prevent explosion driven
by negative-advantage samples. In contrast, the K-quantile baseline is two-sided (Prop. 4.2): bK=0
when p(q)≤1−K (explosion-proof) and bK =1 when p(q)>1−K (collapse-proof), matching the
two training regimes in Fig. 4.

TAKEAWAY

Method takeaways (QAE).
• K-quantile as a response-level gate. A single parameter K yields a deterministic switch

(Eqs. 3–4): hard queries (p(q)≤1−K) update on rare successes only; easy queries (p(q)>
1−K) update on remaining failures only (Fig. 4).

• Two-sided entropy safety (provable). Under first-order softmax updates, the K-quantile
baseline attains the extremal one-step entropy shift—minimal at p(q) ≤ 1−K (prevents
explosion) and maximal at p(q)>1−K (prevents collapse); see Prop. 4.2.

Note: Token-level mechanisms only rescale steps and do not change the response-level base-
line, so they cannot realize these guarantees.

5 EXPERIMENTS

Evaluation protocol. We evaluate on three standard math–reasoning benchmarks: AIME’24,
AIME’25, and AMC’23. All evaluations are zero-shot. For each query we sample k=32 comple-
tions with temperature T=0.7. We report pass@1 and pass@16 as accuracy metrics, together with
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Table 2: Overall performance on the AIME’24/’25 and AMC’23 benchmarks. Our drop-in QAE
consistently improves pass@1 across different models and methods, while maintaining comparable
pass@16 scores. Red denotes an improvement and blue a decline.

Model Method AIME25 AIME24 AMC23
Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16

Qwen3-
8B-Base

Clip-Higher 32.71 56.66 39.69 71.23 92.11 97.50
+ QAE 34.90+6.7% 57.92+2.2% 48.23+21.5% 71.63+0.6% 92.97+0.9% 97.50+0.0%

CLIP-Cov 33.02 52.27 42.40 68.58 87.42 96.25
+ QAE 37.40+13.3% 56.29+7.7% 46.04+8.6% 73.16+6.7% 90.23+3.2% 96.25+0.0%

KL-Cov 33.33 45.86 44.90 73.00 86.02 95.00
+ QAE 33.44+0.3% 51.62+12.6% 44.69−0.5% 77.08+5.6% 87.97+2.3% 96.25+1.3%

Qwen3-30B-
A3B-Base

GSPO 31.15 46.59 43.75 67.91 90.00 99.39
+ QAE 32.50+4.3% 48.01+3.0% 47.50+8.6% 71.72+5.6% 89.38−0.7% 97.21−2.2%
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Figure 5: Training dynamics and sparsity. (a) AIME’24 (Qwen3–8B): QAE boosts pass@1 while
keeping pass@16 comparable—showing higher sample efficiency. (b) Entropy by sign: DAPO’s
explosion stems from negative-advantage samples; QAE suppresses it. (c) Response sparsity: 80%
responses have zero advantage, focusing updates on informative subsets.

the average tokens per response. Unless noted, we keep all training and decoding hyper-parameters
identical across baselines and our method, changing only the response-level baseline from the mean
to a K-quantile (default K=0.4). This value is chosen to robustly balance exploration and exploita-
tion; we present a detailed sensitivity analysis on K in Appendix D.3. 1

5.1 OVERALL PERFORMANCE ACROSS MODELS & RECIPES

Drop-in gains across model sizes. Table 2 summarizes results on Qwen3-8B-Base and Qwen3-
30B-A3B-Base. Replacing the mean baseline in DAPO with our K-quantile baseline (QAE) yields
consistent pass@1 improvements across datasets and model sizes, while keeping pass@16 perfor-
mance highly comparable. The stability of this process is further illustrated by the training dynamics
curves for both 8B and 14B models in Appendix D.4, which show QAE consistently mitigates the
entropy explosion seen in the baseline.

Compatibility with strong recipes. QAE is orthogonal to token-level controls (e.g., CLIP-COV,
KL-COV) and sequence-level optimization (GSPO). When layered on top of these methods, QAE
consistently provides further gains without altering their hyper-parameters.

