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Abstract
This work revisits the classical low-rank matrix factorization problem and unveils the critical

role of initialization in shaping convergence rates for such nonconvex and nonsmooth optimization.
We introduce Nyström initialization, which significantly improves the global convergence of Scaled
Gradient Descent (ScaledGD) in both symmetric and asymmetric matrix factorization tasks. Specifi-
cally, we prove that ScaledGD with Nyström initialization achieves quadratic convergence in cases
where only linear rates were previously known. Finally, we equip low-rank adapters (LoRA) with
Nyström initialization for practical merits. The effectiveness of the resultant approach, NoRA, is
demonstrated on several representative tasks for finetuning large language models (LLMs).

1. Introduction

Compared with learning rates and descent directions, initialization has been a relatively overlooked
aspect of optimization. In the widely studied smooth optimization literature [15, 43], as long as a
suitable (small) learning rate is chosen, most of optimization algorithms such as gradient descent
(GD) provably converge to a stationary point at the same rate, regardless of initialization. This work
goes beyond stationary points and highlights the crucial role of initialization for global optimality of
Burer-Monteiro factorization [4] – the same algorithm can exhibit markedly different behaviors, such
as linear vs. quadratic convergence, depending on initialization.

We consider matrix factorization as a canonical example, where the goal is to solve symmetric
problems (1a); or the asymmetric ones (1b)

min
X
∥XX⊤ −A∥2F, (1a) min

X,Y
∥XY⊤ −A∥2F. (1b)

While these classical problems can be solved, they are still challenging for optimization, because
they are nonconvex, nonsmooth (albeit differentiable), non-coercive (for asymmetric problems), and
do not satisfy PL condition [7]. Taking the asymmetric problem (1b) as an example, more refined
settings can be categorized based on rank(A) and r. Let A ∈ Rm×n, and X ∈ Rm×r and Y ∈ Rn×r.
The problem is exact-parametrized (EP) if rank(A) = r, over-parametrized (OP) once rank(A) < r
and under-parametrized (UP) if rank(A) > r. EP and UP are the main focus of this work.

The global convergence of EP has been established for GD, Alternative GD (AltGD) and
ScaledGD [12, 25, 60, 66]. The most popular initialization is close to a saddle point (0,0), i.e.,
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Table 1: Comparison of complexity for global optimality in (a)symmetric matrix factorization. Note
that our bounds for UP depict the complexity to near optima. Works marked with * are
designed for another setting (hence the comparison may not be fair).

setting algorithm reference init. rate

Asym
GD [66] small O

(
κ3 log(1/ϵ)

)
EP

AltGD [60] special O
(
κ2 log(1/ϵ)

)
ScaledGD [53] local O(log(1/ϵ))
ScaledGD Theorem 5 Nyström O(1)

Asym GD [12] small asymptotic

UP ScaledGD Theorem 6 Nyström O(1)

Sym
GD* [51] small O

(
κ8 + κ2 log(1/ϵ)

)
EP

ScaledGD(λ)* [64] small O
(
log2 κ+ log(1/ϵ)

)
ScaledGD Theorem 3 Nyström O

(
κ3
√
r + log log(1/ϵ)

)
Sym UP ScaledGD Theorem 4 Nyström O(r/ϵ · log(1/ϵ))

X0 ∼ N (0, ζ2x) and Y0 ∼ N (0, ζ2y ) with small ζ2x and ζ2y . This initialization prompts linear
convergence, and it also holds on our main focus, ScaledGD [25, 53]. In this work, we show that the
linear rate of ScaledGD can be improved to a quadratic one under the proposed Nyström initialization.

To the best of our knowledge, only an asymptotic global convergence of GD is established for UP
in [12]. We prove that with Nyström initialization, ScaledGD converges in a linear rate to the nearing
neighbor of a global optimum, and then exhibits a sublinear rate to more fine-grained neighboring
area. The improved rates are compared with existing bounds in Tab. 1.

We further extend Nyström initialization to finetune LLMs with LoRA [22]. This is motivated by
recent works that use insights from matrix factorization to augment LoRA [65, 68]. Compared with
other LoRA initialization methods [5, 41, 59], our Nyström initialization for LoRA (i.e., NoRA) is
more economical and better suits for deployment. Our contributions can be summarized as:
• Faster convergence. Nyström initialization is provably beneficial for ScaledGD. A quadratic rate

can be established on EP, while a (sub)linear rate is obtained for UP until near optimal; see Tab. 1.
• Role of initialization. Our results unveil an intriguing phenomenon in nonconvex (nonsmooth)

optimization: the behaviors of the same algorithm, reflected via a quadratic vs. linear rate, are
critically determined by initialization.

• Practical tools. The power of Nyström initialization is further demonstrated on finetuning LLMs.
The resultant approach, NoRA, effectively outperforms LoRA on several downstream tasks.

Notation. Bold lowercase (capital) letters denote column vectors (matrices); (·)⊤, (·)† and ∥ · ∥F
refer to transpose, pseudo inverse, and Frobenius norm of a matrix; ∥ · ∥ is the ℓ2 (spectrum) norm of
a vector (matrix); σi(·) and λi(·) denote the i-th largest singular value and eigenvalue, respectively.

2. The power of initialization for symmetric matrix factorization

We start to examine the critical role of initialization on symmetric problems (1a). Within this section,
we assume that A ∈ Rm×m is positive semidefinite (PSD), otherwise the asymmetric formulation
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in later sections can be employed. Let rA := rank(A) and denote the thin eigendecomposition
as A = QΣQ⊤, where Q ∈ Rm×rA and Σ ∈ RrA×rA . We employ σi(·) to denote ith largest
singular values. Without loss of generality, the largest and smallest singular values are assumed to be
σ1(A) = 1 and σrA(A) = 1/κ such that the condition number is κ.

ScaledGD as our optimizer. We focus on ScaledGD [53], which is often understood as a
preconditioned version of GD; see more details in e.g., [25, 53]. Starting from t = 0 with a learning
rate η > 0, ScaledGD updates Xt ∈ Rm×r via

Xt+1 = Xt − η(XtX
⊤
t −A)Xt · (X⊤

t Xt)
−1. (2)

The inversion of X⊤
t Xt is affordable given r ≪ m. Small initialization is widely adopted, i.e.,

[X0]ij ∼ N (0, ζ2), where ζ2 is small. Under such initialization, ScaledGD converges linearly for
EP (r = rA), yet no rate is established for UP (r ≤ rA) [25]; see more in Tab. 1.

2.1. Nyström initialization

To achieve an improved convergence rate, it is sufficient for EP and UP to ensure that the initialization
satisfies two conditions: i) each column of X0 is in the column space of A, and ii) X0 is full rank,
i.e., rank(X0) = r. While the reasons will be uncovered analytically, a straightforward means to
meet these requirements is through Nyström sketch [55], i.e.,

Nyström initialization: X0 = AΩ, where [Ω]ij ∼ N (0, ξ2),∀i,∀j (3)

where Ω ∈ Rm×r is a Gaussian random matrix. From this initialization, it is not difficult to see
that requirement i) is satisfied already. Although not stating explicitly, our theorems hold under
requirement ii) or rank(X0) = r, which is confirmed in the lemma below.

Lemma 1 (Initialization for EP and UP) There exists a universal constant τ > 0 such that
σr(X0) ≥ ξτ(

√
rA −

√
r − 1)σrA(A) is satisfied with high probability, i.e., rank(X0) = r w.h.p.

2.2. Nyström initialization for EP

We start with EP (rA = r). Our first result is the implicit regularization of Nyström initialization.

Lemma 2 If X0 is obtained through Nyström initialization (3), update (2) ensures that for all t ≥ 0
i) every column of Xt is in the column space of A, and Xt = QΦt for some Φt ∈ Rr×r; and,
ii) the smallest eigenvalue of XtX

⊤
t is bounded away from 0, that is, σr(Xt+1X

⊤
t+1) ≥ (1 −

η)2t+2σr(X0X
⊤
0 ) + (1− η)σr(A)− (1− η)2t+3σr(A).

