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Abstract

This paper introduces InteractGen, a novel multi-agent reasoning framework that
integrates humans, embodied robots, and LLM-powered agents for seamless col-
laboration in dynamic, real-world environments. InteractGen enhances task exe-
cution efficiency and adaptability through advanced reasoning, dynamic context-
awareness, and interactive capabilities. A key contribution is EmboInteract, a new
dataset incorporating real-time human interaction and evolving task challenges,
addressing limitations of existing static datasets. Together, these innovations es-
tablish a robust foundation for advancing embodied AI, enabling agents to operate
effectively in complex, unpredictable settings.

1 Introduction

The increasing demand for intelligent robotic systems capable of assisting humans in dynamic,
real-world environments has driven significant advancements in artificial intelligence. Modern
service robots are expected not only to interpret human instructions but also to execute complex
tasks autonomously while navigating uncertainties. However, these systems still face significant
limitations in adaptability, interactive collaboration, and reasoning, particularly in human-populated
environments.

The use of mobile robots in such environments has emerged as a key area of research within robotics
and embodied AI. Initially, studies concentrated on robots operating in structured settings with
limited human interaction. As demand for robots in more dynamic and unpredictable contexts has
grown, research has increasingly focused on improving adaptability and enhancing human-robot
collaboration. For example, Chung et al. [1] explored how mobile robots can autonomously collect
and transmit environmental data to support human activities. Various researchers, such as Zhang et al.
[2], Trautman and Krause [3], Truong and Ngo [4], Trautman et al. [5], examined robust navigation
strategies for mobile robots functioning in complex, human-centered environments. Additionally,
Liang et al. [6] introduced a method enabling service robots to determine humans’ dynamic locations
through dialogue processing. Systems enabling robots to sense, learn, and model human social
behaviors to make appropriate real-time decisions were developed by Triebel et al. [7]. Despite
these advancements, achieving human-level adaptability and interactivity in diverse real-world tasks
remains a significant challenge.



Figure 1: InteractGen exhibits powerful reasoning capabilities, enabling it to process rich, multi-
faceted information with a strong awareness of interaction and coordination. It seamlessly integrates
humans, embodied robots, and LLM-powered agents, bridging the virtual and physical worlds
to support dynamic collaboration and adaptive decision-making. By unifying these components,
InteractGen creates a cohesive system that enhances task execution efficiency and enables flexible,
real-time operation in complex, evolving real-world environments.

A key driver of recent progress in multi-agent systems has been the rise of large language models,
which have transformed how agents interact and collaborate. For instance, multi-agent frameworks
have been employed to manage tasks such as GUI operations on smart devices [8, 9, 10, 11, 12, 13].
LLMs have also been used to autonomously assess and discuss the quality of generated responses
[14]. Moreover, Abdelnabi et al. [15, 16] focused on evaluating LLMs within multi-agent systems,
emphasizing their ability to deliberate and collaborate in environments requiring both cooperation
and competition. These systems have also been applied in communication scenarios to gather detailed
information through interaction [17, 18, 19], while Chen et al. [20] explored how cyber agents from
different networks could collaborate and share intelligence to enhance overall performance.

Despite these advancements, significant challenges remain in applying multi-agent systems and
embodied AI in real-world settings. Current embodied tasks are often highly specific and static,
failing to account for the dynamic and unpredictable nature of real-world environments. Furthermore,
existing systems typically neglect the complexities introduced by human factors, such as interactive
behaviors, collaboration, and real-time decision-making under uncertainty. These limitations hinder
the ability of embodied agents to perform robustly in human-populated, ever-changing environments.
Moreover, agents in such tasks rarely integrate with physical robots to interact effectively with the
real world, limiting their applicability in practical scenarios.

To address these challenges, we propose InteractGen, a unified multi-agent reasoning framework
designed to enable seamless interaction and collaboration between humans, embodied robots, and
LLM-powered agents across virtual and physical worlds (see Fig 1). InteractGen combines powerful
reasoning capabilities with strong awareness of interaction and coordination, enabling it to process
multi-faceted information, dynamically adjust to evolving conditions, and ensure context-aware
decision-making. By bridging embodied intelligence, human collaboration, and virtual operations,
InteractGen significantly improves task execution efficiency and adaptability in complex, real-world
environments.
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Figure 2: InteractGen ensures the task is executed dynamically and efficiently, without requiring con-
stant human intervention. This flexibility and multi-agent cooperation overcome previous limitations
of static systems, enabling real-time adaptability in complex, human-centered environments.

