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Abstract
The study of causal abstractions bridges two inte-
gral components of human intelligence: the abil-
ity to determine cause and effect, and the abil-
ity to interpret complex patterns into abstract
concepts. Formally, causal abstraction frame-
works define connections between complicated
low-level causal models and simple high-level
ones. One major limitation of most existing def-
initions is that they are not well-defined when
considering lossy abstraction functions in which
multiple low-level interventions can have differ-
ent effects while mapping to the same high-level
intervention (an assumption called the abstract
invariance condition). In this paper, we introduce
a new type of abstractions called projected ab-
stractions that generalize existing definitions to
accommodate lossy representations. We show
how to construct a projected abstraction from the
low-level model and how it translates equivalent
observational, interventional, and counterfactual
causal queries from low to high-level. Given that
the true model is rarely available in practice we
prove a new graphical criteria for identifying and
estimating high-level causal queries from limited
low-level data. Finally, we experimentally show
the effectiveness of projected abstraction models
in high-dimensional image settings.

1. Introduction
The ability to determine cause and effect, and the ability
to interpret complex patterns into abstract concepts, are
two integral components of human intelligence. From the
causality perspective, causal reasoning is vital in planning
courses of actions, determining blame and responsibility,
and generalizing across changing environments. From the
abstraction perspective, humans generally grasp better in-
tuition when understanding something at a high-level. For
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example, a human can easily parse the object in an image
as a dog or a car instead of interpreting it as a collection of
pixel values. Combining these two modes of reasoning is
vital for building more advanced AI systems.

Causal inference is often studied under the semantics of
structural causal models (SCMs) (Pearl, 2000). An SCM
models reality with a collection of mechanisms and exoge-
nous distributions. Each SCM induces a collection of distri-
butions categorized into three successively more descriptive
layers known as the Ladder of Causation or Pearl Causal Hi-
erarchy (PCH) (Pearl & Mackenzie, 2018; Bareinboim et al.,
2022). These three layers refer to the observational (L1),
interventional (L2), and counterfactual (L3) distributions.
In many causal inference tasks, the goal is to infer a quantity
from a higher layer using data from lower layers, a problem
known as cross-layer inference. It is understood that it is
generally impossible to infer higher layer information with-
out additional assumptions (a result known as the Causal
Hierarchy Theorem or CHT (Bareinboim et al., 2022)), so
understanding the necessary assumptions for performing
inferences is a key component of any causal inference task.

Existing works on causal abstractions have made significant
progress in defining abstraction principles, proving insight-
ful properties, and learning abstraction functions in practice
(Rubenstein et al., 2017; Beckers & Halpern, 2019; Beckers
et al., 2019; Geiger et al., 2023; Massidda et al., 2023; Zen-
naro et al., 2023; Felekis et al., 2024). Causal abstractions
are typically studied by comparing a high-level modelMH ,
defined over high-level variables VH , with its low-level
counterpartML, defined over VL. An abstraction function
τ maps from VL to VH , andMH is formally defined as
an abstraction ofML if it satisfies key properties with re-
spect to τ such as commutativity with interventions. More
recently, this notion has been relaxed to only enforcing prop-
erties between distributions ofMH andML from the PCH
(Xia & Bareinboim, 2024). For example, rather than saying
MH is a full abstraction ofML, one can say thatMH is an
abstraction ofML specifically for interventional quantities
in L2 or for a single causal effect P (y | do(x)) ∈ L2. Xia &
Bareinboim (2024) also shows the synergy between causal
abstraction theory and representation learning (Bengio et al.,
2013), which has shown great success in many deep learning
applications by mapping high-dimensional data like images
or text to simpler representation spaces. These definitions of
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causal abstractions have accomplished formalizing a broad
topic of human intelligence into mathematical language.

One particular limitation of existing definitions of abstrac-
tions is known as the Abstract Invariance Condition (AIC),
which states, informally, that two values cannot be ab-
stracted together if they have different downstream impacts.
This is illustrated in Fig. 1. For example, a nutritionist may
have collected data on two types of cholesterol, HDL and
LDL, and are studying their impact on heart disease (Stein-
berg, 2007; Truswell, 2010). They would like to abstract
the two together by summing them as total cholesterol (TC).
However, this violates the AIC, as it is known that HDL
decreases rate of heart disease while LDL increases it, so
the sum is ambiguous (a lossy representation).1 Nonethe-
less, it may still be desirable to have a consistent formalism
in which these kinds of ambiguous abstractions are well-
defined, since in many practical settings (where represen-
tation learning or dimensionality reduction is needed), the
AIC is clearly violated or is impossible to verify.

In this paper, we study this extension of causal abstractions,
which we later define as projected abstractions, referring
to the idea that an abstraction that violates the AIC results
in a loss of information that is then characterized in the
exogenous space. The proposed formalism generalizes ab-
stractions both on the SCM and on the PCH level to allow
for mathematically consistent abstractions even with AIC
violations. Projected abstractions have many uses in prac-
tice, resulting in tractable causal inference and high-quality
causal sampling even in the presence of extreme dimension-
ality reduction, a result which we show in the experiments.

