
Multi-Token Prediction Needs Registers

Anastasios Gerontopoulos1,3 Spyros Gidaris2 Nikos Komodakis1,3,4

1Archimedes, Athena Research Center 2valeo.ai
3University of Crete 4IACM–Forth

Abstract

Multi-token prediction has emerged as a promising objective for improving lan-
guage model pretraining, but its benefits have not consistently generalized to other
settings such as fine-tuning. In this paper, we propose MuToR, a simple and effec-
tive approach to multi-token prediction that interleaves learnable register tokens
into the input sequence, each tasked with predicting future targets. Compared to
existing methods, MuToR offers several key advantages: it introduces only a negligi-
ble number of additional parameters, requires no architectural changes—ensuring
compatibility with off-the-shelf pretrained language models—and remains aligned
with the next-token pretraining objective, making it especially well-suited for su-
pervised fine-tuning. Moreover, it naturally supports scalable prediction horizons.
We demonstrate the effectiveness and versatility of MuToR across a range of use
cases, including supervised fine-tuning, parameter-efficient fine-tuning (PEFT), and
pretraining, on challenging generative tasks in both language and vision domains.
Our code is available at https://github.com/nasosger/MuToR.

1 Introduction

Autoregressive Transformer architectures have become the cornerstone of modern Large Language
Models (LLMs), enabling unprecedented capabilities across a wide range of natural language process-
ing tasks [Achiam et al., 2023, Liu et al., 2024]. Their success has also extended to domains such as
image generation [Esser et al., 2021, Sun et al., 2024] and multimodal models [Alayrac et al., 2022,
Liu et al., 2023]. These models are primarily trained using a simple yet effective approach: next-token
prediction with teacher forcing. By supplying ground truth tokens as context, teacher forcing enables
fully parallelized computation via masked self-attention, thus accelerating and stabilizing training.

However, next-token prediction with teacher forcing has notable limitations. Models trained this
way often focus on short-term patterns while struggling with harder, long-range decisions. Prior
work has shown that this setup can lead to shortcut learning, where valuable supervision diminishes
[Bachmann and Nagarajan, 2024], and that it underperforms on tasks requiring planning [Bubeck
et al., 2023]. These findings strongly suggest the need for training objectives that go beyond standard
next-token prediction.

To address these limitations, multi-token prediction training [Qi et al., 2020, Gloeckle et al., 2024, Liu
et al., 2024] has emerged as a promising alternative. Rather than predicting just one token at a time,
the model learns to predict multiple future tokens at each position. Recent implementations achieve
this through additional transformer output heads: Gloeckle et al. [2024] employs parallel heads, one
for each future token position, while Liu et al. [2024] uses sequential heads. Crucially, this approach
is used only during training, as its primary goal is to provide a more informative learning signal rather
than to speed up inference. Compared to standard teacher forcing, multi-token prediction encourages
the model to develop internal "planning" representations, and mitigates overfitting to local patterns.
Experiments by Gloeckle et al. [2024] demonstrate that it leads to improved generative performance
and increased data efficiency.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/nasosger/MuToR

Motivated by these findings, we explore whether a more effective approach for multi-token prediction
can further enhance autoregressive transformers.

We propose a simple but powerful modification: instead of adding extra transformer layers for future
token prediction, we introduce register tokens—special tokens interleaved between the regular tokens.
Each register token is assigned a randomly sampled offset d, and the model is trained to predict
the token d steps ahead (rather than just the next token) for these tokens. The original next-token
prediction objective remains unchanged for all regular tokens.

These register tokens are used exclusively during training to propagate a richer supervisory signal
through the model. At inference time, they are discarded to preserve generation speed. This is
made possible by a carefully designed attention mask: register tokens are allowed to attend only to
preceding regular tokens—enabling them to learn predictive representations—while regular tokens
are entirely blind to register tokens in both directions. This ensures full compatibility with standard
autoregressive inference while encouraging the model to internalize forward-looking, multi-step
planning during training.

Compared to approaches that add output heads or transformer blocks, our register-based method
offers several key advantages:

No architectural changes: Only a small number of additional trainable parameters are introduced
through register embeddings, while the core transformer layers remain untouched and no extra
output heads are required.

Fine-tuning compatibility: Our method is particularly well-suited for fine-tuning pretrained LLMs
(e.g., Llama [Grattafiori et al., 2024], Gemma [Gemma Team et al., 2024]). It introduces minimal
parameter overhead, preserves original attention patterns for regular tokens, and uses carefully
selected position ids and attention masks for register tokens—bringing multi-token prediction
closer to the next-token pretraining setup. In contrast, previous methods [Gloeckle et al., 2024,
Liu et al., 2024] rely on separate transformer heads, adding many new parameters that must be
trained from scratch, making them less effective in fine-tuning scenarios.

Scalable prediction horizons: Because the number of register tokens remains fixed regardless of
the offset d, the training cost is independent of the prediction horizon, which can be scaled
arbitrarily. Register tokens thus provide greater flexibility in future token prediction. For
example, in autoregressive image generation, our method naturally extends to predicting tokens
in a two-dimensional neighborhood—a capability not easily achieved by adding output heads.

Overall, our work delivers the following contributions:

• We introduce MuToR (Multi-Token prediction with Registers), a novel multi-token prediction
method that employs trainable, interleaved register tokens tasked with predicting multiple future
targets. MuToR enables scalable prediction horizons with minimal additional parameters and
seamlessly integrates with any pretrained autoregressive language model without architectural
modifications.

• Through experiments on language modeling benchmarks, we validate the effectiveness of MuToR
in both supervised fine-tuning and parameter-efficient fine-tuning (PEFT) settings, consistently
surpassing standard fine-tuning baselines under equivalent training compute.

• We further demonstrate the versatility of MuToR by applying it to autoregressive image gener-
ation in a pretraining setting, where it improves performance over standard teacher-forcing—
highlighting its broader potential across diverse domains and training settings.

2 Related Work

Limitations of Next-Token Prediction Bachmann and Nagarajan [2024] introduce a path-finding
task on star-graphs to highlight key limitations of standard next-token prediction (i.e., teacher forcing).
Their findings reveal that next-token prediction encourages shortcuts, making the underlying task
intractable and reducing validation accuracy to random-guessing levels. Interestingly, this "cheating"
behavior can be mitigated by multi-token prediction with lookahead embeddings, as in Monea
et al. [2023]. While the task is an extreme case, alternative transformer architectures can solve it
[Frydenlund, 2024], reinforcing the intuition that tasks requiring planning might need tailored training
objectives [Bubeck et al., 2023].

