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ABSTRACT

Batch prompting is a common technique in large language models (LLMs) used
to process multiple inputs simultaneously, aiming to improve computational effi-
ciency. However, as batch sizes increase, performance degradation often occurs
due to the model’s difficulty in handling lengthy context inputs. Existing methods
that attempt to mitigate these issues rely solely on batch data arrangement and
majority voting rather than improving the design of the batch prompt itself. In this
paper, we address these limitations by proposing “Auto-Demo Prompting,” a novel
approach that leverages the question-output pairs from earlier questions within a
batch as demonstrations for subsequent answer inference. We provide a formal
theoretical analysis of how Auto-Demo Prompting functions within the autore-
gressive generation process of LLMs, illustrating how it utilizes prior outputs to
optimize the model’s internal representations. Our method effectively bridges the
gap between batch prompting and few-shot prompting, enhancing performance
with only a slight compromise in token usage. Experimental results across five
NLP tasks demonstrate its effectiveness in mitigating performance degradation
and occasionally outperforming single prompts. Furthermore, it opens new av-
enues for applying few-shot learning techniques, such as demonstration selection,
within batch prompting, making it a robust solution for real-world applications.

1 INTRODUCTION

Large language models (LLMs), such as GPT (Brown et al., 2020), and PaLM (Chowdhery et al.,
2023), have demonstrated an extraordinary ability to perform in-context learning (ICL), where they
utilize provided examples or contextual information to adapt and solve a wide range of downstream
tasks. This capability enables LLMs to generalize from few-shot or even zero-shot examples without
requiring task-specific fine-tuning, significantly enhancing their versatility across diverse applica-
tions (Song et al., 2023). The success of ICL in these models highlights their potential as powerful
tools for natural language processing and as adaptable frameworks for learning in dynamic, data-
constrained environments, offering broader implications for machine learning and AI research.

Recently, the batch prompting method has attracted growing research interest (Cheng et al., 2023;
Lin et al., 2024; Fan et al., 2024), where models are presented with a set of homogeneous questions
- queries that share similar structure or content - within a single prompt. The main objective of
batch prompting is to enhance interaction efficiency with LLMs by reducing computational costs,
especially by minimizing the number of tokens processed. By grouping similar questions, this tech-
nique streamlines the model’s handling of multiple tasks, optimizing resource usage while ensuring
consistent performance across repeated or related queries. As illustrated in Figure 1 (a), the model
processes multiple sentences with similar structures in a single batch, identifying and correcting
grammatical errors for each input sentence. This demonstrates how batch prompting reduces to-
ken usage when working with structurally similar tasks. Moreover, advancements in hardware and
algorithmic design have further expanded the capacity of LLMs to retain and process longer in-
put contexts, enabling more effective batch prompting (Munkhdalai et al., 2024; Chen et al., 2023;
Ainslie et al., 2023).
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Task Specification: You are a professional NLP expert at
sentence grammar check.  
==========================
Requirement: Generate the answer following the format of the
examples below.
==========================
[input]
Input 1: XXXXX
Input 2: XXXXX
---
[output]
Label1: XXXXX
Label2: XXXXX
==========================
Please generate labels for the [Batch_Size] data given the
instructions.

Input 1: The plan was approved of by my mother. 
Input 2: They'll be leaving.
Input 3: Boston was flown to.
Input 4: John will have been driving the car. 
Input 5: The coat does not fit you.
Input 6: Lee never left.
Input 7: The roof is leak.
.....
Input 64: Heart disease is considered the leading cause of death
in the United States.
===========================

Batch Prompt

Task Specification: You are a professional NLP expert at
sentence grammar check. 
==========================
Requirement: Repeat the input data and generate the answer
following the format of the examples below.
==========================
[input]
Input 1: XXXXX
Input 2: XXXXX
---
[output]
{Input 1: XXXXX, Label1: XXXXX}
{Input 2: XXXXX, Label2: XXXXX}
==========================
Please generate labels for the [Batch_Size] data given the
instructions.