To summarize, in Sec. 2, we generalize abstractions to set-
tings which the AIC does not hold and provide an algorithm
for constructing the high-level model. In Sec. 3, we show
how to perform causal inference from data within this class
of abstractions when the true model is not observed. In
Sec. 4, we empirically demonstrate the power of abstrac-
tions at performing causal inference in high-dimensional
image settings. All proofs can be found in App. A. Ap-
pendices can be found in the full technical report, Xia &
Bareinboim (2025).

1.1. Preliminaries

We now introduce the notation and definitions used through-
out the paper. We use uppercase letters (X) to denote
random variables and lowercase letters (x) to denote cor-
responding values. Similarly, bold uppercase (X) and
lowercase (x) letters denote sets of random variables and
values respectively. We use DX to denote the domain
of X and DX = DX1

× · · · × DXk
for the domain of

X = {X1, . . . , Xk}. We denote P (X = x) (often short-

1See App. C Ex. 7 for a more concrete explanation.

Figure 1: An illustration of AIC violations. On the low level,
two different interventions may be performed (e.g., X← x1

and X ← x2). However, after applying the abstraction
function τ to obtain the high-level model, both interventions
are mapped to the same result (τ(x1) = τ(x2) = xH ). If
ML behaves differently under x1 compared to x2, MH

cannot stay consistent with both models.

ened to P (x)) as the probability of X taking the values x
under the distribution P (X).

We utilize the basic semantic framework of structural causal
models (SCMs) (Pearl, 2000), following the presentation in
Bareinboim et al. (2022).

Definition 1 (Structural Causal Model (SCM)). An SCM
M is a 4-tuple ⟨U,V,F , P (U)⟩, where U is a set of ex-
ogenous variables (or “latents”) that are determined by fac-
tors outside the model; V is a set {V1, V2, . . . , Vn} of (en-
dogenous) variables of interest that are determined by other
variables in the model – that is, in U ∪ V; F is a set of
functions {fV1

, fV2
, . . . , fVn

} such that each fVi
is a map-

ping from (the respective domains of) UVi
∪ PaVi

to Vi,
where UVi ⊆ U, PaVi ⊆ V \ Vi, and the entire set F
forms a mapping from U to V. That is, for i = 1, . . . , n,
each fVi

∈ F is such that vi ← fVi
(paVi

,uVi
); and P (U)

is a probability function defined over the domain of U. ■

EachM induces a causal diagram G, where every Vi ∈ V
is a vertex, there is a directed arrow (Vj → Vi) for every
Vi ∈ V and Vj ∈ PaVi

, and there is a dashed-bidirected
arrow (Vj L9999K Vi) for every pair Vi, Vj ∈ V such that
UVi

and UVj
are not independent (Markovianity is not

assumed). Our treatment is constrained to recursive SCMs,
which implies acyclic causal diagrams, with finite discrete
domains over endogenous variables V.

Counterfactual (and also interventional and observational)
quantities can be computed from SCMM as follows:

Definition 2 (Layer 3 Valuation (Bareinboim et al., 2022,
Def. 7)). An SCM M induces layer L3(M), a set of
distributions over V, each with the form P (Y∗) =
P (Y1[x1],Y2[x2],...) such that

PM(y1[x1],y2[x2], . . . ) = (1)∫
DU

1
[
Y1[x1](u) = y1,Y2[x2](u) = y2, . . .

]
dP (u)
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where Yi[xi](u) is evaluated under Fxi
:= {fVj

: Vj ∈
V \Xi} ∪ {fX ← x :X ∈ Xi}. L2 is the subset of L3 for
which all xi are equal, and L1 is the subset for which all
Xi = ∅. ■

Each Yi corresponds to a set of variables in a world where
the original mechanisms fX are replaced with constants
xi for each X ∈ Xi; this is also known as the mutilation
procedure. This procedure corresponds to interventions,
and we use subscripts to denote the intervening variables
(e.g. Yx) or subscripts with brackets when the variables
are indexed (e.g. Y1[x1]). For instance, P (yx, y

′
x′) is the

probability of the joint counterfactual event Y = y had X
been x and Y = y′ had X been x′.

We use the notation Li(M) to denote the set of Li dis-
tributions from M. We use Z to denote a set of quanti-
ties from Layer 2 (i.e. Z = {P (Vzk

)}ℓk=1), and Z(M)
denotes those same quantities induced by SCM M (i.e.
Z(M) = {PM(Vzk

)}ℓk=1).

The theory of causal abstractions developed in this paper
build on the foundations of constructive abstraction func-
tions, under which individual distributions of the PCH are
well-defined between low and high-level models.

Definition 3 (Inter/Intravariable Clusterings (Xia & Barein-
boim, 2024, Def. 5)). LetM be an SCM over V.

1. A set C is said to be an intervariable clustering of V if
C = {C1,C2, . . .Cn} is a partition of a subset of V.
C is further considered admissible w.r.t.M if for any
Ci ∈ C and any V ∈ Ci, no descendent of V outside
of Ci is an ancestor of any variable in Ci. That is,
there exists a topological ordering of the clusters of C
relative to the functions ofM.