2

Multi-token and Lookahead Prediction Several works have explored decoding multiple future
tokens, primarily to accelerate inference rather than improve generation quality [Stern et al., 2018,
Monea et al., 2023, Li et al., 2024, Cai et al., 2024]. In contrast, Qi et al. [2020] propose a multi-
token prediction pre-training objective that enhances performance on some sequence-to-sequence
tasks. However, their method scales poorly to large decoder models because their multi-stream
attention mechanism becomes computationally expensive as prediction depth increases. More
recently, Gloeckle et al. [2024] proposed an architecture with multiple parallel decoding heads for
multi-token prediction, leading to better generative performance (mostly in coding tasks). Liu et al.
[2024] modified this approach to use sequential decoding heads instead. Both studies suggest that
multi-token prediction helps by providing richer supervision, better information sharing between
tokens, and implicit planning in hidden states. However, these benefits are mainly observed during
pretraining, with limited success in fine-tuning scenarios—a gap our work addresses.

A less related line of research trains autoregressive models on permuted sequences [Yang et al., 2019,
Pannatier et al., 2024, Kakogeorgiou et al., 2024, Yu et al., 2024, Pang et al., 2024]. By predicting
next tokens in shuffled order, these methods force the model to recover distant dependencies in the
original sequence. While conceptually interesting, they differ significantly from our approach.

Trainable Dummy / Register Tokens Recent work investigates the use of trainable tokens as
transformer inputs, revealing emergent properties. Burtsev et al. [2020] prepend dummy tokens to
prompts to induce working memory, but observe minimal gains. Goyal et al. [2024] demonstrate
that appended trainable tokens can improve performance by increasing operations between tokens,
thus encouraging deeper "thinking". Pfau et al. [2024] study the conditions under which a language
model can leverage the extra computation provided by the dummy tokens. Related efforts incorporate
planning tokens trained to predict latent reasoning steps [Wang et al., 2023, Yin et al., 2024]. In
the vision domain, Darcet et al. [2024] employ register tokens during pretraining to prevent the
appearance of high-norm artifacts. Similarly to these works, we use learnable tokens—but we also
associate them with an auxiliary multi-token prediction objective to create a denser training signal.

More related to our work, Monea et al. [2023] appends lookahead tokens to the input sequence and
trains them (while freezing the base model) to enable parallel decoding for speculative sampling.
Bachmann and Nagarajan [2024] adapt this idea to path-finding on star-graphs, by simultaneously
predicting multiple answer tokens from a prefix. While effective for these specific graph problems,
the approach’s complete "teacherless" training paradigm and parallel inference requirements make it
fundamentally unsuitable for the broader range of generative tasks we consider. Unlike these methods,
our approach only uses register tokens during training to enhance supervision, without modifying the
inference procedure or requiring additional compute at test time.

3 Method

3.1 Preliminaries

Next-Token Prediction Building on the foundational work of Shannon [1948, 1951], next-token pre-
diction remains the core objective for autoregressive language models. Given a sequence (x1, . . . , xt),
the model is trained to predict the next token xt+1 by maximizing the joint probability under left-to-
right factorization:

P (x1, . . . , xT) =
∏
t

P (xt+1 | x≤t), (1)

where T is the sequence length. For a model Pθ and dataset D, the training objective will be to
minimize the the expected negative log-likelihood loss over the dataset:

Lntp = ED

[
−
∑
t

logPθ(xt+1 | x≤t)

]
. (2)

Multi-Token Prediction In contrast, Gloeckle et al. [2024] propose predicting multiple future
tokens per position. Their objective minimizes:

Lmtp = ED

[
−
∑
t

logPθ(xt+1:t+dmax
| x≤t)

]
, (3)

3

Figure 1: Next-token prediction vs. Multi-token prediction with registers (MuToR). The trans-
former block represents any decoder-only autoregressive model, with colored lines indicating per-
mitted attention connections between tokens. Left: Standard next-token prediction, where each
xt predicts xt+1 conditioned on preceding tokens. Right: MuToR interleaves register tokens rd to
predict tokens d steps ahead (xt+d), conditioned only on previous regular tokens. Register tokens are
assigned position ids (e.g., t+ d− 1 for rd targeting xt+d) that mimic next-token prediction. Regular
tokens follow the standard next-token prediction formulation, unaffected by the registers.

where we denote the maximum prediction horizon as dmax, to align notation with our method.
Recent implementations utilize additional transformer heads—either parallel [Gloeckle et al., 2024]
or sequential [Liu et al., 2024].

3.2 Our approach

In this work, we introduce MuToR, an alternative multi-token prediction method (illustrated in
Figure 1). Our approach inserts interleaved learnable tokens—termed registers, following Darcet
et al. [2024]—into training sequences, where each register is tasked with predicting a future token at
a uniformly sampled offset d. By optimizing this auxiliary prediction objective alongside the primary
next-token prediction task, the model benefits from richer supervisory signals, which enhances the
quality of learned representations.

Figure 2: MuToR’s attention mask.
Each cell indicates whether the row
can attend to the column.

Register Tokens Let x = (x1, x2, . . . , xT) be a training se-
quence. We augment x by interleaving1 register tokens rd,
yielding:

x′ = (x1, rd, x2, rd, . . . , xT−1, rd, xT), (4)

where each rd predicts the future token at offset d2. By default,
all rd share a single learnable embedding, adding minimal train-
able parameters, while the target offset d is specified via the
register’s position id (detailed later). The augmented sequence
x′ is processed by the transformer Pθ, which shares all compo-
nents—embeddings, layers, and prediction head—between the
regular tokens xt and register tokens rd.

Attention Masking We modify the causal attention mask to
satisfy two conditions: (i) regular tokens xt cannot attend to any register tokens, and (ii) register
tokens cannot attend to other register tokens in the sequence (see Figure 2). This pattern preserves
the standard next-token prediction objective (Equation 2) for regular tokens, as their representations
remain unaffected by registers. As a result, the registers can be discarded during inference.

Multi-token Prediction with Registers Each register token rd inserted after xt predicts the
future token xt+d, with offset d sampled uniformly per sequence from {1, . . . , dmax}, where dmax

1The interleaving pattern is flexible—e.g., registers may be sparse or appear consecutively.
2For simplicity, we use a fixed d per sequence, though registers with different offsets could be mixed.

