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Abstract

Biomedical Relation Extraction (Bio-RE) aims
to recognize and classify the potential relations
between various molecules and biomolecules.
The main obstacle in Bio-RE is the scarcity of
annotations especially in low-resource relation
labels, thus the models cannot fully understand
the connection between chemicals and diseases
or drug-drug interactions. Existing works usu-
ally adopted data augmentation approaches to
generate pseudo-annotated instances to allevi-
ate the scarcity of annotations. However, the
generated sentences largely ignore the semantic
consistency of the biomedical domain and the
logical coherence between biomolecules and
diseases, causing a fatal phenomenon that the
generated sentences introduce counterfactual
information when learning the interactions be-
tween the drugs or diseases. To this end, this
paper proposes a bio-notion-dedicated data aug-
mentation approach that is able to measure in-
tersections between biomedical relation notions
and tokens of each instance to generate aug-
mented data with semantic consistency. Exper-
imental results demonstrate that our proposed
method could bring 5.61% F1 improvement
over SOTA baseline methods on three bench-
mark Bio-RE datasets in terms of BLURB.

1 Introduction

Biomedical Relation Extraction (Bio-RE) is a fun-
damental task in Biomedical Natural Language Pro-
cessing (Bio-NLP) aiming to recognize and classify
the potential relations between various molecules
and biomolecules. This processing requires un-
derstanding the association between the suffering
target and disease, and drug-drug interaction based
on the given biomedical description to promote the
downstream tasks in the biomedical field, ranging
from auto-generating medical records to communi-
cation with patients (Bravo et al., 2015).

In practice, annotating biomedical data is ex-
tremely labor-intensive which requires domain
knowledge from experts or doctors, and especially
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Figure 1: Examples for different data augmentation
methods. Existing amend-based methods simply con-
sider the linguistic features to substitute the token or
syntax, resulting in severe semantic and logical errors,
while generative models face heavy hallucinations. Both
approaches introduce model counterfactual information.

severely impedes the advancement of Bio-RE in
low-resource relation labels. (Bravo et al., 2015;
Krallinger et al., 2017) More recently, the Large
Language Models (LLMs) were utilized for NLP
tasks (Ding et al., 2020; Liu et al., 2021; Zhou
et al., 2021), but poor performance was achieved
in Bio-RE. This is because biomedical data is very
sensitive, but insufficient data makes it difficult to
pre-train in the biomedical domain. As a result, it
faces heavy hallucination issues which is a disaster
in the biomedical field. (Ghosh et al., 2023; Hu
et al., 2023). In this case, how to bring more data
is the key point for biomedical natural language
processing tasks (Xu et al., 2022).

A general technique adopted to alleviate the data
scarcity problem in the Bio-RE task is Data Aug-
mentation (DA) (Ghosh et al., 2023; Hu et al.,
2023). Existing DA methods can be divided into
two categories: Amendment Rule-based methods
and Generation-based methods. The former one uti-



lizes similarity or pre-defined rules amending the
given input data to obtain similar instances (Zeng
etal., 2016; Wei and Zou, 2019) while the latter one
adopts generative models to generate pseudo data
based on fixed prompts or instruction (Cai et al.,
2020; Bayer et al., 2023). Whereas, illustrated
by Figure 1, simply amending "regulation"
to "rule" or paraphrasing ". .
up-regulation..."to"downward. . .not
enhance. . ." would cause severe semantic and
logical errors which cut off the inner connection
between diseases and drugs. Besides, genera-
tive methods meet heavy hallucination issues, as
"HTES5" does not even exist. Both existing DA
methods could poison Bio-RE models because
counterfactual data results in the model’s misun-
derstanding among diseases and drugs, and further
damages the confidence of biomedical models.

