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Abstract

The rapid development of autoregressive Large Language
Models (LLMs) has significantly improved the quality of
generated texts, necessitating reliable machine-generated text
detectors. A huge number of detectors and collections with
AI fragments have emerged, and several detection methods
even showed recognition quality up to 99.9% according to
the target metrics in such collections. However, the quality of
such detectors tends to drop dramatically in the wild, posing
a question: Are detectors actually highly trustworthy or do
their high benchmark scores come from the poor quality of
evaluation datasets? In this paper, we emphasise the need for
robust and qualitative methods for evaluating generated data
to be secure against bias and low generalising ability of fu-
ture model. We present a systematic review of datasets from
competitions dedicated to AI-generated content detection and
propose methods for evaluating the quality of datasets con-
taining AI-generated fragments. In addition, we discuss the
possibility of using high-quality generated data to achieve
two goals: improving the training of detection models and
improving the training datasets themselves. Our contribution
aims to facilitate a better understanding of the dynamics be-
tween human and machine text, which will ultimately sup-
port the integrity of information in an increasingly automated
world.

1 Introduction
The quality of large language models (LLMs) has grown
tremendously in the last five years, making their output al-
most indistinguishable from human-written texts (Chang
et al. 2024). This expanded the application fields of these
models, as many routine tasks can be entrusted to them
nowadays. However, they can be used for creating texts
that are intended to be written and fact-checked by hu-
mans. An example of such misuse is the generation of fake
news (Zellers et al. 2019; Zhou et al. 2023), which can
mislead readers of such generated content. Teachers raise
another concern, as many students complete assignments
with LLMs (Koike, Kaneko, and Okazaki 2024; Ma et al.
2023), undervaluing the purpose of the educational process.
Machine-generated fragments also appear in academic arti-
cles more often with the growth of chatbots and reach sev-

*These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

eral tens of percent (Liang et al. 2024; Gritsay et al. 2023a).
More than 60,000 scientific papers in the last year alone con-
tained the evidence of the use of machine generation (Gray
2024). All of that proves that it is crucial to develop systems
able to counter the misuse of artificial data and signal to the
reader that the content they read is generated.

Another concern is the Web, overflowing with machine-
generated content, often of poor quality. Such texts con-
tribute bias to publicly available texts on the Internet,
through false facts, hallucinations and spelling errors. Given
the current agenda of using texts from the Internet to train
new language models, all this bias will be inadvertently
added to the model. Moreover, (Villalobos et al. 2022) re-
vealed that the human-written data will run out by 2028.
That means that the training sets for language models in the
future will include a large amount of generated content. Such
self-consuming will result in the substantial degradation of
the model’s abilities (Alemohammad et al. 2023). Further-
more, the trend is evolving in such a way that human-written
texts on almost any topic will be much harder to retrieve.
While for texts dated even 5 years ago we are confident as
the usage of generation was extremely rare, we cannot state
the same for more recent texts.

Therefore, detectors, capable to distinguish human-
written texts from AI-generated texts, and whose detection
quality can be guaranteed, are necessary for many fields. We
believe one of the key factors for building reliable detec-
tors is the high-quality artificial text collections that can be
used for training and evaluation. In this paper, we would like
to estimate the quality of the available generated texts from
competitions and research papers. Sometimes we see that
some methods from participants of the competitions reach
almost perfect (up to 99.9%) metric score, meanwhile in the
wild we observe a noticeable decline in performance. Such
results look confusing, because the models become more
and more advanced, seemingly making the detecting task
more challenging, meanwhile participants of competitions
still reach almost perfect scores, bringing up the question
about quality of generated data in the provided datasets. Are
the devised methods really good or is the data easy enough
for detectors to solve the seemingly hard detection task?

Our contributions are as follows.

1. We systemize information about existing datasets from
the research papers and competitions, dedicated to the



detection of AI-generated content task.
2. We suggest methods that may be helpful for evaluating

the quality of the generated data and the datasets aimed to
use for binary classification between human and machine
texts.

