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Abstract
Biomedical Relation Extraction (Bio-RE) aims001
to recognize and classify the potential relations002
between various molecules and biomolecules.003
The main obstacle in Bio-RE is the scarcity of004
annotations especially in low-resource relation005
labels, thus the models cannot fully understand006
the connection between chemicals and diseases007
or drug-drug interactions. Existing works usu-008
ally adopted data augmentation approaches to009
generate pseudo-annotated instances to allevi-010
ate the scarcity of annotations. However, the011
generated sentences largely ignore the semantic012
consistency of the biomedical domain and the013
logical coherence between biomolecules and014
diseases, causing a fatal phenomenon that the015
generated sentences introduce counterfactual016
information when learning the interactions be-017
tween the drugs or diseases. To this end, this018
paper proposes a bio-notion-dedicated data aug-019
mentation approach that is able to measure in-020
tersections between biomedical relation notions021
and tokens of each instance to generate aug-022
mented data with semantic consistency. Exper-023
imental results demonstrate that our proposed024
method could bring 5.61% F1 improvement025
over SoTA baseline methods on three bench-026
mark Bio-RE datasets in terms of BLURB.027

1 Introduction028

Biomedical Relation Extraction (Bio-RE) is a fun-029

damental task in Biomedical Natural Language Pro-030

cessing (Bio-NLP) aiming to recognize and classify031

the potential relations between various molecules032

and biomolecules. This processing requires un-033

derstanding the association between the suffering034

target and disease, and drug-drug interaction based035

on the given biomedical description to promote the036

downstream tasks in the biomedical field, ranging037

from auto-generating medical records to communi-038

cation with patients (Bravo et al., 2015).039

In practice, annotating biomedical data is ex-040

tremely labor-intensive which requires domain041

knowledge from experts or doctors, and especially042

Lapatinib enhances herceptin-mediated antibody-dependent cellular cytotoxicity 
by up-regulation of cell surface HER2 expression. (RELATION: EFFECT)

Original Sentence

(EDA) lapatinib enhances herceptin mediated antibody dependent cellular 
cytotoxicity by up rule of cell surface her expression. 

(SIMILARITY) downward Lapatinib antibody dependent by regulation of cell 
surface not enhances her expression with herceptin mediated cellular 
cytotoxicity.

(ChatGPT w/ gpt-3.5-turbo ) Lapatinib boosts the antibody-dependent cellular 
cytotoxicity facilitated by Herceptin through the increased elevation of HTE5 
expression on the cell surface.

Rule-based Methods

Generative Methods

Semantic Error

Logical Error

Hallucination

Figure 1: Examples for different data augmentation
methods. Existing amend-based methods simply con-
sider the linguistic features to substitute the token or
syntax, resulting in severe semantic and logical errors,
while generative models face heavy hallucinations. Both
approaches introduce model counterfactual information.

severely impedes the advancement of Bio-RE in 043

low-resource relation labels. (Bravo et al., 2015; 044

Krallinger et al., 2017) More recently, the Large 045

Language Models (LLMs) were utilized for NLP 046

tasks (Ding et al., 2020; Liu et al., 2021; Zhou 047

et al., 2021), but poor performance was achieved 048

in Bio-RE. This is because biomedical data is very 049

sensitive, but insufficient data makes it difficult to 050

pre-train in the biomedical domain. As a result, it 051

faces heavy hallucination issues which is a disaster 052

in the biomedical field. (Ghosh et al., 2023; Hu 053

et al., 2023). In this case, how to bring more data 054

is the key point for biomedical natural language 055

processing tasks (Xu et al., 2022). 056

A general technique adopted to alleviate the data 057

scarcity problem in the Bio-RE task is Data Aug- 058

mentation (DA) (Ghosh et al., 2023; Hu et al., 059

2023). Existing DA methods can be divided into 060

two categories: Amendment Rule-based methods 061

and Generation-based methods. The former one uti- 062
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lizes similarity or pre-defined rules amending the063