.enhance...by

Targeting this issue, this paper proposes a se-
mantic consistency data augmentation approach via
Blomedical NOtion infusion, named BINO. Our
approach measures interactions between biomedi-
cal relation notions and tokens of each instance to
help the model generate sentences with semantic
consistency, instead of merely computing linguistic
features of within or between instances. As illus-
trated in Figure 2, BINO consists of two modules,
the Encoder is fine-tuned on modification of re-
formed input sentences. Different from other text
reconstruction methods which generally adopt at-
tention map on linguistic statistics to obtain the
attribution words of the key entity, we add spe-
cific biomedical notions corresponding to every
relation to the Attribution Selector to compute the
mutual information between each token and spe-
cific biomedical notion to help model learn the
semantic consistency among diseases and drugs.
With the help of biomedical notions, the selected
attributions contribute at both entity-level and tar-
get relation-level. Then, to preserve the selective
attributions, we mask all other words except the se-
lective common attributions as keywords and feed
them into the model which is expected to recover
the masked tokens while engraving the selective
keywords. These keywords all refer to the indicator
between the key entity and the target biomedical
relation. As for the decoder, the generated sen-
tences are expected to be formed as professionally
as the original biomedical instances in structural
and syntax. Hence, we sampled similar sentences
from the training set corresponding to the target

instance. Then an Extractor is adopted to extract
the common exclusive structure among all original
instances providing the decoder ability to maintain
the logical coherence between biomolecules and
diseases to hold the expertise as transcribing from
experts.

The contributions of this paper are as follows:

 This paper proposes a novel data augmentation
method named BINO which enhances Bio-RE
model by using biomedical notion-infused selec-
tive attribution. Compared with existing methods,
BINO brings semantic consistency and logical
coherence to Bio-RE models by combining a
biomedical notion-based encoder and a decoder
with a logical structure extractor.

» This paper demonstrates the benefits of allevi-
ating counterfactual issues of Bio-RE models.
Our proposed BINO outperforms all other base-
line models by 5.61% while augmenting data
instances which preserve semantic consistency
and maintain logical coherence.

 This paper conducts extensive experiments on
three commonly used Bio-RE datasets selected
by BLURB: ChemProt, DDI, and GAD, and eval-
uates them in low-resource settings. The exper-
imental results validate the effectiveness of our
proposed method.

2 Related Works

2.1 Biomedical Relation Extraction

Though Large Language Models (LLMs) help sev-
eral Natural Language Processing (NLP) tasks at-
taining promising milestones, due to the scarcity of
annotated data and yielding experts to involve their
knowledge in data annotation is costly, the key chal-
lenge of Bio-RE task is performing better results
with the limited well-annotated data (Lee et al.,
2020; Tinn et al., 2023; Omiye et al., 2024). To
address this problem, there are three popular tech-
niques adapted to Bio-RE task, which are domain
supervised learning (Beltagy et al., 2019; Lee et al.,
2020), indirect supervised learning (Roth, 2017;
Xu et al., 2022), and data augmentation (Lee et al.,
2021; Hu et al., 2023; Ghosh et al., 2023). Do-
main supervised learning and indirect supervised
learning train models on biomedical-related corpus.
The former one is aiming to train on the larger data
to obtain better performance while the latter is de-
signed to convert the RE task to another formatting
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Figure 2: Overview framework of BINO. Biomedical notions and structural information are added to encoder and
decoder respectively to help model understand the semantic consistency and logical coherence.

task (e.g., Machine Reading Comprehension, Ques-
tion Answering, and Natural Language Inference,
etc.) to use extra supervision signal promoting the
performance of RE models (Xu et al., 2022). The
aforementioned approaches are facing two chal-
lenges: (a) though given the larger scale corpus, the
models cannot understand the interaction among
entities and relations since the representation of
relations is performed as only indices; (b) the issue
of lacking data still obstructs the models, especially
for hardly seen instances.

2.2 Data Augmentation in Bio-RE

The data augmentation aims to generate pseudo
instances corresponding to the given instances in
semantics but with diverse syntax. The existing
methods can be divided into two categories: (a)
Amendment-based methods. This kind of method
tries to amend the exact token or order of in-
put sentences according to pre-defined rules to
augment the data. Wei and Zou (2019) adopts
synonym replacement, random insertion, random
swap, and random deletion to augment the original
sentences. Beyond the token-level, Lee et al. (2021)
interpolates the embeddings and labels of two or
more sentences from representation-level. and (b)
Generation-based methods. These years, leverag-

ing generative large language models to generate
kinds of data has become popular. Anaby-Tavor
et al. (2020) and Papanikolaou and Pierleoni (2020)
fine-tune multiple generative models for each rela-
tion type to generate augmentations. Bayer et al.
(2023) proposes a sophisticated generation-based
method that generates augmented data by incorpo-
rating new linguistic patterns. Beyond that, Ope-
nAl (2023) introduced ChatGPT to make great
progress in nearly all kinds of NLP tasks. It has
proved to be effective utilizing ChatGPT as a data
augmentation technique to enrich the data instances
(Van Nooten and Daelemans, 2023).

