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Abstract

Concept Bottleneck Models (CBMs) provide
a promising approach to enhance interpretabil-
ity in machine learning models. These models
excel at disentangling and anchoring visual rep-
resentations into human-comprehensible con-
cepts. We present an approach to enhance vi-
sual model interpretability by incorporating nat-
ural language text directly extracted from im-
ages. We introduce the Visual-Rationale Align-
ment Learning (VIRAL) framework, which in-
corporates natural language text directly ex-
tracted from images to improve the inter-
pretability of visual models. Through the use
of the Gumbel-Sinkhorn algorithm for sparse
alignment and extensive experimental analysis,
VIRAL demonstrates its effectiveness in pro-
viding human-understandable explanations for
predictions, contributing to the development
of more transparent and trustworthy Al multi-
modal systems.

1 Introduction

Data in the real world is complex and often exhibit
intricate symmetries and patterns. This complex-
ity suggests that a limited number of factors could
explain the extensive variation seen in real-world
data. The success of representation learning in
machine learning is largely dependent on the recog-
nition and utilization of these patterns and struc-
tures. Concept-based learning (Koh et al., 2020)
has emerged as a powerful approach to address this
problem by anchoring representations in human-
understandable concepts, such as colors, shapes,
textures, and objects, which are crucial for interpre-
tation and categorization. By focusing on these in-
terpretable concepts, concept-based learning aims
to create a more robust and transparent framework
for understanding and manipulating large datasets
that drive advances in machine learning. The con-
cept explanations (Koh et al., 2020; Yuksekgonul
et al., 2022) provided by concept bottleneck mod-
els (CBMs) offer insight into the inner workings of

a prediction model by identifying the most crucial
concepts on which the model relies when making
a decision. To generate a meaningful explanation,
a range of possible concepts and a set of exam-
ples that the model has previously encountered
are presented. The explanation then highlights
the concepts that frequently appear in the exam-
ples and aids the model in making accurate predic-
tions. However, concept explanations are suscepti-
ble to spurious correlations within the data, result-
ing in unreliable interpretations. Sparsity emerges
as a viable strategy to address the challenges posed
by these spurious correlations by constraining the
number of concepts considered by the model. We
introduce the Visual-Rationale Alignment Learning
(VIRAL) framework, which incorporates natural
language text directly extracted from images to
improve the interpretability of visual models.

By minimizing the alignment loss, VIRAL en-
courages the model to align the visual features with
the most relevant rationale features while promot-
ing sparsity in the alignment. The sparsity induced
by the Gumbel-Sinkhorn algorithm enhances the
interpretability of the model by focusing on the
most important concepts. The effectiveness of the
VIRAL framework is demonstrated through ex-
tensive experiments on real-world datasets. The
results show that VIRAL achieves promising in-
terpretability, as measured by established metrics,
while maintaining competitive performance com-
pared to baseline models.

2 Related Work

We explore some related work in relation to Con-
cept/Attributes, Concept Alignment, and Latent
Matchings.

Concept/Attribute based frameworks Attributes
or concepts have the potential to significantly in-
crease the interpretability of machine learning mod-
els, particularly in the context of data transfer be-



tween tasks (Palatucci et al., 2009; Frome et al.,
2013; Lampert et al., 2009). Practioners have suc-
cessfully mapped specific attributes or high-level
concepts, such as hues, contours, or abstract no-
tions, to model features, thus enabling the provi-
sion of human-comprehensible explanations for
model predictions. This methodology facilitates
the elucidation of factors that influence a model’s
decisions, thereby fostering improved understand-
ing, trust, and debugging of the model. Concept
Bottleneck Models (CBMs) Koh et al. (2020) are a
promising approach to improve interpretability in
machine learning. Unlike attribute-based models,
which depend on predefined attributes that require
extensive domain knowledge and may not capture
the full complexity of the data, CBMs integrate
the learning of high-level concepts directly into the
model by incorporating a bottleneck layer with a
dimension smaller than that of the input and output
layers, forcing the network to learn a compressed
representation of the input data. This integration
enables CBMs to automatically discover and uti-
lize meaningful intermediate concepts that are both
interpretable and relevant to the prediction task.
Concept Alignment Concept alignment (Rane
et al., 2023), a subfield of Al alignment, aims to
ensure that Al systems and humans share a com-
mon understanding of concepts. Recent research
(Rane et al., 2023; Wynn et al., 2023; Sucholutsky
and Griffiths, 2023) has highlighted the importance
of concept alignment for safe and beneficial Al
development, exploring its relationship with value
alignment. Further studies have delved into how
humans and Al learn concepts, identifying path-
ways towards mutual understanding and suggest-
ing methodologies to enhance concept alignment.
This work contributes to these efforts by proposing
a novel approach to facilitate concept alignment,
with potential to address limitations of existing
methods.