Input 1: The plan was approved of by my mother. 
Input 2: They'll be leaving.
Input 3: Boston was flown to.
Input 4: John will have been driving the car. 
Input 5: The coat does not fit you.
Input 6: Lee never left.
Input 7: The roof is leak.
.....
Input 64: Heart disease is considered the leading cause of death
in the United States.
===========================

Auto-Demo Prompt

Figure 1: Example: a) Batch Prompting and b) Auto-Demo Prompting

While batch prompting provides significant advantages in terms of efficiency, it also presents a
fundamental challenge, as handling lengthy context inputs is particularly difficult for LLMs based on
transformers. Transformer models experience significant performance degradation when accessing
relevant information from the middle of long contexts, leading to a decline in overall effectiveness
(Liu et al., 2024). This issue becomes more pronounced in tasks that require LLMs to process long
contextual inputs. The root of the challenge lies in the quadratic complexity of the self-attention
mechanism within transformers, where computational costs increase dramatically with input length.
As batch prompting is applied, the combined input length grows, exacerbating this issue and further
degrading model performance. Therefore, developing a more effective batch prompting strategy
is crucial for mitigating these performance limitations and unlocking the potential of large-scale
applications in in-context learning, particularly for tasks involving long sequences of input data.

From the internal representations of LLMs, we observe that batch prompting shares similarities with
few-shot prompting, a technique that has proven crucial in enhancing the performance of LLMs by
providing a few example demonstrations (Brown et al., 2020). However, an intriguing contradiction
emerges: while few-shot prompting typically boosts performance, batch prompting often results
in performance degradation. It was found that batch prompting can sometimes outperform single
prompts in tasks with smaller batch sizes (Cheng et al., 2023), yet this line of investigation remains
underexplored. This raises a key question: Could we bridge the gap between batch prompting and
few-shot prompting to leverage the benefits of both?

Interestingly, previous research has found that even when incorrect labels are present in few-shot
demonstrations during in-context learning, the decrease in accuracy is generally minimal, typically
between 0% and 5% (Min et al., 2022). This suggests that using model-generated answers as demon-
strations in few-shot prompts is a viable approach, regardless of the potential for model hallucination
or limitations that may lead to incorrect answers.

In this paper, we tackle the performance degradation problem from the perspective of connecting
few-shot prompting with batch prompting. A key insight emerges: the outputs generated during
earlier iterations of autoregressive LLMs can, with proper design, be automatically recognized
as demonstrations for subsequent text generation, without needing to explicitly include them
in the prompt. Building on this, we propose “Auto-Demo Prompting,” a novel batch prompting
technique that instructs the model to repeat each question before answering it. The model then au-
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tomatically treats the resulting question-answer pairs as demonstrations for the following questions
in the batch, eliminating the need to manually pack them into the input prompt.

As illustrated in Figure 1 (b), Auto-Demo Prompting directs the model to produce a sequence of
question-answer pairs instead of just answers. This structure ensures that, during the autoregressive
generation process, each subsequent question in the batch has access to the generated question-
answer pairs from the previous iterations. Consequently, all questions in the auto-demo prompt
effectively receive 0 to N − 1 additional demonstrations, potentially mitigating the performance
degradation associated with long context inputs.

By integrating demonstrations directly into the batch prompting process, our method not only en-
hances the model’s capacity to manage longer inputs but also improves overall task performance,
aligning batch prompting more closely with the proven success of few-shot prompting. To assess
the effectiveness of Auto-Demo Prompting, we conducted extensive experiments using mainstream
models, GPT-4o and GPT-4o-mini, across a variety of downstream tasks. The results demonstrate
that the proposed method significantly improves model performance in both an efficient and inter-
pretable way. Our contributions can be summarized as follows:

1. The proposed “Auto-Demo Prompting” represents a pioneering effort in constructing few-
shot demonstrations directly within the LLM’s inference. While previous research has
focused on various external factors associated with batch prompts, our approach uniquely
modifies the batch prompt design to enable the model to generate demonstrations as part of
its output process.

2. Through extensive comparisons between few-shot prompting and batch prompting, we pro-
posed and validated the hypothesis that Auto-Demo Prompting is approximately equivalent
to batch prompting supplemented with few-shot demonstrations. All experimental results
showed that Auto-Demo Prompting outperformed traditional batch prompting, supporting
our hypothesis and addressing the limitation of performance degradation in batch prompt.

3. We discovered that batch data selection in Auto-Demo Prompting influences the selection
of demonstrations (question-answer pairs) during the autoregressive generation steps of
inference. By employing a common demonstration selection technique, our results showed
significant improvements compared to random batch data selection.

4. The experimental results show that “Auto-Demo Prompting + Batch Data Selection,” with
batch sizes of 16 and 32, outperforms the single prompts with a batch size of 1. This high-
lights the considerable potential of integrating additional few-shot prompting techniques
into Auto-Demo Prompt to serve as an efficient alternative to traditional single prompts
with enhanced accuracy and efficiency.

