Under review as a conference paper at ICLR 2023

QUANTITATIVE UNIVERSAL APPROXIMATION
BOUNDS FOR DEEP BELIEF NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We show that deep belief networks with binary hidden units can approximate
any multivariate probability density under very mild integrability requirements
on the parental density of the visible nodes. The approximation is measured in
the L2-norm for ¢ € [1, o0] (¢ = oo corresponding to the supremum norm) and in
Kullback-Leibler divergence. Furthermore, we establish sharp quantitative bounds
on the approximation error in terms of the number of hidden units.

1 INTRODUCTION

Deep belief networks (DBNs) are a class of generative probabilistic models obtained by stacking sev-
eral restricted Boltzmann machines (RBMs, Smolensky (1986)). For a brief introduction to RBMs
and DBNs we refer the reader to the survey articles Fischer & Igel (2012; 2014); Montdfar (2016);
Ghojogh et al. (2021). Since their introduction, see Hinton et al. (2006); Hinton & Salakhutdinov
(2006), DBNs have been successfully applied to a variety of problems in the domains of natural
language processing Hinton (2009); Jiang et al. (2018), bioinformatics Wang & Zeng (2013); Liang
et al. (2014); Cao et al. (2016); Luo et al. (2019), financial markets Shen et al. (2015) and com-
puter vision Abdel-Zaher & Eldeib (2016); Kamada & Ichimura (2016; 2019); Huang et al. (2019).
However, our theoretical understanding of the class of continuous probability distributions, which
can be approximated by them, is limited. The ability to approximate a broad class of probability
distributions—usually referred to as universal approximation property—is still an open problem for
DBNss with real-valued visible units. As a measure of proximity between two real-valued probability
density functions, one typically considers the L?-distance or the Kullback-Leibler divergence.

Contributions. In this article we study the approximation properties of deep belief networks for
multivariate continuous probability distributions which have a density with respect to the Lebesgue
measure. We show that, as m — oo, the universal approximation property holds for binary-binary
DBNs with two hidden layers of sizes m and m + 1, respectively. Furthermore, we provide an
explicit quantitative bound on the approximation error in terms of m. More specifically, the main
contributions of this article are:

* Foreach ¢ € [1,00) we show that DBNs with two binary hidden layers and parental density
¢ : R — R, can approximate any probability density f : R* — R in the L?-norm,
solely under the condition that f,p € LI(R%), where

Lq(Rd):{f;Rd%R: | fllze = (/Rd|f(x)’qu>é <oo}.

1
In addition, we prove that the error admits a bound of order (’)(mmin(qﬂ) 1) for each
q € (1,00), where m is the number of hidden neurons.

* If the target density f is uniformly continuous and the parental density ¢ is bounded, we
provide an approximation result in the L°°-norm (also known as supremum or uniform
norm), where

L>®(RY) = {f:Rd =R | fllze = sup |f(2)| < oo}.
zER4
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+ Finally, we show that continuous target densities supported on a compact subset of R¢ and
uniformly bounded away from zero can be approximated by deep belief networks with
bounded parental density in Kullback-Leibler divergence. The approximation error in this
case is of order O (m™1).

Related works. One of the first approximation results for deep belief networks is due to Sutskever
& Hinton (2008) and states that any probability distribution on {0, 1}? can be learnt by a DBN with
3 x 27 hidden layers of size d + 1 each. This result was improved by Le Roux & Bengio (2010);

Montifar & Ay (2011) by reducing the number of layers to #;(d) with d hidden units each. These

results, however, are limited to discrete probability distributions. Since most applications involve
continuous probability distributions, Krause et al. (2013) considered Gaussian-binary DBNs and
analyzed their approximation capabilities in Kullback-Leibler divergence, albeit without a rate. In
addition, they only allow for target densities that can be written as an infinite mixture of a set of
probability densities satisfying certain conditions, which appear to be hard to check in practice.

