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Abstract— Multi-label zero-shot learning (MLZSL) is a more
realistic and challenging task than single-label zero-shot learning
(SLZSL), which aims to recognize multiple unseen classes in
a single image. To adapt generative models to the MLZSL
task and better recognize multiple unseen object categories
in an image, this paper proposes a Transferable Generative
Framework (TGF), which consists of a Multi-Label Semantic
Embedding Autoencoders (SEAs), a Semantic-Related Multi-
Label Feature Transformation Network (FTN) and a Multi-Label
Feature Generation Networks (FGNs). First, SEAs adaptively
encodes the class-level word vectors corresponding to each sample
containing different number of classes into sample-level semantic
embeddings with the same dimension. Then, FTN transforms
global features extracted by a CNN pre-trained on single-label
images into features that are semantic-related and more suitable
for multi-label classification. Finally, FGNs generates both global
and local features to better recognize the dominant and minor
object categories in a multi-label image, respectively. Extensive
experiments on three benchmark datasets show that TGF
significantly outperforms state-of-the-arts. Specifically, compared
with the previous best generative MLZSL method (i.e., Gen-
MLZSL), TGF improves the mAP of the ZSL (GZSL) task by
5.4% (6.9%), 20.5% (27.9%), and 2.4% (3.9%) on NUS-WIDE,
Open Images, and MS-COCO datasets, respectively.

Index Terms— Multi-label zero-shot learning, multi-label
semantic embedding autoncoders, multi-label feature transfor-
mation networks, multi-label feature generation networks.

I. INTRODUCTION

T
HE goal of the traditional multi-label classification task

[1], [2], [3], [4], [5], [6] is to recognize all seen classes

in an image, that is, the class labels of the training and test

set are the same in this task. However, in the real world,

a scene may contain both seen and unseen categories, which

greatly limits the practical application of traditional multi-label

classification algorithms. To address this problem, multi-label
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Fig. 1. Some examples from the SLZSL dataset AWA2 [13] and the

MLZSL dataset NUS-WIDE [14]. In AWA2, an image contains only one
category (label), while in NUS-WIDE, an image contains a variable numbers
of multiple categories (dominant and small object categories).

zero-shot learning (MLZSL) [7], [8], [9], [10], [11], [12] has

attracted a lot of interest in recent years. MLZSL aims to

recognize multiple unseen classes in an image at test time;

while multi-label generalized zero-shot learning (MLGZSL)

is a more realistic and challenging variant of MLZSL, where

test images can belong to multiple seen and unseen classes,

not just unseen classes. In this paper, we address both the

MLZSL and MLGZSL tasks.

Compared with MLZSL, single-label zero-shot learning

(SLZSL) has made remarkable progress [15], [16], [17],

[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].

SLZSL transfers knowledge from seen classes to unseen

classes through semantic information (such as attributes [29],

[30], word vectors [31], [32], or sentence descriptions [33] )

shared among all classes to achieve unseen class recognition.

Early SLZSL methods [33], [34], [35], [36], [37] construct an

embedding model to learn the cross-modal mapping between

visual feature space and semantic space. However, since the

seen classes and the unseen classes are disjoint, the embedding

model learned only on the seen classes will produce a large

bias when directly used for unseen classes prediction (i.e.,

projection domain shifts [38]). As a result, embedding-based

SLZSL methods usually perform poorly. In recent years,
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generative models such as generative adversarial network

(GAN) [39], [40] and variational autoencoder (VAE) [41]

have been widely used in SLZSL and become the mainstream

methods [15], [16], [17], [18], [19], [20], [21]. The generative

methods treat SLZSL as an unseen class samples missing

problem and train a generative model to synthesize unseen

image features under the condition of the class-specific

semantic embedding. Then, with the real seen class features

and the synthetic unseen class features, SLZSL is transformed

into a standard supervised classification task.