2 AUTO-DEMO PROMPTING

Prompt engineering is essential for unlocking the capabilities of large language models (Marvin
et al., 2023). Typically, a standard prompt consists of a task description and a single data point,
leading to the development of various prompting techniques to enhance LLM performance on down-
stream tasks (Sahoo et al., 2024; Besta et al., 2024; Wang et al., 2023; Wei et al., 2022). However,
relying on single prompts limits inference to just one data point, making this approach less efficient
for large-scale datasets or real-world applications. In contrast, Batch Prompting allows for the pro-
cessing of multiple data points in a single inference. Cheng et al. (2023) suggests that while batch
prompting performs well with smaller batch sizes, there is a tendency for performance to decline as
batch sizes grow. Additionally, Lin et al. (2024) noted that varying the order of batch data can yield
different results, proposing the integration of these outcomes through majority voting to enhance
overall performance.

Unlike previous works, Auto-Demo Prompting aims to maximize the potential of batch prompting
and enhance its performance during single inference of large language models. This method guides
LLMs to generate a question-answer pair for each input question in the batch, rather than simply
providing an answer. By innovating the design of batch prompts with a new output control format,
Auto-Demo Prompting ensures that LLMs maintain a consistent output structure across all ques-
tions. A key factor in this process is the autoregressive generation mechanism of the decoder in
LLMs, which facilitates coherent and contextually relevant output generation.
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Task Specification: You are a professional NLP
expert at sentence grammar check. Please
generate the labels given the instructions.
==========================
Requirement: Repeat the input data and
generate the answer following the format of
the examples below.
==========================
[Input] 
Question 0：XXXXX
Question 1：XXXXX
---
[Output]
{Question 0: XXXXX, Label 0: XXXXX}
{Question 1: XXXXX, Label 1: XXXXX}
==========================
Please generate labels for the N data given the
instructions.
Question 1: The plan was approved of by my
mother.
Question 2: They'll be leaving.
Question 3: Boston was flown to.
Question 4: John will have been driving the car.
Question 5: The coat does not fit you.
Question 6: Lee never left.
Question 7: The roof is leak.
.....
Question N: Heart disease is considered the
leading cause of death in the United States.
==========================

... n-1 n-1

Large Language Model

n

0

1

2

Output

n

0

1

2

Auto-Demo Prompt +
Batch Data Selection

Batch Size = N

Task Specification: You are a
professional NLP expert at sentence
grammar check. Please generate the
labels given the instructions. 
Question: The plan was approved of
by my mother.

Task Specification: ~
Question 0; 
Question 46;
Question 15;
......
Question 50;

Task Specification: ~
Question 1; 
Question 89;
Question 15;
......
Question 59;

Task Specification: ~
Question 6; 
Question 69;
Question 59;
......
Question 99;

A B C D E

 <s> B C D

Answer

Question 

Demonstration Autoregressive Generation 

Demonstration (Question + Answer)

Batch 2

Batch 1

Batch K

........

....

Task Specification: You are a
professional NLP expert at sentence
grammar check. Please generate the
labels given the instructions. 
Question: Heart disease is
considered the leading cause of
death in the United States.

A

Auto-Demo Prompt

No. Batch = K

Figure 2: Auto-Demo Prompting: Single prompts are combined into a batch prompt with a special
output control for generating question-answer pairs, along with optional batch data selection. This
prompt is fed into the autoregressive generation process of a decoder-only LLM, forming demon-
strations for subsequent generation.

2.1 AUTOREGRESSIVE GENERATION PROCESS IN LARGE LANGUAGE MODEL

Large Language Models can be classified into three categories: encoder-only, encoder-decoder, and
decoder-only. The mainstream LLMs are primarily decoder-only and encoder-decoder models. The
GPT series developed by OpenAI, including notable examples such as GPT-3, GPT-4, and GPT-
4o, consists entirely of decoder-only models and marks significant milestones in the evolution of
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generative language models. The Llama series represents open-source LLMs that are also decoder-
only. In contrast, examples of encoder-decoder models include T5 (Raffel et al., 2020) and BART
(Lewis, 2019). This paper focuses specifically on decoder-only LLMs, where the decoder generates
one token at each step of the autoregressive generation process. A single inference of an LLM
typically requires multiple steps to produce a complete answer, with the token generated at the
previous step added to the current input, serving as the new input for the next token. This iterative
process of token generation is known as autoregressive generation.

