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Abstract

We study two of the most popular performance metrics in medical image segmen-
tation, Accuracy and Dice, when the target labels are noisy. For both metrics,
several statements related to characterization and volume properties of the set of
optimal segmentations are proved, and associated experiments are provided. Our
main insights are: (i) the volume of the solutions to both metrics may deviate
significantly from the expected volume of the target, (ii) the volume of a solution
to Accuracy is always less than or equal to the volume of a solution to Dice and
(iii) the optimal solutions to both of these metrics coincide when the set of feasible
segmentations is constrained to the set of segmentations with the volume equal to
the expected volume of the target.

1 Introduction

One of the most central problems in medical image analysis is to identify the region of an image
associated with a certain target structure. This problem, referred to as image segmentation or
delineation, is often very time consuming to solve manually. Consequently, there is great interest
in the development of methods that can assist in automation of the procedure. Since 2015, it has
become increasingly popular to address the segmentation problem using machine learning based
methods, and in particular, fully convolutions neural networks with U-net architecture. Such methods
commonly dominate the winning submissions to segmentation contests and are backed by a large
base of supporting literature [6, 8, 13, 19, 28, 32].

Despite the success, performance of these methods will, like any machine learning method, depend
on the quality of the available data [4, 37]. Since it is well known that the data commonly used in
practice is produced by medical practitioners that delineate structures in an inconsistent manner [25],
it is important to understand the impact of label noise. One way to study the influence of label
noise is to consider how the noise impacts segmentations that are theoretically optimal with respect
to the metric used for measuring performance. Even if theoretically optimal solutions may not be
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attainable in practice, studying them gives important insights into what the effect label noise has on
the particular metric and any training method that is designed to maximize it.

Arguably, the most simple and classical choice of metric is Accuracy; the fraction of the image
that is correctly delineated. This metric is most commonly targeted by taking a 1/2-threshold of
predictions from a model trained with the cross-entropy loss [24]. However, since Accuracy may
not reflect the desired behaviour when the data is unbalanced, that is, when the target structure is
much smaller than the background, alternative metrics are often preferred. The most popular such
alternative is the Sørensen-Dice coefficient, or Dice for short and is related to the F1-metric used in
binary classification. This metric is most commonly targeted by taking a 1/2-threshold of predictions
from a model trained with the soft-Dice loss, a smoothed version of the Dice metric [24]. Other
examples considered in the literature include the Jaccard index and variations of the Haussdorff
metric [33].

In this work, we conduct a theoretical investigation of the effect label noise has on optimal segmenta-
tions with respect to the performance metrics Accuracy and Dice. Because the volume of a proposed
segmentation may be used for important properties such as estimating the size of a tumor [9], we pay
special attention to the effect noise may have on the volume of the optimal segmentations.

Contributions: A characterization of all optimal solutions to Accuracy and Dice when the target is
noisy is provided. This characterization is used to analyze the volume of the optimal solutions and
we prove: (i) sharp upper and lower bounds on the volume of optimal segmentations with respect to
Accuracy and Dice, (ii) that the volume of the optimal solutions to Accuracy always is less or equal
to the volume of the optimal solutions to Dice and (iii) that the optimal solutions to both metrics
coincide when the volume is held fix. We also show the relevance of the problem in a practical setting
by including experiments on data from the Gold Atlas project [25] and The Lung Image Database
Consortium (LIDC) and Image Database Resource Initiative (IDRI) [1].

2 Related work

Deep learning methods are playing an increasingly vital part in the development of medical image
analysis. However, deep learning models require large annotated data sets for successful training that
rarely are available in the clinics. Even if some data sets are being curated for training deep learning
models, it is generally difficult and expensive to accurately annotate large collections of medical
images. Moreover, training data may include corrupted or noisy labels. This is particularly the case
in image segmentation where different annotators may have different views on the correct delineation
of a region of interest, leading to uncertainty about the true label, see e.g. [3, 23]. Noisy labels may
also appear due to automated systems or non-expert systems being used to annotate large volumes of
data, see [5, 27].