given input data to obtain similar instances (Zeng064

et al., 2016; Wei and Zou, 2019) while the latter one065

adopts generative models to generate pseudo data066

based on fixed prompts or instruction (Cai et al.,067

2020; Bayer et al., 2023). Whereas, illustrated068

by Figure 1, simply amending "regulation"069

to "rule" or paraphrasing "...enhance...by070

up-regulation..." to "downward...not071

enhance..." would cause severe semantic and072

logical errors which cut off the inner connection073

between diseases and drugs. Besides, genera-074

tive methods meet heavy hallucination issues, as075

"HTE5" does not even exist. Both existing DA076

methods could poison Bio-RE models because077

counterfactual data results in the model’s misun-078

derstanding among diseases and drugs, and further079

damages the confidence of biomedical models.080

Targeting this issue, this paper proposes a se-081

mantic consistency data augmentation approach via082

BIomedical NOtion infusion, named BINO. Our083

approach measures interactions between biomedi-084

cal relation notions and tokens of each instance to085

help the model generate sentences with semantic086

consistency, instead of merely computing linguistic087

features of within or between instances. As illus-088

trated in Figure 2, BINO consists of two modules,089

the Encoder is fine-tuned on modification of re-090

formed input sentences. Different from other text091

reconstruction methods which generally adopt at-092

tention map on linguistic statistics to obtain the093

attribution words of the key entity, we add spe-094

cific biomedical notions corresponding to every095

relation to the Attribution Selector to compute the096

mutual information between each token and spe-097

cific biomedical notion to help model learn the098

semantic consistency among diseases and drugs.099

With the help of biomedical notions, the selected100

attributions contribute at both entity-level and tar-101

get relation-level. Then, to preserve the selective102

attributions, we mask all other words except the se-103

lective common attributions as keywords and feed104

them into the model which is expected to recover105

the masked tokens while engraving the selective106

keywords. These keywords all refer to the indicator107

between the key entity and the target biomedical108

relation. As for the decoder, the generated sen-109

tences are expected to be formed as professionally110

as the original biomedical instances in structural111

and syntax. Hence, we sampled similar sentences112

from the training set corresponding to the target113

instance. Then an Extractor is adopted to extract 114

the common exclusive structure among all original 115

instances providing the decoder ability to maintain 116

the logical coherence between biomolecules and 117

diseases to hold the expertise as transcribing from 118

experts. 119

The contributions of this paper are as follows: 120

• This paper proposes a novel data augmentation 121

method named BINO which enhances Bio-RE 122

model by using biomedical notion-infused selec- 123

tive attribution. Compared with existing methods, 124

BINO brings semantic consistency and logical 125

coherence to Bio-RE models by combining a 126

biomedical notion-based encoder and a decoder 127

with a logical structure extractor. 128

• This paper demonstrates the benefits of allevi- 129

ating counterfactual issues of Bio-RE models. 130

Our proposed BINO outperforms all other base- 131

line models by 5.61% while augmenting data 132

instances which preserve semantic consistency 133

and maintain logical coherence. 134

• This paper conducts extensive experiments on 135

three commonly used Bio-RE datasets selected 136

by BLURB: ChemProt, DDI, and GAD, and eval- 137

uates them in low-resource settings. The exper- 138

imental results validate the effectiveness of our 139

proposed method. 140

2 Related Works 141

2.1 Biomedical Relation Extraction 142

Though Large Language Models (LLMs) help sev- 143

eral Natural Language Processing (NLP) tasks at- 144

taining promising milestones, due to the scarcity of 145

annotated data and yielding experts to involve their 146

knowledge in data annotation is costly, the key chal- 147

lenge of Bio-RE task is performing better results 148

with the limited well-annotated data (Lee et al., 149

2020; Tinn et al., 2023; Omiye et al., 2024). To 150

address this problem, there are three popular tech- 151

niques adapted to Bio-RE task, which are domain 152

supervised learning (Beltagy et al., 2019; Lee et al., 153

2020), indirect supervised learning (Roth, 2017; 154

Xu et al., 2022), and data augmentation (Lee et al., 155

2021; Hu et al., 2023; Ghosh et al., 2023). Do- 156

main supervised learning and indirect supervised 157

learning train models on biomedical-related corpus. 158

The former one is aiming to train on the larger data 159

to obtain better performance while the latter is de- 160

signed to convert the RE task to another formatting 161
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Lapatinib enhances herceptin-
mediated antibody-dependent cellular 
cytotoxicity by up-regulation of cell 

surface HER2 expression
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Lapatinib enhances herceptin-
mediated antibody-dependent cellular 
cytotoxicity by up-regulation of cell 

surface HER2 expression - none

Lapatinib enhances herceptin-
mediated antibody-dependent cellular 
cytotoxicity by up-regulation of cell 

surface HER2 expression - effect

Lapatinib enhances herceptin-
mediated antibody-dependent cellular 
cytotoxicity by up-regulation of cell 

surface HER2 expression

Lapatinib enhances herceptin-
mediated antibody-dependent cellular 
cytotoxicity by up-regulation of cell 

surface HER2 expression

Lapatinib [MASK] herceptin 
mediated antibody-dependent cellular 
cytotoxicity by up-regulation of cell 

surface HER2 expression
Lapatinib enhances herceptin-
[MASK] up-regulation [MASK] 