Generative SLZSL methods address the data imbalance

between seen and unseen classes and achieve better perfor-

mance than embedding-based SLZSL methods. In addition, the

process of synthesizing unseen class samples conditioned on

the corresponding semantic embedding by generative methods

is more similar to the process of human learning to recognize

a novel unseen class. For example, a person who has never

seen a zebra before can picture it in his mind based on

some semantic descriptions of zebras (e.g., black and white,

striped and horse-like in appearance), and when he sees

a real zebra, he can recognize it accurately. This further

illustrates that generative methods are more advanced methods

than embedding-based methods. However, almost all existing

MLZSL methods are non-generative [7], [8], [10], [11]. They

only use the image features and semantic embeddings (e.g.,

word vectors) of the seen classes to train a classification model

and directly use it to recognize unseen classes. This suffers

from the same drawback as the embedding-based SLZSL

method. The important reasons that limit the application of

the generative SLZSL models in MLZSL are that: Firstly,

an image contains only one class (label) in SLZSL (as shown

in Figure 1a), while in MLZSL, an image contains a variable

number of multiple classes (as shown in Figure 1b), and a

variable number of classes implies a variable number of class

semantic embeddings, which makes it impossible to determine

the input layer size of the generative model. Secondly,

in SLZSL, we generate single-label features according to the

class-specific semantic embedding; while in MLZSL, we need

a semantic embedding containing multi-label information to

generate multi-label features.

To solve the problems mentioned above and better adapt

generative model to MLZSL task, we propose a novel

Transferable Generative Framework (TGF) consisting of

a Multi-Label Semantic Embedding Autoencoders (SEAs),

a Semantic-Related Multi-Label Feature Transformation Net-

work (FTN) and a Multi-Label Feature Generation Networks

(FGNs). Figure 2a presents an overview of the proposed

TGF. Specifically, SEAs adaptively encodes the class-level

word vectors of each sample containing different number

of classes into sample-level multi-label semantic embeddings

with the same dimension. Using these sample-level semantic

embeddings, we can transfer any advanced generative SLZSL

model to solve MLZSL task. In addition, FTN transforms

global features extracted from a CNN pre-trained on single-

label images into an embedding space that is semantic-related

and more suitable for multi-label classification. Finally,

we train our FGNs (composed of FGN-t and FGN-l) using

the multi-label semantic embeddings obtained via SEAs,

semantic-related multi-label features obtained via FTN, and

the original local features. The feature generation process

is shown in Figure 2b. After training, given a multi-label

combination, we first obtain a multi-label semantic embedding

using SEAs, and then use this multi-label semantic embedding

as the conditional input of FGN-t and FGN-l to synthesize

global and local features to exploit their ability to recognize the

dominant and small object categories in a multi-label image,

respectively.

The contributions are as follows:
• A novel Transferable Generative Framework (TGF) is

proposed for MLZSL, which combines the advantages

of SEAs, FTN and FGNs.

• SEAs can encode class-level word vectors into sample-

level multi-label semantic embedding to break the

limitation of generative models applied to MLZSL, and

SEAs allows us to transfer any existing generative SLZSL

model to solve MLZSL task.

• FTN transforms the global features extracted from a pre-

trained CNN into features that semantic-related and more

suitable for multi-label classification. Alternatively, other

advanced traditional multi-label classification network

can be employed as our FTN (an MLP with only

one hidden layer in this paper) to further improve the

performance.

• FGNs is the first model to generate both global and local

features for MLZSL, which helps us better recognize

dominant classes and small classes in a multi-label image,

respectively.

• Extensive experiments are conducted on three MLZSL

benchmark datasets, and the results show that the

proposed method significantly outperforms the state-

of-the-art. In detail, compared with Gen-MLZSL [9],

the previous best generative MLZSL method, our TGF

achieves absolute gains of 5.4%, 20.5%, and 2.4%

in terms of mAP for the ZSL task on NUS-WIDE,

Open Images, and MS-COCO datasets, respectively. TGF

also achieves consistent improvements under the more

challenging GZSL setting, obtaining absolute gains of

6.9%, 27.9%, and 3.9% in mAP on these datasets,

respectively.
The rest of this paper is organized as follows. We first

review the related work in Section II. Then, Section III

presents the proposed method. After that, the experiments are

reported in Section IV. Finally, Section V concludes this paper.