There is a large body of literature on the impact of label noise in image segmentation, see [34] and
[14] for recent reviews. The proposed solutions to limit the loss of performance when the labels are
noisy include label cleaning and pre-processing, e.g. [10], modification of network architechtures, e.g.
[36], robustification of loss functions, e.g. [21], reweighting of training data, see [22, 39], and many
others. These approaches are of practical nature and generally address methodology that improve the
performance on some chosen noisy data set. On the contrary, the literature that address the effect of
label noise from a theoretical point of view in the context of image segmentation is rather limited. It
was shown that the loss function soft-Dice, in contrast to the loss function cross-entropy, does not
yield optimal predictions that coincide with the pixel-wise marginals and that the associated volume
is biased [2]. This motivated methods for post-calibrating uncalibrated marginal estimates [29]
and a more general investigation of the relationship between volume and marginal calibration [26].
Finally, an alternative volume preserving segmentation method based on optimal transport theory
was proposed and investigated in [20].

Another domain of related work can be found in the binary classification literature. The connection
between the study of solutions to Accuracy and Dice in segmentation and the study of Accuracy
and F1 in binary classification was investigated in [24]. Of importance to us are optimal plug-in
classifiers to Accuracy and F1. That is, classifiers that are obtained by processing the posterior class
probabilities or estimates thereof using a threshold. For Accuracy, this relates to the classical Bayes
classifier which has been studied since the origin of the field [35]. Early work on the existence of
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such a classifier for F1, and the fact that this threshold is lower than the threshold for Accuracy can
be traced to [38]. Further work showed this threshold to be equal to half of the maximal attainable
F1-score [18]. Lots of extensions of these works have been proposed, but to the best of our knowledge
no such extension is in the direction of our work.

3 Preliminaries

In our work we find that it is convenient to do the theoretical analysis over a continuous domain
and where all encountered continuous spaces are equipped with their associated Borel σ-fields.
Formally, let Ω = [0, 1]n ⊂ Rn be the unit cube of dimension n ≥ 1 and λ be the associated standard
normalized Lebesgue measure such that λ(Ω) = 1. The space of segmentations is denoted by S and
is formally given by the space of measurable functions from Ω to the binary numbers {0, 1}. For
any segmentation s ∈ S, s(w) = 1 implies that the object of interest occupies the site ω ∈ Ω. In a
numerical setting, a discretization of the domain Ω is commonly used. For instance, 3D CT scans are
often represented by a three dimensional voxel grid of an approximate order of 512× 512× 100. In
such situations the space of segmentations are given by all possible binary functions defined on this
voxel grid. Note that any segmentation on a discretized domain can be incorporated in our continuous
framework by using appropriate step functions. Details on this can be found in the end of Section 4.

Beyond the space of segmentations, several other technical constructions are introduced. This
includes the space of measurable functions from Ω to [0, 1] which we denote byM and refer to as the
marginal functions. We also let ‖f‖1

.
=
∫

Ω
|f(ω)|λ(dω) and f̄ .

= 1− f , where f is any measurable
function defined on Ω. Throughout we adopt the convention that two λ-measurable functions f, g
are equal if they are equal λ-a.e. We will use I{·} to denote the identity function, and when F is a
cumulative distribution function, we will denote the left limit F (t−) = lims↑t F (s). Finally, for a
given volume v ∈ [0, 1], we let Sv

.
= {s ∈ S, ‖s‖1 = v} be the set of segmentations with volume v.

Classically, metrics in medical image segmentation are defined per image as functionals over two
deterministic segmentations [33]. When noise is present, the label becomes a random variable
and the metrics need to be extended to a functional over one deterministic segmentation and one
random label segmentation. In this work, the soft labeling convention for this extension is adopted
[11, 15, 16, 17, 31]. Also, since we do our analysis with respect to measurable functions on a
continuous domain instead of functions on a finite index set, we replace the sums usually used with
integrals. This, however, does not change the intuition of the metrics, and the definition using sums
can be seen a special case.
Definition 1. For any m ∈M, Accuracy is given by

Am(s)
.
=

∫
Ω

[s(ω)m(ω) + s̄(ω)m̄(ω)]λ(dω), s ∈ S (1)

Definition 2. For any m ∈M, Dice is given by

Dm(s)
.
=

2
∫

Ω
s(ω)m(ω)λ(dω)

‖s‖1 + ‖m‖1
, s ∈ S. (2)