5.2 TRAINING DYNAMICS & ENTROPY SAFETY

Pass@1 improves while pass@16 stays comparable. Figure 5 (Left) plots AIME’24 performance
over training for Qwen3-8B-Base. From ∼step 100, DAPO exhibits an entropy surge and pass@1
stalls, while QAE maintains stable training and continues to improve. Pass@16 remains similar,
reinforcing the interpretation of improved sample efficiency.

Negative-advantage entropy is the driver of instability. Figure 5 (Middle) decomposes entropy
by the sign of the advantage. The growth is dominated by negative-advantage samples; QAE sup-

1The code is available at https://anonymous.4open.science/r/QAE-8EA6.
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Figure 6: Performance and ablations. (a) QAE improves DAPO on the 14B model for both
AIME’25 and AIME’24 (pass@1). (b) With weaker high-end clipping (ϵhigh=0.28), controlling
negative-advantage updates (NEG-MASK) is most critical, closely tracking full QAE. (c) With
stronger clipping (ϵhigh=0.20), positive-advantage control (POS-MASK) dominates.

presses this component and keeps the overall entropy within a productive range. This behavior
follows directly from using a quantile baseline that down-weights uninformative negatives.

Response-level sparsity: the 80/20 rule. Figure 5 (Right) shows that ≈80% of sampled responses
have zero advantage throughout training. This “response-level 80/20 rule” focuses updates on the
informative minority, explaining QAE’s stability and efficiency. In contrast to the baseline, which
leads to homogenized exploration (Sec. 3.2), QAE sustains a productive co-growth of diverse ex-
ploratory tokens and reasoning accuracy, as detailed in Appendix D.2.

5.3 ABLATIONS & COMPOSITION

Masking mechanisms. QAE can be viewed as selectively masking updates. To disentangle their
roles, we define two one-sided objectives:

JPOS-MASK(θ) = Eq

[
1{p(q)≤1−K}

√
p(q)

1−p(q) Eo∼π+
old
s+θ (o, q)−

√
1−p(q)
p(q) Eo′∼π−

old
s−θ (o

′, q)
]
. (7)

JNEG-MASK(θ) = Eq

[√ p(q)
1−p(q) Eo∼π+

old
s+θ (o, q)− 1{p(q)>1−K}

√
1−p(q)
p(q) Eo′∼π−

old
s−θ (o

′, q)
]
. (8)

Masking mechanisms. QAE can be interpreted as masking positives on easy queries and nega-
tives on hard queries. We isolate each side by constructing two objectives: POS-MASK (Eq. 7) and
NEG-MASK (Eq. 8), leaving the other side unmasked.

Explosion vs. collapse regimes. As shown in Fig. 6 (b-c), when the high-end clipping is weak
(ϵhigh=0.28), the dominant failure mode is entropy explosion; NEG-MASK nearly matches QAE
and outperforms POS-MASK. With strong clipping (ϵhigh=0.20), collapse pressure dominates and
the ordering flips (POS-MASK > NEG-MASK). This matches the two-regime analysis in Sec. 4.3.

6 CONCLUSION

Conclusion We propose Quantile Advantage Estimation (QAE), replacing the mean baseline with
a group-wise K-quantile to implement a two-regime gate that amplifies rare successes and sup-
presses residual failures. Under first-order policy updates, QAE provides two-sided entropy control
with bounded one-step entropy change, curbing both collapse and explosion. Empirically, QAE
stabilizes entropy, sparsifies credit assignment, and improves pass@1 across reasoning benchmarks
while composing cleanly with standard sequence- and token-level controls.

Limitations and Future Work (i) Dynamic K: Beyond a fixed K, explore simple schedules or
two-phase curricula to better balance exploration and exploitation; (ii) Automatic K: Adapt K to
model state (e.g., success rate, entropy, or gradient variance) to remove manual tuning; (iii) PPO
integration: Embed the quantile-baseline idea into PPO’s whitening/normalization—e.g., batch-
wise quantile baselines—to test robustness across algorithms and scales.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed descriptions of our experimental
setup, including necessary implementation details and hyperparameter settings in the appendix. The
code is available at https://anonymous.4open.science/r/QAE-8EA6.
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A RELATED WORK