2 Related Work
2.1 The Task of AI-generated text detection
The task of AI-generated text detection task is generally
stated as a text classification task, which means that the input
is a text sequence and the output is a discrete, usually binary,
class prediction. When the task is binary, the common labels
are “AI” or “human”, whereas multiclass classification fo-
cusses on distinguishing several language models. The last
task is usually called authorship attribution. Finally, more
complex task suggests to determine the borders betweens
fragments from different authors, for example between hu-
man author and some LLM author.

The first approaches to tackle the classification prob-
lem were to utilise some linguistic, stylometric, and statis-
tical features for classifiers (Jawahar, Abdul-Mageed, and
Lakshmanan 2020; Fröhling and Zubiaga 2021). However,
while these methods performed well for the texts from
the first language models, nowadays models are advanced
enough to output texts that are almost indistinguishable from
human-written ones, therefore these methods are currently
not reliable enough. The next category are zero-shot meth-
ods that employ metrics, such as perplexity or its modi-
fications (Hans et al. 2024), which can be helpful as an
inference method when training is not available. Another
approach that do not require training is perturbing texts,
which can also provide valuable information. For example,
one can compare log-probabilities between between origi-
nal and perturbed texts, as described in DetectGPT (Mitchell
et al. 2023) method. Finally, methods based on fine-tuning
encoder-based models, such as DeBERTa (He et al. 2021),
are currently considered the state-of-the-art approach for the
detection task (Uchendu et al. 2021; Macko et al. 2023).

2.2 Evaluating Generated Text
As for evaluating the quality of the generated data itself, it
has become more common to evaluate it with the help of
LLMs (Xu et al. 2023). This approach does not require any
human reference, unlike ROUGE (Lin 2004). However, the
output of model-evaluator needs to be unified, is not always
interpretable, and model-evaluator scores can be skewed.
Alternative approach is suggested by (Zhu and Bhat 2020),
where the text is evaluated based on several linguistic crite-
ria, such as grammar or coherence.

2.3 Datasets with Artificial Content
There are a number of surveys of machine-generated con-
tent detection with an overview of the datasets (Jawahar,
Abdul-Mageed, and Lakshmanan 2020; Wu et al. 2023),
however, few works focus on the quality of data in the
available datasets, despite it being an important aspect of
the task. Building AI-generated content detectors requires
high-quality labelled data that involve substantial financial,

computational, and human resources. The human evaluators
should check that the dataset does not contain corrupted gen-
erations, that the texts are coherent and grammatically cor-
rect. We will describe the datasets we used in our analysis
and experiments in Section 3.

2.4 Shared Tasks on AI-Generated content
Detection

Shared tasks advance research on detecting AI-generated
content forward by offering new variations on tasks and
providing data for evaluation, encouraging participants to
come up with novel ideas for detectors robust to the change
of language, domain, or generating model. Participants ex-
plore approaches ranging from transfer learning on com-
plex text features to utilising and fine-tuning LLMs for these
tasks (2022; 2022; 2023b; 2024; 2024; 2024; 2024; 2024).
These efforts have highlighted challenges such as handling
multilingual data and adapting to rapidly evolving genera-
tive models. Some participants also provide some analysis
of the given data or even discuss some flaws with the gener-
ated texts (Voznyuk and Konovalov 2024).

3 Datasets
3.1 Datasets From Shared Tasks
The most common tasks in shared tasks are binary classi-
fication and authorship attribution, with binary classifica-
tion being the prevalent task, therefore, in this work, we fo-
cused only on it. All chosen shared tasks contain texts in En-
glish, unless stated otherwise. Here we give a brief overview
of each task, as well as some quantitative statistics of the
texts in Table 1, whereas a more detailed description, such
as models used for generation or domains of the presented
texts, can be found in Appendix A.

• DAGPap 2022 (Kashnitsky et al. 2022) introduced a
dataset of human- and machine-written scientific ex-
cerpts collected by Elsevier.

• RuATD 2022 (Shamardina et al. 2022) focused on
human- and machine-written documents in Russian, cov-
ering a wide range of themes.

• AuTexTification 2023 (Sarvazyan et al. 2023) provided
texts in English and Spanish, covering five distinct do-
mains.

• IberAuTexTiification 2024 (Sarvazyan et al. 2024) ex-
panded on the previous competition with a multilingual
(six Iberian languages), multi-domain, and multi-model
focus.

