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Abstract
Concept Bottleneck Models (CBMs) provide001
a promising approach to enhance interpretabil-002
ity in machine learning models. These models003
excel at disentangling and anchoring visual rep-004
resentations into human-comprehensible con-005
cepts. We present an approach to enhance vi-006
sual model interpretability by incorporating nat-007
ural language text directly extracted from im-008
ages. We introduce the Visual-Rationale Align-009
ment Learning (VIRAL) framework, which in-010
corporates natural language text directly ex-011
tracted from images to improve the inter-012
pretability of visual models. Through the use013
of the Gumbel-Sinkhorn algorithm for sparse014
alignment and extensive experimental analysis,015
VIRAL demonstrates its effectiveness in pro-016
viding human-understandable explanations for017
predictions, contributing to the development018
of more transparent and trustworthy AI multi-019
modal systems.020

1 Introduction021

Data in the real world is complex and often exhibit022

intricate symmetries and patterns. This complex-023

ity suggests that a limited number of factors could024

explain the extensive variation seen in real-world025

data. The success of representation learning in026

machine learning is largely dependent on the recog-027

nition and utilization of these patterns and struc-028

tures. Concept-based learning (Koh et al., 2020)029

has emerged as a powerful approach to address this030

problem by anchoring representations in human-031

understandable concepts, such as colors, shapes,032

textures, and objects, which are crucial for interpre-033

tation and categorization. By focusing on these in-034

terpretable concepts, concept-based learning aims035

to create a more robust and transparent framework036

for understanding and manipulating large datasets037

that drive advances in machine learning. The con-038

cept explanations (Koh et al., 2020; Yuksekgonul039

et al., 2022) provided by concept bottleneck mod-040

els (CBMs) offer insight into the inner workings of041

a prediction model by identifying the most crucial 042

concepts on which the model relies when making 043

a decision. To generate a meaningful explanation, 044

a range of possible concepts and a set of exam- 045

ples that the model has previously encountered 046

are presented. The explanation then highlights 047

the concepts that frequently appear in the exam- 048

ples and aids the model in making accurate predic- 049

tions. However, concept explanations are suscepti- 050

ble to spurious correlations within the data, result- 051

ing in unreliable interpretations. Sparsity emerges 052

as a viable strategy to address the challenges posed 053

by these spurious correlations by constraining the 054

number of concepts considered by the model. We 055

introduce the Visual-Rationale Alignment Learning 056

(VIRAL) framework, which incorporates natural 057

language text directly extracted from images to 058

improve the interpretability of visual models. 059

By minimizing the alignment loss, VIRAL en- 060

courages the model to align the visual features with 061

the most relevant rationale features while promot- 062

ing sparsity in the alignment. The sparsity induced 063

by the Gumbel-Sinkhorn algorithm enhances the 064

interpretability of the model by focusing on the 065

most important concepts. The effectiveness of the 066

VIRAL framework is demonstrated through ex- 067

tensive experiments on real-world datasets. The 068

results show that VIRAL achieves promising in- 069

terpretability, as measured by established metrics, 070

while maintaining competitive performance com- 071

pared to baseline models. 072

2 Related Work 073

We explore some related work in relation to Con- 074

cept/Attributes, Concept Alignment, and Latent 075

Matchings. 076

Concept/Attribute based frameworks Attributes 077

or concepts have the potential to significantly in- 078

crease the interpretability of machine learning mod- 079

els, particularly in the context of data transfer be- 080
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tween tasks (Palatucci et al., 2009; Frome et al.,081