Similar questions have been studied for a variety of neural network architectures: The famous re-
sults of Cybenko (1989); Hornik et al. (1989) state that deterministic multi-layer feed-forward net-
works are universal approximators for a large class of Borel measurable functions, provided that
they have at least one sufficiently large hidden layer. See also the articles Leshno et al. (1993);
Chen & Chen (1995); Barron (1993); Burger & Neubauer (2001). Le Roux & Bengio (2008) proved
the universal approximation property for RBMs and discrete target distributions. Montifar & Mor-
ton (2015) established the universal approximation property for discrete restricted Boltzmann ma-
chines. Montufar (2014) showed the universal approximation property for deep narrow Boltzmann
machines. Montufar (2015) showed that Markov kernels can be approximated by shallow stochastic
feed-forward networks with exponentially many hidden units. Bengio & Delalleau (2011); Pas-
canu et al. (2014) studied the approximation properties of so-called deep architectures. Merkh &
Montufar (2019) investigated the approximation properties of stochastic feed-forward networks.

The recent work Johnson (2018) nicely complements the aforementioned results by obtaining an
illustrative negative result: Deep narrow networks with hidden layer width at most equal to the input
dimension do not posses the universal approximation property.

Since our methodology involves an approximation by a convex combination of probability densities,
we refer the reader to the related works of Nguyen & McLachlan (2019); Nguyen et al. (2020) and
the references therein for an overview of the wide range of universal approximation results in the
context of mixture models. See also Everitt & Hand (1981); Titterington et al. (1985); McLachlan &
Basford (1988); McLachlan & Peel (2000); Robert & Mengersen (2011); Celeux (2019) for in-depth
treatments of mixture models.

The recent articles Bailey & Telgarsky (2018); Perekrestenko et al. (2020) in the context of genera-
tive networks show that deep neural networks can transform a one-dimensional uniform distribution
in a way to approximate any two-dimensional Lipschitz continuous target density.

Another strand of research related to the questions of this article are works on quantile (or distri-
bution) regression, see Koenker (2005) as well as Dabney et al. (2018); Tagasovska & Lopez-Paz
(2019); Fakoor et al. (2021) for recent methods involving neural networks.

2 DEEP BELIEF NETWORKS

A restricted Boltzmann machine (RBM) is a an undirected, probabilistic, graphical model with
bipartite vertices that are fully connected with the opposite class. To be more precise, we consider
a simple graph G = (V, &) for which the vertex set V can be partitioned into sets V' and H such
that the edge set is given by £ = {{s, t}:seV,te H}. We call vertices in V' visible units; H
contains the hidden units. To each of the visible units we associate the state space {2y and to the
hidden ones we associate Q7. We equip G with a Gibbs probability measure

e—.%”(?),h,)

m(v,h) = — ve ()Y, he Q)
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where 7 : (Qy)Y x Q) — Ris chosen such that Z = [[ e~ (") gy dh < oco. Notice that
the integral becomes a sum if Qv (resp. (25) is a discrete set. It is customary to identify the RBM
with the probability measure 7.

An important example are binary-binary RBMs. These are obtained by choosing Qy = Qf =
{0,1} and
A = (v,Wh) + (v,b) + (h,c), ve{0,1}V, he{0,1}7, (1)
where b € {0,1}V and ¢ € {0, 1} are called biases, and W € RV *# is called the weight matrix.
We shall write for m,n € N,
B-RBM(m,n) = {r is a binary-binary RBM with m visible and » hidden units} , (2)
for the set of binary-binary RBMs with fixed layer sizes.

The following discrete approximation result is well known, see also Montifar & Ay (2011):
Proposition 1 (Le Roux & Bengio (2008), Theorem 2). Let m € N and . be a probability distribu-
tion on {0,1}™. Let

supp(p) = {v € {0,1}™ : pu(v) > 0}
be the support of j1. Set n = ’supp(u)‘ + 1. Then, for each € > 0, there is a m € B-RBM(m,n)
such that

p)— Y wv,h)|<e  Voe{o1}m
he{0,1}"

A deep belief network (DBN) is constructed by stacking two RBMs. To be more precise, we now
consider a tripartite graph with hidden layers H; and H» and visible units V. We assume that the
edge set is now given by £ = {{s,tl}, {t1,t2} : s €V, t1 € Hy, t3 € Hg}. The state spaces
are now Qy = Rand Qp, = Qp, = {0,1}. We think of edges in the graph as dependence of the
neurons (in the probabilistic sense). The topology of the graph hence shows that the vertices in V'
and H, shall be conditionally independent, that is, we require that

p(v, h1, he) = p(v|h1)p(ha, h2). 3)
The joint density of the hidden units p(h1, ho) will be chosen as binary-binary RBM.