Another critical contribution of this work is the introduction of EmboInteract, a novel dataset
designed to address the limitations of existing embodied task datasets. Unlike prior datasets such
as ALFRED [21] and TEACh [22], which focus primarily on static task execution or predefined
instructions, EmboInteract incorporates dynamic task execution that necessitates real-time human
interaction. Inspired by previous works on proactive agent datasets [18], EmboInteract introduces
exceptional circumstances during instruction execution through dialogue interactions and simulated
robot perception states. This dataset construction follows the EBD (Elements Extraction, Base
Instruction Generation, Dynamic Interaction Formation) methodology to enhance dataset quality
and diversity by utilizing structured data representation, conditional prompting, and in-context
demonstrations. This methodology generates comprehensive task instructions while simulating
ambiguous directives, thereby promoting the development of agents capable of proactive clarification
and dynamic adjustment. EmboInteract represents the first dataset of its kind to integrate multi-person
interactions, dynamic challenges, and embodied task execution in evolving environments.

In summary, this work makes three key contributions:

• InteractGen: A multi-agent reasoning framework that unifies LLM-powered agents, em-
bodied robots, and human collaborators to enable dynamic, context-aware task execution
across physical and virtual environments.

• EBD: A novel dataset construction methodology for creating dynamic, interactive task
datasets, addressing the shortcomings of existing static embodied task datasets.

These contributions provide a foundation for the advancement of embodied AI, enabling agents to
navigate the complexities of real-world environments with adaptability, interactivity, and collabora-
tion.

2 Related Work

2.1 Human-Centric Robotic Systems

Human-centric robotic systems aim to seamlessly integrate robots into human environments by
emphasizing adaptability, collaboration, and user-centric design. Early research [23, 24, 25] laid the
groundwork by improving communication between humans and robots, while multimodal interaction
techniques, combining modalities such as speech, gestures, and vision, were introduced to make these
interactions more natural [26, 27, 28]. Collaborative robotics, often referred to as cobots, expanded
on these efforts by focusing on joint human-robot tasks in industrial and service contexts [29, 30].

With the advent of artificial intelligence, robots have gained the ability to learn from human behav-
iors and adapt to increasingly complex tasks [31, 32, 33]. Emotional intelligence, as explored in
[24], further enhanced the human-robot connection by enabling robots to recognize and respond to
human emotions, fostering more engaging interactions. Despite these advances, current systems are
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predominantly designed for structured and predictable environments. This restricts their capacity to
handle the ambiguity and dynamic changes inherent in real-world scenarios. Moreover, while robotic
intelligence has seen substantial progress, these systems still lack the deep reasoning capabilities re-
quired for proactive collaboration and decision-making under uncertainty, limiting their effectiveness
in unstructured settings.

2.2 LLMs for Embodied Tasks

Building upon the limitations of traditional human-centric robotic systems, Large Language Models
have emerged as a transformative technology for embodied tasks. These tasks demand agents navigate
physical or simulated environments while executing complex instructions. Modular reasoning
frameworks have been proposed to dissect the capabilities of LLM-centric agents, breaking tasks into
manageable components for more effective execution [34]. Similarly, continuous learning paradigms
refine agents’ performance through iterative feedback loops [35], and interactive learning approaches
have enhanced agents’ ability to adapt to socially dynamic contexts [36].

Advancements in multimodal systems that integrate vision and language have further improved
robotic control and task execution [37, 38]. Additionally, embedding language models in physi-
cal contexts through embodied experiences has been shown to enhance their reasoning and action
capabilities [39]. Frameworks like Think-on-Graph [40] leverage structured knowledge represen-
tations to refine decision-making in complex, multi-step tasks. Nevertheless, these systems often
fall short when confronted with real-world dynamics. Many remain constrained by predefined tasks
and lack the adaptability to operate effectively in environments with frequent and unpredictable
changes. Furthermore, their limited integration with human collaborators hampers their ability to
refine decision-making processes collaboratively, which is crucial for tackling tasks in evolving and
uncertain scenarios.