Based on the generation mechanism of LLMs, we introduce a key insight into the autoregressive
generation process: the outputs from earlier steps can serve as prompts or demonstrations for gen-
erating subsequent tokens. By employing batch prompting, the model can process multiple input
data sequentially, enabling consistent and repetitive responses. This periodicity allows for the use of
answers from earlier questions as demonstrations for later ones, thereby enhancing coherence and
context retention throughout the generation process.

2.2 AUTOREGRESSIVE GENERATION OF DEMONSTRATIONS

As illustrated in Figure 2, Auto-Demo Prompting creatss a loop where demonstrations are generated
in an autoregressive manner during the inference of LLMs. This technique guides LLMs to produce
question-answer pairs that align with the format of demonstrations used in context learning. Due
to the autoregressive nature of token generation, the previously generated output is appended to the
current input for the next step, serving as a demonstration for all subsequent questions in the batch.
When the batch size is N , there will be {1, 2, 3, ..., N − 1} demonstrations formed in the process.

Suppose the batch size of Auto-Demo Prompting is denoted by N . The batch of questions
can be represented as Q = {q1, q2, . . . , qN}, and the corresponding answers are denoted by
A = {a1, a2, . . . , aN}. Let F denote the inference of the LLM. To illustrate the relationships
among current batch prompting, Auto-Demo Prompting, and few-shot demonstrations in in-context
learning, we compare the formulations of the LLM inference process in these prompting approaches.

Method 1 Few-Shot Prompting

Formulation: F(an|Q1:n−1, {(qi, ai)}n−1
i=1 ) ∀n ∈ {0, 1, . . . , N}

Example:
1: F(a1|q1)
2: F(a2|(q1, a1))
3: . . .
4: F(an|(q1, a1), (q2, a2), . . . , (qn−1, an−1))

Method 2 Batch Prompting (BP)

Formulation: F(an|BP +Q1:n, {ai}n−1
i=1 ) ∀n ∈ {0, 1, . . . , N}

Example:
1: F(a1|BP + q1)
2: F(a2|BP + q1q2, a1)
3: . . .
4: F(an|BP + q1q2 . . . qn, a1a2 . . . an−1)

Method 3 Auto-Demo Prompting (ADP)

Formulation: F((qn, an)|ADP +Q1:n−1, {(qi, ai)}n−1
i=1 ) ∀n ∈ {0, 1, . . . , N}

Example:
1: F((q1, a1)|ADP + q1)
2: F((q2, a2)|ADP + q1q2, (q1, a1))
3: . . .
4: F((qn, an)|ADP + q1q2 . . . qn−1, (q1, a1), (q2, a2), . . . , (qn−1, an−1))

5
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Based on the comparison, we illustrate that Auto-Demo Prompting effectively combines conven-
tional batch prompting and few-shot prompting by modifying the output format to enhance in-
context learning capabilities. We can express this relationship using an approximate equality:

Auto-Demo Prompting ≈ Batch Prompting + Few-Shot Demonstrations (1)

This approximate equality underscores the significance of Auto-Demo Prompting. As shown in
Figure 1 (b), it adds just two additional lines to the Batch Prompt, representing a minor modification.
Nevertheless, this small change greatly enhances the autoregressive generation of demonstrations
during LLM inference and plays a crucial role in improving the performance of batch prompting.

2.3 BATCH DATA SELECTION

In the proposed Auto-Demo Prompting framework, batch data selection - a conventional technique
for improving batch prompting performance - can be viewed as demonstration selection. As illus-
trated in Method 3, the batched data (i.e., questions) is also present within the question-answer pairs
generated by the LLM, which serve as demonstrations for subsequent questions. Therefore, we pro-
pose the following hypothesis: the selection of batched data in Auto-Demo Prompting achieves a
similar effect to the selection of demonstrations in few-shot prompting.

Batch Data Selection ≈ Demonstration Selection (2)

Based on this hypothesis, demonstration selection methods can be effectively adapted for batch data
selection in Auto-Demo Prompting. Current approaches to demonstration selection are diverse, uti-
lizing criteria such as similarity, mutual information, perplexity, and diversity (Yang et al., 2023).
Notably, demonstration selection based on text similarity has proven effective for text pair classifi-
cation and multiple-choice tasks (Peng et al., 2024; Su et al., 2024).

Inspired by demonstration selection method, we designed the ”Batch Data Selection with Retrieval”
algorithm to identify similar questions within a single batch. As detailed in Algorithm 1, this algo-
rithm features a data retrieval loop aimed at gathering similar data into one batch. For each batch
with size N , a target data point is randomly selected. Subsequently, the N − 1 most similar data
points are identified using an embedding model to calculate the pairwise similarity.