Learning with Matchings In many machine learn-
ing scenarios, ’learning with matchings’ is cru-
cial. It involves identifying optimal correspon-
dences between item sets, such as matching users
with products, aligning multilingual lexicons (Con-
neau et al., 2017; Hoshen and Wolf, 2018; Mukher-
jee et al., 2018), or tracking objects across video
frames (Burke et al., 2020). This method leverages
data structures and relationships to address com-
plex challenges. The goal is to develop models that
predict the best matchings,

3 Sparse Concept Bottleneck Model and
Visual-Rationale Alignment (VIRAL)

This section introduces the Sparse Concept Bot-
tleneck Model and Visual-Rationale Alignment
(VIRAL) framework, which incorporates rationale
selection, visual feature alignment, and sparsity
constraints to enhance interpretability and perfor-
mance in image classification tasks. Given a data
set X € RVxHXLxe of N images, each with di-
mensions I x L and c channels, and a correspond-
ing set of textual descriptions t; for each image x;,
VIRAL aims to align visual representations with
the most informative and pertinent textual frag-
ments, referred to as rationales. To incorporate
rationales and improve interpretability, we intro-
duce a rationale selector g, that operates on the
textual descriptions t; associated with each image
x;. The framework, similar to Concept Bottleneck
Models (CBMs) (Koh et al., 2020), employs a dual
encoder architecture: a text encoder f!*!(.) and
an image encoder f™9(.). The schema of VIRAL
is shown in Fig 1 The rationale selector assigns

Figure 1: Overview of VIRAL, which processes an input
image and its concept annotations through encoders to
extract features, mapped into a common embedding
space.

relevance scores to words or phrases in the text,
identifying the most informative fragments. Let r;
denote the rationale for the i-th image, obtained
by applying the rationale selector to the text. The
rationales c; provide a focused representation of
the text, highlighting key aspects for understanding
the image. The text encoder f1*!(-) uses rationales
or concepts {c; }£,. These rationales or concepts
represent the most informative aspects of the text
for interpreting the images. On the other hand, the
image encoder f"™9(-) translates each image x;
into an image-based feature vector fi™9(x;). To
capture the alignment between the image feature
vectors and the rationale/concept vectors, a similar-
ity matrix S € RV>*M is constructed.

S ~ ftXt(Ci)Tfimg(Xi) c RNXM (1)



Given the computation of S across all image-
concept pairings, each image is endowed with a
unique representation based on its similarity to each
concept or rationale. This approach diverges from
the complex projections used in related Concept-
Based Model (CBM) methodologies, such as those
proposed by Bachman et al. (2019); Tschannen
et al. (2019). We contend that the similarity vec-
tor itself serves as an effective and robust image-
concept representation, thereby obviating the need
for additional computational layers often deemed
superfluous in the literature (Wong et al., 2021). In
a K -class classification scenario, we integrate a lin-
ear layer W, € RV*X with the similarity matrix
S. This configuration yields the network output:

Y = SW] ¢ RVXK ()

The prediction loss £, is defined based on the
linear model in equation 2. It measures the dis-
crepancy between the predicted class probabilities
y and the true class labels y. We use the cross-
entropy loss to compute Lcq:

1 N K
pred N Z Z Yik IOg :'sz’ (3)
=1 k=1

where y;;; is the true label of the i-th image for the
k-th class (0 or 1), and g, is the predicted class
label.