Let D(RY) = {f : R" = Ry : [p. f(z)dz = 1} be the set of probability densities on R?. For
¢ € D(RY) and o > 0 we set

4 [T
VI =S o =0 BY. nerdt. (4)
g

Notice that all elements of V7 are themselves probability distributions. We fix a parental density
¢ € D(RIVI) and choose the conditional density in (3) as p(- | h1) € V¢ for each hy € H;.

Example 2. The most popular choice of the parental function @ in (4) is the d-dimensional standard
Gaussian density

1 || d
p(z) = @n)i exp <—2> , x € R ()
Another density considered in previous works is the truncated exponential distribution
d Mg~ AiTi
olx) = 1_[1 ﬁ]l[o’bi](xi)7 x=(1,...,24) € R, (6)

where b;, \; > 0 foreachi=1,...,d.
Similar to (2), we collect all DBNs in the set
DBNy(d, m,n) = {p is a DBN with parental density ¢, d visible units, m hidden

units on the first level, and n hidden units on the second level},
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where » € D(R?) and d,m,n € N. We shall not distinguish between the whole DBN and the
marginal density of the visible nodes, which is the object we are ultimately interested in, that is, we

write
p(’l}) = Z Z p(’U, hi, h2)' (N

h1€H; ho€H>
In case p € DBN,,(d,m,n) with ¢ € L9(RI") then also the marginal (7) belongs to LI(R!V1).

After their introduction in Hinton & Salakhutdinov (2006), deep belief networks rose to prominence
due to a training algorithm developed in Hinton et al. (2006) which addressed the vanishing gradient
problem by pre-training deep networks. Instead of naively stacking two RBMs the authors consid-
ered several such stacked layers and greedily pre-trained the weights over the layers on a contrastive
divergence loss. To be more precise, let M denote the number hidden layers, then, first the visible
and the first hidden layer are considered as a classical RBM and the weights of the first hidden layer
are learnt. In the second step, the weights of the second hidden layer are learnt based on the first
hidden layer using Gibbs sampling. This procedure repeats iteratively until all hidden layers are
trained. For more details we refer to Fischer & Igel (2014); Ghojogh et al. (2021).

3 MAIN RESULTS

To state the results of this article, we need to introduce three bits of additional notation: Let ¢ €
[1,00]. We declare D,(RY) = D(RY) N LI(R?). Finally, for ¢ € [1,00), let us abbreviate the
constant

1 1 q<2,
T (1 . /oo\ K J2d>q NG) ; ®)
=max | 1, — z|e 2 ax = 2 +1\¢
a V27 s ;r(qz> . q>2,
T 29

with the Gamma function I'(z) = [~ t*~'e~"dt, z > 0.

The main results of this paper are stated in the following two theorems:
Theorem 3. Let g € [1,00) and f, o € Dy(R?). Then, for each m € N, the following quantitative

bound holds: 27, o)
. Pl La
inf If =plle < 7
pEDBN,, (d,m,m+1) M min(q,2)
where the constant Y ; is defined in (8).

) ©))

While this bound becomes trivial if ¢ = 1, the following qualitative approximation result still holds
in that case: For any € > 0, there is an M € N such that, for each m > M, we can find a
p € DBNy(d, m, m + 1) satisfying

|f = plls <e.