Algorithm 1 Batch Data Selection with Retrieval
1: Input: batch size = N , dataset D = {d1, d2, ..., d|D|}, batched data BD = {}
2: Output: BD
3: for di ∈ D do
4: temp batch = {di}
5: for dj ∈ D s.t dj ̸= di do
6: Calculate similarity between di and dj using embedding model
7: if dj is among the most similar (N − 1) then
8: temp batch.add(dj)
9: end if

10: end for
11: BD.add(temp batch)
12: end for

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

We conducted comparative experiments between Auto-Demo Prompting and conventional batch
prompting across various NLP tasks, including question answering (BoolQ), mathematical reason-
ing (GSM8K, SVAMP), textual entailment (RTE), and paraphrase detection (Quora Question Pairs,
QQP). Specifically, the batch data selection experiments were focused on the RTE and QQP datasets
to assess the effectiveness of our approach.
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3.1.1 DATASETS

BoolQ: The Boolean Questions (BoolQ) dataset comprises 15,942 yes/no questions derived from
real-world queries to the Google search engine (Clark et al., 2019). Each example includes a ques-
tion, passage, and answer, with an optional page title for context. The dataset is split into 9,427
training examples and 3,270 validation examples, noted for its complexity requiring advanced rea-
soning and entailment inference.

RTE: The Recognizing Textual Entailment (RTE) dataset, compiled from the RTE1, RTE2, RTE3,
and RTE5 challenges (Poliak, 2020), includes 2,490 training samples, 277 validation samples, and
3,000 testing samples. It features premise-hypothesis pairs, each labeled to indicate their entailment
relationship, making it a valuable resource for advancing natural language inference research.

GSM8K: The Grade School Math 8K (GSM8K) dataset consists of 8,500 diverse grade school
math word problems designed for multi-step reasoning tasks (Cobbe et al., 2021). It is divided into
7,500 training problems and 1,000 test problems, with each problem requiring 2 to 8 steps to solve.
Solutions are provided in a step-by-step format, and the dataset is available in both standard and
”Socratic” formats, which include meta-reasoning prompts.

QQP: The Quora Question Pairs (QQP) dataset contains over 400,000 question pairs from the Quora
platform, each labeled to indicate semantic equivalence. This dataset is essential for tasks like
paraphrasing and duplicate question identification, enabling researchers to explore various machine
learning techniques for semantic textual similarity (Wang et al., 2017).

SVAMP: The SVAMP dataset features 1,000 simple math word problems aimed at assessing NLP
models, designed for up to fourth-grade level and involving single-variable equations (Patel et al.,
2021). Created to challenge models with variations of existing problems, it tests their contextual
understanding and problem-solving accuracy.

3.1.2 IMPLEMENTATIONS

We evaluate Auto-Demo Prompt with varying batch sizes over GPT-4o-mini and GPT-4o. The
prompts used for the different datasets are provided in Appendix A.

Embedding Model for Batch Data Selection: The embedding model utilized is
“iic/nlp corom sentence-embedding english-base,” available on the ModelScope platform.
This model is a dual-tower text representation architecture that employs the CoROM model as
its foundation for the pre-trained language model. The training data is derived from the official
open-source MS MARCO Passage Ranking dataset (Bajaj et al., 2018).

Parameters: All experiments were conducted in an in-context learning setting, without any model
training or fine-tuning. The temperature for model inference was consistently set to 0 to ensure
uniformity in responses. Batch sizes were set to 1/16/32 for the gpt-4o-mini, which has a maximum
output token limit of 16k, and to 8 or 16 for the gpt-4o, with a maximum output token limit of 8k.

3.2 RESULTS AND DISCUSSIONS

As shown in Figure 3, the proposed method, highlighted in red, consistently outperforms Batch
Prompt in most experiments, allowing LLMs to generate longer outputs without compromising per-
formance. This highlights the beneficial impact of Auto-Demo Prompting, where the generated
question-answer pairs enhance the accuracy of subsequent questions within the same batch. No-
tably, when applied with GPT-4o on the GSM8K dataset, Auto-Demo Prompt achieved an accuracy
of 95.7% with a batch size of 16, surpassing the 95.3% accuracy of the single prompt (batch size
= 1). A similar trend was observed with the SVAMP dataset, demonstrating the effectiveness of
Auto-Demo Prompting in improving the performance of conventional batch prompts.