For a noisy segmentation L, that is, a random variable taking values in S, m can be taken to be
the exact marginal success probability m(ω) = E[L(ω)], ω ∈ Ω. Such marginal functions are
important in theory but can rarely be obtained in practice. Alternative choices of marginal functions
include finite sample approximations, that is, point-wise averages over finite observations of L,
and estimates of E[L] according to a single annotator [11, 15, 16, 17, 31]. These choices of m are
important because they are sometimes used for training machine learning models. Finally, note that
AE[L](s) = E[AL(s)] and E[AL(s)] is a common alternative way of specifying the metric. For Dice,
this sort of relationship does not hold in general DE[L](s) 6= E[DL(s)]. However, it does hold that
DE[L](s) = E[DL(s)] when the volume of the noisy labels is constant Var[‖L‖1] = 0, and it holds
approximately DE[L](s) ≈ E[DL(s)] when the variance of the volume of the noisy labels is small
Var[‖L‖1] ≈ 0, which is often the case in medical image segmentation applications. Examples of
observations of a particular L for a couple of different target structures are depicted in Figure 1.

Because of the fact that ‖m‖1 = E[‖L‖1] when m is taken to be the exact marginal success
probability, ‖m‖1 plays an important role in the medical segmentation context, either theoretically as
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the expected volume of the target or as an approximation thereof. Understanding how ‖m‖1 relates
to ‖s‖1, where s is an optimal segmentation to Accuracy or Dice will be central in our work. To the
best of our knowledge, this has not been studied in prior work.

Figure 1: To the left is Urinary bladder and to the right is Neurovascular bundles for one patient in
the Gold Atlas data [25]. Each line is associated with the boundary of a segmentation produced by a
particular annotator. The screenshots are taken with RayStation 12A (RaySearch Laboratories AB,
Stockholm Sweden).

4 Main results

The objective of our analysis is to characterize the optimizers to Am and Dm and give a detailed
description of the volume of the optimal segmentations. That is, for a given m ∈ M, identify
properties (e.g. volume) of the optimal segmentation s ∈ S that maximimize Accuracy or Dice. To
this end, consider the probability measure on [0, 1] given by the push-forward measure λ ◦ m̄−1(·)
and let Fm denote its cumulative distribution function,

Fm(t)
.
= λ ◦ m̄−1([0, t]) =

∫
Ω

I{m̄(ω) ≤ t}λ(dω), t ∈ [0, 1]. (3)

The function Fm(t) may be interpreted as the volume of the set of sites with non-success probability
less than or equal to t. In other words, the volume of the sub-level set of m̄ at level t.

Since Fm is the cumulative distribution function of a probability distribution on [0, 1], it has several
well-known properties making it easy to work with, e.g., Fm is non-decreasing and right-continuous
with Fm(1) = 1. Of particular interest to us is that it has a generalized inverse given by

F−1
m (v)

.
= inf{t : Fm(t) ≥ v}, v ∈ [0, 1], (4)

which can be interpreted as the minimum level at which the volume of the corresponding sub-level
set of m̄, is at least v. This function is often referred to as the quantile function and also has several
well known properties; it is non-decreasing and left-continuous. Moreover, it allows us to define the
following important class of segmentations for a given m ∈M.

Sm,v
.
=

s ∈ Sv
∣∣∣∣∣∣∣∣
∫

Ω

s(ω)I{m(ω) < 1− F−1
m (v)}λ(dω) = 0,∫

Ω

s̄(ω)I{m(ω) > 1− F−1
m (v)}λ(dω) = 0,

 , v ∈ [0, 1]. (5)

The described class Sm,v is informally the set of segmentations with volume v that assigns 1 to sites ω
wherem(ω) is large. If t = F−1

m (v) is a continuity point of Fm, i.e. λ(ω : m̄(ω) = t) = 0, then Sm,v

only consist of the elements that are λ-a.e. equal to the segmentation s(ω) = I{m(ω) ≥ 1−F−1
m (v)}.
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Figure 2: Three examples of marginal functions m1, m2, m3 on a one-dimensional domain ω ∈
Ω = [0, 1] together with the associated Fm1 ,Fm2 ,Fm3 and F−1

m1
,F−1

m2
,F−1

m3
. The case m1 occurs

when there is no noise. The case m2 can for instance occur when the segmentation is given by
I{0.2 ≤ ω ≤ 0.6} with probability 0.5 and I{0.4 ≤ ω ≤ 0.8} with probability 0.5. The case m3

can occur when the edges of the segmentation are randomly perturbed by some continuous random
variable.