However, the existing data augmentation meth-
ods generally lean to generate instances leaving
faithfulness and factuality alone which poison the
model in understanding the interaction among
biomedical entities and relations, and further, mis-
leading models cannot be adopted to the real sce-
narios.

3 Methodology

In this section, we give an introduction to our pro-
posed data augmentation method. Figure 2 demon-
strates the overview framework of our BINO data
augmentation framework. §3.1 formally describe
the problem. §3.2 introduce the process of data re-



construction with selected attributions with biomed-
ical notions. §3.3 illustrate the pseudo data genera-
tion while how we leverage the biomedical logical
syntax to help model augment data like transcribing
from biomedical materials.

3.1 Problem Formulation

Biomedical Relation Extraction task aims to pre-
dict relation » € R by being given a subjective
and objective entity pair [ent, ents] in the sen-
tence s = {w; : ¢ = 0,--- ,n} where n is the
length of sentence s, and w; denotes the ¢-th to-
ken. The data augmentation technique targets
the relation r*, and generates pseudo sentences
s* = {w; : i = 0,---,m} which has the same
entity pair [ent], ents] and the corresponding rela-
tion r* but different syntax structure comparing to
the given sentence s. Additionally, the pseudo sen-
tences should not break the basic rules of biomedi-
cal domain to hold its availability in downstream
tasks.

3.2 Data Reconstruction

To train an Encoder to fully understand the mean-
ing of the given sentence, the model is supposed
to know the attribution map of the given sentence
for the two related entities. This section proposes
an Attribution Selector with biomedical notion to
hold the semantic consistency of biomedical do-
main. The Attribution Selector contains two mod-
ules, one is designed to obtain the attribution with
lexicon mutual information denoted as attriogits,
while another is armed with biomedical notions
corresponding to each relation aiming to obtain the
semantic-level attribution for the specific biomedi-
cal relation denoted as attry;,.

Lexicon-level Attribution. For each sentence s,
we separate the subjective entity and objective en-
tity corresponding to the relation r. For each target
entity e = {wy, -+ ,w,}, we consider every to-
ken except the target entity as candidate keywords
S* = {s/e}. For every token w; € S* in candi-
date keywords, we compute the contribution from
token w; to target entity e as the attributed score
attr(e < w;) as follows:

attr(e < w;) =attr(e) — attr(e \ w;)
attr(e \ w;) =attr(s \ w;)— (D
attr(s \ {wua cr Wy, wl})

where attr(x) is a function to obtain the attribution
score (e.g., LOO (Lipton, 2018), LIME (Ribeiro

et al., 2016), etc.). Then we go through all tokens
in candidate keywords for all entities and obtain an
attribution map corresponding to the target entity.
After obtaining the attribution map, as the rela-
tion r* exists between the two related entities entq
and ento, the attribution between these two entities
(attr(e; < e2) or attr(ea < e1)) should be the
highest. Hence we fix the attribution map by setting
these attributed scores as 1 to be the highest. Then
we build an absorber bound to set any attributed
score higher than the absorber bound to the highest
score. Any lower will be scaled as the same propor-
tion. Through this, we ensure the two related enti-
ties have the closest relation in the given sentence.
The other tokens have their own attributed score
indicating to what extent relating to the target en-
tity. And in this way, we have the fixed attribution
map with the lexicon-level information, denoted as
attriogits = {(w;, attr(e <— w;)) : w; € {s\ e}}.

Semantic-level  Attribution. The general
paradigm of generating pseudo instances is
replacing single or multiple keywords regardless
of semantic consistency. However, these keywords
have special meaning to compose the entire
sentence which cannot be replaced or need to be
regarded as a whole part. For example, the key-
word “up-regulation...enhance" means a molecule
has positive effectiveness to another molecule and
it cannot be placed as “downward...not enhance"
which breaks the basic biomedical law. To
overcome the semantic consistency of biomedical
domain gap between the given sentence and
the pseudo sentence, we incorporate biomedical
notion into Attribution Selector for selecting
semantic-level attribution.