Our findings align with previous research that highlights few-shot prompting as an effective strat-
egy for enhancing model accuracy, particularly in datasets that necessitate sophisticated reasoning
steps (Wei et al., 2022). The proposed method demonstrated significant effectiveness on the BoolQ
dataset, which consists of naturally occurring yes/no questions that often require complex reason-
ing. In contrast, the effectiveness of Auto-Demo Prompt is less pronounced in simpler datasets like

7
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Figure 3: Experimental results: accuracy for Auto-Demo Prompt (“w”) vs. Batch Prompt (“w/o”)
across different models and batch sizes.

RTE and QQP, as the GPT-4o model performs relatively well on these tasks without the need for
additional prompting.

3.2.1 BATCH DATA SELECTION EXPERIMENTS

To validate the hypothesis stated in Equation 2, we conducted experiments on the RTE and QQP
datasets to evaluate the effectiveness of selecting similar questions for batch data selection within the
Auto-Demo Prompting framework. As shown in Figure 4, the ’Batch Data Selection with Retrieval’
algorithm consistently improves accuracy compared to randomly selected batched data. The results
of these experiments closely align with the effectiveness of few-shot demonstration selection based
on similarity, as both approaches lead to significant performance improvements.

Surprisingly, the results indicate that experiments utilizing larger batch sizes significantly outper-
form those employing a single prompt (i.e., batch size 1). For the RTE dataset, the Auto-Demo
Prompting approach with a batch size of 48 using the gpt-4o-mini model achieved an accuracy of
89.5%, surpassing the 88.8% accuracy obtained with a single prompt. Similarly, the gpt-4o model
with a batch size of 16 achieved an accuracy of 90.3%, exceeding the 88.4% accuracy of the single
prompt approach. In the QQP dataset, the batch size of 32 with the gpt-4o model yielded an accu-
racy of 87.3%, which is 2.0% higher than the result from the single prompt. These findings suggest
that the proposed method not only addresses the limitation of performance degradation associated
with larger batch sizes, but further enhances overall performance by leveraging previous questions as
demonstrations in the autoregressive generation process. This improvement aligns closely with the
effects of many-shot learning and underscores the importance of incorporating multiple examples in
the prompting process.
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Figure 4: Experimental results for Batch Data Selection: Auto-Demo Prompting (“w”) vs. Batch
Prompting (“w/o”); “+bds” signifies the application of batch data selection with retrieval.

3.2.2 DISCUSSION

The results of our experiments underscore the significant potential of Auto-Demo Prompting. These
findings corroborate our earlier observations regarding equations 1 and 2, demonstrating that Auto-
Demo Prompting consistently enhances Batch Prompting across most experimental scenarios. It
is particularly noteworthy the performance improvement observed when batch data selection is ap-
plied. By grouping similar data within each batch, we found that Auto-Demo Prompting with larger
batch sizes outperformed configurations utilizing a batch size of one, which is the standard prompt
used in mainstream LLM applications. This advancement signifies a promising avenue for achieving
both enhanced performance and increased efficiency.

Furthermore, recent research by (Agarwal et al., 2024) demonstrates that many-shot demonstrations
can outperform few-shot demonstrations, a trend observed across various domains (Jiang et al.,
2024; Moayedpour et al., 2024). As the input and output length limits of LLMs continue to expand,
the adoption of a more effective batch data selection method is likely to enhance these performance
gains, further solidifying the benefits of our approach. Given the diverse and numerous demonstra-
tion selection methods available for in-context learning, the optimal choice can vary across different
datasets. This variability encourages future research to evaluate their effectiveness and to develop
novel approaches that are better suited for the Auto-Demo Prompting.

4 RELATED WORK

4.1 BATCH PROMPTING

Batch prompting has emerged as a significant area of research in LLMs to facilitate efficient batch
processing of many data points simultaneously. Cheng et al. (2023) first introduced the concept
of batch prompting to reduce computational costs, with experiments focusing on batch sizes of
fewer than six demonstrating comparable performance to standard prompting. Building on this, Lin
et al. (2024) proposed “BatchPrompt,” which highlights the variability in results caused by different
data orders and introduces a self-consistency method to address these discrepancies. With its cost-
saving benefits, batch prompting has been applied in various NLP applications; for instance, Fan
et al. (2024) proposed a framework utilizing a covering-based demonstration selection strategy for
entity resolution, effectively balancing matching accuracy and computational cost, while Zhang et al.
(2023) explored the impact of batch size on several data preprocessing tasks.