Remark 4. Returning to Example 2, we find that ||¢||r« = qdeg for the d-dimensional standard
normal distribution (5) and
d Alfé .\
foller = [] s (1= )
il;[lqé (]_—e*bﬁ\z‘) ( )
for the truncated exponential distribution (6). Our bound (9) thus shows that deep belief networks
with truncated exponential parental density (for suitable choice of the parameters b and \) better
approximate the target density f. This is especially prevalent for small q, which is the primary case

of interest, see Corollary 7 below. For a detailed review of the exponential family’s properties we
refer to Brown (1986).

To state the approximation in the L°°-norm, we need to introduce the space of bounded and uni-
formly continuous functions:

Cu= {7 €2 R iy o 11 sl =0}

Notice that any probability density f € D(R?), which is differentiable and has a bounded derivative,
belongs to C,,(R?) since any uniformly continuous and integrable function is bounded.
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Theorem 5. Let f € D(RY) N Cy(R?) and ¢ € Do (RY). Then, for any e > 0, there is an M € N
such that, for each m > M, we can find a p € DBNy(d, m, m + 1) satisfying

If =pll= <e.

Remark 6. The uniform continuity requirement on f in Theorem 5 can actually be relaxed to es-
sential uniform continuity, that is, f is uniformly continuous except on a set with zero Lebesgue
measure. The most notable example of such a function is the uniform distribution f = 1 y).

Another important metric between between probability densities p, ¢ : R? — R is the Kullback-
Leibler divergence (or relative entropy) defined by

KL(flo) = [ swox (4 a0

if {v € R?: g(z) = 0} € {z € RY : f(x) = 0} and KL(f||g) = oo otherwise. From
Theorems 3 and 5 we can deduce the following quantitative approximation bound in the Kullback-
Leibler divergence:

Corollary 7. Let ¢ € D (R?). Let Q C R be a compact set and f : Q — R, be a continuous
probability density. Suppose that there is an ) > 0 such that both f > 1 and ¢ > 1 on ). Then
there is a constant M > 0 such that, for each m € N, it holds that

M
inf KL <—( 2 — |2 ) 1
o KL(7) < o (Sl + 1 el (10)

where || f — @l|220) = fo | f() — ¢(2)] da.

Let us note that any ¢ € D, (R?) is square-integrable so that the right-hand side of the bound (10)
is actually finite. This follows from the interpolation inequality

lellze < Vel lelie = Vgl (11)
see (Brezis, 2011, Exercise 4.4).

Remark 8. The first assertion of Theorem 3 and Theorem 5 generalize to deep belief networks with
additional hidden layers, however, it is still an open question whether (9) can be improved by adding
more depth, see also Jalali et al. (2019) for an analysis of this question in the context of Gaussian
mixture models.

Corollary 7 considerably generalizes the results of (Krause et al., 2013, Theorem 7). There, the
authors only prove that deep belief networks can approximate any density in the closure of the
convex hull of a set of probability densities satisfying certain conditions, which appear to be difficult
to check in practice. That work also does not contain a convergence rate. In comparison, our results
directly describe the class of admissible target densities and do not rely on the indirect description
through the convex hull. Finally, there is an unjustified step in the argument of Krause et al., which
appears hard to reconcile, see Remark 16 below for details.

4 PROOFS

This section presents the proofs of Theorems 3, 5 and Corollary 7. As a first step, we shall establish
a couple of preliminary results in the next two subsections.

4.1 L9-APPROXIMATION OF FINITE MIXTURES

Givenaset A C L? (Rd), the convex hull of A is by definition the smallest convex set containing A;
in symbols conv(A). It can be shown that

conv(A) = {Zaiai: a=(a1,...,an) € Ap,a1,... a4, GA,nGN}
i=1
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with A, = {z €[0,1]" : 3! | x; = 1}, the n-dimensional standard simplex. It is also convenient
to introduce the truncated convex hull

m
conv,, (4) = {Zaiai ta=(a1,...,am) € Ay a1, .., a0, € A}

for m € N so that conv(A) = [J,,cn convi, (A). The closed convex hull conv(A) is the smallest
closed convex set containing A and it is straight-forward to check that it coincides with the closure
of conv(A) in the topology of L4(R?).