A lot of our analysis can be simplified if Fm is assumed to be invertible almost everywhere. However,
this would require m to not have any non-neglible constant regions, which for instance excludes any
m that is given by an empirical approximations using a finite number of samples. Consequently, in
the sequel, we treat general Fm. Our first result contains the essential ingredients for characterizing
the optimizers to Accuracy and Dice.
Lemma 1. For any m ∈M and v ∈ [0, 1]

sup
s∈Sv

∫
Ω

s(ω)m(ω)λ(dω) =

∫ v

0

(1− F−1
m (u))du, (6)

and the elements where the supremum is attained is given by Sm,v .

A complete proof is given in the Supplementary Document and outlined as follows. The first part
shows that the class Sm,v is the class of optimal solutions by showing that for any s∗ ∈ Sm,v and
s ∈ Sv \ Sm,v ,

∫
Ω

(s∗(ω)− s(ω))m(ω)λ(dω) > 0. The second part proves the equality (6) using an
application of the quantile transform. That is, if U has uniform distribution on [0, 1] then F−1

m (U)

has cdf given by Fm and
∫ 1

0
tFm(dt) = E[F−1

m (U)] =
∫ 1

0
F−1
m (u)du.

Lemma 1 allows us to reduce the constrained optimization problem over the rather complicated space
of segmentations, to a one-dimensional integral with respect to the quantile function. It is the starting
point for our analysis.

In the remaining section our main theoretical results are presented. In Theorem 1, we provide a
characterization of all of the optimal solutions to Accuracy based on volume. In addition, sharp upper
and lower bounds on the volume of the associated optimal segmentations are provided.
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Theorem 1. For any m ∈M, the class of maximizers to Am is given by ∪v∈VAmSm,v where

VAm
.
= [Fm(1/2−), Fm(1/2)]. (7)

Moreover, VAm satisfies the following bounds

VAm ⊆ [max{2‖m‖1 − 1, 0},min{2‖m‖1, 1}], (8)

where the bounds are sharp in the sense that there for any v ∈ [0, 1] exist m0,m1 ∈ M such that
‖m0‖1 = ‖m1‖1 = v and

inf VAm0 = max{2‖m0‖1 − 1, 0}, supVAm1 = min{2‖m1‖1, 1}. (9)

The complete proof is given in the Supplementary Document and outlined as follows. First, the
function

am(v)
.
= v + 1− ‖m‖1 − 2

∫ v

0

F−1
m (u)du, v ∈ [0, 1], (10)

is introduced and then Lemma 1 is used to show that sups∈S Am(s) = supv∈[0,1] am(v). Conse-
quently, the class of optimal solutions to Am is given by ∪v∈VAmSm,v, where VAm is the set of
optimizers to am. The rest of the proof consists of detailed analysis of am and is composed of three
parts. The first part is to show (7) by finding one optimal solution and then identifying all volumes
that yield the same optimal value. The second part is to provide the lower and upper bounds on the
elements of VAm in terms of ‖m‖1 given by (8). The third part is to provide examples of situations
where the extreme cases occur (9). In Figure 3, a case that is extreme both in the lower and in the
upper sense is illustrated.
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Figure 3: To the left is a particular quantile function F−1
m and to the right is the associated function

am given by (10). Here F−1
m (v) = 1

2I(0,2‖m‖1](v) + I(2‖m‖1,1](v), v ∈ [0, 1] with ‖m‖1 = 0.4

that satisfies VAm = [0, 2‖m‖1] = [max{2‖m‖1 − 1, 0},min{2‖m‖1, 1}] and consequently is an
extreme case to (9) in both the lower sense and the upper sense.