2. A set D is said to be an intravariable clustering of
variables V w.r.t. C if D = {DCi : Ci ∈ C}, where
DCi

= {D1
Ci

,D2
Ci

, . . . ,Dmi

Ci
} is a partition (of size

mi) of the domains of the variables in Ci, DCi
(recall

that DCi
is the Cartesian product DV1

×DV2
× · · · ×

DVk
for Ci = {V1, V2, . . . , Vk}, so elements of Dj

Ci

take the form of tuples of the value settings of Ci). ■

Definition 4 (Constructive Abstraction Function (Xia &
Bareinboim, 2024, Def. 6)). A function τ : DVL

→ DVH

is said to be a constructive abstraction function w.r.t. in-
ter/intravariable clusters C and D iff

1. There exists a bijective mapping between VH and C
such that each VH,i ∈ VH corresponds to Ci ∈ C;

2. For each VH,i ∈ VH , there exists a bijective mapping
between DVH,i

and DCi
such that each vjH,i ∈ DVH,i

corresponds to Dj
Ci
∈ DCi ; and

3. τ is composed of subfunctions τCi
for each Ci ∈ C

such that vH = τ(vL) = (τCi(ci) : Ci ∈ C), where
τCi(ci) = vjH,i if and only if ci ∈ Dj

Ci
. We also apply

the same notation for any WL ⊆ VL such that WL

is a union of clusters in C (i.e. τ(wL) = (τCi
(ci) :

Ci ∈ C,Ci ⊆WL)). ■

Finally, we state the AIC formally below.

Definition 5 (Abstract Invariance Condition (AIC)). Let
ML = ⟨UL,VL,FL, P (UL)⟩ be an SCM and τ :
DVL

→ DVH
be a constructive abstraction function rel-

ative to C and D. The SCM ML is said to satisfy the
abstract invariance condition (AIC, for short) with respect
to τ if, for all v1,v2 ∈ DVL

such that τ(v1) = τ(v2),
∀u ∈ DUL

,Ci ∈ C, the following holds:

τCi

((
fL
V (pa

(1)
V ,uV ) : V ∈ Ci

))
= τCi

((
fL
V (pa

(2)
V ,uV ) : V ∈ Ci

))
,

(2)

where pa
(1)
V and pa

(2)
V are the values corresponding to v1

and v2. ■

A table summarizing the notation can be found in App. A.1,
detailed explanations of these definitions can be found in
App. A.2, and additional useful definitions from prior work
can be found in App. A.3.

2. Abstractions under AIC Violations
The abstract invariance condition (AIC) states, in words,
that two low-level values cannot map to the same high-level
value if they have different downstream effects. This is a
critical property that must hold for existing definitions of
abstractions to be well-defined. In this paper, we will use
the following running example to illustrate the key points.

Example 1. For concreteness, consider a setting in which
different insurance companies (Z) offer various insurance
plans (X), which affect whether an insurance claim is
approved (Y ). For simplicity, suppose there are two in-
surance companies (z1 and z2) that offer three insurance
plans (x1, x2, and x3), and the claim is either approved
(Y = 1) or not approved (Y = 0). Suppose the true model
M∗ =ML = ⟨UL,VL,FL, P (UL)⟩ is described as

UL = {UZ , U
z1
X , Uz2

X , Ux1

Y , Ux2

Y , Ux3

Y }
VL = {Z,X, Y }

FL=


fL
Z (uZ) = uZ

fL
X(z, uz1

X , uz2
X ) = uz

X

fL
Y (x, u

x1

Y , ux2

Y , ux3

Y ) = ux
Y

(3)
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P (UL)=



P (UZ = z1) = 0.5

P (Uz1
X )={x1→0.4;x2→0.1;x3→0.5}

P (Uz2
X )={x1→0.1;x2→0.4;x3→0.5}

P (Ux1

Y = 1) = 0.9, P (Ux2

Y = 1) = 0.1,

P (Ux3

Y = 1) = 0.9

The interpretation of the model is as follows: Insurance
plans x1 and x3 are very effective, with 0.9 probability of
claim acceptance, while x2 is very ineffective at only 0.1
probability. Insurance company z1 is more reputable than z2
and is more likely to offer plan x1 over x2, while company
z2 prefers to offer plan x2 over x1.

Suppose an important factor of consideration not shown
in the model is that x1 and x2 are cheaper insurance plans,
while x3 is more expensive. A data scientist who is studying
this model may choose to abstract the different plans away,
categorizing them simply as “cheap” and “expensive” plans.
Formally, they would study a set of higher-level variables
VH = {ZH , XH , YH}, where ZH = Z, YH = Y , and XH

has a domain DXH
= {xC , xE} corresponding to cheap

and expensive plans respectively. There exists an abstraction
function τ : DVL

→ DVH
such that τ maps x1 and x2 to

xC (cheap) and maps x3 to xE (expensive). We will some-
times use the notation XL to describe X to disambiguate
from XH , and we will use the notation Z and Y instead of
ZH and YH since the variables are the same on both levels.