HER2 expression

<e10>Lapatinib<e11> [MASK] 
<a1herceptin mediated antibody-

dependent cellular cytotoxicity by up-
regulation of cell surface HER2 

<e10>Lapatinib<e11> <a1>enhances<a2> 
<e20>herceptin<e21> [MASK] <a1>up-
regulation<a2> [MASK] <a1>HER2<a2> 

<a1>expression<a2>

Encoder

Decoder
1. … in either efficacy enhancement 

or adverse effects … 
2. Enhancement of humoral immune 

responses to inactivated … 
3. …

T5-based 
Extractor

1. [VERB] … [$ENHANCE$] … 
2. [$ENHANCE$] [VERB] [TO]… 
3. …

Figure 2: Overview framework of BINO. Biomedical notions and structural information are added to encoder and
decoder respectively to help model understand the semantic consistency and logical coherence.

task (e.g., Machine Reading Comprehension, Ques-162

tion Answering, and Natural Language Inference,163

etc.) to use extra supervision signal promoting the164

performance of RE models (Xu et al., 2022). The165

aforementioned approaches are facing two chal-166

lenges: (a) though given the larger scale corpus, the167

models cannot understand the interaction among168

entities and relations since the representation of169

relations is performed as only indices; (b) the issue170

of lacking data still obstructs the models, especially171

for hardly seen instances.172

2.2 Data Augmentation in Bio-RE173

The data augmentation aims to generate pseudo174

instances corresponding to the given instances in175

semantics but with diverse syntax. The existing176

methods can be divided into two categories: (a)177

Amendment-based methods. This kind of method178

tries to amend the exact token or order of in-179

put sentences according to pre-defined rules to180

augment the data. Wei and Zou (2019) adopts181

synonym replacement, random insertion, random182

swap, and random deletion to augment the original183

sentences. Beyond the token-level, Lee et al. (2021)184

interpolates the embeddings and labels of two or185

more sentences from representation-level. and (b)186

Generation-based methods. These years, leverag-187

ing generative large language models to generate 188

kinds of data has become popular. Anaby-Tavor 189

et al. (2020) and Papanikolaou and Pierleoni (2020) 190

fine-tune multiple generative models for each rela- 191

tion type to generate augmentations. Bayer et al. 192

(2023) proposes a sophisticated generation-based 193

method that generates augmented data by incorpo- 194

rating new linguistic patterns. Beyond that, Ope- 195

nAI (2023) introduced ChatGPT to make great 196

progress in nearly all kinds of NLP tasks. It has 197

proved to be effective utilizing ChatGPT as a data 198

augmentation technique to enrich the data instances 199

(Van Nooten and Daelemans, 2023). 200

However, the existing data augmentation meth- 201

ods generally lean to generate instances leaving 202

faithfulness and factuality alone which poison the 203

model in understanding the interaction among 204

biomedical entities and relations, and further, mis- 205

leading models cannot be adopted to the real sce- 206

narios. 207

3 Methodology 208

In this section, we give an introduction to our pro- 209

posed data augmentation method. Figure 2 demon- 210

strates the overview framework of our BINO data 211

augmentation framework. §3.1 formally describe 212

the problem. §3.2 introduce the process of data re- 213
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construction with selected attributions with biomed-214