In Theorem 2, we provide a characterization of all of the optimal solutions to Dice based on volume.
In addition, sharp upper and lower bounds on the volume of the associated optimal segmentations are
provided.
Theorem 2. For any m ∈M, the class of maximizers to Dm is given by ∪v∈VDmSm,v where

VDm
.
= [Fm((1− sup

s∈S
Dm(s)/2)−), Fm(1− sup

s∈S
Dm(s)/2)]. (11)

Moreover, VDm satisfies the following bounds

VDm ⊆ [‖m‖21, 1], (12)

where the bounds are sharp in the sense that there for any v ∈ (0, 1] exist m0,m1 ∈ M such that
‖m0‖1 = ‖m1‖1 = v and

inf VDm0 = ‖m‖21, supVDm1 = 1. (13)

The complete proof is given in the Supplementary Document and outlined as follows. First, the
function

dm(v)
.
=

2
∫ v

0
(1− F−1

m (u))du

‖m‖1 + v
, v ∈ [0, 1], (14)
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is introduced and then Lemma 1 is used to show that sups∈S Dm(s) = supv∈[0,1] dm(v). Conse-
quently, the class of optimal solutions to Dm is given by ∪v∈VDmSm,v, where VDm is the set of
optimizers to dm. The remaining proof consists of detailed analysis of dm and composed of three
parts. The first part is to show (11) which is derived by careful investigation of the properties of the
function δ(v) = (‖m‖1+v)2

2 ∂vdm(v), which has the same sign as ∂vdm(v) and therefore can be used
to identify optimal values of dm. The second part is to provide the lower and upper bounds on the
elements of VDm in terms of ‖m‖1 given by (12). The third part is to provide examples of situations
where the extreme values occur (13). In Figure 4, a case that is extreme both in the lower and in the
upper sense is illustrated.
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Figure 4: To the left is a particular quantile function F−1
m and to the right is the associated function

dm given by (14). Here F−1
m (v) = (1 − ‖m‖1)(1 − ‖m‖21)−1I(‖m‖21,1](v) with ‖m‖1 = 0.4 that

satisfies VDm = [‖m‖21, 1] and consequently is an extreme case to (13) in both the lower sense and
the upper sense.

In Theorem 3, we relate the volume of the optimal segmentations of Accuracy and the optimal
segmentations of Dice for a given marginal probability m ∈M.

Theorem 3. For any m ∈M, VAm given by (7) and VDm given by (11) satisfy

supVAm ≤ inf VDm . (15)

The complete proof is given in the Supplementary Document and outlined as follows. First note
that Dm(s) ≤ 1 for any s ∈ S and then consider separately the cases when Dm(s) < 1 for all
s ∈ S and when there exist some s ∈ S such that Dm(s) = 1. For the first case, it is obvious
that sups∈S Dm(s)/2 < 1/2 which implies that Fm(1/2) ≤ Fm((1 − sups∈S Dm(s)/2)−). For
the second case, we show that the volume of the optimizers are uniquely given by VAm = VDm =
{Fm(1/2)}. In either case, (15) holds.

In Theorem 4, the set of optimal solutions to Accuracy and Dice when constrained to a specific
volume is shown to coincide.

Theorem 4. For any m ∈M and v ∈ [0, 1] the maximizers to the problems,

sup
s∈Sv

Am(s) and sup
s∈Sv

Dm(s), (16)

coincide and are given by Sm,v .

The complete proof is given in the Supplementary Document and is a straightforward application
of Lemma 1. Of particular interest is the case when v = ‖m‖1, since this correspond to the situation
when the metrics are maximized under the constraint that there should be no volume bias.

It follows from Theorem 1 and Theorem 2 that the optimizers to both Accuracy and Dice are of the
form ∪v∈VSm,v, where V = [Fm(t−), Fm(t)] for some t ∈ [0, 1]. This type of charecterization is
practical for proving properties on volume, but inconvenient for other tasks. In Theorem 5, we provide
an alternative charecterization using threshold segmentations of the form s(ω) = I{m(ω) > α} or
s(ω) = I{m(ω) ≥ α}, for some α. Even if there exist optimal segmentations that are not necessarily
of threshold type, they can always be bounded, above and below, by optimal segmentations of
threshold type.
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Theorem 5. For anym ∈M and t ∈ (0, 1], let s1(ω) = I{m(ω) ≥ 1− t} and s0(ω) = I{m(ω) >
1− t}. Then, ‖s0‖1 = Fm(t−), ‖s1‖1 = Fm(t) and

s ∈ ∪v∈[Fm(t−),Fm(t)]Sm,v ⇐⇒ s0(ω) ≤ s(ω) ≤ s1(ω), λ− a.e. (17)

The complete proof is given in the Supplementary Document and outlined as follows. Note that
‖s0‖1 =