• Voight-Kampff Generative AI Authorship Verifica-
tion 2024 (Ayele et al. 2024), hereafter referred to
as PAN 2024, tasked participants with identifying the
human-authored text from two samples – one human-
written and one machine-generated.

• SemEval 2024 Task 8 (Wang et al. 2024c) addressed do-
main, generator, and language shifts in generated texts.
Training data included multiple languages such as Chi-
nese, Urdu, and Russian, but the test set was limited to
English, Italian, German, and Arabic.



Dataset Language Num. of
Texts, 103

Num. of Texts,
G / H, 103

Average Length,
G / H

Median Length,
G / H

GPT2 en 1250 1000 / 250 2941 / 2616 3245 / 2459

TweepFake en 20.7 10.4 / 10.4 104 / 118 89 / 94

HC3 en, zh 85.4 26.9 / 58.5 1011 / 681 1012 / 422

GhostBuster en 21 18 / 3 3345 / 3391 3440 / 2911.5

MGTBench en 23.7 20.7 / 3 1596 / 3391 1226 / 2911.5

MAGE en 436 152.3 / 284.2 1139 / 1282 706 / 666

M4 en, zh, ru, bg,
ur, id

89.5 44.7 / 44.7 1588 / 3162 1454 / 1697

OutFox en 57.6 43.2 / 14.4 2686 / 2238 2311 / 1992

DAGPap22 en 5.3 3.6 / 1.6 799 / 1180 680 / 1126.5

RuATD ru 129 64.5 / 64.5 237 / 221 99 / 95

AuTex en, es 65.9 33.1 / 32.8 315 / 297 386 / 351

IberAuTex es, en, ca, gl,
eu, pt

98 52.5 / 45.4 1037 / 1058 981 / 1018

PAN24 en 15.2 14.1 / 1.1 2641 / 3007 2731 / 2868

SemEval24 Mono en 34.2 18 / 16.2 2465 / 2358 2570 / 2083.5

SemEval24 Multi en, ar, de, it 42.3 22.1 / 20.2 2218 / 2257 2270 / 2032

MGT-1 Mono en 610.7 381.8 / 228.9 1448 / 1541 1208/ 1080

MGT-1 Multi en, zh, it, ar, de,
ru, bg, ur, id

674 416.1 / 257.9 1423 / 1445 1195 / 1032

Table 1: Statistics of the texts in the datasets from the shared tasks and research papers.

• MGT Detection Task 1 (COLING 2025) (Wang et al.
2025) was built on SemEval 2024 Task 8 by incorpo-
rating data generated by novel LLMs and expanding the
multilingual coverage of the train and test sets.

3.2 Datasets from Research Papers
The number of collections with generated content has started
to grow with an increasing number of available generators.
Quite often, researchers, together with a new approach for
AI content detection, publish a parallel dataset on which
they have validated their method. In this paper, our aim
was to pick collections with human- and machine-generated
excerpts that are the most common and cited in other re-
searchers’ publications. Similarly to previous subsection,
here we give a brief overview of each chosen datasets, de-
scribe some statistics about the texts in Table 1, and add a
more detailed description in Appendix A.
• GPT2 Output Dataset1 consists of text outputs gener-

ated by GPT-2 models of different sizes across various
1https://github.com/openai/gpt-2-output-dataset

prompts.
• HC3 (Human Chatbot Conversations Corpus) (Su et al.

2024) features conversations between humans and chat-
bots, primarily used for research on chatbot responses
and human-AI interaction analysis. This dataset is avail-
able for both English and Chinese, but we have focused
only on the former.

• GhostBuster (Verma et al. 2024) aimed at detecting
AI-generated content by comparing it to human-written
text, often used in the context of identifying machine-
generated misinformation or spam.

• MGTBench (Machine Generated Text Benchmark) (He
et al. 2023) is a benchmark dataset designed to evalu-
ate the quality of machine-generated text across various
tasks, including fluency, coherence, and creativity.

• MAGE (Model Augmented Generative Evaluation) (Li
et al. 2024) evaluates the performance of generative mod-
els by comparing outputs with human annotations, aiding
in the development of more accurate generative AI mod-
els.



