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ABSTRACT

This paper presents a novel training method, Conditional Masked Language Mod-
eling (CMLM), to effectively learn sentence representations on large scale un-
labeled corpora. CMLM integrates sentence representation learning into MLM
training by conditioning on the encoded vectors of adjacent sentences. Our En-
glish CMLM model achieves state-of-the-art performance on SentEval (Conneau
& Kiela, 2018), even outperforming models learned using (semi-)supervised sig-
nals. As a fully unsupervised learning method, CMLM can be conveniently ex-
tended to a broad range of languages and domains. We find that a multilingual
CMLM model co-trained with bitext retrieval (BR) and natural language infer-
ence (NLI) tasks outperforms the previous state-of-the-art multilingual models by
a large margin. We explore the same language bias of the learned representations,
and propose a principle component based approach to remove the language identi-
fying information from the representation while still retaining sentence semantics.

1 INTRODUCTION

Sentence embeddings map sentences into a vector space. The vectors capture rich semantic infor-
mation that can be used to measure semantic textual similarity (STS) between sentences or train
classifiers for a broad range of downstream tasks (Conneau et al., 2017; Subramanian et al., 2018;
Logeswaran & Lee, 2018b; Cer et al., 2018; Reimers & Gurevych, 2019; Yang et al., 2019a;d; Giorgi
et al., 2020). State-of-the-art models are usually trained on supervised tasks such as natural language
inference (Conneau et al., 2017), or with semi-structured data like question-answer pairs (Cer et al.,
2018) and translation pairs (Subramanian et al., 2018; Yang et al., 2019a). However, labeled and
semi-structured data are difficult and expensive to obtain, making it hard to cover many domains
and languages. Conversely, recent efforts to improve language models include the development
of masked language model (MLM) pre-training from large scale unlabeled corpora (Devlin et al.,
2019; Lan et al., 2020; Liu et al., 2019). While internal MLM model representations are helpful
when fine-tuning on downstream tasks, they do not directly produce good sentence representations,
without further supervised (Reimers & Gurevych, 2019) or semi-structured (Feng et al., 2020) fine-
tuning.

In this paper, we explore an unsupervised approach, called Conditional Masked Language Modeling
(CMLM), to effectively learn sentence representations from large scale unlabeled corpora. CMLM
integrates sentence representation learning into MLM training by conditioning on sentence level
representations produced by adjacent sentences. The model therefore needs to learn effective sen-
tence representations in order to perform good MLM. Since CMLM is fully unsupervised, it can be
easily extended to new languages. We explore CMLM for both English and multilingual sentence
embeddings for 100+ languages. Our English CMLM model achieves state-of-the-art performance
on SentEval (Conneau & Kiela, 2018), even outperforming models learned using (semi-)supervised
signals. Moreover, models training on the English Amazon review data using our multilingual vec-
tors exhibit strong multilingual transfer performance on translations of the Amazon review evalua-
tion data to French, German and Japanese, outperforming existing multilingual sentence embedding
models by > 5% for non-English languages and by > 2% on the original English data.

We further extend the multilingual CMLM to co-training with parallel text (bitext) retrieval task, and
finetuning with cross-lingual natural language inference (NLI) data, inspired by the success of prior
work on multitask sentence representation learning (Subramanian et al., 2018; Yang et al., 2019a)
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Figure 1: The architecture of Conditional Masked Language Modeling (CMLM).

and NLI learning (Conneau et al., 2017; Reimers & Gurevych, 2019). We achieve performance
1.4% better than the previous state-of-the-art multilingual sentence representation model (see details
in section 4.2). Language agnostic representations require semantically similar cross-lingual pairs
to be closer in representation space than unrelated same-language pairs (Roy et al., 2020). While we
find our original sentence embeddings do have a bias for same language sentences, we discover that
removing the first few principal components of the embeddings eliminates the self language bias.

The rest of the paper is organized as follows. Section 2 describes the architecture for CMLM un-
supervised learning. In Section 3 we present CMLM trained on English data and evaluation results
on SentEval. In Section 3 we apply CMLM to learn sentence multilingual sentence representations.
Multitask training strategies on how to effectively combining CMLM, bitext retrieval and cross lin-
gual NLI finetuning are explored. In Section 5, we investigate self language bias in multilingual
representations and how to eliminate it.