The alignment loss L4y, encourages the model to
learn meaningful alignments between image and
rationale features, captured by the similarity ma-
trix S. The similarity matrix S, computed using a
similarity function, is typically dense with most ele-
ments nonzero. To focus on significant alignments,
we use Gumbel-Sinkhorn (Mena et al., 2018), com-
bining Gumbel-Softmax (Gumbel, 1954) with the
Sinkhorn algorithm (Cuturi, 2013). The Gumbel-
Softmax trick adds stochasticity, enabling a differ-
entiable approximation of discrete choices. Alg 1
demonstrates how to obtain S'.

Algorithm 1 Compute Selected Similarity Matrix
using Gumbel-Sinkhorn

Input: Image features f™#(x;), concept features
™% (c;), learnable matrix W, temperature
-
Output: Selected Similarity Matrix S’
Compute Similarity Matrix: S =
fimg (X) ftxt(ri)T;
Apply Gumbel-Max Trick:

e Generate Gumbel noise G ~

Gumbel (0, 1)M*N
« W = softmax((W + G)/7)

Compute Selected Similarity Matrix: S’ = W ©

S;

To quantify the effectiveness of the transforma-
tion from an original matrix S to a sparse matrix S’
achieved through a Gumbel-Softmax mechanism,
the alignment loss function, Ly, is introduced.
This loss function measures the fidelity of S’ in cap-
turing the essential structural characteristics of S,
while adhering to the sparsity constraints imposed
by the Gumbel-Softmax process. The alignment
loss can be expressed as follows:

£align = ||S - S/H%'a (4)

where || - |7 denotes the Frobenius norm.his
formulation not only highlights the differences be-
tween the matrices but also penalizes larger dis-
crepancies more severely, ensuring that S’ closely
aligns with the patterns and values found in S.

The alignment regularization is added to the con-
cept prediction loss £,,..q and the alignment loss
Lalign to form the final objective function:

L= Epred + /\alignﬁalign (5)
where Aqji4n 1 @ hyperparameter.

4 Experimental Evaluation

Experimental Setup. We evaluated three differ-
ent benchmark data sets to assess the proposed
hierarchical framework, namely CUB (Wah et al.,
2011), SUN (Xiao et al., 2010), and AwA (Xian
et al., 2017) with their description in Tab 1.

These data sets cover a wide range of diversity
in both the number of samples and their practical
use. For vision models, we utilize CLIP (Radford
et al., 2021) with a standard backbone, specifically



Table 1: Description of Datasets

Dataset Attr.| Ex. |Labels
AwWA (Animals with Attr.) | 85 |30,475 50
SUN (Scene Und.) 102 [ 14,340 | 717
CUB (Caltech Birds) 312 | 11,788 | 200

ViT-B/16. To avoid recalculating embeddings for
images/patches and text data in each iteration, we
pre-compute these embeddings using the chosen
backbone. These embeddings are then loaded and
used during the training phase to calculate the nec-
essary metrics. For high-level conceptual analy-
sis, we consider the class names of each dataset.
We use BLIP (Li et al., 2022) to generate precise
and contextually rich captions for diverse image
datasets. The BLIP model, with its dual capabilities
in image comprehension and natural language pro-
cessing, is central to our automated caption genera-
tion strategy. We keep the value of Ay;4, = 0.75
and 7 = 0.5.

4.1 Classification Performance

This section evaluates the classification accuracy
of VIRAL. Our evaluation compares several mod-
els to assess the classification and concept spar-
sification capabilities of our proposed model: (i)
a baseline model without interpretability features,
(ii) state-of-the-art Label-Free Concept Bottleneck
Models (CBMs) (Oikarinen et al., 2023), (iii) tasks
using CLIP embeddings, and (iv) classifications
leveraging concept set similarity (CDM). We also
highlight VIRAL’s contributions to model inter-
pretability and efficiency.