4

determines the maximum prediction horizon. The auxiliary register loss over dataset D is:

Lreg = ED

[
−
∑
t

logPθ(xt+d | x≤t, rd)

]
. (5)

Our attention masking ensures predictions depend only on preceding regular tokens, excluding other
registers. This approach enables flexible prediction horizons while maintaining parameter efficiency,
as all register tokens—regardless of d—share a single learnable embedding.

Position Embeddings for Registers Since we do not use specialized heads for future token
prediction, we encode prediction offsets through positional bias. We utilize the token indices in the
original (register-free) sequence to compute positional embeddings. While regular tokens xt keep
their natural positions t, each register rd inserted after xt (predicting xt+d) receives position t+ d− 1
(see position ids in Figure 1). This matches the position id of the regular token that would normally
predict xt+d under standard next-token prediction.

Our implementation focuses on RoPE [Su et al., 2024], the dominant positional encoding in modern
language [Touvron et al., 2023b] and autoregressive image models [Sun et al., 2024]. However, our
position manipulation works with any embedding scheme (sinusoidal, relative, etc.), requiring no
architectural changes while effectively encoding prediction offsets through positional bias.

Overall Training Loss We jointly optimize the standard next-token prediction loss Lntp and the
auxiliary register loss Lreg. The overall loss combines these two objectives through a weighted sum:

Lmtp = (1− a)Lntp + aLreg, (6)

where a ∈ (0, 1) controls the relative contribution of each loss term.

Inference During inference, we discard register tokens entirely, leaving the model’s computational
graph and latency unchanged. This is made possible by our attention masking strategy, which prevents
regular tokens from ever attending to registers during training. Unlike prior approaches (Goyal et al.
[2024], Pfau et al. [2024]) that use inserted tokens to increase inference computation, our method
maintains the standard autoregressive process without modification.

3.3 Adaptation in Language Modeling

Figure 3: The 2D neighborhood
of possible prediction targets
(depicted in red) for a register
token. The register rd is inserted
after x7, and dmax_2D is set to 3.

A key application of our method is supervised fine-tuning of pre-
trained language models. For generative tasks (e.g., mathematical
reasoning), where datasets contain (prefix, answer) pairs—with an-
swer sequences potentially including chain-of-thought tokens—we
interleave register tokens only within the answer sequence. This
aligns with standard practice where prefix predictions are excluded
from loss computation. Beyond this adaptation, the method fol-
lows the implementation described in subsection 3.2 without mod-
ification.

3.4 Adaptation in Autoregressive Image Generation

Autoregressive transformers achieve strong performance on image
generation by modeling discrete visual tokens [Esser et al., 2021,
Sun et al., 2024]. A VQ-VAE tokenizer [Van Den Oord et al., 2017]
first encodes an image into a 2D token grid x2D ∈ Zh×w, which
is then flattened into a 1D sequence x via raster-scan ordering.
The model then learns autoregressive prediction conditioned on
c (either class labels or captions).

We adapt MuToR to images by modifying the offset sampling to respect the 2D image structure. For
each sequence x, we sample a 2D offset pair (dh, dw), with both dh and dw drawn uniformly from
{1, . . . , dmax_2D}, excluding (dh, dw) = (1, 1), as it denotes the image token after which the register
is inserted (see Figure 3). We then compute the rasterized offset as d = (dh − 1) ·w+ dw − 1. As in
subsection 3.2, each register token rd predicts the token d steps ahead in the sequence, with all other

5

components (attention masking, positional embeddings, and loss) implemented identically—except
for the additional conditioning on c. Each register thus predicts one of d2max_2D − 1 possible future
tokens.

This 2D extension enriches the training signal by capturing spatial dependencies inherent in visual
data, while requiring minimal architectural changes. Unlike prior multi-token prediction approaches
that would require multiple additional prediction heads (one for each possible 2D offset), MuToR
achieves this capability with negligible parameter overhead.

4 Results

4.1 Language Modeling

Experimental Setup We focus on mathematical reasoning with chain-of-thought and abstractive
summarization, two challenging generative tasks that provide a rigorous testbed for our method.
To evaluate performance, we fine-tune two pretrained decoder-only language models: Gemma 2B
[Gemma Team et al., 2024] and Llama 3 8B [Grattafiori et al., 2024]. Our experiments target
three widely used mathematical reasoning benchmarks: GSM8K [Cobbe et al., 2021], MATH500
[Lightman et al., 2023], and AQUA-RAT [Ling et al., 2017]. For fine-tuning, we use curated subsets
from OpenMathInstruct-2 [Toshniwal et al., 2025], a high-quality dataset derived from GSM8K
and MATH training samples. Specifically, we filter the 1M and 2M splits to isolate grade school
(GSM-style) or MATH-style problems, referring to them as 1M-GSM, 2M-GSM, and 1M-MATH. We
also fine-tune on the original GSM8K and AQUA-RAT training splits. Additional details about the
experimental setup are provided in Appendix A.1. As for summarization, we target the following
benchmarks: SAMSum [Gliwa et al., 2019] and DialogSum [Chen et al., 2021]. For mathematical
tasks, we measure exact-match accuracy; for summarization, we use ROUGE scores [Lin, 2004].

Baselines We mainly consider two baselines: (i) Next-Token, the standard fine-tuning recipe
using the next-token prediction objective, and (ii) Multi-Token [Gloeckle et al., 2024], adapted for
fine-tuning by adding dmax − 1 auxiliary prediction heads and applying a loss-weighting strategy
for these heads, similar to our method. To ensure a fair comparison, for both Multi-Token and
MuToR, we tune the number of predicted future tokens, dmax, alongside the auxiliary loss coefficient.
Implementation details are provided in Appendix A.1.

Comparative Results Tables 1 and 2 present our results, showing only the best configurations
for Multi-Token and our MuToR method. In mathematical reasoning (Table 1), our approach
consistently outperforms both baselines, including Multi-Token, which introduces a substantial
number of additional trainable parameters (see Table 4). Moreover, MuToR’s gains are preserved
across varying training set sizes, demonstrating its effectiveness even in settings with high-quality fine-
tuning data. In contrast, Multi-Token’s benefits seem to diminish with larger models or more data.
For summarization (Table 2), our MuToR method improves all ROUGE scores, achieving superior
results over Multi-Token, demonstrating broad applicability in sequence-to-sequence generative
tasks.