ical notions. §3.3 illustrate the pseudo data genera-215

tion while how we leverage the biomedical logical216

syntax to help model augment data like transcribing217

from biomedical materials.218

3.1 Problem Formulation219

Biomedical Relation Extraction task aims to pre-220

dict relation r ∈ R by being given a subjective221

and objective entity pair [ent1, ent2] in the sen-222

tence s = {wi : i = 0, · · · , n} where n is the223

length of sentence s, and wi denotes the i-th to-224

ken. The data augmentation technique targets225

the relation r∗, and generates pseudo sentences226

s∗ = {wi : i = 0, · · · ,m} which has the same227

entity pair [ent1, ent2] and the corresponding rela-228

tion r∗ but different syntax structure comparing to229

the given sentence s. Additionally, the pseudo sen-230

tences should not break the basic rules of biomedi-231

cal domain to hold its availability in downstream232

tasks.233

3.2 Data Reconstruction234

To train an Encoder to fully understand the mean-235

ing of the given sentence, the model is supposed236

to know the attribution map of the given sentence237

for the two related entities. This section proposes238

an Attribution Selector with biomedical notion to239

hold the semantic consistency of biomedical do-240

main. The Attribution Selector contains two mod-241

ules, one is designed to obtain the attribution with242

lexicon mutual information denoted as attrlogits,243

while another is armed with biomedical notions244

corresponding to each relation aiming to obtain the245

semantic-level attribution for the specific biomedi-246

cal relation denoted as attrbio.247

Lexicon-level Attribution. For each sentence s,248

we separate the subjective entity and objective en-249

tity corresponding to the relation r. For each target250

entity e = {wu, · · · , wv}, we consider every to-251

ken except the target entity as candidate keywords252

S∗ = {s/e}. For every token wi ∈ S∗ in candi-253

date keywords, we compute the contribution from254

token wi to target entity e as the attributed score255

attr(e← wi) as follows:256

attr(e← wi) =attr(e)− attr(e \ wi)

attr(e \ wi) =attr(s \ wi)−
attr(s \ {wu, · · · , wv, wi})

(1)257

where attr(x) is a function to obtain the attribution258

score (e.g., LOO (Lipton, 2018), LIME (Ribeiro259

et al., 2016), etc.). Then we go through all tokens 260

in candidate keywords for all entities and obtain an 261

attribution map corresponding to the target entity. 262

After obtaining the attribution map, as the rela- 263

tion r∗ exists between the two related entities ent1 264

and ent2, the attribution between these two entities 265

(attr(e1 ← e2) or attr(e2 ← e1)) should be the 266

highest. Hence we fix the attribution map by setting 267

these attributed scores as 1 to be the highest. Then 268

we build an absorber bound to set any attributed 269

score higher than the absorber bound to the highest 270

score. Any lower will be scaled as the same propor- 271

tion. Through this, we ensure the two related enti- 272

ties have the closest relation in the given sentence. 273

The other tokens have their own attributed score 274

indicating to what extent relating to the target en- 275

tity. And in this way, we have the fixed attribution 276

map with the lexicon-level information, denoted as 277

attrlogits = {(wi, attr(e← wi)) : wi ∈ {s \ e}}. 278

Semantic-level Attribution. The general 279

paradigm of generating pseudo instances is 280

replacing single or multiple keywords regardless 281

of semantic consistency. However, these keywords 282

have special meaning to compose the entire 283

sentence which cannot be replaced or need to be 284

regarded as a whole part. For example, the key- 285

word “up-regulation...enhance" means a molecule 286

has positive effectiveness to another molecule and 287

it cannot be placed as “downward...not enhance" 288

which breaks the basic biomedical law. To 289

overcome the semantic consistency of biomedical 290

domain gap between the given sentence and 291

the pseudo sentence, we incorporate biomedical 292

notion into Attribution Selector for selecting 293

semantic-level attribution. 294

Specifically, according to the three main Bio-RE 295

datasets selected by BLURB, each relation type has 296

a specific definition (e.g., relation “mechanism" in 297

DDI dataset is defined as “This type is used to an- 298

notate DDIs that are described by their PK mecha- 299

nism"1). In this way, we consider this definition as 300

a biomedical notion of the corresponding relation 301

in datasets, denoted as rbio for relation r. We then 302

adopt an inference model to evaluate the relativ- 303

ity between the keywords pair and the biomedical 304

notion. For each target entity ei = {wi
u, · · · , wi

v}, 305

we consider every token except the target entity 306

1DDI also give an example to clarify each relation. As
for “mechanism", the given example is “Grepafloxacin may
inhibit the metabolism of theobromine" which indicates the
entities “Grepafloxacin" and “theobromine" have the relation
of “mechanism".
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as candidate keywords S∗ = {s \ {e1, e2}}. For307

every token wi ∈ S∗ in candidate keywords, we308

compute the contribution from (wi, e
1, e2) to the309

relativity between s and rbio as the attributed score310

attr(rbio ← wi) as follows:311

attr(rbio ← wi) =attr(e1, e2)− attr(e1, e2 \ wi)

attr(e1, e2 \ wi) =attr(s \ wi)−
attr(s \ {e1, e2, wi})