Reinforcement learning for LLM RL has become a key technique for eliciting advanced reason-
ing in large language models (LLMs), a paradigm shift from its earlier applications in preference
alignment via RLHF (Ouyang et al., 2022). This modern approach, termed Reinforcement Learning
with Verifiable Rewards (RLVR) (Lambert et al., 2024; Mroueh, 2025), leverages outcome-based
optimization to achieve state-of-the-art performance in complex domains like mathematics and pro-
gramming. Seminal works, including OpenAI’s o1 (ope) and DeepSeek R1 (DeepSeek-AI et al.,
2025), demonstrated that RL can effectively scale reasoning capabilities, spurring a new line of
research (Yang et al., 2025a; Team et al., 2025). Central to this progress are online, value-free al-
gorithms that have generally outperformed offline preference optimization methods (Rafailov et al.,
2023; Wu et al., 2024; 2025). In particular, Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) and its successor, Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025),
have emerged as foundational baselines for many contemporary reasoning systems (Yue et al., 2025;
Zeng et al., 2025; Hu et al., 2025). Our work uses DAPO as a representative algorithm to investigate
a critical, unresolved challenge in this domain: the training instability caused by dysregulated policy
entropy, which limits the performance and scalability of current RLVR methods.

Exploration, entropy dynamics, and collapse/explosion in RLVR. RLVR evidence links explo-
ration to entropy dynamics: gains concentrate on a minority of high-entropy “forking” tokens (Wang
et al., 2025b), with “thinking tokens” as information peaks (Qian et al., 2025); sequence-level en-
tropy can collapse early or explode if unchecked (Cui et al., 2025). Extremes such as entropy min-
imization (Agarwal et al., 2025) and negative-advantage upweighting (Zhu et al., 2025) underscore
the need for regulation, consistent with cautions against indiscriminate maximum-entropy optimiza-
tion (Zhang et al., 2025) and classic guidance to schedule target entropy (Xu et al., 2021) within
regularized MDP theory (Geist et al., 2019; Ahmed et al., 2019). On the recipe side, entropy as ad-
vantage shaping (Cheng et al., 2025), Pass@k-based training (Chen et al., 2025), rubric-scaffolded
exploration (Zhou et al., 2025), entropy-modulated policy gradients for long-horizon agents (Wang
et al., 2025a), outcome-based exploration (Song et al., 2025), and agentic systems like rStar2-Agent
(Shang et al., 2025) jointly provide practical means to prevent collapse/explosion while improving
diversity.

B THE USE OF LARGE LANGUAGE MODELS

We utilize LLMs only to polish some of the language of this paper. All content was originally
drafted by the authors. The use of LLMs was restricted to refining some pre-existing text, and any
suggested modifications were reviewed by the authors to confirm their accuracy and alignment with
the original meaning.
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C PROOF

C.1 PROOF OF PROPOSITION 4.1

Proposition 4.1 (Quantile-regulated objective). Assume binary rewards, group size G≥ 2, and the
right-continuous empirical quantile. Using the standardized advantage in Eqs. 3–4, the learning
objective is (up to a constant factor depending on ε) equivalent to

JQuantile(θ) = Eq

[
1{p(q) ≤ 1−K}

√
p(q)

1−p(q) Eo∼π+
old(·|q)

s+θ (o, q)

− 1{p(q) > 1−K}
√

1−p(q)
p(q) Eo′∼π−

old(·|q)
s−θ (o

′, q)
]
. (6)

Proof. Write p = p(q) for brevity. Recall the token-normalized surrogate

J (θ) = Eq Eo∼π0(·|q)
1

|o|

|o|∑
t=1

f

(
πθ(ot | q, o<t)

π0(ot | q, o<t)
, A(o | q)

)
, (9)

and the positive/negative homogeneous scaling of f (the same convention as in the main text):

f(x, c) =

{
c f+(x, 1), c > 0,

|c|
(
− f−(x, 1)

)
, c < 0,

⇐⇒ f(x,−c) = −c f−(x, 1) (c > 0). (10)

For the binary reward r(o | q) ∈ {0, 1} and the group statistics Eo∼π0(·|q)r(o | q) = p and
Varo∼π0(·|q)r(o | q) = p(1− p), the standardized advantage used in the paper takes the form

A(o | q) =


√

1− p

p
, r(o | q) = 1,

−
√

p

1− p
, r(o | q) = 0.