II. RELATED WORK

In recent years, both multi-label classification [3], [4],

[5], [6], [42] and zero-shot learning [15], [17], [21], [33],

[35], [36] have attracted huge research attention and made

significant progress. However, there are relatively few studies

on more realistic MLZSL, which is still a very challenging

task. Among the existing MLZSL methods, Fast0Tag [43]

trains a network to estimate a single principal direction

for each image so that the word vectors of relevant labels

rank ahead of irrelevant labels. Inspired by the way humans

exploit semantic knowledge among objects of interest, SKG

[7] proposes a knowledge graph-based framework to describe
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Fig. 2. The proposed TGF contains a Multi-Label Semantic Embedding Autoencoders (SEAs), a Semantic-Related Multi-Label Feature Transformation
Network (FTN), and a Multi-Label Feature Generation Networks (FGNs), where the FGNs consists of a global feature generation network (FGN-t) and a
local feature generation network (FGN-l).

the relationships between multiple labels. LESA [8] proposes

a MLZSL framework based on a shared multi-attention

mechanism, which can recognize multiple unseen labels in an

image and find the relevant regions of each label. BiAM [10]

utilizes a bi-level attention module to obtain discriminative

features by combining region and scene context information,

and then uses a compatibility function to perform region-based

classification. SDL [11] argues that using a single embedding

vector to represent an image is insufficient to accurately rank

the relevant seen and unseen labels. It properly exploits and

handles the semantic diversity of labels in each image by

allowing multiple principal directions.
However, like the earlier SLZSL methods, the above-

mentioned MLZSL methods are all non-generative, and they

deal with unseen classes in an indirect way, i.e., they use the

classification model learned only on the seen classes directly

for the unseen classes recognition, which inevitably suffers

from projection domain shifts. Moreover, as mentioned in

Section I, generative methods are more advanced methods,

and the current state-of-the-art SLZSL methods are almost all

generative in nature. Generative methods transform SLZSL

into a traditional classification task by synthesizing unseen

class samples, and dealing with unseen classes in a direct

manner. The difference in the number of classes (labels)

contained in each sample in a multi-label classification dataset

is the main reason that limits the application of generative

models to MLZSL. GCDN [44] and MUCO [45] conduct zero-

shot classification experiments on three widely used SLZSL

datasets (i.e., SUN [46], CUB [47], and AWA1 [48]), and

they use the attribute vector of the corresponding category

to synthesize single-label features of this category. As in

SLZSL, Gen-ADA [12] insists on considering only one class

semantic embedding at a time as the conditional input of

the generator to avoid this limitation, so it also generates

all single-label features without considering the correlation

between multiple labels in an image, which is not conducive

to multi-label classification. On the other hand, in order to

make the network obtain a uniform input and output size,

Gen-MLZSL [9] averages the word vectors corresponding

to each sample at the input of the generator (i.e., ALF)

and averages the single-label features generated separately

by the word vectors corresponding to each sample at the

output of the generator (i.e., FLF). However, simply averaging

the input and output destroys the original data structure and

distribution (especially for the sample containing a large

number of categories) and inevitably loses much discriminative

information that is beneficial for classification. Moreover,

after ALF and FLF, Gen-MLZSL also requires a complex

attention module for feature fusion, which is time-consuming

and memory-consuming.

To fundamentally break the limitations of generative

models applied to MLZSL and generate discriminative

multi-label features to better recognize multiple unseen

classes in an image, we construct a novel TGF consisting

of three components: SEAs, FTN and FGNs. SEAs can

generate a sample-level semantic embedding containing multi-

label information according to the class-level word vectors

corresponding to each sample for subsequent training of FTN

and FGNs. With our SEAs, any existing generative SLZSL

model can be directly transferred to solve the MLZSL task.

In addition, previous works [7], [8], [9], [10], [12], [43]

on MLZSL all use visual features extracted from a CNN

(VGG [49] or ResNet [50]) pre-trained on single-label images

(ImageNet 1K [51]) for multi-label classification, and the

correlation between these features and the corresponding class

semantic embeddings (GloVe [32] vector) is weak. Therefore,

we train the FTN to obtain semantic-related and more suitable

visual features for multi-label classification. Finally, we train

the FGNs to generate both global and local features to better

recognize dominant and minor classes in multi-label images,

respectively.

III. METHODOLOGY

This section first presents the problem definition, then gives

an overview of the proposed TGF, and finally details the

three components (i.e., SEAs, FTN and FGNs) in the TGF

respectively.