Lemma 2 implies that full rankness of Xt over the trajectory rank(Xt) = r, ∀t. This ensures an
invertible X⊤

t Xt, that is, iteration (2) is always well-defined. The most important implication of
Lemma 2 is the alignment of Xt with the directions of eigenvectors of A, i.e., Xt = QΦt. While
we will expand this shortly, this alignment in directions enables us to establish a quadratic rate.

Theorem 3 With Nyström initialization (3), ScaledGD in (2) has a two-phase convergence behavior:
Phase 1 (linear convergence): Let η = O( 1

κ3∥A∥F
), after T1 := O(κ3

√
r log κ) iterations,

ScaledGD ensures that ∥XT1X
⊤
T1
−A∥F ≤ O(1/κ2); and,

Phase 2 (quadratic convergence): After Phase I, ScaledGD converges quadratically with η = 0.5.
In particular, ∥XTX

⊤
T −A∥F ≤ ϵ is ensured after T = O

(
log log( 1

κϵ)
)

iterations.
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Figure 1: Optimality error vs. iteration of different approaches. (a) GD, and ScaledGD with small /

Nyström initialization. (b) solid lines show that our initialization is not sensitive to magnitude; and
dotted lines illustrate that quadratic rate cannot be obtained after perturbing the initialization, i.e.,
X0 = AΩ+N, where [N]ij ∼ N (0, ξ2n). (c) GD and ScaledGD with various η for UP.

The quadratic rate of ScaledGD is reflected in Fig. 1 (a) using synthetic data shown in Apdx.
10.1. Notably, the quadratic rate in Theorem 3 is achieved without Hessian on a nonconvex and
nonsmooth problem. Moreover, there is no requirement on the magnitude of ξ – initialization does
not need to be small. The convergence of ScaledGD under different ξs can be found in (the solid
lines of) Fig. 1(b).

The critical role of initialization. As shown in Lemma 2, Nyström initialization aligns Xt with
the directions of eigenvectors Q, thereby eliminating the residual space, i.e., (I−QQ⊤)Xt = 0, ∀t.
This is in stark contrast with most of existing works on matrix factorization, where small initialization
only ensures ∥(I−QQ⊤)Xt∥F → 0 in a linear rate [12, 25, 66]. Getting rid of the residual space
enables a quadratic rate of ScaledGD. This is illustrated in Fig. 1 (b), where small noise is injected to
the residual space by slightly perturbing Nyström initialization. Reflected in the dotted lines, even if
the earlier convergence does not differ with Nyström initialization, only a linear rate is observed.

2.3. Nyström initialization for UP

Next, we consider the case of UP of (1a), i.e., r < rA. We will show that ScaledGD converges
under weak optimality, that is, X⊤A†X − Ir = 0. Due to space limitation, we prove in Lemma
9 of Apdx. 7.3 that all global optima are also weak optima. Moreover, Lemma 10 shows that
(I−QQ⊤)Xt = 0,∀t also holds for UP, i.e., Nyström initialization eliminates the residual space.
Building upon this, the convergence of ScaledGD can be established.

Theorem 4 Depending on η, ScaledGD (2) with Nyström initialization (3) ensures that
i) (Linear convergence to neighborhood of weak optima.) If one chooses η ≤ 1, ScaledGD

ensures that ∥X⊤
t A

†Xt − Ir∥F ≤ O(ηr) + ϵ in O(log 1
ϵ ) iterations; or,

ii) (Convergence to weak optima.) Let η = O(ϵ/r), weak optimality is ensured by ScaledGD
after O( rϵ log

1
ϵ ) iterations, i.e., ∥X⊤

t A
†Xt − Ir∥F ≤ ϵ.

Fig. 1 (c) illustrates the linear convergence. We also prove that at convergence ScaledGD ensures
Xt to stay close to a global solution, and the distance is sublinear in r in Lemma 11 in appendix.
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3. The power of initialization for asymmetric matrix factorization

This section demonstrates that the power of initialization is even more striking in asymmetric matrix
factorization (1b), where A ∈ Rm×n, X ∈ Rm×r and Y ∈ Rn×r. Moreover, denote rank(A) = rA
and the thin SVD be A := UΣV⊤, where U ∈ Rm×rA , Σ ∈ RrA×rA , and V ∈ Rn×rA .

Nyström initialization. We adopt an asymmetric manner to initialize X0 and Y0 for (1b), i.e.,

Nyström initialization: X0 = AΩ, Y0 = 0 (4)

where Ω is a Gaussian random matrix of Rn×r with [Ω]ij ∼ N (0, ξ2),∀i,∀j.
Modified ScaledGD. To adapt to the non-invertible Y⊤

0 Y0 = 0 in Nyström initialization (4),
we modify the first iteration of ScaledGD. More precisely, the updates are summarized below

X1 = X0, and Xt+1 = Xt − η(XtY
⊤
t −A)Yt(Y

⊤
t Yt)

−1,∀t ≥ 1; (5a)

Yt+1 = Yt − η(XtY
⊤
t −A)⊤Xt(X

⊤
t Xt)

−1,∀t ≥ 0. (5b)

3.1. Nyström initialization for EP

We start with EP, i.e., rA = r in (1b). The merit of Nyström initialization (4) is the elimination of
residual space, i.e., (I−UU⊤)Xt = 0 and (I−VV⊤)Yt = 0 as shown in Lemma 14.

Theorem 5 (One-step convergence) With η = 1 and Nyström initialization (4), the modified
ScaledGD (5) guarantees X1Y

⊤
1 = A. In other words, global convergence is achieved in one step.

3.2. Nyström initialization for UP

Lastly, we tackle the case of UP for the asymmetric problem (1b), where rA > r. Here we consider
generalized weak optimality, which is defined as Y⊤A†X− Ir = 0. Generalized weak optimality is
satisfied by any global optimum as proved in Lemma 15. Now we are ready to show the convergence.

Theorem 6 If η = 1, ScaledGD in (5) with Nyström initialization (4) ensures generalized weak
optimality in one step, i.e., Y⊤

1 A
†X1 − Ir = 0.

The critical role of initialization. Through the theoretical analyses in the previous two sections,
it is evident that the convergence of ScaledGD for matrix factorization is highly dependent on the
initialization. Here is an intuitive, though not strictly rigorous, summary: Small initialization results
in behaviors similar to first-order optimizers, i.e., linear convergence [25]. In contrast, the proposed
Nyström initialization catalyzes quadratic rates and even one-step convergence, resembling the
optimization trajectory of second-order approaches such as Newton’s method [43].

4. NoRA: Nyström low rank adapters

We extend the benefit of Nyström initialization to another setting based on Burer-Monteiro factoriza-
tion, i.e., low-rank adapters (LoRA) in finetuning deep neural networks [22]. Due to limited space,
the detailed explanation of our methodology is deferred to Apdx. 6.3 and Apdx. 6.4, and here we
only summarize the proposed approach:

• Nyström LoRA (NoRA): Simply apply (4) on top of LoRA, that is, X0 = AΩ and Y0 = 0,
where A is the pretrained weights.
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Table 2: Test accuracy of various algorithms for commonsense reasoning on LLaMA2-7B.
LLaMA2-7B BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA avg (↑)

LoRA† 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
LoRA-P 71.47 81.50 78.81 85.97 80.43 81.14 66.55 81.0 78.35
NoRA 71.16 83.08 79.53 85.90 81.85 80.64 66.13 81.80 78.76

NoRA+ 70.52 81.94 79.07 87.66 82.24 82.70 67.06 80.2 78.92

• Nyström preconditioned LoRA (NoRA+): this approach not only advances LoRA initialization
with (4), but also leverages ScaledGD for optimization.

We note that ScaledGD has already been applied for LoRA training [68], which this approach is
referred to as LoRA-P in our work (P for precondtioning). We will show that both LoRA and LoRA-P
benefit from Nyström initialization.

Deployment efficiency. Nyström initialization is more economical than the SVD or QR used in
other initialization methods such as PiSSA and OLoRA [5, 41]. Furthermore, NoRA requires no
modification to the pretrained weights, making it an off-the-shelf solution without altering existing
LoRA pipelines. We expand on this in Apdx. 6.4.