This immediately brings the AIC into question. If the data
scientist is interested in the causal effect of cheap plans
on claim acceptance (i.e., P (YXH=xC

= 1)), whether xC

refers to x1 or x2 is ambiguous. To witness, note that

P (YXL=x1
= 1) = 0.9 (4)

P (YXL=x2
= 1) = 0.1. (5)

Since τ(x1) = τ(x2) = xC , but P (Yx1
) ̸= P (Yx2

), the
AIC is clearly violated, leaving the intervention on xC am-
biguous. ■

Fundamentally, the issue with AIC violations is clear: for-
mal definitions of abstractions expect an equality between
low-level and corresponding high-level quantities, but it is
not well-defined when one high-level quantity corresponds
to multiple differing low-level quantities. In practice, the
AIC can be a difficult restriction. Generally, it is assumed to
be true whenever abstractions are applied, but it is difficult
to verify given that the true SCM and functions are rarely
available in real-world settings. The assumption is also
likely to be incorrect when applying abstractions naïvely,
for example, by performing representation learning or di-
mensionality reduction without taking the AIC into account.
By definition, dimensionality reduction is a lossy transfor-
mation of the original data, and the AIC is violated if any of
the lost information is relevant for downstream functions.

Figure 2: Comparison between (a) full SCM projections
and (b) partial SCM projections. When X is fully projected
away, its function is subsumed by its child’s function fY .
When X is partially projected, it is split into observed por-
tion Xo and unobserved portion Xu. The role of Xo is
preserved, while Xu is subsumed into the function fY .

Even when the AIC does not hold, it does not necessarily
mean that these lossy transformations should not be used.
Representation learning and dimensionality reduction are
often performed to improve tractability or interpretability
at the cost of some lost information. Hence, it would still
be desirable to perform causal inferences in the high-level
space even under AIC violations. To address the issue of
different low-level quantities matching the same high-level
quantity, one can reinterpret the high-level quantity as a dis-
tribution over its corresponding low-level quantities, where
the randomness in the distribution results from the lost infor-
mation from the abstraction (i.e., a hard intervention on the
high-level translates to a soft intervention on the low-level).

2.1. Projected Abstractions

The discussion on relaxing the AIC begins with the concept
of SCM projections (Lee & Bareinboim, 2019), which can
be viewed as a primitive form of abstraction. An SCMM
projected to a subset of variables W ⊆ V is a function-
ally identical SCM defined over W, where the functions of
V \W are subsumed by other downstream functions (see
App. A Def. 4 for the full definition and App. C Ex. 8 for
an example). In the context of constructive abstraction func-
tions, the act of projecting away a variable can be viewed as
excluding the variable from all intervariable clusters. This
brings the first major insight in addressing AIC violations.
In general, when reducing the granularity of a variable, some
parts of the variable deemed less important are abstracted
away while others are retained. While by definition, SCM
projections only allow for entire variables to be included or
excluded, one could conceive of SCM projections in which
variables are only partially projected away (see App. C Ex. 9
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for an example). Formally, partial SCM projections can be
defined as follows.

Proposition 1 (Partial SCM Projection). Let V be a set of
variables and W ⊆ V be a subset. For each Wi ∈ W,
let δi : DW o

i
× DWu

i
→ DWi

be a surjective function
mapping new variables W o

i and Wu
i to Wi. W o

i and Wu
i

are called the observed and unobserved projections of Wi

respectively. Denote δ(Wo,Wu) = W, where Wo =
{W o

i : Wi ∈ W} and Wu = {Wu
i : Wi ∈ W}. For

any SCM M = ⟨U,V,F , P (U)⟩, there exists an SCM
M′ = ⟨U′ = U ∪Wu,V′ = Wo,F ′, P (U′)⟩ such that,
for all u ∈ DU, X ⊆W, and x ∈ DX,

wo
x =M′

[xo](u,x
u, zu), (6)

where δ(wo
x,w

u
x) = Wx(u), δ(xo,xu) = x, Zu = Wu \

Xu, and zu are the corresponding values from wu
x.M′ is

called a partial SCM projection ofM over Wo. ■

In words, a partial SCM projection ofM over Wo is essen-
tially a smaller version ofM defined only on the variables
of W ⊆ V, where each Wi ∈ W is only partially repre-
sented in the projection. A function δ splits Wi’s domain
into its observed (W o

i ) and unobserved (Wu
i ) portions. Eq. 6

ensures that any value of Wo obtained from an intervention
on the original SCMMx will match the corresponding out-
put fromM′, when the observed portion of the intervention
xo is applied toM′, while the unobserved portions of xu

and wu are passed as unobserved arguments to the func-
tions. A comparison between regular SCM projections and
partial SCM projections is shown in Fig. 2. The definition
of projected abstractions follow.

Definition 6 (Projected Abstraction). An SCMMH is a
projected abstraction of ML if and only if it is a partial
SCM projection of a τ -abstraction (Beckers & Halpern,
2019, Def. 3.13) (also Def. 14 in App. A) ofML. ■

To provide intuition for projected abstractions, consider the
following example.