∫
Ω
I{m̄(ω) < t}λ(dω) = Fm(t−) and ‖s1‖1 =

∫
Ω
I{m̄(ω) ≤ t}λ(dω) = Fm(t). Now,

take each direction of (17) separately. For the⇒ part, we first show the upper bound s(ω) ≤ s1(ω), λ-
a.e. and then show the lower bound s0(ω) ≤ s(ω), λ-a.e. For the upper bound, with A = {ω :
s(ω) > s1(ω)}, we first observe that I{ω ∈ A} = s(ω)s̄1(ω) and then, using the definition of Sm,v

we prove that

λ(A) =

∫
Ω

s(ω)s̄1(ω)λ(dω) ≤
∫

Ω

s(ω)I{m̄(ω) > F−1
m (v)}λ(dω) = 0. (18)

The lower bound is similar, but slightly more involved. For the ⇒ part, we first note that the
Fm(t−) = ‖s0‖1 ≤ ‖s‖1 ≤ ‖s1‖1 = Fm(t), and then show that for v = ‖s‖1, s ∈ Sm,v .

In numerical applications, the continuum Ω is usually partitioned into a finite collection of voxels
{Ωi}i∈I . Marginal functions are then constrained to the subset ofM that is compatible with the
voxelization in the sense that m is measurable with respect to the σ-field generated by the partition.
Note that if s1(ω) = I{m(ω) ≥ 1 − t} and s0(ω) = I{m(ω) > 1 − t} for some t ∈ (0, 1], then
also s0 and s1 are compatible with the voxelization. By Theorem 1 (Theorem 2) and Theorem 5, the
segmentations with least and greatest volume that are optimal with respect to Accuracy (Dice) are
compatible with the voxelization. For the metrics respectively, we denote the segmentations with the
greatest volume by:

sAm(ω)
.
= I{m(ω) ≥ 1/2}, ω ∈ Ω, (19)

sDm(ω)
.
= I{m(ω) ≥ sup

s∈S
Dm(s)/2}, ω ∈ Ω. (20)

Note that sAm is analogous to the Bayes classifier and sDm is analogous to the threshold classifier
described in [18]. Both of these are trivial to compute from a given marginal function m compatible
to some voxelization and code for doing so is available in the Supplementary Material.

5 Experiments

The sharp bounds on volume in Thereom 1 and Theorem 2 implies that there exist marginal functions
for which the volume of the optimal segmentations to Accuracy and Dice deviate significantly from
the expected target volume. In this section we conduct experiments on marginal functions formed
from real world data to compare the volume of optimal segmentations to the expected volume in
practice.

For our experiments we investigate two data sets. The first data set (G) contains segmentations in
the pelvic area and is part of the Gold Atlas project [25]. The data is in 3D with a resolution of
512× 512 pixels per slice and consist of 19 patients with 9 different ROI’s (region of interest), each
of which have been delineated by 5 experts (see Figure 1 for an illustration of the segmentations
associated with two different ROI’s for one patient). The second data set (L) contains segmentations
in the thorax area and is part of The Lung Image Database Consortium (LIDC) and Image Database
Resource Initiative (IDRI) [1] and is hosted by TCIA [7]. The data is in 3D with a resolution
of 512 × 512 pixels per slice and contains 1018 cases with lung nodules delineated by 4 experts.
For each data set, ROI and patient, a marginal function m is formed by taking the fraction of
which each pixel has been selected by the annotators, that is, a finite sample approximation is
considered. The resulting marginal functions are then used to compute the segmentations sAm (19)
and sDm (20). For (G) we make use of the software Plastimatch [30] and for (L) we make use
of the python package pylidc [12]. Details on the experiments can be found in the Supplementary
Document. Code and instructions on how to reproduce the experiments can be found at https:
//github.com/marcus-nordstrom/optimal-solutions-to-accuracy-and-dice.