The next result shows that we can approximate any probability density in the truncated convex hull
of the set (4) arbitrarily well by a DBN with a fixed number of hidden units:

Lemma 9. Let g € [1,00], ¢ € Dy(R?), 0 > 0, and m € N. Then, for every f € conv,,(V7) and
every € > 0, there is a deep belief network p € DBN,(d, m, m + 1) such that

If = pllze <e.

Proof. Since [ € convm(\?;), there are by definition of A,, (a1,...,am,) € A, and
(M1, pim) € (Rd)m such that

m
f= Z OGP o

We can think of & = (a1, ..., a,;,) as a probability distribution & on {0, 1}™ by declaring
~ Q5 if h1 = €;
hi) = ’ ’ hy € {0,1}™,
a(h) {O, else, 140,31}
where (e;); = 6; j, j = 1,...,m, is the i unit vector.

Let us fix ¢ € [1,00] and o > 0. By Proposition 1 there is a m € B-RBM(m, m + 1) such that

ah)— Y w(hihe)| < —— 0  Vhie {0,1)™ (12)
. mollellza
2€{0,1}m+
We set
_ ‘Pui,a(v)a hi = e,
pv[h) = {O, else,
and

p(v,h1,ha) = p(v|hi)m(hi, ha) € DBNy(d, m,m + 1).
This is the desired approximation since

If =pllze <D lai= D2 wlenho)||opoll . <e
=1

hoe{0,1}m+1

where we used that ||, » || L« = o||¢| L« for each 4 € R? and each o > 0. O

4.2  APPROXIMATION BY CONVOLUTION
Let f € LI(R?), g € [1,00], and ¢ € D(R?). We denote the convolution of f and ¢, by
(f *¢o)(x / f(p)po(x — p) dp = / F()pu,o(x) dp.

Young’s convolution inequality, Young (1912), implies that f x ¢, € L9(R%). In addition, the
following approximation result holds, see Appendix A.1 for the proof:

Proposition 10. Let o € D(R?). Then all of the following hold true:
1. Foreach q € [1,00) and each f € L1(R%), we have
lim || f — £+ o, =
lim ||/ =/ pol| o = 0

2. If f € L®(R?) N Cy(R?), then
lim [[f = f o] o =0
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4.3 APPROXIMATION THEORY IN BANACH SPACES

The second ingredient needed in the proof of Theorem 3 is an abstract result from the geometric the-
ory of Banach spaces. To formulate it, we need to introduce the following notion: The Rademacher

type of a Banach space (X -l X) the largest number t > 1 for which there is a constant C' > 0
such that, for each ¥ € Nand each fi,..., f € X,
k t k
E | efi <O |fill%
i=1 x i=1
holds, where €1, . . ., ¢, are i.i.d. Rademacher random variables, that is, P(e; = +1) = 1. It can be

shown that t < 2 for every Banach space.

Example 11. The space LI(R?) has Rademacher type t = min(q,2) for ¢ € [1,00). The space
L>(R%) on the other hand has only trivial type t = 1.

A good reference for the above results on the Rademacher type is (Ledoux & Talagrand, 1991,
Section 9.2). The next approximation result and its application to L?(R%) will be important below:

Proposition 12 (Donahue et al. (1997), Theorem 2.5). Let (X, || - ||x) be a Banach space of Rade-
macher type t € [1,2]. Let A C X and f € conv(A). Suppose that § = sup e 4 ||f — gllx < o0
Then there is a constant C > 0 only depending on the Banach space (X, || - || x) such that, for each
m € N, we can find an element h € conv,, (A) satisfying
¢

— .
mi—t

I f = hllx < (13)

Notice that the bound (13) is of course trivial for t = 1. Moreover, in Appendix A.2 we provide an
example which shows that the convergence rate mi=1is optimal.
Corollary 13. Let A C LI(R?), 1 < q < oo, and suppose that f € conv(A). If ¢ = Supgeq |If —
gllx < oo, then for all m € N, there is a h € conv,, (A) such that

T4€

1f = Blloe < —
m

b
min(q,2)

where Y, is the constant defined in (8).