The contributions of this paper can be summarized as follows: (1) A novel pre-training technique
CMLM for unsupervised sentence representation learning on unlabeled corpora (either in monolin-
gual and multilingual). (2) An effective multitask training framework, which combines unsupervised
learning task CMLM with supervised learning Bitext Retrieval and cross-lingual NLI finetuning. (3)
An evaluation benchmark for multilingual sentence representations. (4) A simple and effective al-
gebraic method to remove same language bias in multilingual representations.

2 CONDITIONAL MASKED LANGUAGE MODELING

We introduce Conditional Masked Language Modeling (CMLM) as a novel architecture for com-
bining next sentence prediction with MLM training. By “conditional,” we mean the MLM task for
one sentence depends on the encoded sentence level representation of the adjacent sentence. This
builds on prior work on next sentence prediction that has been widely used for learning sentence
level representations (Kiros et al., 2015; Logeswaran & Lee, 2018b; Cer et al., 2018; Yang et al.,
2019a), but has thus far produced poor quality sentence embeddings within BERT based models
(Reimers & Gurevych, 2019).

While existing MLMs like BERT include next sentence prediction tasks, they do so without any
inductive bias to try to encode the meaning of a sentence within a single embedding vector. We
introduce a strong inductive bias for learning sentence embeddings by structuring the task as follows.
Given a pair of ordered sentences, the first sentence is fed to an encoder that produces a sentence
level embedding. The embedding is then provided to an encoder that conditions on the sentence
embedding in order to better perform MLM prediction over the second sentence. This is notably
similar to Skip-Thought (Kiros et al., 2015), but replaces the generation of the complete second
sentence with the MLM denoising objective. It is also similar to T5’s MLM inspired unsupervised
encode-decoder objective (Raffel et al., 2019), with the second encoder acting as a sort of decoder
given the representation produced for the first sentence. Our method critically differs from T5’s in
that a sentence embedding bottleneck is used to pass information between two model components
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and in that the task involves denoising a second sentence when conditioning on the first rather than
denoising a single text stream.

Fig. 1 illustrates the architecture of our model. The first sentence s1 is tokenized and input to
a transformer encoder and a sentence vector v 2 Rd is computed from the sequence outputs by
average pooling.1 The sentence vector v is then projected into N spaces with one of the projections
being the identity mapping, i.e. vp = P (v) 2 Rd⇥N . Here we use a three-layer MLP as the
projection P (·).
The second sentence s2 is then masked following the procedure described in the original BERT
paper, including random replacement and the use of unchanged tokens. The second encoder shares
the same weights with the encoder used to embed s1 2. Tokens in the masked s2 are converted
into word vectors and concatenated with vp. The concatenated representations are provided to the
transformer encoder to predict the masked tokens in s2. At inference time, we keep the first encoding
module and discard the subsequent MLM prediction. In Section 5.2, we explore various different
configurations of CMLM, including the number of projection spaces, and how the projected vectors
are connected to the embeddings of the second sentence.

3 LEARNING ENGLISH SENTENCE REPRESENTATIONS WITH CMLM

For training English sentence encoders with CMLM, we use three Common Crawl dumps. The
data are filtered by a classifier which detects whether a sentence belongs to the main content of the
web page or not. We use WordPiece tokenization and the vocabulary is the same as public English
uncased BERT. In order to enable the model to learn bidirectional information, for two consecutive
sequences s1 and s2, we swap their order for 50% of the time. This order-swapping process echos
with the preceding and succeeding sentences prediction in Skip-Thought (Kiros et al., 2015). The
length of s1 and s2 are set to be 256 tokens (the maximum length). The number of masked tokens
in s2 are 80 (31.3%), moderately higher than classical BERT. This change in the ratio of masked
tokens is to make the task more challenging, due to the fact that in CMLM, language modeling has
access to extra information from adjacent sentences. We train with batch size of 2048 for 1 million
steps. The optimizer is LAMB with learning rate of 10�3, �1 = 0.9, �2 = 0.999, warm-up in the
first 10,000 steps and linear decay afterwards. We explore two transformer configurations, base and
large, same as in the original BERT paper. The number of projections N is 15 by experimenting
with multiple choices.