Comparison with DeepSeek’s Sequential Multi-Token Prediction We further compare MuToR
against the multi-token prediction variant [Liu et al., 2024], that uses sequential heads to predict up
to dmax tokens ahead while maintaining the causal chain of prediction. The results, presented in
Table 16 (Appendix C.1), indicate that DS-Multi-Token3 offers only marginal improvements over
the parallel Multi-Token variant [Gloeckle et al., 2024], despite its greater architectural complexity.
Importantly, MuToR outperforms both methods, demonstrating better adaptability on the supervised
fine-tuning setting. As both multi-token prediction variants yield similar performance, we stick with
Multi-Token for most of the experiments and ablations that are included in this paper.

Matching the Training-Time Compute Our method increases sequence length during training
(and thus training compute) by inserting register tokens. To ensure gains are not due to higher compute
alone, we train the baselines for more epochs (roughly doubling compute), thus matching or even

3For brevity, we refer to the sequential multi-token prediction as DS-Multi-Token, since it was first used
when training Deepseek-V3.

6

Table 1: Downstream accuracy (%) in mathematical reasoning benchmarks. The subheaders refer to
the training split used in each experiment. Results for Gemma 2B are averaged over 3 seeded runs.
MuToR offers a consistent improvement over both standard Next-Token and Multi-Token.

Model Method GSM8K MATH500 AQUA-RAT

GSM8K 1M-GSM 2M-GSM 1M-MATH AQUA-RAT

Gemma 2B
Next-Token 38.87 66.09 69.02 26.73 40.16
Multi-Token 40.66 66.69 69.02 26.87 38.45
MuToR (ours) 42.10 68.33 70.56 28.13 41.73

Llama3 8B
Next-Token 66.41 85.74 87.11 41.4 -
Multi-Token 66.56 85.67 86.35 42.6 -
MuToR (ours) 67.85 87.11 87.64 43.4 -

Table 2: Experimental results for fine-tuning Gemma 2B on abstractive summarization benchmarks.
We select the checkpoint with the higher ROUGE-L in the validation set, and report ROUGE scores
on the test set.

Method SAMSum DialogSum

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Next-Token 51.47 27.29 43.23 47.23 20.91 38.77
Multi-Token 51.90 27.44 43.50 47.98 21.23 39.25
MuToR (ours) 52.32 28.08 44.09 48.22 21.71 39.48

exceeding the compute of MuToR. As shown in Tables 12 and 13 (Appendix B), extending training
does not yield further improvements for the baselines and, in some instances, can even degrade
performance due to mild overfitting. These results suggest that integrating MuToR into the fine-tuning
pipeline offers a more effective approach to leveraging increased training compute, when the available
data is fixed—a common real-world constraint in many academic and industrial applications.

Table 3: Downstream accuracy (%) on
GSM8K. 1M-GSM-extra split corresponds
to matching MuToR’s training compute by
utilizing additional fine-tuning data.

Method & Data split GSM8K

Next-Token (1M-GSM) 66.09

Next-Token (1M-GSM-extra) 66.69
MuToR (1M-GSM) 68.33

Matching Compute with Additional Data Through
our experiments, we focus on the data-constrained set-
ting both for practical reasons (limited resources) and
methodological clarity (ensuring a fair comparison with
baselines). However, we also investigate the possibility
of matching MuToR’s increased training-time compute
by leveraging additional data for the Next-Token base-
line. The result (presented in Table 3), shows that MuToR
can surpass gains from additional data. While a thor-
ough exploration of the data-abundant regime is left for
future work, this preliminary finding highlights MuToR
’s potential beyond data-constrained scenarios. More
details are provided in the Appendix B.1.

Integration in Parameter-Efficient Fine-tuning We test our method with LoRA [Hu et al.,
2022]: for both Next-Token and our MuToR method, we apply rank-32 adapters to all linear layers
(approximately 39M trainable parameters for Gemma 2B; register tokens in MuToR add a negligible
number of parameters). As shown in Table 5, our LoRA-MuToR approach improves accuracy over
standard LoRA fine-tuning across both training splits. Interestingly, LoRA-MuToR matches or even
exceeds the full fine-tuning Next-Token performance, demonstrating its utility in PEFT setups. In
contrast, the Multi-Token approach is less compatible with PEFT settings, as it requires training
several additional transformer layers from scratch.

Impact of Maximum Lookahead Offset The key hyperparameter dmax in our MuToR method
controls how many tokens ahead the registers predict. Larger values offer richer supervision but
increase task difficulty. Experiments (Table 4) show that dmax = 4 is optimal for this particular
setting (in general the optimal value may depend on the training data and the downstream task).
Notably, as dmax increases, Multi-Token’s performance degrades, barely beating Next-Token

7

Table 4: Downstream accuracy (%) with respect
to the maximum offset dmax, using Gemma 2B.
#Add. Param. denotes the additional trainable
parameters for Multi-Token and MuToR (in ap-
proximation).

dmax
#Add.
Param. Method GSM8K

GSM8K 1M-GSM

1 - Next-Token 38.87 66.09

2 110M Multi-Token 40.66 66.69
2K MuToR (ours) 41.93 67.15

3 220M Multi-Token 40.59 66.36
2K MuToR (ours) 41.60 68.01

4 330M Multi-Token 39.78 65.53
2K MuToR (ours) 42.10 68.33

6 550M Multi-Token 40.23 65.55
2K MuToR (ours) 39.90 68.16

Table 5: Downstream accuracy (%) in a PEFT
scenario, using Gemma 2B and LoRA.

Method GSM8K

GSM8K 1M-GSM

Full fine-tuning Next-Token 38.87 66.09

LoRA-Next-Token 36.34 66.11
LoRA-MuToR (ours) 38.59 68.11

Table 6: Ablation regarding the register embed-
dings, using Gemma 2B and dmax = 4.

Register
embedding

GSM8K

GSM8K 1M-GSM

Same 42.10 68.33
Different 41.85 68.18

when using the 1M-GSM training split. In comparison, MuToR’s gains are maintained across dmax

values and training split sizes.

Shared vs. Different Register Embeddings Per Offset We test whether having different register
embeddings per offset improves performance. As seen in Table 6, shared embeddings (Same), which
is the default, perform slightly better than distinct ones (Different), suggesting our positional encoding
scheme provides sufficient offset information.

4.2 Autoregressive Image Generation

Experimental Setup We train LlamaGen-B (111M parameters; Sun et al. 2024) on ImageNet
[Deng et al., 2009] at 256×256 resolution, using ADM’s preprocessing pipeline [Dhariwal and Nichol,
2021]. The dataset is pre-tokenized using a VQ-VAE tokenizer from Sun et al. [2024].