Example 2. Continuing Example 1, given the setup of Eq. 3,
suppose XH ∈ {xC , xE} is given the function

fH
X (z, uz1

X , uz2
X ) =

{
xC uz

X ∈ {x1, x2}
xE uz

X = x3

, (7)

and define Xu
H ∈ {x1, x2} as a random variable with distri-

bution

P (Xu
H = xi) = P (XL = xi | XL ∈ {x1, x2}, z). (8)

Suppose now Y is now given a high-level function

fH
Y (xH , xu

H , uxi

Y ) =


ux1

Y xH = xC , X
u
H = x1

ux2

Y xH = xC , X
u
H = x2

ux3

Y xH = xE

. (9)

Observe the intuition from constructing these functions from
the perspective of projected abstractions. fH

X behaves iden-
tically to fL

X , except the output remaps the value of XL to
the corresponding XH (i.e. fH

X = τ(fL
X)). However, due to

the AIC violation, fH
Y is unable to disambiguate between

x1 and x2 if XH = xC . The solution is to introduce a new
exogenous variable Xu

H which represents information in
XL that is not captured in XH and disambiguates between
x1 and x2. fH

Y then uses both XH and Xu
H to mimic the

behavior of XL. It is clear that XL can be constructed as
δ(XH , Xu

H), defined as

δ(xH , xu
H) =


x1 xH = xC , X

u
H = x1

x2 xH = xC , X
u
H = x2

x3 xH = xE

, (10)

which matches Eq. 9. Indeed, MH = ⟨UH = UL ∪
{Xu

H},VH ,FH = {fL
Z , f

H
X , fH

Y }, P (UH)⟩ is a partial
SCM projection (and also projected abstraction) of ML

over VH . The graph corresponding toML is clearly the
top graph of Fig. 2(b), but note that through Eq. 8, there is
now a dependence from Z to Y , so the graph forMH is
instead the bottom graph of Fig. 2(b).

It is easy to see that Eq. 6 holds in this example. For instance,
fix UZ = z1, Uz1

X = x2, Ux2

Y = 1. Clearly, evaluatingML

with these values results in Z = z1, X = x2, Y = 1. Note
that x2 = δ(xC , x2), and this is the only set of values of
XH , Xu

H that map to x2. Indeed, on the high level, with
UZ = z1, Uz1

X = x2, Ux2

Y = 1, Xu
H = x2, it must also be

the case that Z = z1, XH = xC , Y = 1. ■

Projected abstractions make an important step to working
around the AIC as Eq. 6 allows for quantities to be well-
defined between low and high-level variables by simply
obtaining a partial projection of the original SCMML over
the high-level variables VH . However, unlike full SCM
projections, partial SCM projections are not unique in terms
of the induced PCH distributions. Prop. 1 guarantees its
existence but is underspecified in a couple of ways. First,
P (U′) is not fully defined, and it is not clear how Wu

should be sampled (e.g., it is not clear how Eq. 8 is chosen
in Ex. 2). Second, Eq. 6 does not specify what behavior
M′ should follow when zu does not match wu

x (e.g., How
should Y depend on Xu

H in Ex. 2 if XH = xE?).

The specific choice of partial SCM projection that best
serves as an abstraction can be determined by understand-
ing how low-level interventions relate to high-level inter-
ventions. In other words, given a high-level intervention
XH ← xH , it is important to define the corresponding low-
level soft-intervention σXL

, which is a distribution over all
possible interventions xL that map to xH . The consequence
of the underspecification of partial SCM projections is that
there are many possible choices of defining σXL

. For a full
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discussion on how σXL
should be decided, see App. B. A

useful general form of σXL
is defined as follows. Split σXL

into individual soft interventions σCi for each intervariable
cluster Ci ⊆ XL. Then define each σCi

as

P (σCi = ci) = P (ci | τ(ci) = vH,i,paVH,i
,uc

VH,i
).
(11)

In words, a high-level intervention should be equivalent to a
distribution over the corresponding low-level interventions
that assigns probability to each possible intervention based
on their prior probabilities given their parents.2

Example 3. Continuing Example 1, suppose the data scien-
tist is interested in the causal effect of choosing a cheap
insurance plan on claim approval. In other words, she
would like to study the intervention XH ← xC , which
is ambiguous on the low-level as it could refer to either
XL ← x1 or XL ← x2. More specifically, according to
Eq. 11, XH ← xC corresponds to a soft intervention σXC

on the low level, defined as

σXL
=

{
x1 w.p. P (x1 | XL ∈ {x1, x2}, z)
x2 w.p. P (x2 | XL ∈ {x1, x2}, z)

(12)

While there are many ways to disambiguate whether xC is
referring to x1 or x2, this choice of σXL

will assign proba-
bilities based on the prior probabilities of XL being one of
x1 or x2. Moreover, the probabilities change depending on
the value of z. This makes intuitive sense, since under the
intervention XH ← xC , we expect that if Z = z1, then XL

is more likely to be x1 than x2, or vice-versa when Z = z2.
From a query perspective, this implies that

P (YXH=xC
= 1 | Z = z1) (13)

= P (YσXL
(xC ,Z) = 1 | Z = z1)

=
∑

xi∈{x1,x2}

P (xi | XL ∈ {x1, x2}, z1)P (Yxi
= 1) = 0.74

Likewise, P (YXH=xC
= 1 | Z = z2) = 0.26 (14)

■

While projected abstractions are defined over the entire
SCM, the mapping between low and high-level interven-
tions are more clear at the query-level (i.e., individual inter-
ventional and counterfactual distributions of interest). Such
quantities can be defined as follows.

Definition 7 (Generalized Query). Denote YL,∗ as a set of
counterfactual variables over VL. That is,

YL,∗ =
(
YL,1[σXL,1

],YL,2[σXL,2
], . . .

)
, (15)

2Here, uc
VH,i

can informally be thought of as the confounded
exogenous parents of VH,i. The full definition is somewhat in-
volved, and the subtleties are discussed in App. B.2. Due to space
constraints, the main body provides intuition in Markovian settings,
where unobserved confounding is not present.