3.1 EVALUATION

We evaluate the sentence representations on the following tasks: (1) classification: MR (movie
reviews Pang & Lee (2005)), binary SST (sentiment analysis, Socher et al. (2013)), TREC
(question-type, Voorhees & Tice (2000)), CR (product reviews, Hu & Liu (2004)), SUBJ (sub-
jectivity/objectivity, Pang & Lee (2004)). (2) Entailment: SNLI (Bowman et al., 2015) and SICK
dataset for entailment (SICK-E, Marelli et al. (2014)). The evaluation is done using SentEval (Con-
neau & Kiela, 2018) which is a prevailing evaluation toolkit for sentence embeddings. The classifier
for the downstream is logistic regression. For each task, the encoder and embeddings are fixed and
only downstream neural structures are trained.

The baseline sentence embedding models include SkipThought (Kiros et al., 2015), InferSent (Con-
neau et al., 2017), USE (Cer et al., 2018), QuickThought (Logeswaran & Lee, 2018a) and English
BERT using standard pre-trained models from TensorFlow Hub website (Devlin et al. (2019), and
SBert (Reimers & Gurevych, 2019). To evaluate the possible improvements coming from train-
ing data and processes, we train standard BERT models (English BERT base/large (CC)) on the
same Common Crawl Corpora that CMLM is trained on. Similarly, we also train QuickThought,
a competitive unsupervised sentence representations learning model, on the same Common Crawl
Corpora (denoted as “QuickThought (CC)”). To further address the possible advantage from us-
ing Transformer encoder, we use a Transformer encoder as the sentence encoder in QuickThought
(CC). The representations for BERT are computed by averaging pooling of the sequence outputs

1One can equivalently choose other pooling methods, such as max pooling or use the vector output corre-
sponding to a special token position such as the [CLS] token.

2The dual-encoder sharing encoder weights for different inputs can be also referred as “siamese encoder”
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(we also explore options including [CLS] vector and max pooling and the results are available in the
appendix).

3.2 RESULTS

Evaluation results are presented in Table 1. CMLM outperforms existing models overall, besting
MLM (both English BERT and English BERT (CC)) using both base and large configurations. The
closest competing model is SBERT, which uses supervised NLI data rather than a purely unsuper-
vised approach. Interestingly, CMLM outperforms SBERT on the SICK-E NLI task.

Model MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R Avg.
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0 82.3 85.8 83.8
InferSent 81.6 86.5 92.5 90.4 84.2 88.2 75.8 80.3 83.7 84.7
USE 80.1 85.2 94.0 86.7 86.4 93.2 70.1 82.4 85.9 84.9
QuickThought (CC) 75.7 81.9 94.3 84.7 79.7 83.0 70.4 75.0 78.5 80.4

English BERT base 81.6 87.4 95.2 87.8 85.8 90.6 71.1 79.3 80.5 84.3
English BERT base (CC) 82.5 88.5 95.6 87.3 88.0 91.4 72.0 79.3 79.0 84.6
CMLM base (ours) 83.6 89.9 96.2 89.3 88.5 91.0 69.7 82.3 83.4 86.0
English BERT large 84.3 88.9 95.7 86.8 88.9 91.4 71.8 75.7 77.0 84.5
English BERT large (CC) 85.4 89.0 95.7 86.9 90.5 91.2 75.5 74.3 77.0 85.0
SBERT (MNLI + SNLI) 84.8 90.0 94.5 90.3 90.7 87.4 76.0 74.9 84.2 85.9
CMLM large (ours) 85.6 89.1 96.6 89.3 91.4 92.4 70.0 82.2 84.5 86.8

Table 1: Transfer learning test set results on SentEval for English models. Baseline models include
BERT-based (BERT and SBERT) and non-BERT models (SkipThought, InferSent and USE).