We compare three approaches: (1) Next-Token, a standard next-token prediction baseline; (2)
MuToR-1D with 1D offsets (as in language modeling); and (3) MuToR-2D with 2D offsets (described
in subsection 3.4). Implementation details are included in Appendix A.2.

For evaluation, we generate 50,000 images using classifier-free guidance (scale=2.0) [Ho and Sali-
mans, 2022] and compute FID [Heusel et al., 2017], IS [Salimans et al., 2016], Precision, and Recall
[Kynkäänniemi et al., 2019] using TensorFlow scripts from Dhariwal and Nichol [2021].

Results Table 7 shows that both MuToR variants consistently outperform Next-Token in FID and
IS across different training iterations. Notably, when comparing under similar training-time compute,
the MuToR-2D variant at 100K steps surpasses the Next-Token model at 200K steps, demonstrating
both improved performance and faster convergence.

Extending the offset to 2D The 2D extension in MuToR-2D significantly improves performance by
leveraging spatial dependencies in the image data (Table 7), despite requiring prediction of much
more possible future tokens. This demonstrates that the 2D formulation effectively captures structural
patterns, providing richer training signal.

Scaling down the number of registers during pretraining To reduce computational costs while
maintaining performance, we investigate using fewer register tokens in MuToR-2D. Specifically, we
test inserting only 80 randomly placed registers per image, increasing the sequence length by just
30%. As shown in Table 8, this sparse version achieves very similar performance to the full setup
(with 256 registers) while requiring less computation. These results demonstrate that substantial
performance gains can be obtained with relatively few register tokens and only a modest increase in
training compute. They also highlight untapped potential in MuToR’s design, particularly regarding
optimal register placement and sparsity strategies, which merit further investigation.

8

Table 7: Conditional generation performance on Imagenet 256× 256 (cfg scale = 2.0). Both dmax

and dmax_2D are set to 4, for MuToR-1D and MuToR-2D respectively.

Iter. Method FID ↓ IS ↑ Pre. ↑ Rec. ↑

100K
Next-Token 7.71 146.5 0.830 0.439
MuToR-1D 7.01 155.6 0.828 0.438
MuToR-2D 6.57 163.2 0.831 0.445

200K
Next-Token 6.83 158.4 0.833 0.443
MuToR-1D 6.43 163.0 0.836 0.444
MuToR-2D 5.65 183.5 0.842 0.448

360K
Next-Token 6.18 171.5 0.841 0.443
MuToR-1D 5.79 178.3 0.841 0.441
MuToR-2D 5.09 195.3 0.839 0.457

Maximum Offset Analysis We examine how expanding the prediction neighborhood in MuToR-2D
affects performance by varying dmax_2D, which determines how many future tokens each register
must predict. Using 80 randomly placed registers per sequence, we test different dmax_2D values.
Table 9 shows that dmax_2D = 4 achieves optimal performance, while increasing it leads to degrading
results. In this optimal setup, each register predicts up to 15 future tokens—a prediction horizon
that would require 14 additional transformer heads in prior multi-token approaches, making them
computationally impractical. This demonstrates MuToR-2D’s unique ability to effectively leverage
long-range predictions while maintaining training efficiency.

Table 8: Ablation using MuToR-2D,
dmax_2D = 4, and varying number
of registers (# Reg.) inserted in ran-
dom positions.

Iter. # Reg. FID ↓ IS ↑

100K 80 6.87 162.1
256 6.57 163.2

200K 80 5.89 175.6
256 5.65 183.5

360K 80 5.03 195.6
256 5.09 195.3

Table 9: Ablation using MuToR-2D, with varying dmax_2D
and 80 registers inserted in random positions. # Targets
denote the number of future tokens (d2max_2D − 1) that the
registers predict during training (see Figure 3).

Iter. dmax_2D # Targets FID ↓ IS ↑

100K
3 8 7.20 150.8
4 15 6.87 162.1
5 24 7.08 154.8

200K
3 8 6.19 169.0
4 15 5.89 175.6
5 24 6.21 166.2

360K
3 8 5.56 178.3
4 15 5.03 195.6
5 24 5.53 179.2

4.3 Synthetic Data

Figure 4: Solve rate (%) of finetuned GPT2-L
model on different star graph configurations.

We further evaluate MuToR on the star-graph path-
finding problem [Bachmann and Nagarajan, 2024],
which highlights limitations of the next-token predic-
tion objective. Consider a directed graph G = (n, l),
where n denotes the number of paths emanating
from the start node, ustart, and l denotes their length.
Given an end node, uend, the model must identify the
unique path from ustart to uend.

Despite the task’s simplicity, transformer models trained by teacher forcing fail to solve it, due to
shortcut learning and the loss of meaningful training signal. We thus investigate whether the look-
ahead induced by MuToR’s objective can provide the necessary supervision to learn the underlying
task. To this end, we experiment with fine-tuning a pretrained GPT2 model [Radford et al., 2019]
following the setup from Bachmann and Nagarajan [2024]. The relevant implementation details are
provided in the Appendix A.3.

9

Results The results are presented in Figure 4. MuToR solves the task across various graph configu-
rations, effectively overcoming the "cheating phenomenon" that causes standard teacher forcing to
fail. These findings indicate that MuToR can be particularly effective in scenarios where some form of
shortcut learning applies, recovering valuable training signal.

5 Conclusion

We introduced MuToR, a simple yet effective approach to multi-token prediction that leverages
interleaved, trainable register tokens to predict future targets. MuToR enables scalable prediction
horizons with minimal parameter overhead and is fully compatible with existing pretrained model
architectures, allowing seamless integration into standard fine-tuning pipelines. Empirical results
demonstrate that MuToR consistently improves performance in both language modeling tasks—such
as mathematical reasoning and summarization—and autoregressive image generation, highlighting its
versatility across modalities. This positions MuToR as a promising foundation for using token-based
lookahead mechanisms to propagate richer supervisory signals during training.

Limitations It is worth noting that MuToR currently uses uniformly interleaved or randomly po-
sitioned register tokens—strategies that may not align optimally with the structure or semantics
of specific tasks. While this simple placement scheme has proven effective across modalities, it
leaves room for substantial improvement. By learning or adapting the placement of register to-
kens—potentially guided by model uncertainty or task-specific priors—MuToR could deliver more
targeted supervision with fewer auxiliary tokens, further enhancing efficiency and performance.

Acknowledgments and Disclosure of Funding

This work has been partially supported by project MIS 5154714 of the National Recovery and
Resilience Plan Greece 2.0 funded by the European Union under the NextGenerationEU Program.
Hardware resources were granted with the support of GRNET.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. In NeurIPS, 2022.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Proceedings of
the 41st International Conference on Machine Learning, pages 2296–2318, 2024.

Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4, 2023.

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory transformer.
arXiv preprint arXiv:2006.11527, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In
Proceedings of the 41st International Conference on Machine Learning, pages 5209–5235, 2024.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. Dialogsum: A real-life scenario dialogue
summarization dataset. In Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, pages 5062–5074, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

10

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In The Twelfth International Conference on Learning Representations, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding
and generation. Advances in neural information processing systems, 32, 2019.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12873–12883, 2021.

Arvid Frydenlund. The mystery of the pathological path-star task for language models. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12493–
12516, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, 2019.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. In Proceedings of the 41st
International Conference on Machine Learning, pages 15706–15734, 2024.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. In The Twelfth
International Conference on Learning Representations, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

11

Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. Spot: Self-
training with patch-order permutation for object-centric learning with autoregressive transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22776–22786, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Bitune: Bidirectional instruction-tuning.
arXiv preprint arXiv:2405.14862, 2024.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, pages 28935–28948, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gen-
eration: Learning to solve and explain algebraic word problems. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
158–167, 2017.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. arXiv
preprint arXiv:2412.01827, 2024.

Arnaud Pannatier, Evann Courdier, and François Fleuret. σ-gpts: A new approach to autoregressive
models. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 143–159. Springer, 2024.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation in
transformer language models. In First Conference on Language Modeling, 2024.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. Prophetnet: Predicting future n-gram for sequence-to-sequencepre-training. In Findings of
the Association for Computational Linguistics: EMNLP 2020, pages 2401–2410, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

12

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal, 27
(3):379–423, 1948.

Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):
50–64, 1951.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data.
In The Thirteenth International Conference on Learning Representations, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessan-
dro Sordoni. Guiding language model reasoning with planning tokens. arXiv preprint
arXiv:2310.05707, 2023.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Yongjing Yin, Junran Ding, Kai Song, and Yue Zhang. Semformer: Transformer language models
with semantic planning. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 18669–18680, 2024.

Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregressive
visual generation. arXiv preprint arXiv:2411.00776, 2024.

13

A Implementation Details

In this section, we provide the necessary training details, as well as the hyperparameters used in our
experiments.

A.1 Language Modeling

A.1.1 Mathematical Reasoning

Datasets GSM8K comprises approximately 8.7K grade-school level math problems, with around
1.3K of them forming the test set. On the other hand, MATH500 test set consists of 500 problems,
uniformly sampled from the original MATH test set [Hendrycks et al., 2021], covering more advanced
and diverse mathematical domains. Finally, AQUA-RAT includes multiple-choice math problems
with chain-of-thought solutions, split among the training set (∼97K samples), the validation (∼250
samples) and the test set (∼250 samples).

As mentioned in subsection 4.1, we finetune our base models on standard downstream train-
ing datasets, such as GSM8K and AQUA-RAT, as well as on curated subsets derived from
OpenMathInstruct-2. The utilized training splits are listed below, including information about
the employed filtering and the amount of samples:

• GSM8K training set (∼ 7.4K samples),

• 1M-GSM split (∼152K samples), obtained by filtering OpenMathInstruct-2’s 1M split for
grade school math-like problems,

• 2M-GSM split (∼277K samples), similarly derived from OpenMathInstruct-2’s 2M split
using the same grade-school filtering criteria,

• 1M-MATH split (∼200K samples), constructed by filtering OpenMathInstruct-2’s 1M split
for MATH-style problems and randomly sampling 200K of them,

• AQUA-RAT training set (∼97K samples).

Our filtering depends on the source dataset of each sample, which is included in OpenMathInstruct-2’s
metadata.

Training details Throughout all experiments and for all methods, we use bidirectional attention
among the prefix tokens, as proposed in previous works [Dong et al., 2019, Raffel et al., 2020,
Kopiczko et al., 2024], since it benefits prefix-answer tasks. We finetune all models for 5 epochs,
using AdamW optimizer [Loshchilov and Hutter, 2017] without weight decay and a batch size of 10.
We also employ a learning rate scheduler with linear decay and warmup, setting the peak learning rate
to be 5e-5 for Gemma 2B and 2e-5 for Llama 3 8B. Both language models are loaded and finetuned in
bfloat16 precision. To match our available resources, we filter out training sequences that are longer
than 512 tokens4. Moreover, all experiments with the 2B model are conducted using three random
seeds to ensure statistical robustness. This setting is not replicated for the 8B model though, due to
the substantial computational resources that are required.

All experiments with Gemma 2B model are run using a single A100 GPU and gradient accumulation.
For the experiments with the Llama 3 8B model, we utilize 5 × A100 and Fully Sharded Data
Parallelism (FSDP).

Evaluation During evaluation, we assess performance by using greedy decoding and applying
exact match techniques to verify the correctness of the generated answer. For experiments on GSM8K
and MATH500, the best-performing checkpoint from each run is then used for comparisons. For
experiments on AQUA-RAT, we choose the checkpoint with the highest accuracy on the provided
validation set. Since register tokens are not used during inference, the inference process is identical
across both our method and the baseline approaches.

4In 1M-MATH, we keep sequences up to 768 tokens.

14

A.1.2 Abstractive summarization

Datasets In our experiments, we target SAMSum and DialogSum, two widely used dialogue
summarization benchmarks. SAMSum consists of approximately 16K messenger-like conversations
with summaries. They are split between the training set (∼14K samples), the validation set (∼818
samples) and the test set (∼819 samples). On the other hand, DialogSum contains approximately
14K conversation-summary pairs, focusing more on daily-life formal conversations, such as business
negotiations. These pairs are split between the training set (∼12.5K samples), the validation set
(∼500 samples) and the test set (∼1.5K samples).

Training details Across all experiments, we finetune the model for 3 training epochs, following the
same setup (optimization details, weights’ precision), with the mathematical reasoning experiments.
We filter out training sequences that are longer than 768 tokens. Since these experiments are conducted
with the 2B model, we utilize a single A100 GPU and gradient accumulation.

Evaluation We calculate ROUGE scores against the ground truth reference summaries, select the
best checkpoint with respect to ROUGE-L on the validation set, and report ROUGE-1, ROUGE-2
and ROUGE-L scores on the test set.

A.1.3 Best performing configurations

In Tables 10 and 11, we provide the best performing configurations (dmax and a) for MuToR, across
all the training splits that were utilized in our experiments. For Multi-Token, after carefully
tuning the same hyperparameters, we found that the optimal configuration across all experiments is
dmax = 2, a = 0.1.