4.2 DEMONSTRATION SELECTION IN IN-CONTEXT LEARNING

To improve the performance of in-context learning, previous studies have explored the optimization
of the selection and arrangement of few-shot demonstrations (Rubin et al., 2022; Zhang et al., 2022;
Wu et al., 2023; Fu et al., 2023; Zhou et al., 2023). It was found that the choice of demonstra-
tions is both data-dependent and model-dependent, leading to the proposal of a selection method
that considers both factors (Peng et al., 2024). Empirical research by (Min et al., 2022) has demon-
strated that preserving the structured format of demonstrations, which consists of text-label pairs, is
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essential for optimal performance. They also found that randomly altering the labels within these
demonstrations has a negligible effect on performance, providing a foundation for our research.

Our work diverges from previous research in several key aspects. While existing studies have ex-
plored batch prompting and its applications, they often overlook the relationship between few-shot
prompting and batch prompting, which we believe presents an emerging opportunity for directly
enhancing batch prompting. To address this gap, we introduced the Auto-Demo Prompt, which not
only improves performance but also offers greater interpretability by establishing a close alignment
with the principles of in-context learning and demonstration selection techniques.

5 CONCLUSION

In this paper, we introduce the Auto-Demo Prompt, a novel batch prompting method aimed at im-
proving the performance of batch prompting. We provide a comprehensive overview of its oper-
ational mechanism and clarify the key concepts that establish the relationship between few-shot
demonstrations in in-context learning and batch prompting. Importantly, we show that ’Batch Data
Selection’ can be conceptualized as ’Demonstration Selection’ within the framework of Auto-Demo
Prompting, facilitating the transfer of insights from few-shot learning research to our approach. Our
extensive experiments validate the effectiveness of Auto-Demo Prompting, underscoring its signifi-
cance as the input and output lengths of LLMs increase. As these lengths expand, the importance of
efficient and high-performing batch prompting methods, such as Auto-Demo Prompting combined
with Batch Data Selection, will become increasingly pronounced. Further research is encouraged
to investigate demonstration selection in greater detail, as well as to explore the potential syner-
gies between Auto-Demo Prompting and other emerging techniques such as prompt learning and
explainable AI. By delving deeper into these areas, we can uncover new insights that may enhance
the adaptability and effectiveness of LLMs, ultimately paving the way for advancements in their
applications toward achieving artificial general intelligence (AGI).
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A AUTO-DEMO PROMPT DESIGN

Table 1: The auto-demo prompt design for BoolQ dataset

Auto-Demo Prompt for BoolQ Dataset

Instruction You are a professional NLP expert at Question Answering annotation. Please
generate labels given instructions. You will be given [BATCH-SIZE] passages with questions
each time, as input. Each input includes a ‘passage’ and a ‘question’ about the passage. Your
goal is to determine whether the answer to the question is yes or no and classify, as below:

Possible Answer:
[class 0]: if the answer is ‘No’
[class 1]: if the answer is ‘Yes’.

You will be given [BATCH-SIZE] inputs each time.
============
Requirement: Repeat the input data and generate the answer following the format of the
examples below.

{Input 1: xxxxx, Label 1: [class X]}
{Input 2: xxxxx, Label 2: [class X]}
============
Please make sure each generated label is in format of [class X].
Please make sure to generate [BATCH-SIZE] labels.
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Table 2: The auto-demo prompt design for GSM8K dataset

Auto-Demo Prompt for GSM8K Dataset

Instruction: You will be given [BATCH-SIZE] math problems. These problems take be-
tween 2 and 8 steps to solve, and solutions primarily involve performing a sequence of ele-
mentary calculations using basic arithmetic operations to reach the final answer.

The answer is [numeric result]

You will be given [BATCH-SIZE] inputs each time.
============
Requirement: Repeat the input data and generate the calculation results following the format
of the examples below.

{Input 1: xxxxx, Reasoning: xxxxx, Answer: The answer is [number]}
{Input 2: xxxxx, Reasoning: xxxxx, Answer: The answer is [number]}
============
Please make sure to write a series of intermediate reasoning steps.
Please ensure the final sentence is ”The answer is xxx”, where the answer should be a number.
Please make sure to generate [BATCH-SIZE] labels.

Table 3: The auto-demo prompt design for QQP dataset

Auto-Demo Prompt for QQP Dataset

Instruction: You are a professional NLP expert at duplicate question detection. Your goal is
to determine whether two questions are duplicates of each other.

Possible Answer:
[class 1]: if they have the same meaning (semantically equivalent).
[class 0]: if they do NOT have the same meaning.

You will be given [BATCH-SIZE] question pairs each time.
============
Requirement: Repeat the input data and generate the answer following the format of the
examples below.