A. Problem Definition

Let the entire label set: C = CS ∪ CU , where CS denotes

the seen label set with training annotations, CU denotes the
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Fig. 3. Training for the proposed Multi-Label Semantic Embedding
Autoencoders (SEAs). wi denotes the i-th word vector corresponding to a
multi-label image, and N denotes the maximum number of word vectors
(classes) present in a single image in the multi-label dataset. c⃝ denotes the
concatenating operation.

unseen label set without training images, and CS∩CU = Æ. Let

{(xm, ym); m = 1, 2, . . . , M} denote M multi-label training

images, where xm denotes the m-th image and ym ¦ CS

denotes the set of labels present in this image. Each label

(class) corresponds to a semantic word vector {wy}y∈C . The

goal of MLZSL is to assign relevant unseen labels yi ¦ CU to

a given test image xi , while the goal of the more realistic and

challenging MLGZSL is to assign relevant seen and unseen

labels yi ¦ C for a given test image xi .

B. The Overall Framework

As shown in Figure 2a, the proposed TGF has three

components: a Multi-Label Semantic Embedding Autoen-

coders (SEAs), a Semantic-Related Multi-Label Feature

Transformation Network (FTN), and a Multi-Label Feature

Generation Networks (FGNs). In addition, the FGNs consists

of a global feature generation network (FGN-t) and a local

feature generation network (FGN-l). The training of our TGF

is divided into three stages. First, we train the SEAs, as shown

in Figure 3. Then, we train the FTNs with frozen SEAs,

as shown in Figure 4. Finally, we train the FGNs with frozen

SEAs and FTNs, as shown in Figure 5. More specifically,

we first train SEAs to adaptively encode the corresponding

class-level word vectors for each sample containing different

number of classes into sample-level multi-label semantic

embeddings with the same dimension. Then, we train our FTN

with these multi-label semantic embeddings and the widely

used multi-label classification loss (i.e., Asymmetric Loss

[3]) to transform the global features extracted from a CNN

backbone pre-trained on single-label images into semantic-

related and more suitable features for multi-label classification.

Finally, with the multi-label semantic embeddings obtained

by SEAs, the semantic-related multi-label features obtained

by FTN, and the original local features, we train our FGNs

that can generate both global and local features. The feature

generation process is shown in Figure 2b. After training,

given a multi-label combination, we first obtain a multi-label

semantic embedding with SEAs, and then use this multi-label

semantic embedding as the conditional input of FGN-t and

FGN-l to synthesize global and local features to train the final

MLZSL classifiers. The following will introduce the proposed

TGF in detail.

C. Multi-Label Semantic Embedding Autoencoders

In a multi-label dataset, it is assumed that the number of

categories that may be contained in an image is denoted as

n ∈ {1, 2, . . . , N }. The variability of n leads to changes in the

number of word vectors corresponding to an image, which

makes it impossible for us to construct a generative model

with a fixed input size as in SLZSL to generate single-label

image features conditioned on the word vector of a single

category. What we need is a semantic embedding containing

multi-label information, which is then used as a condition

to generate multi-label features. To this end, we construct

a Multi-Label Semantic Embedding Autoencoders (SEAs),

which train a SEA for each training sample set containing

the same class number n, respectively. As shown in Figure 3,

each SEA consists of an encoder En and a decoder Dn , which

can encode a set of class-level word vectors corresponding to a

multi-label image into a sample-level semantic embedding that

represents the semantic description of all the positive labels in

this image. Specifically, En takes wc as input, and encodes it

as ssim and savg:

ssim, savg = En (wc) , (1)

where {w1, w2, . . . , wn} denotes the set of class-level word

vectors corresponding to a multi-label image, and wc =

concat (w1, w2, . . . , wn). ssim and savg are the latent vectors

output by En , and we use the concatenation of ssim and savg ,

i.e., s = cat (ssim, savg), as the final multi-label semantic

embedding.

To preserve class-specific semantic information, we max-

imize the cosine similarity between ssim and wi ∈

{w1, w2, . . . , wn} respectively:

Lsim = E[
1

n

n
∑

i=1

∥1 − cos (ssim, wi )∥
2]. (2)

In addition, to learn the correlation between classes in a

multi-label image, we use a mean square error (MSE) loss to

optimize the following objective:

Lavg = E[
∥

∥savg − w̄
∥

∥

2
], w̄ =

1

n

n
∑

i=1

wi . (3)

Meanwhile, Dn reconstructs s = concat (ssim, savg) into wc

to prevent information loss. Here we also use MSE loss to

formulate the reconstruction objective:

Lrec = E[∥wrec − wc∥
2], wrec = Dn(s). (4)
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Fig. 4. Training for the Proposed Semantic-Related Multi-Label Feature
Transformation Network (FTN). The lock symbol indicates a frozen network.