4.1. Numerical results for NoRA

The efficiency of proposed NoRA and NoRA+ is demonstrated using LLaMA2-7B [54]. Additional
details on the datasets and experimental procedures can be found in Apdx. 10. We tackle common-
sense reasoning following the setup in [23]. The rank of LoRA is chosen as 32. Numerical results on
LLaMA2-7B are presented in Tab. 2. It is observed that LoRA is unstable, henceforth the results for
LoRA are taken from [38]. This instability is not observed in the other approaches tested. NoRA and
NoRA+ outperform LoRA and LoRA-P, demonstrating the efficiency of Nyström initialization.

Additional numerical results. More on NoRA on finetuning OPT [72] can be found in Apdx.
10.3, where the performance of NoRA is also compared with PiSSA and OLoRA [5, 41].

5. Concluding remarks and future directions

This work characterizes how initialization can crucially determine the convergence behavior of the
same optimization algorithm on matrix factorization problems. We prove that Nyström initialization
can significantly improve the complexity bounds of ScaledGD under a wide spectrum of settings;
see details in Tab. 1. One of the key improvements is that Nyström initialization enables a quadratic
convergence for exact-parametrized problems, whereas small initialization only guarantees a linear
rate on ScaledGD. This performance gap calls for more careful investigation into the role of initial-
ization in optimization. Additionally, the proposed Nyström initialization offers practical merits
when applied on finetuning with LoRA, delivering deployment flexibility and promising numerical
performance on large-scale problems.

Future work. While this work focuses on the impact of initialization in canonical matrix
factorization problems, we believe our results extend to more complex settings, such as matrix
sensing and tensor factorization, which are part of our future research plans. Additionally, in the
context of Burer-Monteiro factorization with LoRA, our work suggests potential gains by exploiting
priors embedded in pretrained weights. Investigating how to better uncover and utilize this hidden
information is another attractive direction for future research.
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Supplementary Document for
“On the Crucial Role of Initialization for Matrix Factorization”

6. Missing details

6.1. More on related work

Theoretical merits of initialization. Despite the merits of initialization are widely recognized in
practice [16, 20, 31], it is quite challenging to theoretically characterize the impact of initialization.
In continuous optimization, it is shown that the magnitude of initialization relates to the implicit
regularization of gradient flow on overparametrized problems [56, 61]. Initialization also impacts
the robustness of ReLU neural networks [74]. Our work provides additional evidence on this regard,
demonstrating that the same algorithm can have linear or quadratic rate under different initialization.

Matrix factorization from an optimization perspective. The goal of this work is to recap this
classical problem and to unveil intriguing behaviors from an optimization perspective. This problem
entails rich behaviors of loss landscape – nonconvexity, non-smooth and non-PL-ness. Recent works
have examined the convergence of several classical algorithms, such as GD, AltGD and ScaledGD;
see e.g., [12, 27, 60, 66] and Tab. 1. Most of previous works focus on small initialization, and some
analysis techniques therein are tailored thus difficult to generalize. Our Nyström initialization enables
us to derive faster convergence of ScaledGD in EP and UP settings within a unified framework. The
initialization in AltGD [60] also adopts sketch, i.e., X0 = O(AΩ1/σ1(A)) and Y0 = O(σ1(A)Ω2),
where Ω1 and Ω2 are Gaussian random matrices with small variance. Besides the requirement on the
variance of Ω1 and Ω2 and the explicit need of σ1(A), this initialization cannot eliminate of residual
space as ours in (4). Consequently, AltGD demands early stopping in EP, and little is known for UP.

Convergence of overparametrized matrix factorization problems. Consider again the asym-
metric problem as an example, i.e., minX,Y ∥XY⊤ − A∥2 with A ∈ Rm×n, X ∈ Rm×r and
Y ∈ Rn×r. Overparametrization (OP) refers to the case where rank(A) ≤ r. Alternative gradient
descent is considered in [60], where it obtains a linear convergence rate. The work of [27] shows
that GD recovers singular values of A in a sequential manner in a different but related setting. The
gradient flow on the extreme OP problem, where r ≥ max{m,n}, is studied in [52]. There are also
papers [51, 63, 69] considering the matrix sensing problem, which partially relates to our problem
when there are sufficient Gaussian measures. The work of [1] considers deeper problem (i.e., having
more than 3 layers) while assuming A is full rank.

LoRA and parameter-efficient finetuning. LoRA [22] is a notable example of parameter-
efficient finetuning (PEFT) approaches. The goal of PEFT is to reduce the resource requirement
for finetuning LLMs on downstream tasks. Other commonly adopted PEFT methods include, e.g.,
adapters [21] and prefix tuning [34]. There are also various efforts to further enhance LoRA via
adaptivity [70], chaining [36, 62], low-bit training [11, 35], modifications for long-sequences [6],
weight decomposition [38], regularization [33], and combining with sparsity [44]. Additionally,
there are several approaches aiming at further reducing the number of trainable parameters in LoRA;
examples include [2, 13, 18, 30, 37, 73]. While originally designed for finetuning LLMs, LoRA also
finds its applications in other domains, such as image generation [17] and continual learning [49].

LoRA initialization. When first proposed, LoRA initialization was largely overlooked. The
work of [19] justifies that whether setting X0 or Y0 to be 0 from a stability perspective. Recent
works [5, 41] observe a fundamental difference between initialization of LoRA and neural networks,
emphasizing the availability of prior knowledge. These works experimentally demonstrate that
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pretrained model can serve as prior to guide the direction of adapters, and hence perform QR or SVD
on the pretrained matrix and using (scaled) top-r singular vectors for LoRA initialization. Follow-up
study [59] exploits stability for further improvement. However, these initialization methods are
computationally expensive and lack flexibility for deployment. The proposed NoRA initialization
overcomes these limitations.

6.2. LoRA for linear models as asymmetric matrix factorization

We argue that the asymmetric matrix factorization problem is equivalent to LoRA applied on linear
models given a whitened dataset. The whitened dataset is widely adopted for theoretical analyses,
and we refer to [1, 26, 65] for more details.

Assume that we have a pretrained (linear) model W0 ∈ Rm×n. Applying LoRA on this layer
with whitened data B is equivalent to solving the following problem

1

2
∥(W0 +XY⊤)−B∥2F. (6)

It is clearly that this problem (6) is the same as (1b) by setting A = B−W0.
Unfortunately, initialization approaches in existing theoretical works have no support on the most

widely adopted one in practice – either X0 or Y0 is chosen as 0 to preserve W0 +X0Y
⊤
0 = W0.

In this sense, our Nyström initialization in (4) is the first means of initialization that justifies one
variable can be set to 0.

Additional similarities between LoRA and matrix factorization. LoRA and matrix factoriza-
tion share similar mathematical properties. For example, they both have no spurious local minima
[12, 14, 24]. There are also recent efforts using insights from matrix factorization to further improve
LoRA; see e.g., [44, 65].

6.3. Nyström low rank adapters

Our theoretical results highlight the merits of suitable initialization for matrix factorization (1b). One
of the key insights is that the Burer-Monteiro factorization benefits from good directions of X0 and
Y0 at initialization; cf. Lemmas 2 and 14. We term this as directional alignment. Here we extend the
benefit of Nyström initialization to low-rank adapters (LoRA) in finetuning deep neural networks
[22]. This is the full version of Sec. 4.

LoRA enhances parameter efficiency of finetuning by approximating the thought parameter-
change ∆W ∈ Rm×n via Burer-Monteiro factorization

W0 +∆W ≈W0 +XY⊤ (7)

where W0 ∈ Rm×n is the pretrained weight (of a particular layer), and X ∈ Rm×r and Y ∈ Rn×r

with r ≪ min{m,n}. A more detailed recap of LoRA can be found in Apdx. 6.1. Directional
alignment can be achieved if singular vectors for ∆W are leveraged to initialize X0 and Y0. While
∆W is unavailable a priori, empirical wisdom suggests that there exist a set of well-performed
adapters that lie in the column (row) span of the pretrained weight matrix [37], i.e., ColSpan(∆W) ⊆
ColSpan(W0) and RowSpan(∆W) ⊆ RowSpan(W0). In other words, W0 can be adopted as a
suitable replacement of ∆W for directional alignment.