Algorithm 1 ConstructingMH fromML.

input ML = ⟨UL,VL,FL, P (UL)⟩, constructive abstraction
function τ from clusters C and D

1: UH ← UL, P (UH)← P (UL)
2: VH ← C,DVH ← D
3: for W ∈ VL do
4: W o,Wu ← project(W ) {construct δ from Prop. 1}
5: UH ← UH ∪ {Wu}
6: end for
7: for Ci ∈ C (and corresponding Vi ∈ VH ) do
8: P (δ(coi ,C

u
i ) = ci | UL) ← P (Ci = ci | τ(ci) =

vi,paVi
,uc

VH,i
) {from Eq. 11}

9: fH
i ← τ(fL

V (δ(pao
V ,pau

V ),uV ) : V ∈ Ci)
10: end for
11: FH ← {fH

i : Ci ∈ C}
12: returnMH = ⟨UH ,VH ,FH , P (UH)⟩

where each YL,i[σXL,i
] corresponds to the potential out-

comes of the variables YL,i under the (possibly soft) in-
tervention σXL,i

over XL,i. Each YL,i and XL,i must be
unions of clusters from C (i.e. YL,i =

⋃
C∈C′ C for some

C′ ⊆ C) such that τ(YL,i) and τ(XL,i) are well-defined
(i.e. τ(YL,i) =

(∧
C∈C′ τC(C)

)
). For the high-level coun-

terpart, denote

YH,∗ = τ(YL,∗) =
(
YH,1[xH,1],YH,2[xH,2], . . .

)
, (16)

such that YH,i = τ(YL,i), and XH,i = τ(XL,i) for all i.
For any value yH,∗ ∈ DYH,∗ , denote

DYL,∗(yH,∗) = {yL,∗ : yL,∗ ∈ DYL,∗ , τ(yL,∗) = yH,∗},
(17)

that is, the set of all values yL,∗ such that τ(yL,∗) = yH,∗.

For any high-level query

τ(Q) = P (YH,∗ = yH,∗), (18)

of the form of Eq. 16, its low-level counterpart is

Q =
∑

yL,∗∈DYL,∗ (yH,∗)

P (YL,∗ = yL,∗), (19)

of the form of Eq. 15. ■

This query definition connects the distributions of L3(MH)
to corresponding distributions of L3(ML). Compared
to earlier definitions, Eq. 15 has been generalized to ac-
count for soft interventions in addition to hard interven-
tions. Under constructive abstractions functions τ , a no-
tion of Q-τ consistency was established for certain queries
Q ∈ L3(ML) (App. A Def. 17), which still apply under this
generalized definition. In short, given a low level query Q
(Eq. 19) and its high-level counterpart τ(Q) (Eq. 18),MH

is said to be Q-τ consistent withML if QML = τ(Q)MH .
One can then say thatMH is an abstraction ofML specif-
ically for the query Q, even ifMH may not be Q′-τ con-
sistent withML for other query choices Q′. IfMH is Q-τ

6
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consistent withML for all τ(Q) ∈ Li(MH), thenMH is
said to be Li-τ consistent withML.

With σXL,i
defined in Eq. 11, one can then algorithmically

construct a projected abstraction consistent in all queries.
GivenML and a constructive abstraction function τ (which
may not satisfy the AIC), Alg. 1 can be used to construct the
high-level abstractionMH . In line 4, each W ∈ VL is split
into its observed and unobserved counterparts W o and Wu.
Line 8 assigns each Wu a distribution based on Eq. 11. Line
9 builds the high-level function using the low-level function
with inputs reconstructed using δ. Finally, the full high-level
model MH is assembled and returned in line 10. Under
these inputs, Alg. 1 constructs a projected abstractionMH

that is Q-τ consistent withML for all possible high-level
L3 queries, as shown by the following result.

Theorem 1. The SCM MH constructed by Alg. 1 is a
projected abstraction of ML that is Q-τ consistent with
ML for all τ(Q) ∈ L3(MH). ■

As an example, it can be verified that running Alg. 1 onML

in Ex. 1 results in the SCMMH from Ex. 2.

3. Projected Abstraction Inference
Alg. 1 finds an abstraction model MH that is consistent
with its low-level counterpart ML for all queries, but it
requires the full specification of ML. In practice, ML

typically represents the true model of reality and will not be
observed. Inferences of L2 and L3 queries must be made
through limited available data, usually observational (L1).

The Causal Hierarchy Theorem (Bareinboim et al., 2022,
Thm. 1) states that cross-layer inference, or inferring higher
layer quantities (e.g., L2, L3) from lower layer data (e.g.,
L1), is generally impossible without additional assumptions.
Many such assumptions take the form of a graphical model,
such as a causal diagram (Pearl, 1995), which imply con-
straints between causal distributions from causal (Barein-
boim et al., 2022) and counterfactual Bayesian networks
(Correa & Bareinboim, 2024). In the context of abstractions,
when τ is a constructive abstraction function that satisfies
the AIC, it has been shown that one can avoid assuming the
entire causal diagram of the low-level model in favor of a
cluster causal diagram (C-DAG) (Anand et al., 2023) w.r.t.
the intervariable clusters C. Unfortunately, this graphical
model is insufficient for the case when the AIC is violated.