Table 10: MuToR’s best performing hyper-
parameters for Gemma 2B model.

Training data dmax a

GSM8K 4 0.3
1M-GSM 4 0.3
2M-GSM 6 0.1
1M-MATH 4 0.3
AQUA-RAT 4 0.3
SAMSum 3 0.5
DialogSum 4 0.5

Table 11: MuToR’s best performing hyper-
parameters for Llama 3 8B model.

Training data dmax a

GSM8K 4 0.3
1M-GSM 4 0.3
2M-GSM 6 0.1
1M-MATH 4 0.3

A.2 Autoregressive Image Generation

Training details In the autoregressive image generation experiments, we pretrain LlamaGen-B
model (approximately 111M parameters). Specifically, the model itself is an autoregressive decoder-
only transformer, similar to Llama [Touvron et al., 2023a]. It utilizes RoPE as positional bias,
extended to two dimensions. The model also involves learnable class embeddings, which are used
as conditionals for image generation. During training, the class embeddings are dropped with a
probability of 0.1, to enable the use of classifier-free guidance at inference time.

To tokenize the image patches, we use a VQ-VAE tokenizer provided by Sun et al. [2024], with
codebook size equal to 16384 and embedding dimension equal to 8. Unlike LlamaGen, we pre-
tokenize the dataset with ADM’s preprocessing scheme [Dhariwal and Nichol, 2021], resulting in
two crops per image.

Both Next-Token baseline and MuToR are trained for 360K update steps, using AdamW optimizer
with β1 = 0.9, β2 = 0.95 and weight decay = 0.05. We employ a constant learning rate, equal to
0.0004, and a batch size of 1024. All experiments are run using 8× H100 GPUs and the Distributed
Data Parallel (DDP) framework.

For MuToR’s implementation, we empirically tune the loss coefficient a to be 0.5, so that Lreg has
equal contribution with Lntp (Equation 6). This indicates that the auxiliary loss provides valuable

15

supervision that the model leverages during pretraining, to improve its learned representations. In the
experiments that fewer registers are inserted, we sample random positions for each training sample.

Evaluation To benchmark generative performance, we sample 50,000 images at 256× 256 resolu-
tion, setting temperature = 1.0 and a fixed random seed for fair comparison. We use classifier-free
guidance [Ho and Salimans, 2022] with scale s = 2.0, which was reported as an optimal value in the
original LlamaGen. Thus, the logit lg is formed as such: lg = lu + 2(lc − lu), where lu denotes the
unconditional logit (with the class embedding dropped) and lc denotes the conditional logit. Then,
the generated samples are used to calculate the performance metrics, using the Tensorflow scripts
from Dhariwal and Nichol [2021].

A.3 Synthetic Data

We setup our experiments using the official implementation from Bachmann and Nagarajan [2024]
(regarding the model’s architecture and optimization). All model configurations (Next-Token and
MuToR) are trained for a sufficient number of epochs, using a single A100 GPU.

MuToR’s implementation for the star graphs problem follows subsection 3.3, with a task-specific
modification; we sample the offset d from {2, . . . , dmax}, thus excluding the next-token from the
register’s prediction. In this way, we prevent the registers from learning the "Clever Hans Cheat", and
enable them to focus on planning look-ahead predictions. In these experiments, we set dmax = 4 and
a = 0.5 for the graphs with path length = 5 and dmax = 6, a = 0.3 for graphs with path length = 10,
which are more challenging.

B Matching the Training Compute

As mentioned earlier, MuToR inserts additional tokens in the training sequence, thereby increasing its
length and the overall training compute. To estimate the total training-time compute, we follow the
widely used approximation:

C ≈ 6×N ×D, (7)

where C denotes the compute (in FLOPs), N denotes the model’s parameters, and D denotes the
total number of tokens processed during training. This formulation is supported by both empirical
studies and theoretical analyses in prior scaling literature [Kaplan et al., 2020, Hoffmann et al., 2022].

While the self-attention mechanism has a theoretical O(N2) complexity, in practice the compute cost
is dominated by the feedforward layers (unless the sequence length L becomes disproportionally
larger than the embedding dimension), making the total training compute effectively linear in sequence
length. This approximation holds for the Large Language Models and the sequence lengths used in
our experiments, since the tipping points5 for these particular models lie far beyond their supported
context length.

We further validate this approximation empirically by measuring training wall-clock time. In our
1M-GSM experiments, MuToR requires 1.4× the wall-clock time of the Next-Token baseline for
the same number of epochs. This aligns with expectations, especially since MuToR only interleaves
register tokens into the answer portion, not the prefix, so the effective sequence length increase is less
than 2×. As a result, doubling the number of epochs for the baselines leads to equal or higher total
compute in the data-constrained setting that we explore.

B.1 Language Modeling

Tables 12, 13 and 14 report the results of fine-tuning baseline methods for twice the number of
training epochs than MuToR, in order to investigate whether improved downstream performance can
be derived from increasing the training compute. Due to our limited computational resources, we
keep the data fixed in these experiments, thus simulating a data-constrained setting.

Matching the Training Compute via Additional Data In Table 3 (subsection 4.1), we report
results where the baselines are trained with additional data to match MuToR’s training compute.

5As tipping points we refer to the sequence lengths at which attention cost equals the feedforward cost.

16

Table 12: Gemma 2B: downstream accuracy (%) in mathematical reasoning benchmarks across
different number of training epochs. The subheaders refer to the training split used in each experiment.
Results are averaged across three seeded runs.

Method # Epochs GSM8K MATH500

GSM8K 1M-GSM 1M-MATH

Next-Token 5 38.87 66.09 26.73
10 37.91 65.07 27.07

Multi-Token 5 40.66 66.69 26.87
10 39.98 64.92 26.73

MuToR (ours) 5 42.10 68.33 28.13

Table 13: Gemma 2B: ROUGE metrics comparison across different number of training epochs. We
select the checkpoint with the higher ROUGE-L in the validation set, and report ROUGE scores on
the test set.

Dataset Method #Epochs ROUGE-1 ROUGE-2 ROUGE-L

SAMSum

Next-Token 3 51.47 27.29 43.23
5 51.67 27.64 43.32

Multi-Token 3 51.90 27.44 43.50
5 51.04 26.35 42.48

MuToR (ours) 3 52.32 28.08 44.09

DialogSum

Next-Token 3 47.23 20.91 38.77
5 46.92 20.39 38.25

Multi-Token 3 47.98 21.23 39.25
5 47.46 20.76 38.97

MuToR (ours) 3 48.22 21.71 39.48

Table 14: Llama 3 8B: downstream accuracy (%) in mathematical reasoning benchmarks across
different number of training epochs. The subheaders refer to the training split used in each experiment.