The overall loss of the proposed SEA is as follows:

LSE A = Lsim + Lavg + 0.1 ∗ Lrec. (5)

We found that N = 20 for NUS-WIDE, N = 15 for Open

Images and N = 8 for MS COCO already cover 99% of the

training set samples. Therefore, in the experiments, we set

N = 20 for NUS-WIDE, N = 15 for Open Images and

N = 8 for MS COCO, i.e., we train 20 SEA for NUS-

WIDE, 15 SEA for Open Images and 8 SEA for MS COCO,

respectively. This is efficient (e.g., it takes about one minute to

train 20 SEAs for 10 epochs on NUS-WIDE with one NVIDIA

GeForce RTX 3090 GPU) because our SEA uses a very

simple network architecture (an MLP with only one hidden

layer). After training, SEAs can generate discriminative multi-

label semantic embeddings s according to the set of word

vectors corresponding to any multi-label combination. With

these discriminative s, we can transfer any existing generative

SLZSL model to solve the MLZSL task.

D. Semantic-Related Multi-Label Feature Transformation

Network

The previous MLZSL methods [7], [8], [9], [10], [12], [43]

all use a CNN (VGG [49] or ResNet [50]) pre-trained on the

single-label image dataset ImageNet 1K [51] to extract multi-

label features. We argue that the features extracted from these

networks trained for single-label classification are not suitable

for multi-label classification. Furthermore, previous works use

the GloVe model [32] trained on Wikipedia articles to extract

semantic word vectors, which are poorly correlated with the

corresponding visual features. As a result, the generalization

is poor when conditioned on these semantic word vectors to

synthesize unseen samples using the generator trained on seen

classes.

To address these issues, we train a flexible and effi-

cient Semantic-Related Multi-Label Feature Transformation

Network (FTN) on seen classes to obtain visual features

that are semantic-related and more suitable for multi-label

classification. As shown in Figure 4, FTN maps the global

image features xg extracted by the pre-trained CNN to a

new embedding space and obtains the transformed features xt .

Then, xt is fed into a multi-label prediction layer (i.e., a multi-

label classifier) and outputs the predicted label probabilities

{p1, p2, . . . , pK }, where K represents the total number of

seen categories. Here, we use the Asymmetric Loss (ASL)

[3] commonly used in multi-label classification to optimize:

Lcls = −
1

M

M
∑

m=1

K
∑

k=1

[

ym,k L+ +
(

1 − ym,k

)

L−

]

, (6)

with
{

L+ =
(

1 − pm,k

)µ+ log
(

pm,k

)

L− = (pt )
µ− log (1 − pt ) ,

(7)

pt = max
(

pm,k − t, 0
)

, (8)

where ym,k denotes the one-hot label for class k of sample m,

and L+ and L− denote the positive and negative loss parts,

respectively. t is a hyperparameter, and when the probability

of negative is less than t , it will be set to 0 directly. In this

paper: µ− = 4, µ+ = 0 and t = 0.05 for NUS-WIDE and MS

COCO; µ− = 4, µ+ = 3 and t = 0.1 for Open Images.

In addition, to enhance the consistency between the

transformed visual features xt and the corresponding multi-

label semantic embeddings s, we also map xt to s through a

semantic projection layer. In this process, optimize:

Lse = E[
∥

∥s − s′
∥

∥

2
]. (9)

The overall loss of the proposed FTN is as follows:

LFT N = Lcls + Lse. (10)

For simplicity, we use an MLP with only one hidden layer as

our FTN, which already achieves state-of-the-art performance.

This proves that the performance gains come from our novel

ideas, not complex network architectures. But it is worth

mentioning that the proposed FTN can be replaced by other

more complex and advanced standard multi-label classification

networks to further improve the performance, which we verify

in section IV-H.3.