(11)

Under the K-quantile baseline described in Section 4 (right-continuous), responses are masked
asymmetrically by the regime of p:

if p ≤ 1−K : A+(q) =
1√

p(1− p)
, A−(q) = 0; (12)

if p > 1−K : A+(q) = 0, A−(q) = − 1√
p(1− p)

. (13)

Equivalently, among {r = 1, r = 0} only one label contributes in each regime.

Plug equation 12 into equation 9 and decompose over r ∈ {1, 0} (writing π+
0 (· | q) and π−

0 (· | q)
for π0(· | q) conditioned on r = 1 and r = 0, respectively):

J (θ) = Eq

[
1{p ≤ 1−K} p Eo∼π+

0 (·|q)
1

|o|
∑
t

f

(
πθ(ot | q, o<t)

π0(ot | q, o<t)
,

1√
p(1− p)

)
(14)

+ 1{p > 1−K} (1− p) Eo∼π−
0 (·|q)

1

|o|
∑
t

f

(
πθ(ot | q, o<t)

π0(ot | q, o<t)
, − 1√

p(1− p)

)]
.

Apply the homogeneity equation 10 separately to the two terms in equation 14. For p ≤ 1−K the
scalar is positive, and for p > 1−K it is negative, hence

J (θ) = Eq

[
1{p ≤ 1−K}

√
p

1− p
Eo∼π+

0 (·|q)
1

|o|
∑
t

f+

(
πθ(ot | q, o<t)

π0(ot | q, o<t)
, 1

)
(15)

− 1{p > 1−K}
√

1− p

p
Eo∼π−

0 (·|q)
1

|o|
∑
t

f−
(
πθ(ot | q, o<t)

π0(ot | q, o<t)
, 1

)]
.
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Equation 15 is the claimed quantile-regulated objective: compared with the symmetric GRPO/-
DAPO weight

√
p(1− p), the quantile baseline (i) masks one side (positives on easy queries with

p > 1 −K or negatives on hard queries with p ≤ 1 −K) and (ii) re-weights the active side by the
asymmetric factors

√
p/(1− p) or

√
(1− p)/p. This completes the proof.

Instantiating f for GRPO. For GRPO we use

f+(x, 1) = min
(
x, clip(x, 1− ϵ, 1 + ϵ)

)
= min(x, 1 + ϵ), (16)

f−(x, 1) = max
(
x, clip(x, 1− ϵ, 1 + ϵ)

)
= max(x, 1− ϵ), (17)

which can be plugged into equation 15 directly.

C.2 PROOF OF PROPOSITION 4.2

Proposition 4.2 (Two-regime entropy safety of K-quantile). Fix q and a non-uniform π(· | q).
Then:

1. Low-success (explosion-proof). If p(q) ≤ 1−K so bK(q) = 0, then for any baseline b∈ [0, 1]
(including the mean b=p(q) or token-level clipping/KL that keep b unchanged),

∆H(q; bK) ≤ ∆H(q; b).

2. High-success (collapse-proof). If p(q) > 1−K so bK(q) = 1, then for any b∈ [0, 1],

∆H(q; bK) ≥ ∆H(q; b).

Proof. Fix q and a non-uniform softmax policy π(· | q). For any baseline b ∈ [0, 1] and binary
reward r ∈ {0, 1}, write

Ab(y, q) = r(y, q)− b, Fq(b) := Covy∼π(·|q)
(
log π(y | q), π(y | q) (r(y, q)− b)

)
.

The entropy–covariance identity for softmax policies under first-order logit updates (adapted from
Cui et al. (2025)) gives

∆H(q; b) ≈ −η Fq(b), η > 0. (18)

Step 1: Baseline monotonicity. By bilinearity of covariance,

Fq(b) = Covπ
(
log π, πr

)
− bCovπ

(
log π, π

)
=: Fq(0)− bCq. (19)

Let U := π(Y | q) for Y ∼ π(· | q). Then Cq = Cov(logU, U). Since u 7→ log u and u 7→ u
are strictly increasing on (0, 1], they are co-monotone; hence Cov(logU,U) > 0 whenever U is
non-constant, i.e., whenever π(· | q) is non-uniform (see, e.g., Chebyshev’s sum / rearrangement
inequality (Hardy et al., 1952)). Therefore Cq > 0 and equation 19 shows that Fq(b) is strictly
decreasing in b, so by equation 18 the entropy change ∆H(q; b) is strictly increasing in b ∈ [0, 1].