(2)312

where attr(x) is the same function as Lexicon-313

level Attribution. In this case, we set two absorber314

bounds to limit the attribution score. The highest315

absorber bound is set to attr(s) denoting that the316

whole sentence should be the closest to the given317

biomedical notion rbio with the value of 1. The low-318

est absorber bound is set to attr(s \ {e1, e2}) with319

the value of 0 indicating that the sentence without320

the subjective and objective entity should have the321

lowest relativity with the biomedical notion. Then322

we fix all attribution scores with the same rule as323

the Lexicon-level Attribution. In this way, we have324

the fixed attribution map with biomedical notion de-325

noted as attrbio = {(wi, attr(rbio ← wi)) : wi ∈326

{s \ {e1, e2}}}327

Attribution Mask. To obtain the keywords that328

can represent the lexicon-level attribution while329

not losing attribution of biomedical domain, we330

combine the two attribution maps attrlogits and331

attrbio by selecting top-n common keywords with332

the n highest attribution score. Now we have333

n keywords set K corresponding to a specific334

sentence s with subjective and objective entities335

E = {e1, e2} representing the relation r. Then336

we mask the other tokens out of the K and the337

entities E. To make the two entities prominent,338

as shown in Figure 2, following the Zhong and339

Chen (2020), we concatenate the two entities be-340

hind the original sentence and add label marker341

ahead and after the entity to explicitly indicate342

the entity type and give the model hint to recog-343

nize the start and the end of the entity, denotes as344

e∗ = ⟨s : enttype⟩e⟨/s : enttype⟩. We denote the345

new input sentence as X = {smasked|e1∗|e2∗}.346

3.3 Pseudo Data Generation347

The proposed model BINO adopts T5 as a pseudo348

data generator in sequence-to-sequence paradigm.349

The Encoder is expected to understand the interac-350

tion between selective attributions and the subjec-351

tive and objective entities while also the relation352

between them. The input X = {smasked|e1∗|e2∗} 353

is served as template with masked tokens and the 354

BINO learns to fill the blank to recover the origi- 355

nal sentence. Specifically, the encoder fen(·) takes 356

input tokenized sentence X = {x1, x2, . . . , xn} 357

and obtains the contextualized token embeddings 358

H = fen(X) = {h1, h2, . . . , hn}. The recover 359

decoder fde(·) aims to recover the masked part of 360

the input sentence with the training object Y : 361

Y = {yi : yi = max p(yi|y<i, H)} (3) 362

As for augmenting data with the same relation 363

type, a natural paradigm is sampling similar sen- 364

tences from training set and making the decoder 365

part to learn the pattern from similar sentences to 366

generate different instances with the embedding 367

H from trained encoder. However, we argue that 368

the model frequently imitates a similar sentence 369

by using the common show-up words instead of 370

finding the key structure of the similar sentences. 371

In this way, especially in the biomedical field, the 372

sentence would be performed like piling up plenty 373

of terminology but constructed without biomedical 374

logic. In this paper, we propose to leverage biomed- 375

ical logical syntax with a logical extractor fex(·) 376

to help model augment data like transcribing from 377

biomedical materials. 378

Firstly, we sample another k sentence s̃ with the 379

same subjective and objective entities e1 and e2 380

with the same relation type r. Then we concatenate 381

the above sentence with the target sentence s as 382

the first one, feeding into the T5-based extractor 383

to extract the key structure s̄ of the ten sentence. 384

Then we compute the similarity between the s̄ and 385

the given sentences concatenated with the biomed- 386

ical relation notion denoted as s|rbio and s̃|rbio, 387

respectively, till the similarity score is all higher 388

than 80%. We consider the obtained s̄ contains the 389

key structure. 390

Sequentially, we add biomedical notion not only 391

in attribution selector, but also incorporate it into 392

the decoder, to enhance the decoder the ability 393

to generate more biomedically logical pseudo in- 394

stances, we feed encoder’s output H , and target 395

biomedical relation notion rbio and the biomed- 396

ical key structure s̄ to the decoder to generate 397

pseudo instances. In this way, the decoder can 398

used to augment the sentence by maximizing 399

p(yi|y<i, H, rbio, s̄) to obtain the pseudo sentences 400

saug: 401

Y = {yi : yi = max p(yi|y<i, H, rbio, s̄)} (4) 402
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To increase the diversity and the randomicity of403