Method # Epochs GSM8K

GSM8K 1M-GSM

Next-Token 5 66.41 85.74
10 64.74 85.74

Multi-Token 5 66.56 85.67
10 65.20 84.98

MuToR (ours) 5 67.85 87.05

Specifically, we construct 1M-GSM-extra split by augmenting 1M-GSM with samples from 2M-
GSM, resulting in approximately 1.4× more training samples—consistent with MuToR’s 1.4× higher
training time. The reported accuracies are obtained with Gemma 2B and are averaged over three
seeded runs. All other training details follow subsection A.1.

B.2 Autoregressive Image Generation

As discussed in subsection 4.2, MuToR-2D demonstrates substantial performance gains even when
using only 80 register tokens. In this configuration, training compute increases by approximately
30%. To ensure that our performance gains cannot be matched by increasing the pretraining iterations,
we also train the baseline Next-Token for 500K steps—corresponding to a similar increase in

17

computational cost. As shown in Table 15, MuToR-2D delivers significantly better generation quality
under comparable compute constraints.

Table 15: Conditional generation performance with respect to training iterations. We compare against
the MuToR-2D configuration using 80 randomly placed registers, which results in approximately a
30% increase in training compute.

Method # Iter. FID ↓ IS ↑

Next-Token 360K 6.18 171.5
500K 5.82 175.8

MuToR-2D (ours) 360K 5.03 196.6

C Additional Experiments

C.1 Comparison with Sequential Multi-Token Prediction

We adapt the sequential multi-token prediction method (DS-Multi-Token) to the fine-tuning task
by employing dmax − 1 additional transformer layers. Our implementation closely follows Liu et al.
[2024], and all training hyperparameters are identical with those described in subsection A.1. We
fine-tune Gemma 2B with DS-Multi-Token on mathematical reasoning datasets, including GSM8K,
1M-GSM and 1M-MATH. The hyperparameters dmax and a are empirically tuned to 2 and 0.1
respectively.

Table 16 reports results averaged over three seeded runs. Notably, DS-Multi-Token performs on par
with the parallel Multi-Token baseline [Gloeckle et al., 2024], while requiring even more additional
trainable parameters. MuToR consistently outperforms both methods, using only negligible extra
parameters, thus suggesting its superiority when integrated in the supervised fine-tuning stage.

Table 16: Downstream accuracy (%) in mathematical reasoning benchmarks, using Gemma-2B. The
subheaders refer to the training split used in each experiment. All results are averaged over 3 seeded
runs.

Method # Add. Params. GSM8K MATH500

GSM8K 1M-GSM 1M-MATH

Next-Token - 38.87 66.09 26.73
Multi-Token 110M 40.66 66.69 26.87
DS-Multi-Token 118M 40.61 66.97 27.00
MuToR (ours) 2K 42.10 68.33 28.13

Table 17: Effect of varying the loss coefficient a, while fixing dmax = 4. The results are obtained
from single run experiments.

a
GSM8K

GSM8K 1M-GSM

0.5 40.78 67.39
0.4 40.94 68.00
0.3 42.00 68.38
0.2 41.24 67.55
0.1 40.33 67.32

0 38.43 66.33(Next-Token)

18

C.2 Impact of the Loss Coefficient

We analyze the effect of the auxiliary loss coefficient a, which controls the relative weight be-
tween Lntp and Lreg. In these experiments, we fine-tune Gemma 2B on mathematical reasoning
datasets, while fixing dmax = 4. As shown in Table 17, setting a = 0.3 yields optimal downstream
performance, with both higher and lower values leading in mild degradation.

This trend is expected, as an optimal balance should exist between next-token and multi-token
prediction supervisory signals. However, the optimal value for a likely depends on factors like the
model, task complexity, data distribution, and dmax. For example, in autoregressive image generation,
setting a = 0.5 achieves better generation quality, likely because the multi-token prediction objective
captures rich spatial dependencies.

D Broader Impact

Improving large language models can enhance their accuracy, efficiency, and safety, enabling more
reliable applications across education, healthcare, and communication. However, it is important to
remain mindful of potential risks such as misuse or bias amplification and to continue developing
responsible deployment practices.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the proposed method (MuToR),
the main contributions, and the results from our experimental evaluation, which are described
in detail in section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our work in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

20

Answer: [NA]
Justification: This paper does not include theoretical results that require proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes a detailed Appendix section (Appendix A), which contains
all the necessary information to reproduce our experimental results. In this section, we
describe the training splits, optimal hyperparameter values (for both the baselines and our
method), and other key details related to training and evaluation. We believe this information
ensures the reproducibility of our work. Additionally, our method is explained clearly in
section 3 of the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

21

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Upon acceptance, we will release our code publicly.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper describes our experimental setup in detail in Appendix A, including
training splits, hyperparameters, and training procedures. We also provide the evaluation
methodology in the same section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 1, 4, 5, and 6 report mean results over three seeded runs for statistical ro-
bustness. However, due to computational constraints, we could not run multiple seeded trials
for the image generation experiments and the Llama 3 8B language modeling experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide hardware and computational resource details in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and made sure that the paper conforms to it in
every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impact in Appendix D.

23

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper proposes a novel method for training autoregressive transformers.
Neither the method itself nor the standard benchmark data used appear to pose a high risk
for misuse, thus not necessitating specific release safeguards beyond standard open-source
practices.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite all models, datasets, and code implementations used to run
our experiments and evaluate our models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

24

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The primary new asset is the implementation code for the proposed method,
which we plan to release upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects, therefore IRB
approval is not applicable.

25

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We propose methodologies that can be used for improving the performance of
Large Language Models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Preliminaries
	Our approach
	Adaptation in Language Modeling
	Adaptation in Autoregressive Image Generation

	Results
	Language Modeling
	Autoregressive Image Generation
	Synthetic Data

	Conclusion
	Implementation Details
	Language Modeling
	Mathematical Reasoning
	Abstractive summarization
	Best performing configurations

	Autoregressive Image Generation
	Synthetic Data

	Matching the Training Compute
	Language Modeling
	Autoregressive Image Generation

	Additional Experiments
	Comparison with Sequential Multi-Token Prediction
	Impact of the Loss Coefficient

	Broader Impact