2013; Lampert et al., 2009). Practioners have suc-082

cessfully mapped specific attributes or high-level083

concepts, such as hues, contours, or abstract no-084

tions, to model features, thus enabling the provi-085

sion of human-comprehensible explanations for086

model predictions. This methodology facilitates087

the elucidation of factors that influence a model’s088

decisions, thereby fostering improved understand-089

ing, trust, and debugging of the model. Concept090

Bottleneck Models (CBMs) Koh et al. (2020) are a091

promising approach to improve interpretability in092

machine learning. Unlike attribute-based models,093

which depend on predefined attributes that require094

extensive domain knowledge and may not capture095

the full complexity of the data, CBMs integrate096

the learning of high-level concepts directly into the097

model by incorporating a bottleneck layer with a098

dimension smaller than that of the input and output099

layers, forcing the network to learn a compressed100

representation of the input data. This integration101

enables CBMs to automatically discover and uti-102

lize meaningful intermediate concepts that are both103

interpretable and relevant to the prediction task.104

Concept Alignment Concept alignment (Rane105

et al., 2023), a subfield of AI alignment, aims to106

ensure that AI systems and humans share a com-107

mon understanding of concepts. Recent research108

(Rane et al., 2023; Wynn et al., 2023; Sucholutsky109

and Griffiths, 2023) has highlighted the importance110

of concept alignment for safe and beneficial AI111

development, exploring its relationship with value112

alignment. Further studies have delved into how113

humans and AI learn concepts, identifying path-114

ways towards mutual understanding and suggest-115

ing methodologies to enhance concept alignment.116

This work contributes to these efforts by proposing117

a novel approach to facilitate concept alignment,118

with potential to address limitations of existing119

methods.120

Learning with Matchings In many machine learn-121

ing scenarios, ’learning with matchings’ is cru-122

cial. It involves identifying optimal correspon-123

dences between item sets, such as matching users124

with products, aligning multilingual lexicons (Con-125

neau et al., 2017; Hoshen and Wolf, 2018; Mukher-126

jee et al., 2018), or tracking objects across video127

frames (Burke et al., 2020). This method leverages128

data structures and relationships to address com-129

plex challenges. The goal is to develop models that130

predict the best matchings,131

3 Sparse Concept Bottleneck Model and 132

Visual-Rationale Alignment (VIRAL) 133

This section introduces the Sparse Concept Bot- 134

tleneck Model and Visual-Rationale Alignment 135

(VIRAL) framework, which incorporates rationale 136

selection, visual feature alignment, and sparsity 137

constraints to enhance interpretability and perfor- 138

mance in image classification tasks. Given a data 139

set X ∈ RN×H×L×c of N images, each with di- 140

mensions H ×L and c channels, and a correspond- 141

ing set of textual descriptions ti for each image xi, 142

VIRAL aims to align visual representations with 143

the most informative and pertinent textual frag- 144

ments, referred to as rationales. To incorporate 145

rationales and improve interpretability, we intro- 146

duce a rationale selector gϕ that operates on the 147

textual descriptions ti associated with each image 148

xi. The framework, similar to Concept Bottleneck 149

Models (CBMs) (Koh et al., 2020), employs a dual 150

encoder architecture: a text encoder f txt(.) and 151

an image encoder f img(.). The schema of VIRAL 152

is shown in Fig 1 The rationale selector assigns

Figure 1: Overview of VIRAL, which processes an input
image and its concept annotations through encoders to
extract features, mapped into a common embedding
space.

153
relevance scores to words or phrases in the text, 154

identifying the most informative fragments. Let ri 155

denote the rationale for the i-th image, obtained 156

by applying the rationale selector to the text. The 157

rationales ci provide a focused representation of 158

the text, highlighting key aspects for understanding 159

the image. The text encoder f txt(·) uses rationales 160

or concepts {ci}Mi=1. These rationales or concepts 161

represent the most informative aspects of the text 162

for interpreting the images. On the other hand, the 163

image encoder f img(·) translates each image xi 164

into an image-based feature vector f img(xi). To 165

capture the alignment between the image feature 166

vectors and the rationale/concept vectors, a similar- 167

ity matrix S ∈ RN×M is constructed. 168

S ≈ f txt(ci)
T f img(xi) ∈ RN×M (1) 169
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Given the computation of S across all image-170