Figure 1: Comparison of embedding shifts after two types of modifications for the HC3 dataset.

Figure 2: Topological Time Series for different datasets. The results for the remaining datasets selected in this paper can be
found in Figure 4.

• M4 (Multilingual, Multimodal, Multitask, Massive
Dataset) (Wang et al. 2024b) is a large-scale dataset de-
signed for training models that can handle multiple lan-
guages, tasks, and modalities, making it useful for devel-
oping versatile AI systems. Although it is multilingual,
we sampled only English texts.

• TweepFake (Fagni et al. 2021) contains real tweets writ-
ten by humans and synthetic tweets, generated by various
AI models, from bots, imitating human users.

• Outfox (Koike, Kaneko, and Okazaki 2024) contains
triplets of essay problem statements, human-written es-
says, and LLM-generated essays. The students who
wrote the essays range from 6th to 12th grade in the USA.

4 Approach
We decided to evaluate all datasets with common setups to
see how good standard approaches perform on them. We did
not have the goal to obtain the highest score, but rather to
compare the performance of the same method on different
datasets.

4.1 Baselines
In Section 2.1 we described three main categories of meth-
ods for tackling the detection task. We chose a method from
each category, that served as a baseline to obtain first-hand

understanding of each dataset. For the perturbation-based
methods we used DetectGPT framework with GPT-2 (Rad-
ford et al. 2019) as the base model and T5-Large (Raffel
et al. 2019) as perturbations generator. However, due to in-
tensive computational costs of DetectGPT, we utilised Fast-
DetectGPT (Bao et al. 2024) that substitutes DetectGPT’s
perturbation step with a more efficient sampling step. For the
zero-shot methods we used Binoculars (Hans et al. 2024)
with improved perplexity score. These two baselines need
no fine-tuning, which is an important aspect for detection
task, as it is infeasible to train the detector for every do-
main and generator. Lastly, as encoder-based method we
used mDeBERTa (He et al. 2021), which is the current state-
of-the-art model for multilingual machine-generated text de-
tection (Macko et al. 2023). By taking these three detectors,
we covered all main categories of detectors.

4.2 Topological Statistics
It was shown in (Tulchinskii et al. 2023) that if we take the
inner dimensionality of the manifold on the set of embed-
dings, we could separate human-written texts from machine-
generated ones. The authors used persistence homology
dimension (PHD) and showed that statistically human-
generated texts have higher PHD than machine-generated
texts, therefore introducing a novel detector. We calculated
PHD on each set of texts. Additionally, in (Kushnareva et al.



2024) it was suggested to calculate PHD within sliding win-
dow. These intrinsic dimensions of the text within sliding
window can be used as a feature for detectors. The authors
show that the metric is robust to the change of domain and
generators. To be able to compare datasets between each
other, we came up with a symmetrical score, utilising KL-
divergence. Let hd, md be distributions of intrinsic dimen-
sions for two types of texts from the same dataset, of human
and machine origin, then our KLTTS is following:

KLTTS(hd,md) = |DKL(hd||md)−DKL(md||hd)|

The lower this score, the closer hd and md are, which
means almost indistinguishable texts and vice versa.

4.3 Perturbations and Shuffling
Based on the results of the text modification studies (Sada-
sivan et al. 2024; Mitchell et al. 2023), which show how
small perturbations affect machine reading comprehension
systems, we decided to consider this way of possibly as-
sessing the quality of a dataset. The key idea here is that
AI models are sensitive to such adversarial changes, unlike
humans. We considered two modification ideas: Adversarial
Token Perturbation and Sentence Shuffling.

Adversarial Token Perturbation. In this approach we
divide the text into tokens and randomly replace the token
with a synonym from the WordNet collection (Miller 1994)
with a probability of 70%. We apply such a technique to each
represented class. Using an encoder model, we obtain em-
beddings for each of the texts in the current dataset. Finally,
we measure the average embedding shifts for the classes of
human and generated texts. We obtain the embedding shifts
using the cosine distance between the embeddings of the
original texts and the modified ones. As a result, after modi-
fications we obtain ∆shift — the log difference of the average
embedding shifts.