Proof. Owing to Example 11 we are in the regime of Proposition 12. The sharp constant C' = Y,
was derived in Haagerup (1981). [

4.4 PROOF OF THEOREMS 3 AND 5
Before giving the technical details of the proofs, let us provide an overview of the strategy:

1. By Proposition 10 we can approximate the density f € D,(R?) with f x ¢, up to an error
which vanishes as o | 0.

2. Upon showing that f x ¢, € W(Vg), Proposition 13 allows us to show that for each
€ > 0 and each m € N, we can pick o > 0 such that

20 y[l¢ll L

inf ||f —gllpe < e+ I
) m min(q,2)

gEconv, (Vg

3. Finally, we employ Lemma 9 to conclude the desired estimate (9).
Lemma 14. Let g € [1,00], f € Dy(R?), and ¢ € D(R?). Then, for each o > 0, we have

f* o € conv(Vy),

with the closure understood with respect to the norm || - || La.
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Proof. Let us abbreviate g = f % ;. We argue by contradiction. Suppose that g ¢ conv (V7).
As a consequence of the Hahn-Banach theorem, ¢ is separated from conv(\?;) by a hyperplane.

More precisely, there is a continuous linear function p : LI(R%) — R such that p(h) < p(g) for all
h e Conv(V"), see (Brezis, 2011, Theorem. 1.7). On the other hand, we however have

_p</f %adu> /f p(Pu.0) dp < plg /f ) dp = p(g),

which is the desired contradiction. O
‘We can now establish the main results of this article:

Proof of Theorems 3 and 5. Let us first assume that ¢ € (1, 00) and prove the quantitative bound
(9). To this end fix e > 0 and m € N. We first observe that, by Proposition 10, we can choose
o > 0 sufficiently small such that Hf — f* <p[,HLq < 5. Employing Lemma 14 and Corollary 13

with A = V7, we can find a g, € conv,,(V7) such that
T
lf = gmllze < ||f_f*<)00'||Lq + ||f*§00 _gmHLq < g‘" 1_7(11 sup Hf*@a _‘Pu,aHLq-
m min(q,2) MGRd

For the last term we bound

sup || % 05 — Puoll L, = sup (/
HERD R

q 7
dy)

g f(x) sup (/R 0o (y — ) — oy — u)lqdy) '

= sup Hgo — QO,MHLC, < 2[|el L,
HER

/ f ()OU( - x) @U(y :u')) dx

d

whence
= 2ylele

— I <
|| f gm || IS 2 ml _ m
Finally, Lemma 9 allows us to choose p € DBN,,(d, m, m+-1) such that || g,, —p|| L« < 5. Therefore,

we conclude 27, |||l
1 = pllie <€+11174Pm
m

Since € > 0 was arbitrary, the bound (9) follows.

__1 -
min(q,2)

If ¢ = 1 or ¢ = oo, we use the fact that
conv(A) = U conv,, (4)
meN

for any subset A of either L*(R%) or L°°(IR?), respectively. This implies that, for each ¢ > 0, we
can find m € Nand g,, € conv,,(V7) such that | f * o — gm”Lq < £. If ¢ = oo, we note that a
uniformly continuous and integrable function is always bounded. Hence, in any case we can apply
Proposition 10 to find a ¢ > 0 for which H f—r= <pUH 1« < 5. Finally employing Lemma 9 as
above, there is a p € DBNy(d, m, m + 1) such that

1F =l <= Frollpn+ 1500 = gmllpa + lgm — 10 <o O
4.5 KULLBACK-LEIBLER APPROXIMATION ON COMPACTS

Let us begin by bounding the Kullback-Leibler divergence in terms of the L2-norm:

Lemma 15 (Zeevi & Meir (1997), Lemma 3.3). LetQ C R, f: Q — R, and g : R — R be
probability densities. If there is ann > 0 such that both f,g > 1 on (Q, then

KL(fll9) < *Hf 9lZz 0
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Proof. We use Jensen’s inequality and the elementary fact logx < x — 1, > 0, to obtain

KL(f|lg) = /ng (gg))) f(z)dz < log (/Q J;((i); dm)
< [ a1 = [ EAO b Dir i
Q Q n

(x
9(x) 9(x)
Finally, we can prove the approximation bound in Kullback-Leibler divergence:

Proof of Corollary 7. Extending the target density f by zero on R? \ Q, the corollary follows
from Theorem 3 upon showing that, for each m € N, we can choose the approximation p €
DBN(d, m,m + 1) in such a way that p > 7 on Q.