Table 2 presents the accuracy achieved by VI-
RAL and various baseline methods across three
data sets. As observed, VIRAL consistently
achieves competitive accuracy on all datasets. No-
tably, it surpasses the Label-Free CBM on all
datasets, demonstrating the effectiveness of our
sparse models. Although we primarily focused on
accuracy, it is important to note that VIRAL also
offers concept sparsification and interpretability ad-
vantages, which we analyzed separately.
Interpretability Metrics. In the absence of human
annotators, we propose to assess the interpretabil-
ity and groundability of our concept representation
using Concept Consistency which measures image
coherence and alignment per concept. Consistency
is quantified by the average pairwise similarity of
images linked to a concept, indicating that well-
grounded concepts in the visual domain exhibit

Dataset (Accuracy %)
Model CUB | SUN | AwA
Baseline (Images) 76.70 | 42.90 | 76.13
Label-Free CBMs 74.59 — 71.98
CLIP Embeddings 81.90 | 65.80 | 79.40
CDMH! (Panousis et al., 2023) | 80.30 | 66.25 | 75.22
VIRAL (Ours) 81.40 | 67.45 | 74.70

Table 2: Classification Accuracy for Various Models.
Bold values denote the best performance per dataset.

similar features. Concept consistency is computed
by extracting visual features using a pre-trained
CLIP models followed by calculating pairwise co-
sine similarities of these features. The average
similarity score indicates visual consistency and
concept alignment with its visual representations.
This metric is evaluated across all concepts, provid-
ing insight into the model’s ability to maintain con-
sistent and interpretable concept representations.

Concept Consistency Across Models and Datasets
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Figure 2: This figure evaluates three models—Label-
Free CBM, CDM, VIRAL—across CUB, SUN, and
AwA. The Concept Consistency, measures average pair-
wise similarity of concept-linked images, showing each
model’s ability to maintain coherent concept representa-
tions.

5 Conclusion

In this paper, we present VIRAL, a multi-faceted
framework that improves the interpretability of vi-
sual models by incorporating natural language text.
VIRAL extracts meaningful rationales from texts
associated with images, which serve as a bridge
between visual features and human-understandable
concepts. The Gumbel-Sinkhorn algorithm acts as
a differentiable concept selector, aligning visual
features with extracted rationales and focusing the
model on key concepts.



6 Limitations

The VIRAL framework, while innovative, has sev-
eral limitations that could impact its efficacy and
application. First, VIRAL’s effectiveness of VI-
RAL depends on the quality and relevance of the
natural language text associated with the images.
Noisy, irrelevant, or explanatorily weak texts can
result in poorly captured underlying concepts lead-
ing to suboptimal alignment and interpretability.
Furthermore, VIRAL is limited to text-based ex-
planations, which may not suffice for expressing
complex visual patterns or abstract concepts better
conveyed through visual means.

Additionally, the performance and interpretability
of VIRAL are sensitive to hyperparameter settings,
including the temperature parameter in the Gumbel-
Sinkhorn algorithm and weighting coefficients for
the loss terms. The optimal configuration of these
parameters necessitates extensive experimentation
and domain expertise, potentially limiting the ac-
cessibility and adaptability of the model. The incor-
poration of the Gumbel-Sinkhorn algorithm also
adds significant computational complexity, partic-
ularly when dealing with large datasets or high-
dimensional feature spaces, which may impede
scalability and real-time application.

Evaluating the interpretability provided by VIRAL
poses challenges because interpretability assess-
ments are often subjective and context-dependent.
Although the existing metrics offer some insights,
they may not fully encapsulate human perception
and understanding, necessitating user studies or
expert evaluations for a more comprehensive as-
sessment. In addition, the effectiveness of VIRAL
can vary across different domains, such as medical
or satellite imagery, where domain-specific knowl-
edge is crucial for extracting meaningful rationales.
Adapting VIRAL to these domains may require
specialized preprocessing or domain-specific lan-
guage models.

Despite its capacity to align visual features with
interpretable rationales, VIRAL might still leave
explanatory gaps. The decision-making process
in models can involve complex interactions and
transformations that are not fully elucidated by
rationales alone, highlighting the need for addi-
tional techniques or complementary explanations
to bridge these gaps.
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