4 LEARNING MULTILINGUAL SENTENCE REPRESENTATIONS WITH CMLM

As a fully unsupervised method, CMLM can be conveniently extended to multilingual modeling
even for less well resourced languages. Learning good multilingual sentence representations is
more challenging than learning monolingual ones, especially when attempting to capture the se-
mantic alignment between different languages. As CMLM does not explicitly address cross-lingual
alignment, we explore several modeling approaches besides CMLM: (1) Co-training CMLM with a
bitext retrieval task; (2) Fine-tuning with cross-lingual NLI data.

4.1 MULTILINGUAL CMLM

We follow the same configuration used to learn English sentence representations with CMLM, but
extend the training data to include more languages. Results below will show that CMLM again
exhibits competitive performance as a general technique to learn from large scale unlabeled corpora.

4.2 MULTITASK TRAINING WITH CMLM AND BITEXT RETRIEVAL

Besides the monolingual pretraining data, we collect a dataset of bilingual translation pairs {(si,
ti)} using a bitext mining system (Feng et al., 2020). The source sentences {si} are in English and
the target sentences {ti} covers over 100 languages. We build a retrieval task with the translation
parallel data, identifying the corresponding translation of the input sentence from candidates in the
same batch. Concretely, incorporating Additive Margin Softmax (Yang et al., 2019b), we compute
the bitext retrieval loss Ls

br for the source sentences as:

Ls
br = � 1

B

BX

i=1

e�(si,ti)�m

e�(si,ti)�m +
PB

j=1,j 6=i e
�(si,tj)

(1)

Above �(l(i)s , l(i)t ) denotes the the inner products of sentence vectors of l(i)s and l(i)t (embedded by
the transformer encoder); m and B denotes the additive margin and the batch size respectively.
Note the way to generate sentence embeddings is the same as in CMLM. We can compute the bitext
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retrieval loss for the target sentences Lt
br by normalizing over source sentences, rather than target

sentences, in the denominator.3 The final bitext retrieval loss Lbr is given as Lbr = Ls
br + Lt

br.

There are several ways to incorporate the monolingual CMLM task and bitext retrieval (BR). We
explore the following multistage and multitask pretraining strategies:

S1. CMLM+BR: Train with both CMLM and BR from the start;
S2. CMLM ! BR: Train with CMLM in the first stage and then train with on BR;
S3. CMLM ! CMLM+BR: Train with only CMLM in the first stage and then with both tasks.

When training with both CMLM and BR, the optimization loss is a weighted sum of the language
modeling and the retrieval loss Lbr, i.e. L = LCMLM + ↵Lbr. We empirically find ↵ = 0.2 works
well. As shown in Table 3, S3 is found to be the most effective. Unless otherwise denoted, our
models trained with CMLM and BR follow S3. We also discover that given a pre-trained transformer
encoder, e.g. mBERT, we can improve the quality of sentence representations by finetuning the
transformer encoder with CMLM and BR. As shown in Table 2 and Table 3, the improvements
between “mBERT” and “f-mBERT” (finetuned mBERT) are significant.

4.3 FINETUNING WITH CROSS LINGUAL NATURAL LANGUAGE INFERENCE

Finetuning with NLI data has proved to be an effective method to improve the quality of embeddings
for English models. We extend this to the multilingual domain. Given a premise sentence u and
a hypothesis sentence v, we train a 3-way classifier on the concatenation of [u,v, |u � v|,u ⇤ v].
Weights of transformer encoders are also updated in the finetuning process. Different from previous
work also using multilingual NLI data (Yang et al., 2019a), the premise u and hypothesis v here are
in different languages. The cross lingual NLI data are generated by translating Multi-Genre NLI
Corpus (Williams et al., 2018) into 14 languages using Google Translate API.

4.4 CONFIGURATIONS

Monolingual training data for CMLM are generated from 3 versions of Common Crawl data in
113 languages. The data cleaning and filtering is the same as the English-only ones. A new cased
vocabulary is built from the all data sources using the WordPiece vocabulary generation library from
Tensorflow Text. The language smoothing exponent from the vocab generation tool is set to 0.3, as
the distribution of data size for each language is imbalanced. The final vocabulary size is 501,153.
The number of projections N is set to be 15, the batch size B is 2048 and the positive margin is 0.3.
For CMLM only pretraining, the number of steps is 2 million. In multitask learning, for S1 and S3,
the first stage is of 1.5 million and the second stage is of 1 million steps; for S2, number of training
steps is 2 million. The transformer encoder uses the BERT base configuration. Initial learning rate
and optimizer chosen are the same as the English models.