To see this, we notice that f is uniformly continuous since € is compact. Hence, Theorem 5 allows
us to pick an M € N such that, for each m > M, there is a p,,, € DBN,(d, m,m + 1) with
lf = pmllL>~ < 3. In particular, each of these DBNs satisfies p,,, > 4 on (2. Consequently, by
Lemma 15 we obtain

8l

KLU < =2

inf Vm > M. (14)
pEDBN (d,m,m+1

A crude upper bound on inf,cpgn,, (d,m,m+1) KL(f||p) for m < M can be obtained choosing both
zero weights and biases in (1) as well as p(v | h1) = ¢ for each h; € {0,1}™ in (3). Hence, the
visible units of the DBN have density ¢. This gives

1
inf KL <KL < =|If —ol? Vm=1,...,M —1, 15
soon B KLU D) SKL(fll9) < L If = ¢lie@) v (15)

again by Lemma 15. Finally, combining (14) and (15) we get the required estimate:

M
inf KL(/f[lp) < = (s]l¢l? — ellae) - 0
o M KL < (Sl + 17 - el
Remark 16. Our strategy of the proof of the Kullback-Leibler approximation in Corollary 7 through
Lemma 15 differs from the one employed in (Krause et al., 2013, Theorem 7). There, the authors
built on the results of Li & Barron (1999) and in the course of their argument claim that the following
statement holds true:

Let f,, f : Q — R,, m € N, be probability densities on a compact set 2 C R with f,,, f > n >
0. If KL(f||fm) — 0 as m — oo, then f,,, — f in the norm || - || .

This, however, does not hold as we illustrate by a simple counterexample presented in Appendix A.3.

5 CONCLUSION

We investigated the approximation capabilities of deep belief networks with two binary hidden layers
of sizes m and m + 1, respectively, and real-valued visible units. We showed that, under minimal
regularity requirements on the parental density ( as well as the target density f, these networks are
universal approximators in the strong L? and Kullback-Leibler distances as m — oo. Moreover, we
gave sharp quantitative bounds on the approximation error. We emphasize that the convergence rate
in the number of hidden units is independent of the choice of the parental density.

Our results apply to virtually all practically relevant examples thereby theoretically underpinning
the tremendous empirical success of DBN architectures we have seen over the last couple of years.
As we alluded to in Remark 4, the frequently made choice of a Gaussian parental density does not
provide the theoretically optimal DBN approximation of a given target density. Since, in practice,
the choice of parental density cannot solely be determined from an approximation standpoint, but
also the difficulty of the training of the resulting networks needs to be considered, it is interesting to
further empirically study the choice of parental density on both artificial and real-world datasets.
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A DETAILS OF THE MATHEMATICAL RESULTS

This appendix provides further details of the mathematical results used in the main text. More
specifically, we provide
1. the proof of Proposition 10,

2. adetailed proof of Proposition 12 for Hilbert spaces as well as an example showing that its
approximation rate is optimal in general, and

3. the construction of an explicit counterexample to the statement discussed in Remark 16.

A.1 PROOF OF PROPOSITION 10

Proof. Item 1 is well known, see e.g. (Folland, 1999, Theorem 8.14). For 2 fix € > 0. By uniform
continuity of f, we can find a § > 0 such that

sup |f(x) — f(z — )| < Vz e R% (16)

|ul<o

| ™

In particular, we obtain
7@) = (£ ) @)
< [ eatili@) - 5o = ol
< el s mlant [ el s

{lul<d}

9
<2Afle= [ ealwdnt
{ln>3d}

where we applied the uniform continuity estimate (16) to the second integral. Since

/ 0o (1) d,u:/ o(p)dp — 0 aso |0,
{Iul>3} {iu>2}

we can choose og > 0 such that ||f — (f * <pg)HLm < eforall o € (0,00). This completes the
proof.