Proposition 2 (C-DAG Insufficiency (Informal)). For a con-
structive abstraction function τ over intervariable clusters
C in which the AIC does not hold, the C-DAG GC implies
constraints that may be unsound. ■

To witness why this is the case, Fig. 2(b) shows the issue
clearly. Attempting an abstraction in violation of the AIC
is akin to performing a partial SCM projection, which may

Figure 3: Examples of C-DAGs (left) and their correspond-
ing projected C-DAGs (right), with AIC violation variables
V†

H outlined in red.

introduce new dependencies between SCM functions, there-
fore implying new edges in the graph. Ex. 3 explains this
dependence numerically. Since no variables are clustered
together in the example, both the original causal diagram G
and the C-DAG GC are represented by the top graph in Fig. 3.
However, this graph implies that P (YxH

| z) = P (YxH
).

Evidently, this is not true since Eq. 13 is not equal to Eq. 14.
As hinted by the construction in Alg. 1, the high-level func-
tion fH

Y requires some additional information from Z to
decide between interpreting xC as x1 or x2. This informa-
tion adds a dependence from Z to the function of fH

Y , which
requires adding a directed edge from Z to Y .

While the original C-DAG construction is not valid for pro-
jected abstraction inferences, one can use a modified version
that adds the new required dependencies into the C-DAG.

Definition 8 (Partially Projected C-DAG). Let τ : DVL
→

DVH
be a constructive abstraction function w.r.t. intervari-

able clusters C and intravariable clusters D. Let GC =
⟨VH ,EC⟩ be a C-DAG (with nodes VH and edges EC),
of graph G w.r.t. C. Let V†

H ⊆ VH be the set of AIC
violation variables (App. A Def. 19). Then, construct
G†C = ⟨VH ,E†

C⟩ as follows. Start by setting E†
C ← EC.

Then apply the following rules for all X ∈ V†
H .

(1) If Z → X → Y in EC, then add Z → Y into E†
C.

(2) If Z X → Y in EC, then add Z Y and
X Y into E†

C.
(3) If Z ← X → Y in EC, then add Z Y into E†

C.
Repeat iteratively to accommodate new edges.3 G†C is called
the partially projected C-DAG of G w.r.t. C and V†

H . ■

The steps correspond to the intuition discussed earlier–when
performing a partial projection, parts of the variables in V†

H

3Procedure can be applied algorithmically in one pass by ap-
plying all rules for each node in V†

H in topological order.

7
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are projected into the exogenous space, resulting in addi-
tional dependences that require additional edge connections.
Examples of C-DAGs and their corresponding projected
C-DAGs are shown in Fig. 3. In the figure, rows (a), (b), and
(c) correspond to examples of steps 1, 2, 3 respectively. It
turns out that this new definition is precisely what is needed
for abstraction inference in the absence of the AIC.

Theorem 2 (Projected C-DAG Sufficiency and Necessity
(Informal)). Let ML be an SCM over variables VL, τ :
DVL

→ DVH
be a constructive abstraction function w.r.t.

clusters C and D, and V†
H be the AIC violation set. The

partially projected C-DAG G†C w.r.t. C and V†
H completely

describes all constraints over VH . ■

In other words, the projected C-DAG provides exactly the
constraints necessary to solve the task of performing causal
inferences across abstractions, even when the AIC is vio-
lated. In particular, certain interventional and counterfac-
tual distributions may be inferrable from a combination of
the projected C-DAG G†C and the available datasets from
ML. Determining precisely which queries can be inferred
is known as the identification problem, which is defined
below in the context of abstract identification.

Definition 9 (Abstract Identification (General)). Let τ :
DVH

→ DVL
be a constructive abstraction function. Con-

sider projected C-DAG G†C, and let Z = {P (VL[zk])}ℓk=1

be a collection of available interventional (or observational
if Zk = ∅) distributions over VL. Let ΩL and ΩH be the
space of SCMs defined over VL and VH , respectively, and
let ΩL(G†C) and ΩH(G†C) be their corresponding subsets that
induce G†C. A query Q is said to be τ -ID from G†C and Z iff
for everyML ∈ ΩL(G†C),MH ∈ ΩH(G†C) such thatMH

is Z-τ consistent with ML, MH is also Q-τ consistent
withML. ■

In words, a query Q is considered τ -ID if, for any pair of
modelsML andMH such that both are compatible with
G†C and Z, they also match in Q. In contrast, Q is not τ -ID if
there existML andMH that are compatible with both G†C
and Z but disagree on Q (i.e., QML ̸= τ(Q)MH ). Abstract
identification may seem like a difficult property to check,
but it turns out that there is a natural connection with the
classical identification problem, as shown below.

Theorem 3 (Dual Abstract ID (General)). Consider a coun-
terfactual query Q over VL, a constructive abstraction
function τ w.r.t. clusters C and D, a projected C-DAG G†C,
and data Z from VL. Q is τ -ID from G†C and Z if and only
if τ(Q) is ID from G†C and τ(Z). ■

In words, τ -identification across abstractions is equivalent
to classic identification on the high-level space.