Step 2: Two-regime extremality of the K-quantile baseline. For Bernoulli rewards with success
rate p(q), the K-quantile baseline is

bK(q) =

{
0, p(q) ≤ 1−K,

1, p(q) > 1−K,
(Eq. 4).

Because ∆H(q; b) increases in b (Step 1), we have, for any b ∈ [0, 1],

p(q) ≤ 1−K ⇒ bK(q) = 0 = min[0, 1] ⇒ ∆H(q; bK) ≤ ∆H(q; b),

p(q) > 1−K ⇒ bK(q) = 1 = max[0, 1] ⇒ ∆H(q; bK) ≥ ∆H(q; b).

Strict inequalities hold whenever π(· | q) is non-uniform and b ̸= bK(q). These are exactly Items (1)
and (2) of Proposition 4.2.

This establishes the claimed two-regime entropy safety: in the low-success regime (p ≤ 1 − K)
the quantile choice bK = 0 minimizes the entropy increment (explosion-proof), whereas in the
high-success regime (p > 1−K) the choice bK = 1 maximizes it (collapse-proof).
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Figure 7: High-entropy token diagnostics under QAE. Green bars: counts of anthropomorphic
high-entropy tokens; orange line: overall pass@1. Early coupled growth transitions to later de-
coupling—token counts plateau while accuracy improves—indicating entropy-safe, selective explo-
ration.
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ing steps. Under QAE, exploratory tokens increase in a controlled manner, aligning with the stable-
entropy regime in Fig. 5b.

D EXPERIMENTS

D.1 IMPLEMENTATION DETAILS

Experimental Setup: Our configuration includes clip-higher, dynamic sampling, token-level pol-
icy gradient loss, and overlong reward shaping, as proposed in DAPO. We use the recommended
hyperparameters: ϵhigh = 0.28 and ϵlow = 0.2 for clip-higher, and a maximum response length of
20,480 with a 4,096-token cache for reward shaping.

Training Details: We train with a global batch size of 512, using 16 gradient accumulation steps
with a mini-batch size of 32. The learning rate is fixed at 10−6 with no warmup or decay schedule.
Importantly, we exclude both KL divergence and entropy losses.

Evaluation: To analyze scaling effects, we apply this method to the Qwen3-14B and Qwen3-8B
base models, training them on the DAPO-Math-17K dataset (Yu et al., 2025).

Additional Experiments: We also conduct a cold-start experiment with the GSPO algorithm, ini-
tializing from the Qwen3-30B-A3B-Base model. In this configuration, we use four gradient accu-
mulation steps per batch. The GSPO clipping ranges are set to 3× 10−4 (left) and 4× 10−4 (right),
aligning with the official VERL implementation script2.

2https://github.com/volcengine/verl/blob/main/recipe/gspo/test_gspo_3b_
math.sh
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Figure 9: Training curves under different K on Qwen3-8B-Base. Left: entropy; middle: accuracy
(AIME24@32); right: response length.
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Figure 10: Training curves under different Clip-Higher on Qwen3-8B-Base. Left: entropy; middle:
accuracy (AIME24@32); right: response length.

D.2 MORE EXPERIMENTS

QAE sustains co-growth of “aha” markers and accuracy. Contrasting with Clip-Higher,
Fig. 7 shows that under QAE the anthropomorphic token count and pass@1 rise together across
training. From early to late steps, the green bars (“aha” markers) increase and remain elevated, while
the orange curve improves monotonically, indicating that exploration is converted into productive
reasoning rather than unchecked entropy.

High-entropy token diagnostics under QAE (fine-grained snapshots). A finer-grained inspec-
tion at representative steps—20/80/200 in Fig. 8—corroborates this interpretation. At step 20, an-
thropomorphic markers are sparse, consistent with exploration just being activated; by step 80, these
tokens separate more distinctly, aligning with the performance uptick seen in the coupled-growth
regime; by step 200, their counts stabilize despite continued pass@1 gains, evidencing a shift from
“more randomness” to targeted refinement. Taken together with the trajectory view, these snapshots
confirm that QAE leverages high-entropy branches when beneficial and then curbs their proliferation
once they cease to deliver marginal utility.