∆shift = log
1
n

∑n
i=1 cosd(ho

hi
, hp

hi
)

1
m

∑m
j=1 cosd(ho

mj
, hp

mj )
,

where n and m are number of samples in the human and
generated parts of the dataset respectively, ho

hi
– embedding

of the i-th fragment of human part of data, hp
hi

– the same
embedding after perturbation. Similarly, ho

mi
and ho

mi
are

embeddings for machine-generated texts. Finally, cosd is a
function that measures the cosine distance between two vec-
tors.

Sentence Shuffling. In this approach, we randomly swap
sentences, thereby affecting the cohesion of the text. We try
to find out the effect of artificial origin on the difference
between the distributions after permutations. By dividing a
fragment into sentences and randomly reversing the order
of 70% of the selected sentences, we apply this technique to
each represented class. Then, using the text encoding model,
we obtain embeddings for each of the texts from the current
dataset. Finally, we measure embedding shifts for the class
of human and generated texts, and after that we convert the
shifts into probability-like distributions. This allows us to
obtain at the end KLshuffle(H,M) — the KL-divergence be-
tween the shifts of human and generated texts.

Dataset DeBERTa Binoculars DetectGPT

GPT-2 0.972 0.495 0.412
TweepFake 0.941 0.845 0.864
HC3 0.998 0.931 0.972
GhostBuster 0.910 0.683 0.711
MGTBench 0.961 0.364 0.447
MAGE 0.835 0.632 0.654
M4 0.987 0.871 0.881
OutFox 0.901 0.692 0.707

SemEval24
Mono 0.991 0.913 0.924

SemEval24
Multi 0.994 – –

RuATD 0.765 – –
DAGPap22 0.968 0.333 0.562
PAN24 0.826 0.411 0.890
AuTex23en 0.941 0.783 0.911
AuTex23es 0.933 – –
IberAuTex 0.964 – –
MGT-1
Mono 0.904 0.665 0.683

MGT-1
Multi 0.934 – –

Table 2: Classification results with different detectors esti-
mated using F1-score. Binoculars and DetectGPT work only
with English texts, thus we could not apply them to datasets
with non-English texts.

KLshuffle(H,M) =
∑
i

H(i) log
H(i)

M(i)
,

H(i) =
cosd(ho

hi
, hp

hi
) + ϵ∑

j

(
cosd(ho

hj
, hp

hj
) + ϵ

) .
M(i) has the same structure as H(i), except that instead of
human class texts the generated class texts are used, ϵ is a
small constant added to avoid division by zero.

5 Experiments
From each dataset, we sampled 1000 documents from the
test set, balanced between two classes. Regarding baselines,
we fine-tuned mdeberta-v3-base for each dataset and
evaluated the model. Additional information about hyperpa-
rameters during training can be found in the Appendix C.
To evaluate the quality of Binoculars and Fast-DetectGPT,
we utilised falcon-rw-1b (Almazrouei et al. 2023) and
gpt-neo-2.7B (Black et al. 2021) respectively. It is
worth noting that with the last two methods we were only
able to measure quality for samples in English.

Our objective was to show that datasets of lower qual-
ity have shifts that will be easily recognised by the models



Dataset KLTTS ↓ PHDhuman PHDmachine ∆shift ↓ KLshuffle ↓

GPT-2 0.014 9.23 ± 1.98 10.27 ± 1.84 0.084 1.255
HC3 0.053 8.76 ± 1.83 7.38 ± 1.05 0.264 1.167
GhostBuster 0.053 9.84 ± 1.18 9.76 ± 1.15 0.024 0.359
MGTBench 0.043 8.77 ± 1.31 9.97 ± 1.02 0.031 0.421
MAGE 0.011 9.8 ± 2.14 9.38 ± 3.04 0.094 0.310
M4 0.036 7.26 ± 1.99 8.59 ± 1.4 0.107 0.483
OutFox 0.025 8.96 ± 1.21 11.48 ± 1.13 0.095 0.237
TweepFake - 9.02 ± 3.19 8.12 ± 4.02 0.116 1.001