concept pairings, each image is endowed with a171

unique representation based on its similarity to each172

concept or rationale. This approach diverges from173

the complex projections used in related Concept-174

Based Model (CBM) methodologies, such as those175

proposed by Bachman et al. (2019); Tschannen176

et al. (2019). We contend that the similarity vec-177

tor itself serves as an effective and robust image-178

concept representation, thereby obviating the need179

for additional computational layers often deemed180

superfluous in the literature (Wong et al., 2021). In181

a K-class classification scenario, we integrate a lin-182

ear layer Wk ∈ RN×K with the similarity matrix183

S. This configuration yields the network output:184

Y = SWT
k ∈ RN×K (2)185

The prediction loss Lpred is defined based on the186

linear model in equation 2. It measures the dis-187

crepancy between the predicted class probabilities188

ŷ and the true class labels y. We use the cross-189

entropy loss to compute Lpred:190

Lpred = − 1

N

N∑
i=1

K∑
k=1

yik log ŷik (3)191

where yik is the true label of the i-th image for the192

k-th class (0 or 1), and ŷik is the predicted class193

label.194

The alignment loss Lalign encourages the model to195

learn meaningful alignments between image and196

rationale features, captured by the similarity ma-197

trix S. The similarity matrix S, computed using a198

similarity function, is typically dense with most ele-199

ments nonzero. To focus on significant alignments,200

we use Gumbel-Sinkhorn (Mena et al., 2018), com-201

bining Gumbel-Softmax (Gumbel, 1954) with the202

Sinkhorn algorithm (Cuturi, 2013). The Gumbel-203

Softmax trick adds stochasticity, enabling a differ-204

entiable approximation of discrete choices. Alg 1205

demonstrates how to obtain S′.206

Algorithm 1 Compute Selected Similarity Matrix
using Gumbel-Sinkhorn
Input: Image features f img(xi), concept features

f txt(ci), learnable matrix W, temperature
τ

Output: Selected Similarity Matrix S′

Compute Similarity Matrix: S =
f img(x)f txt(ri)

T ;
Apply Gumbel-Max Trick:

• Generate Gumbel noise G ∼
Gumbel(0, 1)M×N

• W̃ = softmax((W +G)/τ)

Compute Selected Similarity Matrix: S′ = W̃⊙
S;

To quantify the effectiveness of the transforma- 207

tion from an original matrix S to a sparse matrix S′ 208

achieved through a Gumbel-Softmax mechanism, 209

the alignment loss function, Lalign is introduced. 210

This loss function measures the fidelity of S′ in cap- 211

turing the essential structural characteristics of S, 212

while adhering to the sparsity constraints imposed 213

by the Gumbel-Softmax process. The alignment 214

loss can be expressed as follows: 215

Lalign = ∥S− S′∥2F , (4) 216

where ∥ · ∥F denotes the Frobenius norm.his 217

formulation not only highlights the differences be- 218

tween the matrices but also penalizes larger dis- 219

crepancies more severely, ensuring that S′ closely 220

aligns with the patterns and values found in S. 221

The alignment regularization is added to the con- 222

cept prediction loss Lpred and the alignment loss 223

Lalign to form the final objective function: 224

L = Lpred + λalignLalign (5) 225

where λalign is a hyperparameter. 226

4 Experimental Evaluation 227

Experimental Setup. We evaluated three differ- 228

ent benchmark data sets to assess the proposed 229

hierarchical framework, namely CUB (Wah et al., 230

2011), SUN (Xiao et al., 2010), and AwA (Xian 231

et al., 2017) with their description in Tab 1. 232

These data sets cover a wide range of diversity 233

in both the number of samples and their practical 234

use. For vision models, we utilize CLIP (Radford 235

et al., 2021) with a standard backbone, specifically 236
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Table 1: Description of Datasets

Dataset Attr. Ex. Labels
AwA (Animals with Attr.) 85 30,475 50
SUN (Scene Und.) 102 14,340 717
CUB (Caltech Birds) 312 11,788 200