2.3 LLM-Based Multi-Agent Collaboration

As the demands of real-world applications grow, LLM-based multi-agent collaboration has become
a pivotal research direction, addressing challenges in scalability, adaptability, and coordination.
These systems enable agents to engage in structured cooperation, negotiation, and role adaptation.
Frameworks such as AutoGen [41] and AgentVerse [42] facilitate dynamic role adjustment and
collaboration on complex, multi-agent tasks. Meanwhile, policy optimization techniques, like those
explored in Agent-Pro [43], focus on enabling agents to iteratively improve performance over time.

Contributions to this field also emphasize the importance of adaptability and strategic coordination.
LLMArena [44] highlights real-time decision-making as a critical component for effective collabora-
tion, while AgentCoord [45] demonstrates the value of visual exploration strategies in multi-agent
scenarios. Theory of Mind approaches [46] provide insights into how agents can infer and reason
about the intentions of others, a vital skill for teamwork. Beyond technical frameworks, studies
from a social psychology perspective explore how group dynamics influence agent behavior and
decision-making outcomes [47]. Despite these advances, many of these systems focus primarily
on intra-agent communication, often at the expense of robust integration with physical agents and
real-time human collaboration. This gap limits their potential to address the unpredictability and
complexity of dynamic, human-populated environments. Additionally, while scalability has been
explored in multi-agent systems [48, 49], further research is needed to manage the increased com-
plexity associated with diverse, large-scale collaborations. Unlike existing approaches that focus on
isolated reasoning or predefined collaboration strategies, InteractGen integrates interactive reasoning,
human intention alignment, and human-robot cooperation into a unified framework. By leveraging
seamless interaction across virtual and physical domains, InteractGen facilitates dynamic, adaptive,
and context-aware task execution, significantly advancing the capabilities of embodied AI in complex,
human-centered real-world scenarios (see Fig 2).

3 Methodology

3.1 Dataset Construction

In real-world, evolving environments, even the most meticulously designed plans are prone to
deviations, leading to task execution failures. Inspired by previous research on proactive agent datasets
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[18], we address these challenges by introducing EmboInteract, a dataset that incorporates dynamic
task execution requiring human interaction within office contexts. EmboInteract is constructed to
simulate exceptional scenarios during task execution, facilitated through dialogue interactions or
simulated robot perception states. This approach is designed to encourage dynamic behaviors in
agents and humans alike, fostering proactive interactions and adaptive strategies.

The dataset construction pipeline consists of three core phases: (1) elements extraction, (2) base
instruction generation, and (3) dynamic interaction formation (see Fig 5). Initially, we establish
a seed set comprising 30 character roles, 12 private items, and 6 public facilities that correspond
directly to elements within the physical office environment. Each element is carefully annotated with
attributes such as ownership, functionality, and interdependencies. During the elements extraction
phase, random initialization of parameters determines task specifications, including the scope of
participants, objects, and locations involved.

To generate structured and contextually grounded task instructions, we adopt a template-driven
approach, which provides clear structure while mitigating uncertainty in content generation [50]. Task
templates embed domain-specific constraints—such as resource limitations, temporal relationships,
and element interdependencies—to enhance logical coherence and ensure task diversity [51, 52]. The
resulting instructions are represented as JSON files, defining key task attributes and forming the basis
for base instruction generation. Using conditional prompting, we transform the structured JSON data
into coherent, context-aware task instructions, explicitly encoding desired behaviors and constraints.
This process generates high-quality, diverse instructions that adapt to dynamic office scenarios while
surpassing conventional direct prompting methods in both precision and instruction quality.

To simulate practical ambiguities inherent in real-world tasks, we intentionally obscure one field in the
JSON file, except for the origin. This enables the LLM to generate vague instructions while prompting
clarifying questions, mirroring realistic agent behaviors when handling incomplete information.
To further improve task diversity, dynamic interaction formation integrates embodied perceptual
variations and personnel availability changes into the generated instructions. For example, scenarios
include absent personnel, unresponsive assistance requests, or incomplete robotic perception.

Existing datasets, such as ALFRED [21], TEACh [22], and TouchDown [53], focus primarily
on static, step-by-step navigation and planning tasks, lacking real-time iterative adjustments and
direct human-agent collaboration. Similarly, frameworks like PaLM-E [37] and OPEx [34] address
embodied reasoning but overlook unexpected variations in task execution and the role of human
involvement in refining strategies. In contrast, EmboInteract introduces dynamic interactions and
multi-person collaboration, addressing two critical gaps: adaptability to evolving scenarios and
proactive agent-human coordination.