the augmented instances, we shuffle similar sen-404

tences every time before feeding into the decoder405

with the target sentence but still hold the target406

one as the first. Though similar sentences have the407

same entities and relations, the meaning and the408

main idea of the sentence may have discrepancies.409

To refrain the model from learning noise by adding410

different main idea sentences in the same batch, we411

adopt ChatGPT as the judge (Zheng et al., 2023)412

to evaluate each similar sentence before training413

the decoder. Only the similarity between target sen-414

tence and the similar sentence less than the thresh-415

old ω2 can be fed into the decoder.416

4 Experiments417

We conduct extensive experiments on three com-418

monly used biomedical relation extraction datasets419

selected from BLURB: GAD, DDI, and ChemProt420

and low-resource Bio-RE setting to show the effec-421

tiveness of our proposed BINO. Beyond that, we422

present the analysis of how BINO enhances model423

to understand the relationship between diseases and424

drugs and drug-drug interaction.425

4.1 Experimental Settings426

Datasets. BLURB benchmark contains three427

sentence-level biomedical relation extraction428

datasets to evaluate the model’s ability to under-429

stand the biomedical semantics. GAD is a semi-430

labeled dataset created using Genetic Association431

Archive and consists of gene-disease associations.432

The purpose of the dataset is to determine whether433

there was a gene-disease relationship between the434

given subjective and objective entities which is a435

bi-label prediction (Becker et al., 2004). DDI is436

also named as Drug-Drug Interaction indicating the437

five pre-defined interaction types between different438

drugs which was specialized in pharmacovigilance439

built from PubMed abstracts (Herrero-Zazo et al.,440

2013). ChemProt is a disease chemical biology441

database, which is based on a compilation of multi-442

ple chemical–protein annotation resources, as well443

as disease-associated protein–protein interactions444

(PPIs) (Taboureau et al., 2010).445

Baselines. We make the comparison with the fol-446

lowing baseline models categorized by the pre-train447

corpus as the same as Xu et al. (2022).448

2In our experiments, we set ω to 0.8.

• Semantic Scholar: BioRE-Prompt (Yeh et al., 449

2022) and SciBERT (Beltagy et al., 2019) are 450

both pre-trained on BERT-based model by pro- 451

viding specific prompt for each relation. The 452

training corpus consists of academic papers se- 453

lected in Semantic Scholar. 454

• PubMed articles: BioBERT (Lee et al., 2020) 455

was pre-trained on a commercial-collection sub- 456

set of PMC while BioLinkBERT (Yasunaga 457

et al., 2022) adopt link prediction task in pre- 458

training processing which helped model to learn 459

the multi-hop inference. 460

Beyond, we also compare our BINO with an 461

indirect supervision method NBR-NLI (Xu et al., 462

2022) which converts the relation extraction task to 463

NLI formulation trained on the BioLinkBERT-large 464

backbone. We adopt the version of NBRNLI+FT 465

which was fine-tuned on two general domain NLI 466

datasets retaining biomedical domain knowledge 467

and learning relevant NLI knowledge. 468

4.2 Experimental Results 469

Comparison with Baseline Models. Table 1 470

shows the comparison of experimental results over 471

the three Bio-RE datasets. All baseline mod- 472

els achieve performance improvements with the 473

help of data augmentation methods compared 474

with the models only utilize the original training 475

data. Over the other data augmentation methods, 476

our BINO surpassed supervised baseline models 477

5.61% F1 score performance improvement on av- 478

erage. As for comparison with indirectly super- 479

vised models, BINO also enhances the baseline 480

model NBRNLI+FT 3.81% F1 score performance 481

improvement. 482

Considering the ablation study experiments, we 483

evaluate the model by dropping the Lexicon-level 484

Attribution, Semantic-level Attribution, and Struc- 485

tural information Extractor, respectively. Experi- 486

mental results show that lexicon-level and semantic- 487

level attribution contribute as same importance to 488

perform the augmented data. Without any attribu- 489

tion method to calculate the tokens’ contribution 490

would result in around 4% performance dropping. 491

Beyond that, with the help of proposed semantic- 492

level attribution by incorporating biomedical no- 493

tions, the model could generate pseudo-instances 494

closer to the real data distribution. Besides, the 495

structural information Extractor can also bring over 496

1.5% performance improvement by providing the 497
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Model Backbone Para. GAD DDI ChemProt Average ∆