Since directional alignment requires at most r directions for X0 (and Y0), the next question is
how to identify them out of the m (or n) singular vectors of W0. This prompts us to examine the
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Figure 2: Which singular values have the largest change after finetuning with LoRA of rank r?
Orange: top-r singular values; blue: other singular values. Note that here we only plot the
first 64 singular values as the rests rarely have sufficiently large change.

singular values that undergo the most significant change after LoRA finetuning. We evaluate LoRA
on a few-shot learning task [40], with the detailed setup provided shortly in Apdx. 10.3. OPT-1.3B is
chosen as the base model and LoRA rank is set to r = 8. We focus on the (index of) r singular values
that exhibit the most significant changes after finetuning and summarize their frequencies in Fig. 2. It
is observed that the top-r singular values tend to exhibit larger change, explaining the success of LoRA
initialization approaches such as PiSSA and OLoRA [5, 41]. However, across all tested datasets,
a substantial portion of non-top-r singular-values also demonstrate significant variation. Another
observation from Fig. 2 is that the relative importance of singular directions is roughly proportional
to singular values. Note that is akin to Nyström initialization, i.e., E[(W0Ω)(W0Ω)⊤] ∝W0W

⊤
0 .

6.4. More on NoRA and NoRA+

As discussed in Section 4, LoRA can significantly benefit from the aligned directions at initializa-
tion. Besides the theoretical benefits of applying Nyström initialization on ScaledGD (NoRA+),
Nyström initialization can also be used directly with Adam (or AdamW), i.e., NoRA. There are
several reasons for this. First, directional alignment from initialization is benefit to most optimiz-
ers. While our theoretical results focus on ScaledGD, we believe that the aligned directions also
benefit GD. Despite the improvement may be less significant as in ScaledGD, we conjecture that
the linear term in [66, Theorem 1.1] can be removed with Nyström initialization, because it can be
roughly understood as the price for searching for proper directions. In other words, the benefits of
Nyström initialization extend to other optimizers as well. Second, Adam also affords an explanation
of preconditioning, and the preconditioner for Xt is also closely related to Yt. In other words,
Adam shares similarities with ScaledGD in (5). These two reasons prompt the proposed NoRA, as
summarized in Alg. 1. For NoRA+ in Alg. 2, we modify the vanilla ScaledGD iterations in (5) with
two add-ons. First, a small parameter λ is introduced for numerical stability of matrix inversion.
This is a standard practice for numerical optimizers such as Adam [29, 39]. Second, the gradient is
normalized by the Frobenius norm of its preconditioner. The reason is that an optimal λ is difficult
to tune as shown in [68], where they use λ from 10−6 to 100. With this normalizer, we can set
λ = 10−6 in all our experiments without any tuning. Moreover, this normalizer is useful to prevent
the instability in earlier iterations due to the non-invertable Y0 = 0.

Deployment efficiency of NoRA. One benefit of NoRA (as well as NoRA+) is that it can be
deployed jointly with adapters trained with LoRA – and hence there is no need to modify the current
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Algorithm 1 NoRA for a spe-
cific LoRA layer

1: Initialize: ξ – standard
deviation of random ma-
trix Ω

2: Set X0 and Y0 via
Nyström initialization (4)

3: Standard training process

Algorithm 2 NoRA+ for a specific LoRA layer
1: Initialize: ξ – standard deviation of random matrix Ω; λ –

numerical stability of matrix inversion
2: Set X0 and Y0 via Nyström initialization (4)
3: for t = 0, . . . , T − 1
4: Get gradient GXt and GYt

5: if t > 0 then
6: GXt ← GXt(Y

⊤
t Yt + λIr)

−1/∥(Y⊤
t Yt + λIr)

−1∥F
7: end if
8: GYt ← GYt(X

⊤
t Xt + λIr)

−1/∥(X⊤
t Xt + λIr)

−1∥F
9: Optimizer update

10: end for

pipeline for deployment. This is because both of NoRA and LoRA do not need to modify the trained
parameters, and the finetuned model is just W0 +XTY

⊤
T , where W0 is the pretrained model, and

XT and YT are finetuned adapter weights. On the contrary, other initialization approaches such as
PiSSA and OLoRA [5, 41] are less efficient for using jointly with LoRA at deployment because both
approaches modify the pretrained weight, so that the finetuned model becomes Ŵ0+XTY

⊤
T , where

Ŵ0 = W0 −X0Y
⊤
0 . The use of Ŵ0 comes from the fact that initialization in PiSSA and OLoRA

does not satisfy X0Y
⊤
0 = 0. Consequently, when deploying PiSSA jointly with LoRA, one needs to

store both W0 (for LoRA) and Ŵ0 (for PiSSA), leading to reduced memory efficiency.

7. Missing proofs for symmetric settings

7.1. Initialization of EP and UP

7.1.1. PROOF OF LEMMA 1

Proof Let the thin eigenvalue decomposition of A be A = QΣQ⊤, where Q ∈ Rm×rA and
Σ ∈ RrA×rA . We then have that

X0 = (QΣ)(Q⊤Ω). (8)

It is not hard to verify that the matrix Q⊤Ω ∈ RrA×r is also a Gaussian random matrix, where each
entry follows N (0, ξ2). Applying Lemma 20 on Q⊤Ω, it can be seen that

P
(σr(Q⊤Ω)

ξ
≤ τ(
√
rA −

√
r − 1)

)
≤ (C1τ)

rA−r+1 + e−C2rA := δ

where C1 and C2 are universal constants independent of rA and r. This inequality shows that with
probability at least 1− δ, σr(Q⊤Ω) ≥ ξτ(

√
rA −

√
r − 1).

Note that inequality σmin(CD) ≥ σmin(C)σmin(D) holds given full column rank of C. Apply-
ing it to (8), we have that

σr(X0) ≥ σrA(QΣ)σr(Q
⊤Ω) = σrA(A)σr(Q

⊤Ω)

(a)

≥ ξτ(
√
rA −

√
r − 1)σrA(A)
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where (a) holds with probability at least 1− δ.

7.2. Missing proofs for the symmetric and EP setting

In the EP setting, it is convenient to define

Bt := ΦtΦ
⊤
t (9)

where Φt ∈ Rr×r comes from Lemma 2, i.e., Xt = QΦt. The notation Bt will be used frequently
in the proofs in this subsection. With the help of Lemma 2, Bt can be understood as the “core” part
of XtX

⊤
t , because XtX

⊤
t = QΦtΦ

⊤
t Q

⊤ = QBtQ
⊤. Once proving Lemma 2, it allows us to study

dynamics using a simpler but equivalent notion ∥Bt −Σ∥F, i.e.,

∥XtX
⊤
t −A∥F = ∥Q(ΦtΦ

⊤
t −Σ)Q⊤∥F = ∥ΦtΦ

⊤
t −Σ∥F = ∥Bt −Σ∥F.

7.2.1. PROOF OF LEMMA 2

Proof The proof relies on Bt defined in (9). We will prove this lemma by induction. Since
X0 = AΩ in Nyström initialization, we have that Φ0 = ΣQ⊤Ω. Moreover, our base assumption
σr(B0) > 0 is true because rank(B0) = rank(X0X

⊤
0 ) = r, which is the result of Lemma 1.

For induction, assume that Xt can be written as Xt = QΦt with a full rank Φt ∈ Rr×r at
iteration t. By the update (2), we have that

Xt+1 = Xt − η(XtX
⊤
t −A)Xt(X

⊤
t Xt)

−1 (10)

= QΦt − ηQ(ΦtΦ
⊤
t −Σ)Q⊤QΦt(Φ

⊤
t Q

⊤QΦt)
−1

(a)
= Q

Å
Φt − η(ΦtΦ

⊤
t −Σ)Φt(Φ

⊤
t Φt)

−1

ã
(b)
= Q

Å
(1− η)Φt + ηΣΦ−⊤

t

ã
︸ ︷︷ ︸

:=Φt+1

where (a) uses Q⊤Q = Ir; and (b) uses Φt is full rank (hence invertible). Note that Q and A share
the same column space. This proves the first claim i) of this lemma.