Building on the PPDR4X framework [54], we developed an annotator capable of chain-of-thought-
style decomposition reasoning. This annotator extracts task-relevant details, annotating individuals,
objects, and actions while enriching instructions with dynamic elements. Such enriched scenarios
require agents to exhibit interactive behaviors, such as adapting to absent individuals, addressing
unfulfilled requests, or responding to incomplete sensory information.

EmboInteract, to the best of our knowledge, is the first dynamic, interactive embodied task dataset
designed to simulate multi-participant collaboration with real-time adaptability. It overcomes the
limitations of existing datasets that focus on simplistic tasks, static instructions, and minimal human-
agent interaction. By introducing unexpected variations and multi-agent dynamics, EmboInteract
provides a robust benchmark for evaluating the resilience, adaptability, and proactive engagement of
embodied agents operating in complex, evolving environments.

3.2 Multi-Agent Framework

To address the inadequacy of inference capabilities in current service robot systems, we present a
multi-agent framework for InteractGen (see Fig.4). In a given office scenario, InteractGen is capable
of accurately perceiving the surroundings and human intentions, thereby formulating comprehensive
plans based on user instructions. It can also autonomously execute tasks and engage in self-reflection,
even when the instructions are complex and lacking in detail. Multi-agent collaboration equips
InteractGen with a problem-solving mindset similar to that of a human assistant, facilitating seam-
less integration into authentic work environments for autonomous effective interaction with other
individuals.
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Figure 3: The EBA method generates dynamic, interactive task scenarios by combining structured
office elements, conditional prompting, and compositional reasoning in natural language. It simulates
realistic, evolving environments where agents handle ambiguities, adapt to changing human states,
and interactively refine task execution through proactive reasoning and human-agent communication.

Memory Unit serves as the fundamental cornerstone of the entire framework, storing the initial
dynamic map data provided by human operators. As InteractGen carries out commands, it updates
the relevant virtual and physical world information. Concurrently, the agent’s cognitive processes
and actions throughout this procedure are recorded. To enhance efficiency in planning and executing
consecutive operations, Memory Unit stores both individual and group chat records generated during
instruction execution. It encapsulates, processes, and organizes both long-term memory (dynamic
map information in E) and short-term memory (comprising dialogue data D, thoughts generated by
agents, and executed cyber tasks T C and real-world tasks T R). We use Mt to denote the memory
package that encompasses all stored memory data at t time for effective utilization by the Perception
Agent.
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Figure 4: Our multi-agent collaboration framework integrates perception, planning, decision-making,
and reflection agents to dynamically adapt, clarify instructions, and execute tasks efficiently across
cyber-physical environments.

InteractGen is designed to possess human-like capabilities in perceiving user instructions, virtual
environment information, and real-world states. Perception Agent serves as the starting phase,
processing diverse input data to create a comprehensive perception package encapsulating the user’s
intentions, current surroundings, and physical states. The perceptual process can be articulated as
follows:

PCt = perceive(I,Mt,SOt−1) (1)

where perceive(·) represents the perceiving process of LLM and PCt denotes the current perception
package at t time, Mt is the memory package derived from the Memory Unit, and SOt−1 represents
summarized history operations at t− 1 time.

The goal of planning is to ensure that the generated plan aligns with user intentions while optimizing
efficiency. This involves continuous evaluation and refinement as new information emerges or partial
tasks are completed. Planning Agent analyzes the t time perception package PCt while integrating
historical information from the Memory Unit. To maintain computational efficiency, the agent
summarizes accumulated historical operations, denoted as SO, before formulating a detailed plan:

PLt = plan(Mt,PCt,SOt,Rt−1) (2)

where plan(·) represents the planning process of LLM, PLt is the newly generated plan at t time,
and Rt−1 is the reflection result from the previous step.

Decision Agent determines the specific actions InteractGen must execute to fulfill the user’s instruc-
tions. Acting as the executor of strategic plans, it translates high-level objectives into operational steps.
To facilitate smooth execution and ensure task alignment, we define an Action Space for each type
of embodied agents, which guides the decision-making process. The agent also evaluates reflective
outcomes from the previous step to prevent overlooked tasks or misalignments. The decision process
is formalized as:

T Ct,T Rt = decide(Mt,PCt,PLt, T Ct−1, T Rt−1,Rt−1) (3)

where decide(·) represents the decision process of LLM.