4.5 EVALUATIONS

4.5.1 XEVAL: MULTILINGUAL BENCHMARKS FOR SENTENCE REPRESENTATIONS
EVALUATION

Evaluations in previous multilingual literature focused on the cross lingual transfer learning abil-
ity from English to other languages. However, this evaluation protocol that treats English as the
“anchor” does not equally assess the quality of non-English sentence representations with English
ones. In order to address the issue, we prepare a new benchmark for multilingual sentence vectors,
XEVAL, by translating SentEval (English) to other 14 languages with an industrial translation API.

Results of models trained with monolingual data are shown in Table 2. Baseline models include
mBERT (Devlin et al., 2019), XLM-R (Ruder et al., 2019) and a transformer encoder trained with
MLM on the same Common Crawl data (MLM(CC), again this is to control the effects of training
data). The method to produce sentence representations for mBERT and XLM-R is chosen to be
averaging pooling after exploring options including [CLS] representations and max pooling. The

3i.e., by swapping the i and j subscripts in the last term of the denominator.
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Model ar bg de el en es fr hi ru sw th tr ur vi zh Avg.
mBERT 76.3 76.1 77.7 76.1 80.1 78.5 78.7 75.6 77.3 70.5 73.6 75.7 74.2 78.8 78.7 76.5
MLM (CC) 79.2 79.1 81.7 79.9 84.4 82.1 82.2 79.2 81.2 70.3 76.9 79.0 74.3 81.3 81.0 79.4
XLM-R 78.1 78.0 76.2 78.2 82.8 81.2 80.4 77.2 80.2 71.0 77.5 79.7 76.7 80.3 80.8 78.5
CMLM 80.6 81.2 82.6 81.4 85.0 82.3 83.4 80.0 82.3 76.2 78.8 81.0 78.5 81.6 81.7 81.2

Table 2: Performance (accuracy) of multilingual models trained with monolingual data on XEVAL.
Highest numbers are highlighted in bold.

Model ar bg de el en es fr hi ru sw th tr ur vi zh Avg.
LASER 82.1 81.2 81.7 78.1 82.3 81.0 80.8 78.9 82.2 75.8 80.3 81.8 77.2 81.6 82.1 80.4
mUSE 80.4 74.0 82.2 65.0 83.3 82.7 82.4 62.3 82.3 68.1 81.6 80.3 68.8 68.0 82.0 76.2
S1 78.3 78.9 79.3 78.1 81.0 78.7 79.5 78.0 79.0 76.6 77.8 78.6 77.7 79.0 78.6 78.6
S2 81.3 81.0 83.0 81.4 85.6 83.0 83.6 80.4 82.3 77.6 80.1 81.0 79.8 82.4 82.3 81.6
S3 82.6 83.0 84.0 81.8 85.8 84.2 84.6 81.7 84.0 79.3 81.2 82.7 81.2 83.0 83.0 82.8
S3+NLI 84.2 83.7 85.0 83.4 87.0 85.9 85.8 83.0 85.6 79.6 83.0 84.2 81.2 84.2 84.4 84.0
mBERT 76.3 76.1 77.7 76.1 80.1 78.5 78.7 75.6 77.3 70.5 73.6 75.7 74.2 78.8 78.7 76.5
f-mBERT 77.2 78.5 79.7 76.7 81.4 80.0 80.3 77.2 79.1 73.3 76.1 77.1 76.9 79.8 80.4 78.3

Table 3: Performance (accuracy) of models trained with cross lingual data on XEVAL. mUSE
only supports 16 languages, underline indicates the language is not supported by mUSE. We test
with multiple strategies for multitask pretraining: [S1]: CMLM ! BR; [S2]: CMLM+BR; [S3]:
CMLM ! CMLM+BR. [f-mBERT] denotes finetuning mBERT with CMLM and BR.

multilingual model CMLM on monolingual data outperform all baselines in 12 out of 15 languages
and the average performance.