ViT-B/16. To avoid recalculating embeddings for237

images/patches and text data in each iteration, we238

pre-compute these embeddings using the chosen239

backbone. These embeddings are then loaded and240

used during the training phase to calculate the nec-241

essary metrics. For high-level conceptual analy-242

sis, we consider the class names of each dataset.243

We use BLIP (Li et al., 2022) to generate precise244

and contextually rich captions for diverse image245

datasets. The BLIP model, with its dual capabilities246

in image comprehension and natural language pro-247

cessing, is central to our automated caption genera-248

tion strategy. We keep the value of λalign = 0.75249

and τ = 0.5.250

4.1 Classification Performance251

This section evaluates the classification accuracy252

of VIRAL. Our evaluation compares several mod-253

els to assess the classification and concept spar-254

sification capabilities of our proposed model: (i)255

a baseline model without interpretability features,256

(ii) state-of-the-art Label-Free Concept Bottleneck257

Models (CBMs) (Oikarinen et al., 2023), (iii) tasks258

using CLIP embeddings, and (iv) classifications259

leveraging concept set similarity (CDM). We also260

highlight VIRAL’s contributions to model inter-261

pretability and efficiency.262

Table 2 presents the accuracy achieved by VI-263

RAL and various baseline methods across three264

data sets. As observed, VIRAL consistently265

achieves competitive accuracy on all datasets. No-266

tably, it surpasses the Label-Free CBM on all267

datasets, demonstrating the effectiveness of our268

sparse models. Although we primarily focused on269

accuracy, it is important to note that VIRAL also270

offers concept sparsification and interpretability ad-271

vantages, which we analyzed separately.272

Interpretability Metrics. In the absence of human273

annotators, we propose to assess the interpretabil-274

ity and groundability of our concept representation275

using Concept Consistency which measures image276

coherence and alignment per concept. Consistency277

is quantified by the average pairwise similarity of278

images linked to a concept, indicating that well-279

grounded concepts in the visual domain exhibit280

Dataset (Accuracy %)
Model CUB SUN AwA
Baseline (Images) 76.70 42.90 76.13
Label-Free CBMs 74.59 − 71.98
CLIP Embeddings 81.90 65.80 79.40
CDMH (Panousis et al., 2023) 80.30 66.25 75.22
VIRAL (Ours) 81.40 67.45 74.70

Table 2: Classification Accuracy for Various Models.
Bold values denote the best performance per dataset.

similar features. Concept consistency is computed 281

by extracting visual features using a pre-trained 282

CLIP models followed by calculating pairwise co- 283

sine similarities of these features. The average 284

similarity score indicates visual consistency and 285

concept alignment with its visual representations. 286

This metric is evaluated across all concepts, provid- 287

ing insight into the model’s ability to maintain con- 288

sistent and interpretable concept representations. 289

Figure 2: This figure evaluates three models—Label-
Free CBM, CDM, VIRAL—across CUB, SUN, and
AwA. The Concept Consistency, measures average pair-
wise similarity of concept-linked images, showing each
model’s ability to maintain coherent concept representa-
tions.

5 Conclusion 290

In this paper, we present VIRAL, a multi-faceted 291

framework that improves the interpretability of vi- 292

sual models by incorporating natural language text. 293

VIRAL extracts meaningful rationales from texts 294

associated with images, which serve as a bridge 295

between visual features and human-understandable 296

concepts. The Gumbel-Sinkhorn algorithm acts as 297

a differentiable concept selector, aligning visual 298

features with extracted rationales and focusing the 299

model on key concepts. 300
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6 Limitations301

The VIRAL framework, while innovative, has sev-302

eral limitations that could impact its efficacy and303

application. First, VIRAL’s effectiveness of VI-304

RAL depends on the quality and relevance of the305

natural language text associated with the images.306

Noisy, irrelevant, or explanatorily weak texts can307

result in poorly captured underlying concepts lead-308

ing to suboptimal alignment and interpretability.309

Furthermore, VIRAL is limited to text-based ex-310

planations, which may not suffice for expressing311

complex visual patterns or abstract concepts better312

conveyed through visual means.313

Additionally, the performance and interpretability314

of VIRAL are sensitive to hyperparameter settings,315

including the temperature parameter in the Gumbel-316

Sinkhorn algorithm and weighting coefficients for317

the loss terms. The optimal configuration of these318

parameters necessitates extensive experimentation319

and domain expertise, potentially limiting the ac-320

cessibility and adaptability of the model. The incor-321

poration of the Gumbel-Sinkhorn algorithm also322

adds significant computational complexity, partic-323

ularly when dealing with large datasets or high-324

dimensional feature spaces, which may impede325

scalability and real-time application.326

Evaluating the interpretability provided by VIRAL327

poses challenges because interpretability assess-328

ments are often subjective and context-dependent.329

Although the existing metrics offer some insights,330

they may not fully encapsulate human perception331

and understanding, necessitating user studies or332

expert evaluations for a more comprehensive as-333

sessment. In addition, the effectiveness of VIRAL334

can vary across different domains, such as medical335

or satellite imagery, where domain-specific knowl-336

edge is crucial for extracting meaningful rationales.337

Adapting VIRAL to these domains may require338

specialized preprocessing or domain-specific lan-339

guage models.340

Despite its capacity to align visual features with341

interpretable rationales, VIRAL might still leave342

explanatory gaps. The decision-making process343

in models can involve complex interactions and344

transformations that are not fully elucidated by345

rationales alone, highlighting the need for addi-346

tional techniques or complementary explanations347

to bridge these gaps.348
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