Specifically, according to the three main Bio-RE
datasets selected by BLURB, each relation type has
a specific definition (e.g., relation “mechanism" in
DDI dataset is defined as “This type is used to an-
notate DDIs that are described by their PK mecha-
nism""). In this way, we consider this definition as
a biomedical notion of the corresponding relation
in datasets, denoted as 7}, for relation r. We then
adopt an inference model to evaluate the relativ-
ity between the keywords pair and the biomedical
notion. For each target entity ¢! = {w?, - ,w!},
we consider every token except the target entity

'DDI also give an example to clarify each relation. As
for “mechanism", the given example is “Grepafloxacin may
inhibit the metabolism of theobromine" which indicates the
entities “Grepafloxacin" and “theobromine" have the relation
of “mechanism".



as candidate keywords S* = {s\ {e!,e?}}. For
every token w; € S* in candidate keywords, we
compute the contribution from (w;, e!, €?) to the
relativity between s and 71, as the attributed score
attr(rpi < w;) as follows:

attr(rpio « w;) =attr(el, e?) — attr(el, e \ wy)
attr(e!, e \ w;) =attr(s \ w;)—
attr(s \ {e', e?, w;})

2
where attr(x) is the same function as Lexicon-
level Attribution. In this case, we set two absorber
bounds to limit the attribution score. The highest
absorber bound is set to attr(s) denoting that the
whole sentence should be the closest to the given
biomedical notion 71,;, with the value of 1. The low-
est absorber bound is set to attr(s \ {e!,e?}) with
the value of 0 indicating that the sentence without
the subjective and objective entity should have the
lowest relativity with the biomedical notion. Then
we fix all attribution scores with the same rule as
the Lexicon-level Attribution. In this way, we have
the fixed attribution map with biomedical notion de-
noted as attryp;, = {(w;, attr(rpi < w;)) : w; €

{s\{e" e*}}}

Attribution Mask. To obtain the keywords that
can represent the lexicon-level attribution while
not losing attribution of biomedical domain, we
combine the two attribution maps attrjegits and
attrpio by selecting top-n common keywords with
the n highest attribution score. Now we have
n keywords set K corresponding to a specific
sentence s with subjective and objective entities
E = {e!,e?} representing the relation . Then
we mask the other tokens out of the K and the
entities /. To make the two entities prominent,
as shown in Figure 2, following the Zhong and
Chen (2020), we concatenate the two entities be-
hind the original sentence and add label marker
ahead and after the entity to explicitly indicate
the entity type and give the model hint to recog-
nize the start and the end of the entity, denotes as
ex = (S: entyype)e(/s : entiype). We denote the
new input sentence as X = {Smasked|eL]e2}.

3.3 Pseudo Data Generation

The proposed model BINO adopts TS5 as a pseudo
data generator in sequence-to-sequence paradigm.
The Encoder is expected to understand the interac-
tion between selective attributions and the subjec-
tive and objective entities while also the relation

between them. The input X = {syacedlel|e?}
is served as template with masked tokens and the
BINO learns to fill the blank to recover the origi-
nal sentence. Specifically, the encoder fe,(-) takes
input tokenized sentence X = {z1,x9,...,2,}
and obtains the contextualized token embeddings
H = fo(X) = {h1,ha2,...,h,}. The recover
decoder fgo(-) aims to recover the masked part of
the input sentence with the training object Y:

Y ={yi 1 yi = maxp(yi|ly<i, H)} 3)

As for augmenting data with the same relation
type, a natural paradigm is sampling similar sen-
tences from training set and making the decoder
part to learn the pattern from similar sentences to
generate different instances with the embedding
H from trained encoder. However, we argue that
the model frequently imitates a similar sentence
by using the common show-up words instead of
finding the key structure of the similar sentences.
In this way, especially in the biomedical field, the
sentence would be performed like piling up plenty
of terminology but constructed without biomedical
logic. In this paper, we propose to leverage biomed-
ical logical syntax with a logical extractor fey(-)
to help model augment data like transcribing from
biomedical materials.