Results of models trained with cross lingual data are presented in Table 3. Baseline models for
comparison include LASER (Artetxe & Schwenk (2019), trained with parallel data) and multilingual
USE ((Yang et al., 2019a), trained with cross lingual NLI). Our model (S3) outperforms LASER in
13 out of 15 languages. Notably, finetuning with NLI in the cross lingual way produces significant
improvement (S3 + NLI v.s. S3) and it also outperforms mUSE by significant margins4. Multitask
learning with CMLM and BR can also be used to increase the performance of pretrained encoders,
e.g. mBERT. mBERT trained with CMLM and BR (f-mBERT) has a significant improvement upon
mBERT.

4.5.2 AMAZON REVIEWS

We also conduct a zero-shot transfer learning evaluation on Amazon reviews dataset (Prettenhofer
& Stein, 2010). Following Chidambaram et al. (2019), the original dataset is converted to a clas-
sification benchmark by treating reviews with strictly more than 3 stars as positive and negative
otherwise. We split 6000 English reviews in the original training set into 90% for training and 10%
for development. The two-way classifier, upon the concatenation of [u,v, |u � v|,u ⇤ v] (follow-
ing previous works e.g. Reimers & Gurevych (2019)), is trained on the English training set and
then evaluated on English, French, German and Japanese test sets (each has 6000 examples). Note
the same multilingual encoder and classifier are used for all the evaluations. We also experiment
with whether freezing the encoder weights or not during training. As presented in Table 4, CMLM
alone has already outperformed baseline models. Training with BR and cross lingual NLI finetuning
further boost the performance.

4.6 TATOEBA: SEMANTIC SEARCH

To directly assess the ability of our models on capturing semantics, we test on Tatoeba dataset pro-
posed in Artetxe & Schwenk (2019). Tatoeba dataset include up to 1,000 English-aligned sentence
pairs for each evaluated language. The task is to find the nearest neighbor for the query sentence in
the other language by cosine similarity. The experiments is conducted on the 36 languages sent as
in XTREME benchmark (Hu et al., 2020) and the evaluation metric is retrieval accuracy. We test

4Note mUSE only supports 16 languages, the best CMLM model is still significantly better if only consid-
ering the mUSE supported languages (underline in table 2 indicates the unsupported languages by mUSE)
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Models English French German Japanese

Encoder parameters are frozen during finetuning

Eriguchi et al. (2018) 83.2 81.3 - -
Chidambaram et al. (2019) en-fr 87.4 82.3 - -
Chidambaram et al. (2019) en-de 87.1 - 81.0 -
mBERT 80.0 73.1 70.4 71.7
XLM-R - 85.3 81.5 82.5
CMLM 88.4 88.2 87.5 83.7
CMLM+ BR 88.3 87.2 86.4 83.2
CMLM+ BR + NLI 89.4 88.8 88.4 82.8

Encoder parameters are trained during finetuning

mBERT 89.3 83.5 79.4 74.0
CMLM 93.4 92.4 92.1 88.6
CMLM+ BR 93.6 93.1 92.3 88.1
CMLM+ BR + NLI 93.7 92.4 93.5 86.8

Table 4: Classification accuracy on the Amazon Reviews dataset. The experiments examine the zero-
shot cross-lingual ability of multilingual models. We explore both freezing/updating the weights of
the multilingual encoder during training on English data.

our models with configuration CMLM+BR and CMLM+BR+NLI. Baselines (results collected from
Hu et al. (2020); Artetxe & Schwenk (2019)) include mBERT, LASER, XLM, XLM-R. Results are
presented in Table 5. Our model CMLM+BR outperforms all baseline models in 30 out of 36 lan-
guages and has the highest average performance. One interesting observation is that finetuning with
NLI actually undermines the model performance on semantic search, in contrary with the significant
improvements from CMLM+BR to CMLM+BR+NLI on XEVAL (Table 3). We speculate this is be-
cause unlike semantic search, NLI inference is not a linear process. Finetuning with cross-lingual
NLI is not expected to help the linear retrieval by nearest neighbor search.