O

A.2 DETAILS ON PROPOSITION 12

While the proof of Proposition 12 for a general Banach space is rather technical, we find it instructive
to present the simplified argument for a Hilbert space. Our proof is inspired by Jones (1992), see
also Barron (1994).

Proposition 17. Let (X, - ||x) be a Hilbert space. Let A C X and f € conv(A). Suppose that
§ = supyeq l|f — gllx < oco. Then, for each m € N, we can find an element g € conv,,(A)
satisfying

£

If—gllx < N (17)

Proof. We proceed by induction on m € N. The base m = 1 is trivial, so we can assume that the
statement holds for m > 1. Let us declare

—_

= = inf — .
mi1 =t If —gllx

13
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By the induction hypothesis, we may assume that =, < % and we can find h € conv,,(4)
attaining this bound. Consequently, we get

2
mi1 S I A(f=g)+ (@ =N(f h)HX
geA
= nf W7 = gl + 2= N {f =g S = By + (L= 0 Wi as
geA
< i (Y202 R B B 2]
S o NVEAA N nh (f g f R+ (1= A) m]
We claim that
inf (f —g,f —h), =0. (19)
geA

To see this, let us fix an € > 0 and observe that, since f € conv(A), the Cauchy-Schwarz inequality
implies that there must be a finite convex combination of elements in A satisfying

k
> ai(f—ai f—h) <f Zayaz,f h>
1=1

In particular, the inequality (f — a;, f — h) < ¢ holds for at least one vector a; € A. Since e > 0
was arbitrary, we have established (19).

Inserting (19) in (18), we arrive at

2'—2
EQ < inf )\2 2 1=\ 2:2 5
m—+1 AGH&J,l] f +( ) 52 .—2 )

where the last step follows by chosing A = EQE?’; e € [0, 1]. Finally, recalling the induction hypoth-

esis 2y, < %, we conclude

ﬁ 52
=2 < 62 m —
m+1 X 52 n ﬁ m—+ 1 .
This establishes (17) for m + 1 and the induction is complete. O]

Returning to the original statement of Proposition 12 for a general Banach space, the next example
shows that its convergence rate is optimal in general:

Example 18. For p € (1,2] let us consider the Banach space (P (R) of p-summable real-valued
sequences, that is, (an)nen C R belongs to (P (R) iff

- 1
P
laller = (Z |anp> < 0.
n=1

It can be shown that this Banach space has Rademacher type t = p. Let A be the set formed of the
standard basis vectors:

A =1{(1,0,0,0,...),(0,1,0,0,...),(0,0,1,0,...),... }.
Choosing f = 0, we find that

inf — hller = inf b .
h€colnr\11m(A) ||f ||€ (al,...,lc?m)EAm <Z al)
(0%

The optimum on the right-hand side is attained by choosing ay = - - - = ayy, = - so that
1 1
If =hlle = == = ==
h6c0nvm(A) m- P m-

14
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A.3 CONSTRUCTION OF THE COUNTEREXAMPLE IN REMARK 16

Let 2 = [0, 1] and consider the sequence of probability densities given by

Fm(@) = Chy (1/\ <mx+;>> m €N,

where C,,, = (1 — 1/(8m))~! is chosen such that fol fm(x)dz = 1. Then we have f,,(x) —
Ljo,1(x) = f(x) pointwise on (0, 1]. On the other hand, it holds that

1
sup |f(z) = f(2)| = |fm(0) = f(O)] =5 ¥mEN.
z€[0,1]
Consequently, f,, does not converge uniformly to f.

Nevertheless, it is straight-forward to check that H Jm =1 || ;2 — Oandsince f,, f > 1 /2 on ),
we have KL(f,,,|| f) — 0 as m — oo by Lemma 15.

15
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