From our experiments we report the quantities ‖sAm‖1/‖m‖1 and ‖sDm‖1/‖m‖1, which in a relative
sense describe how much the volume of the computed optimal segmentations with respect to Accuracy
and Dice deviate from the expected target volume. In Figure 5 and Figure 6, these quantities are
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Figure 5: Results of our experiments on the pelvic data in the Gold Atlas project [25]. For each ROI
and patient, the associated m is formed by finite sample approximation and used to compute sAm as
defined by (19) and sDm as defined by (20).
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Figure 6: Results of our experiments on the lung nodules in the LIDC-IDRI data set [1]. For each
patient, the associated m is formed by finite sample approximation and used to compute sAm as
defined by (19) and sDm as defined by (20).
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Table 1: Results of our experiments on the pelvic data in the Gold Atlas project (G) [25] and the lung
nodule data in LIDC-IDRI (L) [1]. For each ROI and patient, the associated m is formed by finite
sample approximation and used to compute sAm as defined by (19) and sDm as defined by (20).

‖sAm‖1/‖m‖1 ‖sDm‖1/‖m‖1
ROI Mean Std Min Max Mean Std Min Max

(G) Urinary bladder 1.004 0.009 0.991 1.035 1.004 0.009 0.991 1.035
(G) Rectum 0.994 0.047 0.912 1.094 0.994 0.047 0.912 1.094
(G) Anal canal 0.916 0.068 0.753 1.067 1.075 0.182 0.877 1.560
(G) Penile bulb 0.929 0.072 0.696 1.022 1.065 0.157 0.863 1.365
(G) Neurovascular b. 0.778 0.110 0.461 0.928 1.267 0.115 1.070 1.481
(G) Femoral head R 0.988 0.011 0.963 1.006 0.988 0.011 0.963 1.006
(G) Femoral head L 0.994 0.022 0.958 1.070 0.994 0.022 0.958 1.070
(G) Prostate 0.978 0.027 0.894 1.011 0.978 0.027 0.894 1.011
(G) Seminal vesicles 0.903 0.085 0.669 1.028 1.029 0.142 0.855 1.325

(L) Lung nodules 1.002 0.362 0.000 2.000 1.432 0.893 0.451 4.000

illustrated for each patient and ROI in scatter plots. In Table 1, aggregated statistics of these quantities
with respect to all patients are shown. By simple inspection it is clear that the volume of optimal
segmentations to Accuracy and Dice often deviate significantly from the expected target volume. For
(G) the extreme cases are given by some marginal function m for which ‖sAm‖1/‖m‖1 ≈ 0.5 and
some marginal function m for which ‖sDm‖1/‖m‖1 ≈ 1.5. For (L) the extreme cases are given by
some marginal function m for which ‖sAm‖1/‖m‖1 ≈ 0 and some marginal function m for which
‖sDm‖1/‖m‖1 ≈ 4.

6 Conclusion

In this work, we have theoretically investigated the optimal segmentations with respect to the
performance metrics Accuracy and Dice. We have given a detailed rigorous characterization of the
optimizers and upper and lower bounds on the volume of optimal segmentations. Finally, we have
shown the relevance of our theoretical observations in practice by comparing the volume of optimal
segmentations with respect to the performance metrics to the expected volume, on two real world
data sets. We conclude that noise may cause optimal segmentations to have a volume that deviates
significantly from the expected target volume and that the reason for this may be what metric is
chosen, or implicitly, what metric a chosen training method targets.

Broader impacts: Formalizing the evaluation process of automated segmentation methods can be
done in many ways, each with its pros and cons. Even if this work can be interpreted as describing the
problems with using Dice for this formalization, it can still paradoxically contribute to an unhealthy
fixation of Dice as the gold standard for segmentation evaluation in medical image analysis. This
in turn can lead to that medical practitioners put too much faith in models that have been shown to
perform well with respect to the metric on some test data. One solution to this is to make sure that
clinical practitioners using such models are educated in the problems associated with the metric.

Limitations: In order for the volume bounds to be sharp in Theorem 1 and Theorem 2, we
construct extreme cases of m. These extreme cases might only be representable approximately with
step functions for a particular choice of voxelization. Consequently, the most extreme cases we can
construct in a numerical setting may not be as extreme as those we have constructed in the continuous
setting. However, in medical image analysis it is common to deal with voxelizations of the order
of 512 × 512 × 100 voxels which means that the approximation error would be negligible. Our
work is also limited by the amount of experiments included. Additional numerical experiments on a
wider range of data sets would give a more comprehensive picture on the impact of different noise
distributions.

Acknowledgement: The authors were supported by RaySearch Laboratories AB.
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