Firstly, we sample another k sentence s with the
same subjective and objective entities e! and e?
with the same relation type r. Then we concatenate
the above sentence with the target sentence s as
the first one, feeding into the T5-based extractor
to extract the key structure s of the ten sentence.
Then we compute the similarity between the 5 and
the given sentences concatenated with the biomed-
ical relation notion denoted as s|7pi, and §|7pio,
respectively, till the similarity score is all higher
than 80%. We consider the obtained s contains the
key structure.

Sequentially, we add biomedical notion not only
in attribution selector, but also incorporate it into
the decoder, to enhance the decoder the ability
to generate more biomedically logical pseudo in-
stances, we feed encoder’s output H, and target
biomedical relation notion 71, and the biomed-
ical key structure § to the decoder to generate
pseudo instances. In this way, the decoder can
used to augment the sentence by maximizing
P(Yily<i, H, rvio, 5) to obtain the pseudo sentences

Saug:

Y = {yi : yi = maxp(yily<i, H, 010, 5)}  (4)



To increase the diversity and the randomicity of
the augmented instances, we shuffle similar sen-
tences every time before feeding into the decoder
with the target sentence but still hold the target
one as the first. Though similar sentences have the
same entities and relations, the meaning and the
main idea of the sentence may have discrepancies.
To refrain the model from learning noise by adding
different main idea sentences in the same batch, we
adopt ChatGPT as the judge (Zheng et al., 2023)
to evaluate each similar sentence before training
the decoder. Only the similarity between target sen-
tence and the similar sentence less than the thresh-
old w? can be fed into the decoder.

4 Experiments

We conduct extensive experiments on three com-
monly used biomedical relation extraction datasets
selected from BLURB: GAD, DDI, and ChemProt
and low-resource Bio-RE setting to show the effec-
tiveness of our proposed BINO. Beyond that, we
present the analysis of how BINO enhances model
to understand the relationship between diseases and
drugs and drug-drug interaction.

4.1 Experimental Settings

Datasets. BLURB benchmark contains three
sentence-level biomedical relation extraction
datasets to evaluate the model’s ability to under-
stand the biomedical semantics. GAD is a semi-
labeled dataset created using Genetic Association
Archive and consists of gene-disease associations.
The purpose of the dataset is to determine whether
there was a gene-disease relationship between the
given subjective and objective entities which is a
bi-label prediction (Becker et al., 2004). DDI is
also named as Drug-Drug Interaction indicating the
five pre-defined interaction types between different
drugs which was specialized in pharmacovigilance
built from PubMed abstracts (Herrero-Zazo et al.,
2013). ChemProt is a disease chemical biology
database, which is based on a compilation of multi-
ple chemical—protein annotation resources, as well
as disease-associated protein—protein interactions
(PPIs) (Taboureau et al., 2010).

Baselines. We make the comparison with the fol-
lowing baseline models categorized by the pre-train
corpus as the same as Xu et al. (2022).

’In our experiments, we set w to 0.8.

* Semantic Scholar: BioRE-Prompt (Yeh et al.,
2022) and SciBERT (Beltagy et al., 2019) are
both pre-trained on BERT-based model by pro-
viding specific prompt for each relation. The
training corpus consists of academic papers se-
lected in Semantic Scholar.

¢ PubMed articles: BioBERT (Lee et al., 2020)
was pre-trained on a commercial-collection sub-
set of PMC while BioLinkBERT (Yasunaga
et al., 2022) adopt link prediction task in pre-
training processing which helped model to learn
the multi-hop inference.

Beyond, we also compare our BINO with an
indirect supervision method NBR-NLI (Xu et al.,
2022) which converts the relation extraction task to
NLI formulation trained on the BioLinkBERT-large
backbone. We adopt the version of NBRny1+FT
which was fine-tuned on two general domain NLI
datasets retaining biomedical domain knowledge
and learning relevant NLI knowledge.

4.2 Experimental Results

Comparison with Baseline Models. Table 1
shows the comparison of experimental results over
the three Bio-RE datasets. All baseline mod-
els achieve performance improvements with the
help of data augmentation methods compared
with the models only utilize the original training
data. Over the other data augmentation methods,
our BINO surpassed supervised baseline models
5.61% F1 score performance improvement on av-
erage. As for comparison with indirectly super-
vised models, BINO also enhances the baseline
model NBRyp1+rT 3.81% F1 score performance
improvement.