Next we show that the smallest eigenvalue of Bt+1 is bounded away from 0, or equivalently,
Φt+1 is full rank. To start with, we have that from the expression of Φt+1 in (10),

Bt+1 = Φt+1Φ
⊤
t+1 = (1− η)2ΦtΦ

⊤
t + 2η(1− η)Σ+ η2ΣΦ−⊤

t Φ−1
t Σ (11)

= (1− η)2Bt + 2η(1− η)Σ+ η2ΣB−1
t Σ.

Note that Bt+1 is a PSD matrix by definition (hence the eigen values and singular values are the
same). To see the smallest eigenvalue of Bt+1 is lower bounded, we will apply Lemma 17 on (11)
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twice, i.e.,

σr(Bt+1) (12)
(c)

≥ 2η(1− η)σr(Σ) + σr

(
(1− η)2Bt + η2ΣB−1

t Σ
)

(d)

≥ 2η(1− η)σr(Σ) + (1− η)2σr
(
Bt

)
(e)

≥ (1− η)2t+2σr(B0) + 2η(1− η)σr(Σ)
1− (1− η)2t+2

2η − η2

(f)

≥ (1− η)2t+2σr(B0) + (1− η)σr(Σ)− (1− η)2t+3σr(Σ)

where (c) and (d) are because of Lemma 17; (e) is by unrolling σr(Bt) using (d); and (f) is by
2η

2η−η2
≥ 1. Combining (10) and (12) concludes the induction.

7.2.2. PROOF OF THEOREM 3

Proof The proof is by combining Lemmas 7 and 8.

Lemma 7 (Phase I. Linear convergence near optimal.) Let η = O( 1
κ3∥A∥F

). AfterO(κ3
√
r log κ)

iterations, ScaledGD (2) with Nyström initialization (3)) ensures that ∥XtX
⊤
t −A∥F ≤ O(1/κ2).

Proof Subtracting Σ from both sides of (11), we can obtain that

Bt+1 −Σ = (1− η)2(Bt −Σ)− η2Σ+ η2ΣB−1
t Σ.

This implies that

∥Bt+1 −Σ∥F
(a)

≤ (1− η)2∥Bt −Σ∥F + η2∥Σ∥F + η2∥ΣB−1
t ∥2∥Σ∥F

(b)

≤ (1− η)2∥Bt −Σ∥F + η2∥Σ∥F + η2∥Σ∥2∥B−1
t ∥2∥Σ∥F

≤ (1− η)∥Bt −Σ∥F + η2∥Σ∥F + η2
σ1(Σ)∥Σ∥F

σr(Bt)

where (a) is by ∥MN∥F ≤ ∥M∥2∥N∥F; and (b) follows from the sub-multiplicity of ∥ · ∥2.
By Lemma 2, there exists T1 = O( 1η ) such that σr(Bt) ≥ σr(Σ)/3, ∀t ≥ T1. To avoid such

complexity, one can simply choose the step size to be η1 = 0.5 until this is achieved, and then
use other desirable step sizes. Alternatively, we can choose ξ in (3) sufficiently large such that
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σr(B0) ≥ σr(Σ)/3, i.e., T1 = 0. Our proof below goes with the second method, i.e., T1 = 0.

∥Bt+1 −Σ∥F

≤ (1− η)∥Bt −Σ∥F + η2∥Σ∥F + η2
σ1(Σ)∥Σ∥F

σr(Bt)

≤ (1− η)∥Bt −Σ∥F + η2∥Σ∥F + 3η2
σ1(Σ)∥Σ∥F

σr(Σ)

(c)

≤ η∥Σ∥F + 3ηκ∥Σ∥F + (1− η)t+1−T1∥BT1 −Σ∥F
= η∥A∥F + 3ηκ∥A∥F + (1− η)t+1−T1∥BT1 −Σ∥F

where (c) is by Lemma 16. From this inequality it is not difficult to see that once η = O( 1
κ3∥A∥F

),
one will have ∥Bt+1 −Σ∥F ≤ O(1/κ2) within the stated iterations.

Lemma 8 (Phase II. Quadratic convergence to global optima.) If we choose η = 0.5, and sup-
pose that after T2 iterations, σr(BT2) ≥ σr(Σ)/3 and ∥BT2 − Σ∥F ≤ 2/(3κ2) are satisfied.
ScaledGD then ensures that for any t ≥ T2

∥Xt+1X
⊤
t+1 −A∥F = ∥Bt+1 −Σr∥F ≤

4

3κ2
1

22t+1 .

Proof Let Ct = Σ−1Bt. We can rewrite (11) as

Ct+1 = (1− η)2Ct + 2η(1− η)Ir + η2C−1
t .

Subtracting Ir and rearranging it, we arrive at

Ct+1 − Ir = (1− 2η)(Ct − Ir) + η2C−1
t (Ct − Ir)

2.

By choosing η = 0.5, we have that

Ct+1 − Ir =
1

4
C−1

t (Ct − Ir)
2.

Multiplying both sides with Σ, we have that

Bt+1 −Σ =
1

4
ΣB−1

t Σ(Ct − Ir)(Ct − Ir)

=
1

4
ΣB−1

t (Bt −Σ)Σ−1(Bt −Σ).

This implies that

∥Bt+1 −Σ∥F ≤
1

4
∥Σ∥2∥B−1

t ∥2∥Bt −Σ∥F∥Σ−1∥2∥Bt −Σ∥F
(a)

≤ 3

4

σ1(Σ)

σ2
r (Σ)

∥Bt −Σ∥2F
(b)
=

3κ2

4
∥Bt −Σ∥2F

where (a) is by Lemma 2, i.e., once σr(BT2) ≥ σr(Σ)/3, σr(Bt) ≥ σr(Σ)/3 holds for all t ≥ T2;
and (b) is by σ1(Σ) = 1 and σr(Σ) = 1/κ.

Finally, applying Lemma 18, it can be seen that long as ∥BT2 −Σ∥F ≤ 2
3κ2 , a quadratic rate can

be established. And this condition is satisfied from Lemma 7.
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7.3. Missing proofs for the symmetric and UP setting

We start with some notation that would be helpful for this subsection. Let the thin eigenvalue
decomposition of A = QΣQ⊤, where Q ∈ Rm×rA , and Σ ∈ RrA×rA .

In Lemma 10 we will prove that we can always write Xt = QΦt if we employ Nyström initial-
ization and ScaledGD in (2), where Φt ∈ RrA×r. We also denote Θt := Φt(Φ

⊤
t Φt)

−1, where the
invertibility of (Φ⊤

t Φt) will become clear in the proof.
Lastly, let Bt := Φ⊤

t Σ
−1Φt. Note that Bt ∈ Rr×r and Bt = X⊤

t A
†Xt.

7.3.1. HOW GOOD IS WEAK OPTIMALITY

Lemma 9 All global optimal solutions to (1a) are also weakly optimal.

Proof We start with rewriting A,

A = [Q1,Q2]

ï
Σ1 0
0 Σ2

ò ï
Q⊤

1

Q⊤
2

ò
= Q1Σ1Q

⊤
1 +Q2Σ2Q

⊤
2 (13)

where Q1 ∈ Rm×r and Q2 ∈ Rm×(rA−r) are the first r and other columns of Q, respectively;
and Σ1 ∈ Rr×r and Σ2 ∈ R(r−rA)×(r−rA) are diagonal matrices formed by the first r and the rest
diagonal entries of Σ.