SemEval24 Mono 0.012 9.11 ± 1.19 9.41 ± 1.2 0.191 2.576
SemEval24 Multi 0.001 9.65 ± 1.81 9.42 ± 1.44 0.059 2.046
RuATD 0.007 7.33 ± 1.4 7.46 ± 1.41 0.315 14.028
DAGPap22 0.083 8.35 ± 1.33 7.48 ± 2.01 0.039 0.472
PAN24 0.053 9.4 ± 1.05 8.52 ± 1.59 0.050 0.331
AuTex23 Eng 0.021 8.07 ± 2.26 8.1 ± 2.68 0.110 4.331
AuTex23 Esp 0.001 9.16 ± 3.49 9.25 ± 3.26 0.105 1.306
IberAuTex 0.012 9.33 ± 2.45 8.47 ± 2.73 0.223 5.516
MGT-1 Mono 0.019 9.19 ± 1.75 8.96 ± 2.24 0.031 0.587
MGT-1 Multi 0.006 8.76 ± 1.85 8.6 ± 2.29 0.027 0.522

Table 3: Calculated statistics on texts from chosen datasets. Some values for KLTTS are underlined, because texts are too short,
see Section 7 and TTS for almost all texts in TweepFake is equal to 0.

”from the first step”, hence we have not performed any hy-
perparameter tuning, only one iteration of fine-tuning and
testing of the underlying models. In the experiment with
topological features we used roberta-base, just as the
authors of the original paper. In the experiment with per-
turbations and shuffling, the multilingual-e5-large
encoder was used to build embeddings of texts, which shows
high metrics on encoding high-resource languages (Wang
et al. 2024a).

6 Results
The results of the comparison of the designed features in
the selected datasets are presented in Table 3. Regarding
the PHD and TTS score, in previous works it was shown
that texts from language models have smaller PHD values
than human-written ones; however, this result was obtained
for GPT-2, GPT-3.5 and OPT models, and this trend could
change for more recent language models that generate more
human-resembling texts. If texts of different origin have
high KLTTS, it means that it is easier for a detector to sep-
arate such texts. KLTTS is also constrained for shorter texts,
see Section 7. As for PHD, we hypothesise that generated
texts of good quality should have PHD similar to human-
written ones. Additionally, we compare the distributions of
PHD for all datasets on Figure 3. Again, the distributions for
texts of both origin should be similar, which mainly holds for
texts from SemEval, PAN24 and MGT-1.

In the next columns, we list the statistics observed on
modified texts, and for both of these the lower the better, as
this reflects the similar degree of resilience of the generated

and human texts to adversarial attacks. Qualitatively gener-
ated data with no bias should take values close to human.

Finally, in Table 2 we show the results of applying mod-
ern detectors to the chosen test datasets. For instance, on the
datasets with low values in Table 3, a quality close to 1 can
be achieved, indicating the clear presence of detector bias
towards them, or a structural feature that is too obvious for
the detection model. It is not possible to judge the quality of
the data only by achieving F1 values close to 1, but by com-
bining the values of the two tables, we can estimate which
set has better quality data and which has lower quality data.

7 Discussion
Regarding KLTTS, on Fig. 2 we show 4 datasets with the
high value of it. While GhostBuster and PAN24 received
such a high score due to the discrepancy on texts with higher
dimensions, MGTBench and DAGPap22 did it due to the
difference in distributions themselves. Note also that KLTTS
may not perform well with very short texts, since the internal
method of computing PHD requires sufficiently long texts
for stable computation. Therefore, we discard KLTTS on Ru-
ATD and AuTex23-es and Tweepfake, as they do not fit the
criteria; see Table 1. In addition, it has already been shown
that the texts must be of sufficient length (Gritsay, Grabovoy,
and Chekhovich 2022) to build reliable detectors.

Analysing the values from Table 3, we can trace the pres-
ence of sufficiently high quality data in the selected datasets.
The developed attributes in aggregate are able to reflect the
quality of the generated dataset from different perspectives



Figure 3: PHD values on all datasets, except TweepFake and AuTex23 Spanish, texts from which were too short for proper
calculation of PHD.

and angles. We propose to utilise these attributes in combi-
nation with other statistical tools to evaluate data quality, for
example, Zipf’s law (Powers 1998).