D.3 QUANTILE PARAMETER ANALYSIS

Trade-offs governed by K. Figure 9 illustrates the effect of varying the quantile parameter K on
Qwen3-8B-Base. The results highlight that K acts as a direct knob for the exploration–exploitation
balance. With larger K (e.g., K = 0.8), most samples are treated as negative-advantage, inflating
entropy and leading to volatile training dynamics. Entropy grows unchecked, response lengths di-
verge, and accuracy plateaus prematurely. Conversely, with smaller K (e.g., K = 0.2), the majority
of samples are deemed positive-advantage, producing a degenerate low-entropy regime with limited
exploration; although training remains stable, accuracy stagnates due to insufficient discovery of
novel reasoning paths. These dynamics confirm our theoretical analysis (Sec. 4) that K simultane-
ously controls the fraction of responses updated and the direction of entropy flow.

Stability at K = 0.4. All main experiments in this paper adopt K = 0.4, paired with a clipping
range of ϵhigh = 0.28. This configuration avoids the “entropy explosion” observed at larger K, while
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Figure 11: Training curves under DAPO and DAPO + QAE on Qwen3-8B-Base. Left: entropy;
middle: accuracy (AIME24@32); right: response length.

maintaining sufficient stochasticity to prevent collapse. Empirically, K = 0.4 consistently yields
moderate entropy (Fig. 9, left), stable response lengths (Fig. 9, right), and sustained accuracy gains
(Fig. 9, middle). This setting therefore strikes a robust balance between exploration and exploitation,
aligning with our theoretical guarantee of two-sided entropy safety.

Additional observations. First, entropy dynamics (left panel) show that the transition from sta-
bility to instability is smooth in K, with K = 0.6 occupying an intermediate regime: entropy is
higher than at K = 0.4 but not as explosive as K = 0.8. Second, accuracy curves (middle) indicate
that the best-performing models are not those with the highest entropy, but those where entropy re-
mains bounded within a productive range. Finally, response lengths (right) corroborate that entropy
explosion at K = 0.8 manifests in uncontrolled verbosity, while the low-entropy setting at K = 0.2
yields under-explored but compact outputs. Taken together, these results confirm that QAE’s en-
tropy regulation is finely tunable via K, and that an intermediate choice (K = 0.4 in our case) is
critical for stable and effective RLVR training.

D.4 ANALYSIS OF TRAINING DYNAMICS ON 8B AND 14B MODELS

QAE consistently stabilizes entropy and sustains performance gains across model scales. To
demonstrate the robustness and scalability of our method, we present a comparative analysis of
training dynamics between the baseline DAPO and DAPO with QAE on both Qwen3-8B-Base (Fig-
ure 11) and Qwen3-14B-Base (Figure 12) models. These experiments highlight a consistent pattern:
QAE rectifies the inherent training instabilities of the mean-baseline approach, leading to superior
and more reliable performance gains.

On the Qwen3-8B model, the deficiencies of the baseline are stark. The standard DAPO training
is marred by a severe entropy explosion phase around step 100, where uncontrolled exploration
leads to a volatile and excessively high policy entropy. This instability directly correlates with a
performance plateau; after an initial rise, the model’s accuracy stagnates as the learning signal is
degraded by noise. In sharp contrast, QAE maintains the policy entropy within a stable, productive
range throughout training. By preventing the explosion, QAE facilitates a balanced exploration
phase , which translates directly into sustained improvement in accuracy, significantly outper-
forming the baseline in the later stages of training.

This fundamental dynamic is replicated on the larger Qwen3-14B model. While the baseline’s en-
tropy spike is less pronounced, its policy entropy remains considerably higher and more volatile than
that under QAE. Our method again demonstrates its effectiveness in entropy regulation, fostering a
stable learning environment. Consequently, the accuracy curve for QAE is smoother and exhibits
a more consistent upward trend, avoiding the premature convergence suggested by the baseline’s
trajectory. The consistent improvements across both model sizes confirm that QAE addresses a fun-
damental flaw in the value-free RL training paradigm—the sensitivity of the mean baseline—rather
than providing a mere model-specific fix. These results strongly support our central thesis that ef-
fective entropy regulation, achieved through principled baseline design, is a primary mechanism for
scaling RLVR.
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Figure 12: Training curves under DAPO and DAPO + QAE on Qwen3-14B-Base. Left: entropy;
middle: accuracy (AIME24@32); right: response length.
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