It is not difficult to see that the optimal solution of (1a) is X∗ = Q1Σ
1/2
1 U⊤, where U ∈ Rr×r

is any unitary matrix that accounts for rotation. Note that the pseudo-inverse of A can be written as
A† = QΣ−1Q⊤. Plugging X∗ into the definition of weak optimality, we arrive at

X⊤
∗ A

†X∗ = UΣ
1/2
1 Q⊤

1 (Q1Σ
−1
1 Q⊤

1 +Q2Σ
−1
2 Q⊤

2 )Q1Σ
1/2
1 U⊤ (a)

= Ir

where in (a) we use the facts Q⊤
1 Q1 = Ir and Q⊤

1 Q2 = 0r×(rA−r). This concludes the proof.

7.3.2. ELIMINATING RESIDUAL SPACE

Lemma 10 If the update (2) is equipped with Nyström initialization (3), one can write Xt =
QΦt,∀t for some Φt ∈ RrA×r.

Proof The proof is based on induction. First we have that X0 = AΩ = QΣQ⊤Ω. It is clear that
Φ0 = ΣQ⊤Ω. Now suppose that one can write Xt = QΦt, following the update (2), it is not hard
to see that

Φt+1 = Φt − η
(
ΦtΦ

⊤
t −Σ

)
Φt(Φ

⊤
t Φt)

−1

= (1− η)Φt + ηΣΦt(Φ
⊤
t Φt)

−1︸ ︷︷ ︸
:=Θt

. (14)

The variable Θt ∈ RrA×r can be roughly viewed as a pseudo-inverse of Φ⊤
t because Φ⊤

t Θt = Ir.
We note that the invertibility of (Φ⊤

t Φt) will become clear in Lemma 12.
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7.3.3. PROOF OF THEOREM 4

Proof Using Φ⊤
t Θt = Ir, definition of Bt (at the start of Apdx. 7.3), and the update of Φt+1 in

(14), it is not difficult to verify that

Bt+1 = (1− η)2Bt + 2η(1− η)Ir + η2Θ⊤
t ΣΘt. (15)

Subtracting Ir on both sides of (15), we can get

Bt+1 − Ir = (1− η)2(Bt − Ir)− η2Ir + η2Θ⊤
t ΣΘt.

This ensures that

∥Bt+1 − Ir∥F
≤ (1− η)2∥Bt − Ir∥F + η2

√
r + η2∥Θ⊤

t ΣΘt∥F
≤ (1− η)2∥Bt − Ir∥F + η2

√
r + η2

r

σr(Bt)

where the last inequality is because of Lemma 13. Suppose that η ≤ 2/3, from Lemma 12, one
can see that there exists a time T1 such that σr(Bt) ≥ 1/3. We assume T1 = 0 following the same
argument (i.e., initialized large with large ξ) as previous proofs. With these arguments, we obtain that

∥Bt+1 − Ir∥F (16)

≤ (1− η)∥Bt − Ir∥F + η2
√
r + 3rη2

≤ η
√
r + 3ηr + (1− η)t+1−T1∥BT1 − Ir∥F

≤ η
√
r + 3ηr + (1− η)t+1−T1∥BT1 − Ir∥F.

This implies a linear rate, i.e, ∥Bt+1 − Ir∥F ≤ O(ηr) + ϵ if η = O(1) with sufficient iterations.
Inequality (16) also implies that choosing η = O(ϵ/r), ∥Bt+1−Ir∥F → 0 at a rate ofO( rϵ log

1
ϵ ).

The proof is thus completed.

7.3.4. GLOBAL BEHAVIOR OF SCALEDGD UNDER NYSTRÖM INITIALIZATION

Lemma 11 Let Q1 be the first r column on Q, and Σ1 be the top-left r× r sub-block of Σ. Denote
an optimal solution to (1a) as X∗ = Q1Σ

1/2
1 . ScaledGD ensures that

lim
t→∞
∥Xt −X∗∥F ≤ O(r3/4).

Proof We start with notation. Let

Σ =

ï
Σ1 0
0 Σ2

ò
, Φt =

ï
Mt

Nt

ò
, (17)

where Σ1 ∈ Rr×r is the learnable eigenvalues, while Σ2 ∈ R(rA−r)×(rA−r) are the unlearnable
eigenvalues, and Mt ∈ Rr×r and Nt ∈ R(rA−r)×r. Ideally at global convergence, we hope that
Mt → Σ

1/2
1 up to rotation; while Nt → 0.
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We consider a scenario with t→∞, i.e., Bt = Ir. Using (17) to rewrite Bt = Ir, we have that

M⊤
t Σ

−1
1 Mt +N⊤

t Σ
−1
2 Nt = Ir. (18)

The above equation implies that

Tr(M⊤
t Σ

−1
1 Mt) = Tr(M⊤

t Σ
−1/2
1 Σ

−1/2
1 Mt) (19)

= ∥Σ−1/2
1 Mt∥2F

(a)

≤ r

where (a) is by (18) and Lemma 19.
Since we hope Σ

−1/2
1 Mt → Ir, we have that

∥Σ−1/2
1 Mt − Ir∥2F (20)

= Tr
Å
(Σ

−1/2
1 Mt − Ir)

⊤(Σ
−1/2
1 Mt − Ir)

ã
= Tr

(
M⊤

t Σ
−1/2
1 Σ

−1/2
1 Mt

)
+ Tr(Ir)− 2Tr(M⊤

t Σ
−1/2
1 )

(a)

≤ Tr
(
M⊤

t Σ
−1/2
1 Σ

−1/2
1 Mt

)
+ Tr(Ir) + 2r3/2

(b)

≤ 2r + 2r3/2

where (a) is because that i) for any r× r matrix C, we have that Tr(C) ≥ rminiCii ≥ −r∥C∥F, ii)
take C = M⊤

t Σ
−1/2
1 and then apply (19); and (b) is by (19).

To bound Nt, it can be seen that

1

σr+1(A)
Tr
(
N⊤

t Nt

)
≤ Tr

(
N⊤

t Σ
−1
2 Nt

) (c)

≤ r (21)

where (c) is by applying Lemma 19 on (18). This suggests that ∥Nt∥F ≤
√

rσr+1(A).
Lastly, note that X∗ can be written as X∗ = Q[Σ1,0]

⊤ and Xt = QΦt. Using this fact and
combining (20) and (21), we have that

∥Xt −X∗∥2F = ∥Mt −Σ1/2∥2F + ∥Nt∥2F (22)

= ∥Σ1/2(Σ−1/2Mt − Ir)∥2F + ∥Nt∥2F
≤ σ1(Σ

1/2)2∥Σ−1/2Mt − Ir∥2F + ∥Nt∥2F
= O(r3/2)

where we used σ1(Σ) = 1 and σr+1(Σ) ≤ 1. The proof is thus completed.

7.3.5. USEFUL LEMMAS FOR SYMMETRIC UP PROBLEMS

It is clear that Bt is symmetric by definition, i.e., Bt = Φ⊤
t Σ

−1Φt. This enables us to give a lower
bound on σr(Bt) using Lemma 17.
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Lemma 12 σr(Bt) is lower bounded by

σr(Bt+1) ≥ (1− η)− (1− η)2t+3 + (1− η)2t+2σr(B0).

Proof Given the definition of Bt, it is not difficult to see that Bt is PSD for all t. We can then apply
Lemma 17 on (15) to arrive at

σr(Bt+1)

≥ 2η(1− η) + σr
(
(1− η)2Bt + η2Θ⊤

t ΣΘt

)
≥ 2η(1− η) + (1− η)2σr

(
Bt

)
(a)

≥ (1− η)2t+2σr(B0) + 2η(1− η)
1− (1− η)2t+2

2η − η2

(b)

≥ (1− η)2t+2σr(B0) + (1− η)− (1− η)2t+3

where (a) uses Lemma 16 to unroll σr(Bt); and (b) is because 2η
2η−η2

≥ 1.

Lemma 13 Let Θt and Bt defined the same as those in Section 2.3. It is guaranteed to have that

∥Θ⊤
t ΣΘt∥F ≤

r

σr(Bt)
.