Example 4. Continuing Ex. 1, note that XH is the only
AIC violator in VH , since x1 and x2 both map to xC but

have different effects on Y . Hence, V†
H = {XH}, and the

C-DAG GC and projected C-DAG G†C are the two graphs in
Fig. 3(a). To answer the query of interest P (YXH=xC

=
1), one can apply Thm. 3 to simply identify the quantity
w.r.t. P (VH) and G†C. In this case, note that the causal effect
of XH on Y can be computed via backdoor adjustment on
Z, so P (YXH=xC

= 1) is equal to∑
z

P (Y = 1 | XH = xC , Z = z)P (Z = z) (20)

=
∑
z

P (Y = 1 | XL ∈ {x1, x2}, z)P (z) (21)

= (0.7)(0.74) + (0.3)(0.26) = 0.596. (22)

■

Thm. 3 implies that, in practice, τ -ID can be checked by
performing any classical ID procedure on the high-level
space. This may include algorithmic approaches or other
optimization-based approaches.

4. Experiments
We perform two experiments to demonstrate the bene-
fits of projected abstractions. The models in the ex-
periments leverage Neural Causal Models (NCMs) (Xia
et al., 2021; 2023), specifically the generative adversar-
ial implementation called GAN-NCMs. Details of the
experiment setup can be found in App. D, and code can
be found at https://github.com/CausalAILab/
ProjectedCausalAbstractions.

In the first experiment, we test the necessity of the projected
C-DAGs when the AIC does not hold. The high-level query
τ(Q) = P (yx | z) is estimated in the graph setting shown
in Fig. 3(a), where Z is a digit from 0 to 9, X is a corre-
sponding colored MNIST image, and Y is a label denoting
the color prediction of X . τ(X) maps the image to a binary
variable representing the shade (light or dark) of X .

The results are shown in Fig. 6. Three different GAN-NCMs
are trained: one directly on the low-level data that does not
use abstractions (red), an abstracted one constrained by the
C-DAG (yellow), and an abstracted one constrained by the
projected C-DAG (blue). 95% confidence intervals of the
errors are plotted in the figure. Note that the abstractionless
model and the projected C-DAG model have decreasing
error with more samples, but the regular C-DAG model is
unable to learn the correct query. The abstractionless model
has higher error than the projected C-DAG model since it
operates in a higher-dimensional space.

In the second experiment, we test an interesting consequence
of the projected abstraction theory: the soft intervention def-
inition in Eq. 11 can be directly modeled and sampled if
attempting to reconstruct the low-level data. We call this
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Figure 4: Colored MNIST results. Samples from different causal queries (top) are collected from competing approaches
(left). The expressions in parentheses are the representation sizes. The left column shows direct image samples from each of
the models, while the second, third, and fourth columns show samples generated from an L1, L2, and L3 query, respectively.

Figure 5: (Left) Graph of Colored MNIST experiment.
(Right) Correlation shown between color and digit.

approach projected sampling and explain it in more detail in
App. B.3. We show this in the causal colored MNIST exper-
iment (Xia & Bareinboim, 2024). In the model, digit D and
color C both cause the image I , but they are confounded
(e.g., 0’s are red, 5’s are cyan, see Fig. 5). Three differ-
ent queries are tested (the right three columns of Fig. 4).
P (I | D = 0) is an L1 query representing images condi-
tioned on digit = 0, resulting in red 0’s. P (ID=0) is an L2

query representing images with the digit intervened as 0,
cutting the confounding and resulting in 0’s of all colors.
P (ID=0 |D=5) is an L3 query representing images with
digit intervened as 0, conditioned on the digit originally
being 5. This results in 0’s with colors of images that were
originally 5’s, resulting in cyan 0’s.

Four methods are compared on these queries in Fig. 4, with
the ground truth shown on row 5. The non-causal approach
(row 1) simply directly models the conditional distribution
between digit and image and therefore fails to model any-
thing higher than L1. The representational NCM or RNCM
(Xia & Bareinboim, 2024) (row 2) is able to decently repro-
duce all queries, but it uses a 16-dimensional representation
space, which cannot shrink much further due to AIC limi-
tations. When forced to take a binary representation (row
3), the RNCM clearly lacks the representation power to
properly generate images. In contrast, using a projected
sampling approach (row 4) can reproduce the images even
with a representation size as small as a binary digit.

Figure 6: Mean absolute error (MAE) v. number of samples
for the MNIST estimation task. Comparisons between an
abstractionless approach (red), a C-DAG approach (yellow),
and a projected C-DAG approach (blue).

5. Conclusion
This paper introduced projected abstractions (Def. 6), which
can be constructed algorithmically (Alg. 1, Thm. 1), to over-
come the AIC limitation. When the full model was not avail-
able, we leveraged a new graphical model (Def. 8, Thm. 2)
that allowed for causal inferences through the abstract-ID
problem (Def. 9, Thm. 3). Finally, we demonstrated the
ability of projected abstractions to leverage representation
learning within difficult causal inference settings through
high-dimensional image experiments.

Impact Statement
This paper presents work whose goal is to advance the field
of causal inference, a subfield of machine learning. The re-
sults in this paper may have implications bringing together
strong practical results in representation learning and com-
puter vision research with the explainability and generaliz-
ability of causal inference results. The trend is that this will
lead to smarter AI, which itself has many consequences out
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of the scope of this work, but the benefit of understanding
causal inference is that it can lead to less bias and more
accountability of AI models.
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