BioREPrompt - 125M - - 67.46 67.46 -
SciBERT-base - 110M - 81.32 74.93 78.13 -
BioBERT-base - 110M 79.83 80.33 76.46 78.87 -
BioLinkBERT-base - 110M 84.39 82.72 77.57 81.56 -
BioLinkBERT-large - 330M 84.90 83.35 79.98 82.74 -
w/ EDA (2019) - - 84.97 84.03 79.41 82.80 0.06
w/ ParaGraph (2020) - - 84.19 83.52 78.99 82.23 -0.51
w/ AdMix (2022) mBART-base 110M 85.10 84.79 80.26 83.38 0.64
w/ LAMBADA (2020) GPT-2 117M 85.47 85.19 81.18 83.95 1.21
w/ ChatGPT (gpt-3.5-turbo) GPT-3 20B 88.56 87.02 83.13 86.27 3.53
w/ BINO T5-base 220M 90.21 89.54 85.29 88.35 5.61

w/o attrlogits T5-base 220M 85.29 85.27 82.03 84.20 1.46
w/o attrbio T5-base 220M 85.67 86.58 82.54 84.39 1.65
w/o fex T5-base 220M 88.12 88.82 83.43 86.79 4.05

NBR-NLI - 340M 85.86 84.66 80.54 83.69 -
w/ EDA (2019) - - 85.99 85.18 81.51 84.23 0.54
w/ ParaGraph (2020) - - 86.48 85.39 80.96 84.28 0.59
w/ AdMix (2022) mBART-base 110 M 87.12 86.97 81.41 85.17 1.48
w/ LAMBADA (2020) GPT-2 117M 87.32 86.76 81.59 85.22 1.53
w/ ChatGPT (gpt-3.5-turbo) GPT-3 20B 87.21 87.88 83.57 86.22 2.53
w/ BINO T5-base 220M 89.17 88.22 85.12 87.50 3.81

w/o attrlogits T5-base 220M 87.13 86.45 82.30 85.29 1.60
w/o attrbio T5-base 220M 87.23 86.71 82.28 85.41 1.72
w/o fex T5-base 220M 88.44 88.05 84.31 86.93 3.24

Table 1: Average F1 score over three Bio-RE datasets. The performance of baseline models is obtained from their
papers. Backbones and Parameters indicate what the model pre-trained on and how many parameters are involved.
The bold results indicate the best performance over the baselines.

Model 1% 5% 25% 50% 75% 100%

SUPERVISED MODELS

BioLinkBERT-large - - - - - 83.35
w/ EDA 83.34 81.55 76.24 73.83 72.05 71.97
w/ ParaGraph 83.29 82.16 80.44 80.02 79.56 79.38
w/ AdMix 83.21 83.19 81.75 81.58 80.90 80.81
w/ LAMBADA 83.29 82.50 81.43 80.42 81.28 81.25
w/ ChatGPT (gpt-3.5-turbo) 83.09 83.47 81.53 80.04 80.25 80.41
w/ BINO 83.34 83.25 83.28 82.91 82.26 82.38

Table 2: Experimental results on different proportions of augmented data substitution. 1% to 100% indicates
substituting specific proportion of original training data with generated instances. The lower gap between training
on 100% original data and replacement occasion is better which demonstrates the better data quality.

pseudo-instances in the same written style as the498

original instances. By comparing with advanced499

generated model ChatGPT with nearly 20B param-500

eters, our proposed BINO surpasses it with only501

1% parameter size of gpt-3.5-turbo.502

Augmented Data Replacement. Table 2 shows503

that comparison of experimental results of the504

BioLinkBERT-large model with different propor-505

tions of augmented data replacement. In this ex-506

periment, we replace the 1%, 5%, 10%, 25%, 50%, 507

75%, and even all of original training data (100%) 508

to the augmented data with different DA methods 509

to find out whether the model could truly benefit 510

from the augmented data instead of being affected 511

by original data. 512

The experimental results demonstrate that our 513

BINO could preserve the original meaning best 514

by comparing with the other popular data aug- 515

mentation methods. Even after all replacement by 516
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Figure 3: Different augmented proportion on BioLinkBERT-large model. Different proportion indicates the number
of generated instances for one original sentence.