{Question pair 0: (Question1: xxxxx; Question2: xxxxx), Answer: [class X]}
{Question pair 1: (Question1: xxxxx; Question2: xxxxx), Answer: [class X]}
============
Please make sure each generated label is in the format of [class X].
Please make sure to generate [BATCH-SIZE] labels.
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Table 4: The auto-demo prompt design for RTE dataset

Auto-Demo Prompt for RTE Dataset

Instruction: You are a professional NLP expert at sentence pair relationship annotation. You
will be given [BATCH-SIZE] sentence pairs from the Textual Entailment Recognition dataset
each time, as input. Each data includes a sentence pair, “Premise” and “Hypothesis”. Your
goal is to classify the sentence pair into two classes as below:

Possible Answer:
[class 1]: the given Hypothesis and Premise are logical and following (entailment) to each other.
[class 0]: the given Hypothesis and Premise are NOT following (entailment) to each other.

You will be given [BATCH-SIZE] sentence pairs each time.
============
Requirement: Repeat the input data and generate the answer following the format of the
examples below.

{Sentence pair 0: Premise: xxxxx, Hypothesis: xxxxx, Label: [class X]}
{Sentence pair 1: Premise: xxxxx, Hypothesis: xxxxx, Label: [class X]}
============
Please make sure each generated label is in the format of [class X].
Please make sure to generate [BATCH-SIZE] labels.

Table 5: The auto-demo prompt design for SVAMP dataset

Auto-Demo Prompt for SVAMP Dataset

Instruction: You will be given [BATCH-SIZE] math problems. Each one has a body and a
question, please read them and give the equation and answer.

You will be given [BATCH-SIZE] inputs each time.
============
Requirement: Repeat the input data and generate the calculation results following the format
of the examples below.

{Input 0: Body: xxxx, Question: xxxx, Equation: xxxx, Answer: The answer is [number]}
{Input 1: Body: xxxx, Question: xxxx, Equation: xxxx, Answer: The answer is [number]}
============
Please make sure the final sentence is “The answer is xxx”, and the answer should be a
number.
Please make sure to generate [BATCH-SIZE] labels each time.
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B EXPERIMENTAL RESULTS

Table 6: Experimental results: ”w” denotes the Auto-Batch Prompt, ”w/o” denotes the conventional
batch prompt, and ”bs” refers to the batch size.

Dataset Model (Method) bs=1 bs=8 bs=16 bs=32 bs=48

GSM8k

gpt-4o-mini (w) 0.926 - 0.890 0.887 -
gpt-4o-mini (w/o) 0.913 - 0.853 0.847 -

gpt-4o (w) 0.953 0.947 - 0.957 -
gpt-4o (w/o) 0.953 0.947 - 0.927 -

SVAMP

gpt-4o-mini (w) 0.900 - 0.877 0.857 -
gpt-4o-mini (w/o) 0.887 - 0.817 0.803 -

gpt-4o (w) 0.940 0.900 - 0.940 -
gpt-4o (w/o) 0.920 0.878 - 0.900 -

RTE

gpt-4o-mini (w) 0.870 - 0.859 0.863 0.866
gpt-4o-mini (w/o) 0.888 - 0.845 0.845 0.837

gpt-4o-mini (Data Selection, w) - - 0.881 0.870 0.895
gpt-4o-mini (Data Selection, w/o) - - 0.874 0.867 0.859

gpt-4o (w) 0.895 0.895 - 0.899 -
gpt-4o (w/o) 0.884 0.899 - 0.899 -

gpt-4o (Data Selection, w) - 0.899 - 0.903 -
gpt-4o (Data Selection, w/o) - 0.899 - 0.884 -

BoolQ

gpt-4o-mini (w) 0.897 - 0.893 0.897 -
gpt-4o-mini (w/o) 0.887 - 0.880 0.870 -

gpt-4o (w) 0.920 0.917 - 0.920 -
gpt-4o (w/o) 0.917 0.907 - 0.917 -

QQP

gpt-4o-mini (w) 0.837 - 0.803 0.823 -
gpt-4o-mini (w/o) 0.837 - 0.807 0.823 -

gpt-4o-mini (Data Selection, w) - - 0.820 0.830 -
gpt-4o-mini (Data Selection, w/o) - - 0.817 0.820 -

gpt-4o (w) 0.857 0.870 - 0.847 -
gpt-4o (w/o) 0.853 0.850 - 0.843 -

gpt-4o (Data Selection, w) - - 0.877 0.873 -
gpt-4o (Data Selection, w/o) - - 0.863 0.860 -
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