Lang. af ar bg bn de el es et eu fa fi fr he hi hu id it ja
mBERT 42.7 25.8 49.3 17 77.2 29.8 68.7 29.3 25.5 46.1 39 66.3 41.9 34.8 38.7 54.6 58.4 42
XLM 43.2 18.2 40 13.5 66.2 25.6 58.4 24.8 17.1 32.2 32.2 54.5 32.1 26.5 30.1 45.9 56.5 40
XLM-R 58.2 47.5 71.6 43 88.8 61.8 75.7 52.2 35.8 70.5 71.6 73.7 66.4 72.2 65.4 77 68.3 60.6
LASER 89.4 91.9 95.0 89.6 99.0 94.9 98.0 96.7 94.6 71.6 96.3 95.6 92.1 94.7 96.0 94.5 95.4 95.3
CMLM+BR 96.3 90.6 95.4 91.2 97.7 95.4 98.1 95.6 92.0 95.6 95.9 96.1 92.8 97.6 96.5 95.6 94.2 95.6
CMLM+BR+NLI 90.5 83.6 92.6 86.4 97.6 91.6 9.5 82.6 76.3 90.7 88.9 93.5 86.8 94.6 89.6 91.7 90.4 88.4

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh Mean

mBERT 17.6 20.5 27.1 38.5 19.8 20.9 68 69.9 61.2 11.5 14.3 16.2 13.7 16 34.8 31.6 62 71.6 38.7
XLM 22.4 22.9 17.9 25.5 20.1 13.9 59.6 63.9 44.8 12.6 20.2 12.4 31.8 14.8 26.2 18.1 47.1 42.2 32.6
XLM-R 14.1 52.1 48.5 61.4 65.4 56.8 80.8 82.2 74.1 20.3 26.4 35.9 29.4 36.7 65.7 24.3 74.7 68.3 57.3
LASER 23.0 35.9 18.6 88.9 96.9 91.5 96.3 95.2 94.4 57.5 69.4 79.7 95.4 50.6 97.5 81.9 96.8 95.5 84.4
CMLM+BR 83.4 94.9 88.6 92.4 98.9 94.5 97.3 95.3 94.9 87.0 91.2 97.9 96.6 95.3 98.6 94.4 97.5 95.6 94.7
CMLM+BR+NLI 66.9 88.1 80.3 85.6 94.9 90.7 93.2 92.3 91.7 76.7 88.6 92.8 94.7 82.0 94.3 84.7 94.3 93.1 88.8

Table 5: Tatoeba results (retrieval accuracy) for each language. Our model CMLM+BR achieves the
best results on 30 out of 36 languages.

5 ANALYSIS

5.1 LANGUAGE AGNOSTIC PROPERTIES

Language Agnosticism has been a property of great interest for multilingual representations. How-
ever, there has not been a qualitative measurement or rigid definition for this property. Here we
propose that “language agnostic” refers to the property that sentences representations are neutral
w.r.t their language information. For example, two sentences with similar semantics should be close
in embedding space whether they are of the same languages or not. Another case is that given one
query sentence in language l1 and two candidate sentences with the identical meanings (different
from the query sentence) in languages l1 and l2, the l1 input sentence should not be biased towards
the l1 candidate sentence. To capture this intuition, we convert the PAWS-X dataset (Yang et al.,
2019c) to a retrieval task to measure the language agnostic property. Specifically, PAWS-X dataset
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consists of English sentences and their translations in other six languages (x-axis labels in Fig. 2).
Given a query, we inspect the language distribution of the retrieved sentences (by ranking cosine
similarities). In Fig. 2, query sentences are in German, French and Chinese for each row. Represen-
tations of mBERT (first row) have a strong self language bias, i.e. sentences in the language match-
ing the query are dominant. In contrast, the bias is much weaker in our model trained with CMLM
and BR (the third column), probably due to the cross lingual retrieval pretraining. We discover that
removing the first principal component of each monolingual space from sentence representations
effectively eliminate the self language bias. As shown in the second and the fourth column in Fig. 2,
with principal component removal (PCR), the language distribution is much more uniform. We fur-
ther explore PCR by experimenting on the Tatoeba dataset. Table 5 shows the retrieval accuracy
of multilingual model with and w/o PCR. PCR increases the overall retrieval performance for both
two models. This suggests the first principal components in each monolingual space primarily
encodes language identification information.