Proof Using the inequality ∥A⊤A∥F ≤ ∥A∥2F, we have that

∥Θ⊤
t ΣΘt∥F = ∥Θ⊤

t Σ
1/2Σ1/2Θt∥F ≤ ∥Σ1/2Θt∥2F. (23)

Now let Et := Σ1/2Θt and Ft := Σ−1/2Φt. Since we have that F⊤
t Et = Ir, we have that

∥F⊤
t Et∥F = ∥Ir∥F =

√
r.

Since we also have that

√
r = ∥F⊤

t Et∥F
(a)

≥ σr(Ft)∥Et∥F
(b)
=
»
σr(Bt)∥Et∥F (24)

where (a) does not hold true for general two matrices Et and Ft. Here it holds because Et and
Ft share the same column space and row space and both of them have rank r, which implies that
⟨Null(F), [Et]i⟩ = 0,∀i ([Et]i is the ith column of Et). And (b) is because F⊤

t Ft = Bt, which
means that the singular values of Ft are just square root of eigenvalues of Bt. This implies that
∥Et∥F ≤

√
r/
√
σr(Bt). Combining this inequality with (23), we have that

∥Θ⊤
t ΣΘt∥F ≤ ∥Θ⊤

t Σ
1/2∥2F = ∥Et∥2F ≤

r

σr(Bt)
.

The proof is thus completed.
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8. Missing proofs for asymmetric setting

8.1. Missing proofs for asymmetric and EP setting

8.1.1. ELIMINATION OF RESIDUAL SPACE

Lemma 14 The modified ScaledGD update (5) under Nyström initialization (4) ensures that Xt =
UΦt and Yt = VΨt, ∀t ≥ 0 for some Φt ∈ Rr×r and Ψt ∈ Rr×r.

Proof The proof is finished by induction. From our Nyström initialization, one has that Ψ0 = 0
and Φ0 = ΣV⊤Ω. Now assume that one can write Xt = UΦt and Yt = VΨt for some iteration t.
We will show that Xt+1 = UΦt+1 and Yt+1 = VΨt+1 under iteration (5). Let us start with Xt+1.
Note that if t = 0, X1 = UΦ1 is trivial. We only focus on t ≥ 1, where we have

Xt+1 = Xt − η(XtY
⊤
t −A)Yt(Y

⊤
t Yt)

−1

= UΦt − η(UΦtΨ
⊤
t V

⊤ −UΣV⊤)VΨt(Ψ
⊤
t V

⊤VΨt)
−1

= UΦt − ηU(ΦtΨ
⊤
t −Σ)Ψt(Ψ

⊤
t Ψt)

−1

= U

Å
Φt − η(ΦtΨ

⊤
t −Σ)Ψt(Ψ

⊤
t Ψt)

−1

ã
︸ ︷︷ ︸

:=Φt+1

.

Note that the invertible of (Ψ⊤
t Ψt) will be proved through an asymmetric-to-symmetric reduction.

Step 1. Positive definiteness of ΦtΨ
⊤
t . We will first show that ΦtΨ

⊤
t is symmetric and positive

definite (PD) for any t ≥ 1. From the proof of Theorem 5, it can be seen that Φ1Ψ
⊤
1 = ηΣ is

symmetric and PD. This means that the base case of induction holds. Now suppose that ΦtΨ
⊤
t is

symmetric and PD at iteration t. Based on the updates of ScaledGD, we can write the iteration as

Φt+1 = (1− η)Φt + ηΣΨ−⊤
t (25a)

Ψt+1 = (1− η)Ψt + ηΣΦ−⊤
t . (25b)

This gives that

Φt+1Ψ
⊤
t+1 = (1− η)2ΦtΨ

⊤
t + 2η(1− η)Σ+ η2Σ(ΦtΨ

⊤
t )

−1Σ. (26)

The symmetry of Φt+1Ψ
⊤
t+1 directly follows from (26). For the positive definiteness of Φt+1Ψ

⊤
t+1,

we can apply Lemma 17 to get

λmin(Φt+1Ψ
⊤
t+1) ≥ (1− η)2λmin(ΦtΨ

⊤
t ) + 2η(1− η)λmin(Σ) + η2λmin(Σ(ΦtΨ

⊤
t )

−1Σ) > 0.

This concludes the PD of Φt+1Ψ
⊤
t+1.

Step 2. Define Bt := ΦtΨ
⊤
t , then (26) can be rewritten as

Bt+1 = (1− η)2Bt + 2η(1− η)Σ+ η2ΣB−1
t Σ (27)

which is exactly same iteration as (11) for the symmetric EP case. Based on the results from Step
1, that is, Φt+1Ψ

⊤
t+1 is symmetric and PD, we can apply the same analysis steps for symmetric EP

problems to show that Bt is rank r We do not repeat for conciseness. This implies the full rankness
of Φt and Ψt.
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8.1.2. PROOF OF THEOREM 5

Proof Based on the initialization (4) and iteration (5), we can obtain that

Φ1 = Φ0 (28a)

Ψ1 = V⊤Y1 = 0− ηV⊤(0−A)⊤UΦ0(Φ
⊤
0 U

⊤UΦ0)
−1 (28b)

= ηV⊤VΣU⊤UΦ0(Φ
⊤
0 U

⊤UΦ0)
−1

= ηΣΦ0(Φ
⊤
0 Φ0)

−1

= ηΣΦ−⊤
0 .

This ensures that

Φ1Ψ
⊤
1 = ηΣ.

Choosing η = 1 completes the proof.

8.2. Missing proofs for asymmetric and UP setting

8.2.1. HOW GOOD IS WEAK OPTIMALITY?

Lemma 15 Every global optimum for (1b) is also weakly optimal.

Proof We start with rewriting the SVD of A = UΣV⊤ as

A = [U1,U2]

ï
Σ1 0
0 Σ2

ò ï
V⊤

1

V⊤
2

ò
= U1Σ1V

⊤
1 +U2Σ2V

⊤
2 (29)

where U1 ∈ Rm×r and U2 ∈ Rm×(rA−r) are the first r and other columns of U, respectively;
Σ1 ∈ Rr×r and Σ2 ∈ R(r−rA)×(r−rA) are diagonal matrices formed by the first r and rest diagonal
entries of Σ; and V1 ∈ Rn×r and V2 ∈ Rn×(rA−r) are the first r and other columns of V.

It is not hard to see that the optimal solutions of (1a) are X∗ = U1Σ
1/2
1 Q and Y∗ =

V1Σ
1/2
1 Q−⊤, where Q ∈ Rr×r is any invertible matrix. Using these notation, we have that

Y⊤
∗ A

†X∗ = Q−1Σ
1/2
1 V⊤

1 (V1Σ
−1
1 U⊤

1 +V2Σ
−1
2 U⊤

2 )U1Σ
1/2
1 Q

(a)
= Ir

where in (a) we use the facts U⊤
1 U1 = Ir and U⊤

1 U2 = 0r×(rA−r). This concludes the proof.
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8.2.2. PROOF OF THEOREM 6

Proof The update in (5) ensures that

Φ1 = Φ0, (30)

Ψ1 = V⊤Y1 = 0− ηV⊤(0−A)⊤UΦ0(Φ
⊤
0 U

⊤UΦ0)
−1 (31)

= ηV⊤VΣU⊤UΦ0(Φ
⊤
0 U

⊤UΦ0)
−1

= ηΣΦ0(Φ
⊤
0 Φ0)

−1

(a)
:= ηΣΘ0

where in (a) we define Θt := Φt(Φ
⊤
t Φt)

−1.
From the definition of generalized weak optimality, we can see that

Y⊤
1 A

†X1 = Ψ⊤
1 V

⊤VΣ−1U⊤UΦ1 = Ψ⊤
1 Σ

−1Φ1

= ηΘ⊤
0 ΣΣ−1Φ0 = ηIr

This means that when η = 1, UP achieves generalized weak optimality in one step.

9. Other useful lemmas

Lemma 16 Let At+1 = (1− θ)At + β with some α ∈ (0, 1) and β ≥ 0, then we have

At+1 = (1− θ)t+1A0 + β
1− (1− θ)t+1

θ
≤ (1− θ)t+1A0 +

β

θ
.