Considering the ablation study experiments, we
evaluate the model by dropping the Lexicon-level
Attribution, Semantic-level Attribution, and Struc-
tural information Extractor, respectively. Experi-
mental results show that lexicon-level and semantic-
level attribution contribute as same importance to
perform the augmented data. Without any attribu-
tion method to calculate the tokens’ contribution
would result in around 4% performance dropping.
Beyond that, with the help of proposed semantic-
level attribution by incorporating biomedical no-
tions, the model could generate pseudo-instances
closer to the real data distribution. Besides, the
structural information Extractor can also bring over
1.5% performance improvement by providing the



Model Backbone Para. GAD DDI ChemProt Average A
BioREPrompt - 125M - - 67.46 67.46 -
SciBERT-base - 110M - 81.32 74.93 78.13 -
BioBERT-base - 110M  79.83 80.33 76.46 78.87 -
BioLinkBERT-base - 110M 84.39 82.72 77.57 81.56 -
BioLinkBERT-large - 330M 8490 83.35 79.98 82.74 -
w/ EDA (2019) - 84.97 84.03 79.41 82.80  0.06
w/ ParaGraph (2020) - - 84.19 83.52 78.99 8223  -0.51
w/ AdMix (2022) mBART-base 110M 85.10 84.79 80.26 8338  0.64
w/ LAMBADA (2020) GPT-2 117M 8547 85.19 81.18 83.95 1.21
w/ ChatGPT (gpt-3.5-turbo) GPT-3 20B  88.56 87.02 83.13 86.27 3.53
w/ BINO T5-base 220M  90.21 89.54 85.29 88.35  5.61
w/0 attrigits T5-base 220M 8529 85.27 82.03 84.20 1.46
w/0 attry;, T5-base 220M 85.67 86.58 82.54 84.39 1.65
W/0 fex T5-base 220M 88.12 88.82 83.43 86.79  4.05
NBR-NLI - 340M 85.86 84.66 80.54 83.69 -
w/ EDA (2019) - 85.99 85.18 81.51 84.23 0.54
w/ ParaGraph (2020) - - 86.48 85.39 80.96 84.28  0.59
w/ AdMix (2022) mBART-base 110M 87.12 86.97 81.41 85.17 1.48
w/ LAMBADA (2020) GPT-2 117M  87.32 86.76 81.59 85.22 1.53
w/ ChatGPT (gpt-3.5-turbo) GPT-3 20B  87.21 87.88 83.57 86.22  2.53
w/ BINO T5-base 220M  89.17 88.22 85.12 87.50 3.81
w/0 attriogits T5-base 220M  87.13 86.45 82.30 85.29 1.60
w/o attry;, T5-base 220M  87.23 86.71 82.28 85.41 1.72
W/0 fox T5-base 220M  88.44 88.05 84.31 86.93 3.24

Table 1: Average F1 score over three Bio-RE datasets. The performance of baseline models is obtained from their
papers. Backbones and Parameters indicate what the model pre-trained on and how many parameters are involved.
The bold results indicate the best performance over the baselines.

Model 1% 5%  25% S50% 15% 100%
SUPERVISED MODELS

BioLinkBERT-large - - - - - 83.35
w/ EDA 83.34 81.55 7624 7383 72.05 7197
w/ ParaGraph 83.29 82.16 80.44 80.02 79.56 79.38
w/ AdMix 83.21 83.19 81.75 81.58 80.90 80.81
w/ LAMBADA 83.29 8250 81.43 80.42 81.28 81.25
w/ ChatGPT (gpt-3.5-turbo) 83.09 83.47 81.53 80.04 80.25 80.41
w/ BINO 83.34 8325 83.28 8291 82.26 82.38

Table 2: Experimental results on different proportions of augmented data substitution. 1% to 100% indicates
substituting specific proportion of original training data with generated instances. The lower gap between training
on 100% original data and replacement occasion is better which demonstrates the better data quality.

pseudo-instances in the same written style as the
original instances. By comparing with advanced
generated model ChatGPT with nearly 20B param-
eters, our proposed BINO surpasses it with only
1% parameter size of gpt-3.5-turbo.