Presented statistics can be utilised to estimate the quality
of collections and to improve them. In addition, datasets that
collect machine-generated content may also provide utility
for the two more general purposes. First, high-quality gener-
ated data can be utilised to evaluate the quality of the causal
model during training, as one of the training objectives to

improve model answers and make it more human-like. Sec-
ondly, good detectors can help to clean training sets, as large
proportion of low-quality generated texts in those sets can
result in emerging biases towards incorrect structure and
rubbish fragments in the output of the model in the future.

The question of whether poor performance by detectors
implies poor dataset quality yields an ambiguous answer.
For instance, in (Hans et al. 2024), the Binoculars method
achieves an F1-score close to 1.0, while our experiments pro-



duced a wide range of scores: from 0.33 on DAGPap22 to
0.93 on HC3. For HC3, all three detectors performed sim-
ilarly, suggesting that the HC3 texts are relatively easy to
detect. However, this consistency does not extend to DAG-
Pap22. For instance, the DeBERTa-based detector achieved
an F1-score of 0.96, while DetectGPT scored only 0.562.
This pattern, where the DeBERTa-based detector achieves
notably higher scores than the other two methods, was ob-
served across a significant portion of the analysed datasets.
We attribute this strong performance to the fine-tuning of the
DeBERTa-based detector.

Conversely, the low scores for Binoculars merit further
scrutiny. Even when focusing on domains specifically tested
by its authors, such as PAN24 (News) and Outfox (Student
Essays), the scores fall well below the near-perfect results
reported in (Hans et al. 2024). This discrepancy suggests that
the Binoculars detector may not be representative. Similarly,
in our experiments, DetectGPT’s scores are comparable to
Binoculars’ scores, potentially indicating similar underlying
issues with the robustness of these detectors.

8 Conclusion
In the current research, we discussed the problem of quality
of datasets with AI-generated texts used for testing corre-
sponding detectors. This problem is relevant, as the quality
of test data directly influences the quality of widely used
detectors. We conducted a review of datasets from compe-
titions and scientific publications on datasets aimed at the
detection of AI-generated content and proposed methods
to evaluate the quality of datasets containing AI excerpts
based on different structural features. We evaluated topolog-
ical features, robustness to adversarial attacks, and perfor-
mance of the widely used detectors on these datasets. We
concluded that all analysed datasets fail in one or another of
our methods and do not allow to reliably estimate AI detec-
tors. We encourage researchers to propose their own ways
for quality assessment, which will allow to create a compre-
hensive system of evaluation of the detection datasets. Our
work aims to contribute to a better understanding of the dif-
ference between human and machine text, which will ulti-
mately contribute to preserving the integrity of information
in the world.

9 Limitations
In our work we focused on the task of binary classification,
thus suggested methods are not optimal for the task of de-
tection of the hybrid AI-human content. Also, some meth-
ods do not work properly on short texts, however, this is a
known issue for short texts.
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M.; Rangel, F.; Chulvi, B.; and Rosso, P. 2023. Overview
of AuTexTification at IberLEF 2023: Detection and Attri-
bution of Machine-Generated Text in Multiple Domains.
arXiv:2309.11285.
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A Data Description
More detailed description with information on sources, top-
ics and years of the datasets selected in this paper from com-
petitions and research papers in Table 4



B Evaluation results of competitions
Table 5 shows the winning scores in the competitions re-
viewed in this paper. In the AuTex and IberAuTex compe-
titions it was forbidden to use additional data to fine-tune
the detection algorithms. In the other collections it was al-
lowed, we can notice a high quality near perfect in them.
We should note the low value of the metrics on the RuATD
dataset, which can be explained by the limited number of
high-quality language models available in Russian during
the competition.

Competition Metric Best result

RuATD Accuracy 0.820
AuTex23-en Macro-F1 0.809
AuTex23-es Macro-F1 0.708
IberAuTex Macro-F1 0.805
SemEval24
Mono Accuracy 0.975

SemEval24
Multi Accuracy 0.959

PAN24 Avg. of 5 metrics* 0.924
DAGPap22 Avg. F1-score 0.994
MGT-1 Mono Macro-F1 0.8307
MGT-1 Multi Macro-F1 0.7916

Table 5: Best results from each analysed competition.
PAN24 used mean of 5 metrics, such as accuracy, F1 and
other to evaluate efficiency of the system.