After T Ct and T Rt are executed, corresponding alterations occur in the virtual environment, real-
world context, and robot state, reflected in Mt+1 and PCt+1. Reflection Agent assesses these
outcomes and renders binary judgments—‘Y’ for success or ‘N’ for deviation—while providing
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reflective reasons. This cohesive reflection result informs future planning and decision-making
processes:

Rt = reflect(Mt,PCt,PLt, T Ct, T Rt,Mt+1,PCt+1) (4)

where reflect(·) represents the reflective process of LLM.

Clarifying Agent and Critic Agent serve as essential supplements to the perception and decision-
making phases, respectively. The Clarifying Agent operates during the perception phase, ensuring that
the received instructions are clear and aligned with the user’s intent. It achieves this by proactively
asking clarifying questions, for which we fine-tuned a LLaMA-7B model to handle this process
effectively. On the other hand, the Critic Agent acts as a reflective mechanism prior to executing an
action. By leveraging natural language processing to simulate changes in the real-world environment,
embodied states, and task outcomes, it evaluates whether the intended execution aligns with the
expected results. This pre-execution reflection ensures task consistency and reduces the likelihood of
failures during operation.

4 Experiments

To assess the effectiveness of our architecture, we set six evaluation metrics in Table 1 (in Appendix).
We select GPT-4o as the base model for our framework. The comprehensive test results of our
architecture can be found in Table 2 (in Appendix), where it indicates that InteractGen offers strong
effectiveness and stability. We annotated a total of 23 locations on the semantic map, including 16
individual workstations and 7 public facilities (see Fig 5). To enrich the contextual information, we
incorporated details about each individual’s personal belongings, ensuring that every person has at
least three personal items. A service robot equipped with a mobile chassis, a mounted robot shell, and
a smart locker is introduced to assist with tool deployment in the framework of InteractGen. Users
can interact with InteractGen by issuing commands through a one-on-one messaging interface or by
tagging ‘@InteractGen’ in group chats to initiate the instruction I.

Figure 5: Our experiment consists of a semantic map and a customized service robot equipped with a
smartphone.

We utilize a red-black tree structure to represent the branching relationships between the base
instructions and their dynamic versions (see Fig.6). The black height of the instruction red-black tree
represents the number of individuals that InteractGen must sequentially engage with, from top to
bottom, to fully accomplish a task. This metric is also referred to as the task hop count associated
with the instruction. In the tree, black nodes represent individuals capable of assisting the robot
in completing certain tasks, while red nodes indicate that the person is unable to provide support.
An illegal status occurs when a red node has a child node that is also red, which corresponds to a
real-world scenario where, after person A is unable to assist with the task, the others are also unable
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Figure 6: The red-black tree structure illustrates the branching process of the base instructions with
their variants and the strategy to evaluate their difficulty level.

to provide support. This scenario results in the corresponding instructions being unachievable. By
leveraging this structure, we can assess the difficulty level of any user instruction and its dynamic
versions (see Fig.7 in Appendix).

To further validate the effectiveness of each agent, we conducted ablation experiments on EmboIn-
teract, with detailed results also shown in Table 2. Our findings indicate that Planning Agent are
crucial for effective instruction execution, as its removal in ablation experiments led to a significant
decrease in both the success and completion rates of instructions. Meanwhile, Reflection Agent plays
a key role in improving the redundant rates. Perception Agent further enhance performance, even
when the framework is already functioning optimally, demonstrating the significant impact on overall
robustness(see Fig.8 in Appendix).

5 Conclusion

In this study, we introduce InteractGen, a unified multi-agent reasoning framework powered by
large language models that seamlessly integrates humans, embodied robots, and virtual agents for
collaborative task execution in dynamic, real-world office environments. InteractGen processes
complex, multi-modal inputs by autonomously perceiving user intentions, understanding its envi-
ronment, and managing task flows across cyber and physical domains. By dynamically combining
reasoning, task planning, and reflective mechanisms, InteractGen can adapt to uncertainties, clarify
ambiguous instructions, and maintain efficient operation under evolving conditions. This integrated
approach ensures that tasks requiring both physical actions—like navigating to a location—and cyber
operations—such as managing files or communicating with users—are executed cohesively and
contextually.