de

fr

zh

mBERT mBERT + PCR ours ours + PCR

Figure 2: Language distribution of retrieved sentences. The first and third columns are mBERT and
our models. Our model already in general has a more uniform distribution than mBERT. The second
and fourth columns are mBERT and our model with PCR.

fra cmn spa deu rus ita tur por hun jpn nld Avg.

mBERT 60.2 60.2 62.8 65.9 53.8 55.7 32.4 62.4 31.9 39.0 56.2 52.8
mBERT + PCR 59.9 64.3 61.7 67.5 57.4 56.2 33.3 64.4 36.5 42.3 61.1 54.8
ours 96.1 95.6 98.1 97.7 94.9 94.2 98.6 95.3 96.5 95.6 97.3 96.3
ours + PCR 95.5 96.0 98.2 97.9 95.1 94.1 98.5 95.8 96.6 95.3 97.2 96.4

Table 6: Average retrieval accuracy on 36 languages of multilingual representations model with and
without principal component removal (PCR) on Tatoeba dataset.

We also visualize the sentence representations in Tatoeba dataset in Fig. 3. Our model (the first row)
shows both weak and strong semantic alignment (Roy et al., 2020). Representations are close to
others with similar semantics regardless of their languages (strong alignment), especially for French
and Russian, where representations form several distinct clusters. Also representations from the
same language tend to cluster (weak alignment). While representations from mBERT generally
exhibit weak alignment.

5.2 ABLATION STUDY

In this section, we explore different configurations of CMLM, including the number of spaces in the
projection N and CMLM architecture. As shown in Table 7, projecting the sentence vector into N =
15 produces highest overall performance. We also try a modification to CMLM architecture. Besides
the concatenation with token embeddings of s2 before input to the transformer encoder, the projected

8
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eng fra eng deu eng rus eng spa
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Figure 3: Visualizations of sentence embeddings in Tatoeba dataset in 2D. The target languages are
all English and the source languages are French, German, Russian and Spanish from left to right
columns. The first and second rows are our model and mBERT respectively.

vectors are also concatenated with the sequence outputs of s2 for the masked token prediction. This
version of architecture is denoted as “skip” and model performance actually becomes worse.

Note that the projected vector can also be used to produce the sentence representation vs. For
example, one way is to use the average of projected vectors, i.e. vs = 1

N

P
i v

(i)
p . Recall v(i)

p is the
ith projection. This version is denoted as “proj” in Table 7. Sentence representations produced in this
way still yield competitive performance, which further confirm the effectiveness of the projection.

Model MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R Avg.
N = 1 82.3 89.7 95.8 88.8 87.6 90.4 71.5 80.8 83.4 85.5
N = 5 83.7 90.0 95.5 89.0 89.4 86.6 69.5 79.3 81.7 85.0
N = 10 83.4 89.0 96.1 88.9 88.2 90.2 68.5 79.7 81.5 84.9
N = 15 83.6 89.9 96.2 89.3 88.5 91.0 69.7 82.3 83.4 86.0
N = 20 81.1 89.5 95.8 88.9 85.9 89.8 69.7 80.2 85.0 85.1
skip 80.3 86.8 94.5 87.5 84.9 86.0 69.2 72.8 74.7 81.9
proj 82.6 89.7 96.0 87.3 87.5 89.2 70.5 81.7 83.8 85.4

Table 7: Ablation study of CMLM designs, including the number of projection spaces, architecture
and sentence representations. The experiments are conducted on SentEval.

6 CONCLUSION

We present a novel sentence representation learning method Conditional Masked Language Model-
ing (CMLM) for training on large scale unlabeled corpus. CMLM outperforms the previous state-of-
the-art English sentence embeddings models, including those trained with (semi-)supervised signals.
For multilingual representations learning, we discover that co-training CMLM with bitext retrieval
and cross-lingual NLI finetuning achieves state-of-the-art performance. We also discover that mul-
tilingual representations have the same language bias and principal component removal (PCR) can
eliminate the bias by separating language identity information from semantics.
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