Model DDI ChemProt
TTR PPL TTR PPL

w/ EDA 83.36 96.35 83.45 92.78
w/ ParaGraph 83.92 90.43 85.41 88.75
w/ AdMix 75.23 79.92 78.34 71.93
w/ LAMBADA 73.08 79.86 73.64 69.28
w/ ChatGPT 84.73 76.28 84.62 64.45
w/ BINO 85.34 71.42 85.76 58.40

w/o attrlogits 78.41 73.43 80.48 63.96
w/o attrbio 78.96 73.08 80.71 63.50
w/o fex 83.27 72.71 84.26 61.29

Table 3: Average scores for Type-Token Ratio (TTR),
and Perplexity (PPL) over three datasets.

pseudo-instances generated by BINO, the model517

could achieve 82.38% F1 performance with just518

0.97% drop while the EDA method cause nearly519

12% performance drop. With the help of incorpo-520

rating biomedical notions by adding semantic-level521

attribution, the generated data approach the original522

data distribution better than only adopting lexicon-523

level attribution.524

Augmented Instances Proportion. To explore525

the effectiveness of proportion of augmented in-526

stances to the model, we conduct experiments on527

BioLinkBERT-large with different augmented pro-528

portions. We vary the multiple of augmented data529

from double to 10 times the original training data.530

Figure 3 demonstrates the experimental results. We531

observe that model would have more performance532

improvement by increasing the multiplier of aug-533

mented data. However, with the continuous in-534

crease in the amount of augmented data, the mar-535

gin decreases sharply and holds when multiplier536

changes from 8x to 10x.537

4.3 Diversity Analysis 538

We measure the diversity of augmented instances 539

through generally used metrics in Type-Token Ra- 540

tio (TTR) (Tweedie and Baayen, 1998) and Per- 541

plexity (PPL) (Jelinek et al., 1977). The former 542

is used to measure the ratio of the number of dif- 543

ferent words to the total number of words in the 544

dependency path between two entities for each rela- 545

tion type. Higher TTR generally indicates that the 546

pseudo-instances have a higher diversity at lexicon- 547

level. While the latter PPL is defined as the ex- 548

ponentiated average negative log-likelihood of a 549

sequence. Intuitively, it can be thought of as an 550

evaluation of the model’s ability to predict uni- 551

formly among the set of specified tokens in a cor- 552

pus. Lower PPL indicates that the models have 553

a better ability to select different tokens from the 554

corpus. Table 3 shows the average scores for all 555

metrics over three datasets. We observe that our 556

proposed BINO achieves the best performance with 557

62.53% in PPL and 87.85% in TTR. 558

5 Conclusions 559

This paper introduces a bio-notion-dedicated data 560

augmentation method for Bio-RE task named 561

BINO, and Encoder-Decoder framework which 562

uses an Attribution Selector with biomedical no- 563

tion to hold the semantic consistency of biomedical 564

domain. Besides, a structural extractor is applied 565

to incorporate structural information of biomedical 566

instances into the model to maintain the logical co- 567

herence between biomolecules and diseases. Exten- 568

sive experiments on three selective Bio-RE datasets 569

demonstrate that BINO can effectively preserve the 570

semantic consistency of biomedical domain. 571
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6 Limitations572

Biomedical datasets contain massive hyphens and573

acronyms which impede models’ understanding of574

the whole sentences. Adding a high-quality and575

dynamic dictionary to the model may be a solution576

to alleviate this issue. This paper does not discuss577

the effects of dictionaries on correcting entities’578

boundaries and data bias. Besides, newly emerging579

drug entity detection is another challenge. The580

proposed framework is model-agnostic which can581

be applied to other models on unseen data groups582

in theory, however, this paper does not discuss the583

domain-transferring and adaptation.584

7 Ethics Discussion585

This work partially adopted generative models,586

such as gpt-3.5-turbo, to generate pseudo instances587

for data augmentation. The limitations and halluci-588

nation issues have been discussed in this paper.589
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