Augmented Data Replacement. Table 2 shows
that comparison of experimental results of the
BioLinkBERT-large model with different propor-
tions of augmented data replacement. In this ex-

periment, we replace the 1%, 5%, 10%, 25%, 50%,
75%, and even all of original training data (100%)
to the augmented data with different DA methods
to find out whether the model could truly benefit
from the augmented data instead of being affected
by original data.

The experimental results demonstrate that our
BINO could preserve the original meaning best
by comparing with the other popular data aug-
mentation methods. Even after all replacement by
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of generated instances for one original sentence.

Model DDI ChemProt
TTR PPL TTR PPL
w/ EDA 83.36 96.35 8345 92.78
w/ ParaGraph ~ 83.92 90.43 85.41 88.75
w/ AdMix 7523 79.92 7834 7193
w/ LAMBADA 73.08 79.86 73.64 69.28
w/ ChatGPT 84.73 7628 84.62 64.45
w/ BINO 85.34 71.42 85.76 58.40
w/o attriegits 78.41 73.43 80.48 63.96
w/0 attrp;, 78.96 73.08 80.71 63.50
W/0 fex 83.27 7271 84.26 61.29

Table 3: Average scores for Type-Token Ratio (TTR),
and Perplexity (PPL) over three datasets.

pseudo-instances generated by BINO, the model
could achieve 82.38% F1 performance with just
0.97% drop while the EDA method cause nearly
12% performance drop. With the help of incorpo-
rating biomedical notions by adding semantic-level
attribution, the generated data approach the original
data distribution better than only adopting lexicon-
level attribution.

Augmented Instances Proportion. To explore
the effectiveness of proportion of augmented in-
stances to the model, we conduct experiments on
BioLinkBERT-large with different augmented pro-
portions. We vary the multiple of augmented data
from double to 10 times the original training data.
Figure 3 demonstrates the experimental results. We
observe that model would have more performance
improvement by increasing the multiplier of aug-
mented data. However, with the continuous in-
crease in the amount of augmented data, the mar-
gin decreases sharply and holds when multiplier
changes from 8x to 10x.

4.3 Diversity Analysis

We measure the diversity of augmented instances
through generally used metrics in Type-Token Ra-
tio (TTR) (Tweedie and Baayen, 1998) and Per-
plexity (PPL) (Jelinek et al., 1977). The former
is used to measure the ratio of the number of dif-
ferent words to the total number of words in the
dependency path between two entities for each rela-
tion type. Higher TTR generally indicates that the
pseudo-instances have a higher diversity at lexicon-
level. While the latter PPL is defined as the ex-
ponentiated average negative log-likelihood of a
sequence. Intuitively, it can be thought of as an
evaluation of the model’s ability to predict uni-
formly among the set of specified tokens in a cor-
pus. Lower PPL indicates that the models have
a better ability to select different tokens from the
corpus. Table 3 shows the average scores for all
metrics over three datasets. We observe that our
proposed BINO achieves the best performance with
62.53% in PPL and 87.85% in TTR.

5 Conclusions

This paper introduces a bio-notion-dedicated data
augmentation method for Bio-RE task named
BINO, and Encoder-Decoder framework which
uses an Attribution Selector with biomedical no-
tion to hold the semantic consistency of biomedical
domain. Besides, a structural extractor is applied
to incorporate structural information of biomedical
instances into the model to maintain the logical co-
herence between biomolecules and diseases. Exten-
sive experiments on three selective Bio-RE datasets
demonstrate that BINO can effectively preserve the
semantic consistency of biomedical domain.



6 Limitations

Biomedical datasets contain massive hyphens and
acronyms which impede models’ understanding of
the whole sentences. Adding a high-quality and
dynamic dictionary to the model may be a solution
to alleviate this issue. This paper does not discuss
the effects of dictionaries on correcting entities’
boundaries and data bias. Besides, newly emerging
drug entity detection is another challenge. The
proposed framework is model-agnostic which can
be applied to other models on unseen data groups
in theory, however, this paper does not discuss the
domain-transferring and adaptation.

7 Ethics Discussion

This work partially adopted generative models,
such as gpt-3.5-turbo, to generate pseudo instances
for data augmentation. The limitations and halluci-
nation issues have been discussed in this paper.
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