C Hyperparameters

Hyperparameters Values
Epochs 5*
Learning rate (LR) 5e-5
Warm-up steps 50
Weight decay 0.01

Table 6: Hyperparameters for fine-tuning mDeBERTa-base.
We trained for 5 epochs with possibility of early exit.

The training was carried out on NVIDIA GeForce RTX
3090. See hyperparameters in Table 6.



Dataset Year Themes Sources

Research papers datasets

GPT2 2019 WebText GPT-2
TweepFake 2019 Tweets Markov Chains, RNN, LSTM, GPT-2
HC3 2023 ELI5, WikiQA, Wikipedia, Medicine, Fi-

nance
ChatGPT

GhostBuster 2023 Student Essays, News Articles, Creative
Writing

ChatGPT, Claude

MGTBench 2024 Student Essays, News Articles, Creative
Writing

ChatGPT. ChatGLM, Dolly, GPT4All, Sta-
bleLM, Claude

MAGE 2024 Opinions, Reviews, News, QA, Story Gen-
eration, Commonsense Reasoning, Knowl-
edge Illustration, Scientific Writing

text-davinci-002, GPT-3.5, ChatGPT,
LLaMA, GLM-130B, FLAN-T5, OPT,
BLOOM, GPT-J-6B, GPT-NeoX-20B

M4 2024 Wikipedia, Reddit ELI5, WikiHow, Peer-
Read, arXiv abstract

GPT-3.5, ChatGPT, Cohere, Dolly-v2,
BLOOM

OutFox 2024 Student Essays ChatGPT, GPT-3.5, FLAN-T5

Shared tasks datasets

RuATD 2022 News, Social media, Wikipedia, Strategic
Documents, Diaries

M-BART, M2M-100, OPUS-MT, mT5,
ruGPT2, ruGPT3, ruT5-Base

DAGPap 2022 Scopus papers Longformer Encoder-Decoder, GPT-3,
Spinbot, GPT-Neo

AuTex 2023 Legal documents, Social media, How-to
articles

BLOOM, GPT-3, GPT-3.5

IberAuTex 2024 News, Reviews, Emails, Essays, Dia-
logues, Wikipedia, Wikihow, Tweets

GPT-2, LLaMA, Mistral, Cohere, Claude,
MPT, Falcon

PAN 2024 News Alpaca, BLOOM, Gemini, ChatGPT, gpt-
4-turbo, LLaMA-2, Mistral, Qwen1.5,
GPT-2

SemEval
Mono

2024 Wikipedia, WikiHow, Reddit, arXiv, Peer-
Read, Student Essays

GPT-3.5, GPT-4, Cohere, Dolly-v2,
BLOOMz

SemEval
Multi

2024 Wikipedia, WikiHow, Reddit, arXiv, Peer-
Read, Student Essays, News

ChatGPT, GPT-3.5, GPT-4, LLaMA2, Co-
here, Dolly-v2, BLOOM, Jais

MGT-1
Mono

2025 CNN, DialogSum, Wikipedia, WikiHow,
Eli5, Finance, XSum, PubMed, SQuAD,
IMDb, Reddit, arXiv, PeerRead

text-davinci-002, GPT-3.5, ChatGPT, OPT,
LLaMA3, BLOOM, FLAN-T5, Cohere,
Dolly, Gemma, Mixtral

MGT-1
Multi

2025 CNN, DialogSum, Baike, WikiQA, Wik-
iHow, Eli5, Finance, Psychology, XSum,
PubMed, SQuAD, IMDb, Reddit, arXiv,
PeerRead

text-davinci-002, GPT-3.5, ChatGPT,
gpt4o, GLM, GPT-J, GPT-Neo, OPT,
LLaMA2, LLaMA3, BLOOM, FLAN-T5,
Cohere, Dolly, Gemma, Mixtral, Jais

Table 4: More detailed descriptive statistics about domains and generators of the chosen datasets from competitions and research
papers. ChatGPT is gpt-3.5-turbo, GPT-3.5 is text-davinci-003.



Figure 4: Topological Time Series on all datasets.