The experimental results validate the effectiveness and robustness of InteractGen in handling multi-
agent coordination, ambiguous inputs, and real-time uncertainties. Through dynamic reasoning and
iterative adjustments, InteractGen achieves precise task execution while incorporating feedback and
resolving operational failures. The framework demonstrates significant improvements in handling
collaborative tasks, where real-world scenarios often involve varying human states, unavailable
resources, or incomplete perceptions. Our findings show that InteractGen achieves up to a 30 %
improvement in operational efficiency compared to static systems, while reducing reliance on constant
human intervention through its adaptive task-decomposition and clarification strategies.
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Future work will focus on enhancing InteractGen’s contextual reasoning capabilities to further
improve its understanding of complex, evolving tasks. We aim to expand its physical action repertoire,
allowing it to interact with more diverse objects and environments, while strengthening its ability to
collaborate with larger groups of agents and humans. Additionally, we will explore the scalability of
InteractGen in more intricate, multi-agent environments with higher task variability and uncertainty.
This study establishes a solid foundation for creating embodied AI systems that bridge virtual and
physical worlds, enabling more natural and productive integration into everyday human-centered
settings, ultimately revolutionizing collaborative task execution.
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Appendix

Figure 7: An illustration of how instructions are evaluated for difficulty levels.
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(a) Perception Agent is capable of perceiving online
and real-world environments, while refining the
user’s initial instructions to capture key details of
the task.

(b) When the corresponding personnel is absent and
InteractGen needs to find another person, Decision
agent can generate both cyber and real-world tasks,
performing them synchronously.

(c) Planning Agent can retrieve relevant informa-
tion from its memory to formulate alternative plans.
If still failing, it will direct Decision Agent to en-
gage with others in the group chat for new insights
and replan.

(d) Reflection Agent reflects on the actions gener-
ated by Decision Agent and evaluates the outcomes,
ensuring that each task is executed accurately.

Figure 8: Our multi-agent framework showcased impressive reasoning abilities during the experi-
ments.

Figure 9: Our framework can sustain a remarkably low task error rate, even in scenarios where the
task depth is significantly increased.
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Table 1: The metrics that we used in evaluation.

Evaluation Metric Description
SR: Success Rate Success Rate is measured as the percentage

of instructions that InteractGen successfully
completed across various scenarios.

CR: Completion Rate Completion Rate is calculated by dividing
the depth value of the deepest successfully
executed node by the total height of the in-
struction branch. This metric indicates how
far InteractGen is able to progress in fulfilling
the given instruction.

RR: Redundant Rate Redundancy Rate is calculated by dividing
the redundancy hop count by the instruction’s
black height. The redundant hop count is the
value obtained by subtracting the fixed hop
count from the actual hop count, where the
actual hop count is represented as the black
height in the corresponding red-black tree
structure.

CTA: Cyber Task Accuracy The proportion of correct cyber tasks out of
the total number of cyber tasks generated by
Decision Agent while executing user instruc-
tions.

RTA: Real-World Task Accuracy The proportion of correct real-world tasks
out of the total number of real-world tasks
generated by Decision Agent while executing
user instructions.

RA: Reflection Accuracy The proportion of correctly generated reflec-
tion results by Reflection Agent out of the
total number of reflection results produced
during the execution of user instructions.

Table 2: Ablation Evaluation

Perception " % " "

Reflection " " % "

Planning " " " %

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4
SR 0.98 0.87 0.73 0.67 0.96 0.81 0.55 0.37 0.94 0.79 0.59 0.34 0.85 0.57 0.18 0.01
CR 0.99 0.92 0.80 0.74 0.98 0.87 0.65 0.49 0.95 0.83 0.68 0.45 0.91 0.64 0.31 0.18
RR 0.06 0.04 0.02 0.06 0.01 0.03 0.01 0.01 0.06 0.02 0.04 0.01 0.01 0.03 0.04 0
CTA 0.99 0.89 0.78 0.73 0.97 0.85 0.63 0.49 0.95 0.82 0.67 0.44 0.92 0.63 0.32 0.17
RTA 0.99 0.89 0.79 0.71 0.97 0.86 0.65 0.50 0.95 0.82 0.69 0.45 0.93 0.63 0.31 0.19
* L1 represents Difficulty Level 1-3, L2 represents Difficulty Level 4-6, L3 represents Difficulty Level 7-8, L4 represents Difficulty Level 9+
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