Proof The proof can be completed by simply unrolling At+1 and using the fact 1+α+α2+. . .+αt ≤
1

1−α .

Lemma 17 If A ∈ Rn×n and B ∈ Rn×n are positive semi-definite matrices, we have λmin(A +
B) ≥ λmin(A) + λmin(B).

Proof The smallest eigenvalue of A+B can be expressed as

λmin(A+B) = min
x ̸=0

x⊤(A+B)x

x⊤x
= min

x1 ̸=0,x1=x2

x⊤
1 Ax1

x⊤
1 x1

+
x⊤
2 Bx2

x⊤
2 x2

. (32)

On the other hand, we also have that

λmin(A) + λmin(B) = min
x1 ̸=0,x2 ̸=0

x⊤
1 Ax1

x⊤
1 x1

+
x⊤
2 Bx2

x⊤
2 x2

. (33)

Because (32) is a constrained version of the minimization problem (33), they share the same objective
but (32) has shrinked feasible region. It is not difficult to see that λmin(A+B) ≥ λmin(A)+λmin(B).
The proof is thus completed.
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Lemma 18 Consider a sequence {At}t with At ≥ 0,∀t. If there exists α such that At+1 ≤ αA2
t

and A0 ≤ 1
2α , At converges to 0 at a quadratic rate, i.e.,

At+1 ≤
1

α

1

22t+1 .

Proof Unrolling At+1, we get that

At+1 ≤ αA2
t ≤ α3A4

t−1 ≤ α7A8
t−2 ≤

1

α
(αA0)

2t+1 ≤ 1

α

1

22t+1 .

The proof is thus completed.

Lemma 19 For PSD matrices A and B, if A+B = Ir, then we have Tr(A) ≤ r and Tr(B) ≤ r.

Proof The proof is straightforward and is omitted here.

Lemma 20 ([46]) Let Ω be an d× r matrix with d ≥ r. The entries of Ω are drawn independently
from N (0, 1). Then for every τ > 0, we have that

P
(
σr(Ω) ≤ τ(

√
d−
√
r − 1)

)
≤ (C1τ)

d−r+1 + e−C2d.

where C1 and C2 are universal constants independent of d and r.

10. Missing experimental details

10.1. Details for problems with synthetic data

This subsection contains the detailed setup for the problems with synthetic data in Fig. 1. Recall that
here we focus on symmetric problem for EP and UP.

For EP in Figs. 1 (a) and (b), we choose the PSD matrix A ∈ Rm×m in the following manner. We
set m = 1000 and r = rA = 20. The non-zero singular values are set as {1.0, 0.99, 0.98, . . . , 0.82, 0.01},
where we intentionally set σrA = 0.01 to enlarge the condition number. We choose the step size of
GD as 0.01 to avoid divergence. The learning rate for ScaledGD is 0.5.

For UP in Fig. 1 (c), we choose PSD matrix A ∈ Rm×m in the following manner. We set m =
1000 and rA = 40. The singular values of A are {1.0, 0.99, 0.98, . . . , 0.45, 0.44, 0.05, 0.025, 0.01}.
We choose r = 20 to ensure the UP nature of this problem.

10.2. Datasets

The evaluation of NoRA and NoRA+ is carried out on commonly adopted datasets in the literature.
The experiments are conducted on NVIDIA H100 GPUs.

GLUE benchmark. GLUE is designed to provide general-purpose evaluation of language
understanding [58]. Those adopted in our work include SST-2 (sentiment analysis, [50]), RTE1

(inference). These datasets are released under different permissive licenses.

1. https://paperswithcode.com/dataset/rte
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SuperGLUE benchmark. SuperGLUE [57] is another commonly adopted benchmark for
language understanding, and it is more challenging compared with GLUE. The considered datasets
include CB (inference, [10]), ReCoRD (question answering [71]), WSC (coreference resolution,
[32]), BoolQ (question answering, [9]), and MiltiRC (question answering, [28]). These datasets are
released under different permissive licenses.

Commonsense reasoning. These datasets are a collection tasks that require commonsense
reasoning to answer. The considered datasets include WinoGrande [47], PIQA [3], SOCIAL-I-QA
(SIQA) [48], HellaSwag [67], ARC-easy, ARC-challenge [8] and OpenbookQA [42]. These datasets
are released under different permissive licenses.

Additional datasets. We also use SQuAD (question answering [45]) in our experiments, which
is released under license CC BY-SA 4.0.

10.3. Few-shot learning with OPT-1.3B

Our evaluation starts with a few-shot learning task following [40]. The objective is to rapidly adapt a
language model with a small training set. The datasets for this experiment are drawn from GLUE
and SuperGLUE benchmarks [57, 58]. Consistent with [40], we randomly sample 1,000 data points
for training and another 1,000 for testing.

We embrace OPT-1.3B as our base model [72]. The rank of LoRA is set to 8. We compare the
proposed NoRA and NoRA+ with LoRA, prefix tuning [34], OLoRA [5], and PiSSA [41]. Note that
the latter two serve alternative methods for initializing LoRA. Adam is adopted as the optimizer.

For this experiment, we first search for the best hyperparameters, e.g., batchsizes, for LoRA. The
same batchsize is applied for other tested algorithms as well, but we search additionally for the best
learning rate. This ensures that different algorithms see the same amount of data, while still have
their best performed learning rate. The hyperparameters adopted are searched over values in Table 3.
Adam is adopted for optimization.

Table 3: Hyperparameters used for few-shot learning with OPT-1.3B.

Hyperparameters Values

LoRA r 8
LoRA α 16

LoRA module q proj, v proj
# epochs 5
batchsize 2, 4, 8

learning rate 1×10−5, 5×10−5, 1×10−4

NoRA ξ 0.05, 0.1, 0.2

The performance of different algorithms is summarized in Tab. 4. It is evident that OLoRA,
PiSSA, NoRA and NoRA+ all outperform LoRA because their initialization strategies have provided
more favorable directions for optimization. Among these initialization approaches, NoRA and
NoRA+ have the best average accuracy, with absolute improvement over LoRA by 1.8 and 1.9.
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Table 4: Performance of NoRA and NoRA+ for few-shot learning with OPT-1.3B.
OPT-1.3B SST-2 WSC BoolQ CB RTE ReCoRD MultiRC SQuAD avg (↑)

Prefix 92.9±0.9 59.6±1.6 73.1±2.3 71.6±2.9 65.2±2.6 69.7±1.0 64.4±3.2 82.2±1.4 72.3
LoRA 93.1±0.2 59.1±2.0 70.6±5.2 72.6±3.7 69.1±4.7 70.8±1.0 68.0±1.4 81.9±1.8 73.2

OLoRA 92.7±0.5 60.0±2.3 70.9±3.1 80.3±2.7 69.7±1.0 71.3±1.2 66.7±0.9 80.0±1.4 74.0
PiSSA 92.7±0.6 60.6±3.7 70.4±0.7 78.0±7.2 70.4±2.8 70.9±1.2 67.9±2.1 82.1±0.4 74.1

NoRA 93.4±0.7 60.6±3.8 73.2±0.6 79.2±5.2 72.0±1.3 71.3±1.0 68.5±1.2 81.8±0.7 75.0
NoRA+ 93.2±0.5 61.2±0.6 72.9±1.3 79.5±5.8 72.4±3.6 71.5±0.9 68.4±1.2 82.0±0.9 75.1

10.4. Commonsense reasoning with LLaMA2

The base model considered is LLaMA2-7B. The experimental setup and choices of hyperparameter
follow [38]. Training data are merged from 8 datasets listed in Tab. 2. The test sets remain separate
for individual evaluation. The hyperparameters are summarized in Table 5.

Table 5: Hyperparameters used for commonsense reasoning with LLaMA2-7B.

Hyper-parameters Values

LoRA r (rank) 32
LoRA α 64

LoRA module q proj, k proj, v proj, up proj, down proj
epoch 3

learning rate 3× 10−4

batchsize 16
cutoff length 256

NoRA ξ 0.02, 0.05, 0.1
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