E. Multi-Label Feature Generation Networks

With the multi-label semantic embeddings s obtained from

SEAs and the semantic-related multi-label features xt obtained

from FTN, we can employ any existing generative SLZSL

model as our Multi-Label Feature Generation Networks

(FGNs). For a simple and fair comparison, we use f-VAEGAN

[15] as our generative backbone, as in Gen-MLZSL [9].

As shown in Figure 5, FGNs contain a global feature

generation network (FGN-t) and a local feature generation

network (FGN-l), where the FGN-t consists of a conditional

VAE (C-VAE) and a conditional Wasserstein-GAN (C-

WGAN), it is achieved by sharing the generator of C-WGAN

and the decoder of C-VAE. Specifically, C-VAE includes an

encoder Et and a decoder/generator G t . Et encodes the input

feature xt and condition s into latent variable zt , while G t

reconstructs the input xt from the latent vector zt and condition

s. In this process, optimize:

L
t
V AE = L

t
K L + L

t
REC , (11)

with

L
t
K L = DK L(q(zt |xt , s)||p(zt |s)), (12)

L
t
REC = −Eq(zt |xt ,s)

[

log p(xt |zt , s)], (13)
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Fig. 5. Training for the Proposed Multi-Label Feature Generation Networks (FGNs). c⃝ denotes the concatenating operation. The lock symbol indicates a
frozen network.

where DK L is the Kullback-Leibler (KL) divergence, p(zt |s)

is a prior distribution, which is assumed to be N (0, 1), and

Lt
REC is the reconstruction loss.

C-WGAN consists of a generator/decoder G t and a dis-

criminator Dt . G t utilizes random noise z and corresponding

multi-label semantic embedding s to synthesize multi-label

feature xt . Dt takes as input a pair of input feature xt and

semantic embedding s, and outputs a real value representing

the degree of realness or fakeness of the input feature. C-

WGAN is learned by optimizing the following objectives:

L
t
W G AN = E

[

D(x ′
t , s)

]

− E [D (xt , s)]

+ µ E[(∥∇x̃t
D(x̃t , s)∥2 − 1)2], (14)

where x ′
t = G t (z, s) is the synthetic feature, x̃t = ¸xt + (1 −

¸)x ′
t with ¸ ∼ U (0, 1), and µ = 10 is the penalty coefficient.

Additionally, as shown in Figure 1, unlike a single-label

image that contains only one dominant class that occupies a

large image area, a multi-label image may also contain several

small classes. Reference [52] visualizes the feature maps

output by each layer of CNN and concludes that the shallow

features of CNN contain more image details (such as color,

edge, contour, and texture), while the deep features are more

discriminative and generalizable. In addition, [53] addresses

the scale variations problem in crowd counting by extracting

hierarchical features at different scales. Inspired by these work,

we argue that shallow features containing more details are

more beneficial to recognize small object categories in a multi-

label image (region-level local information), while deeper

features focus on dominant object categories that occupy

larger areas of the image (image-level global information).

Therefore, in addition to the global features xg (which are

transformed into xt via FTN) extracted from the 2048-dim

top pooling units of ResNet101 [50] pre-trained on ImageNet

1K [51], we also extract region-based features (of size h, w =

14 and dr = 1024) from the layer conv4_23 of ResNet101

and directly average pool them as local features xl with

dl=1024. We construct FGN-l for local features with the

same architecture as FGN-t for global features, as depicted

in Figure 5. Therefore, the overall loss of our FGNs is:

LFG Ns = (Lt
V AE + ³Lt

W G AN )

+ ´(Ll
V AE + ³Ll

W G AN ), (15)

where ³ is the hyperparameter that controls the loss weights

of C-VAE and C-WGAN, and ´ is the hyperparameter that

controls the loss weights of FGN-t and FGN-l. We set ³ =

10 and ´ = 1 for both NUS-WIDE and Open Images.

After training on the seen classes, our FGNs is able to

synthesize discriminative global features xt and local features

xl for the unseen classes. Subsequently, xt and xl are used

for the training of global and local classifiers, respectively.

The final prediction is determined by the sum of the predicted

label scores of the two classifiers.

IV. EXPERIMENTS

In this section, we first introduce the experimental setup

and then compare the performance of our TGF with other

state-of-the-art works in this field. Next, we make a detailed

and comprehensive comparison (including: mAP improvement

comparison, qualitative results and t-SNE visualization)

between TGF and the previous state-of-the-art generative

method Gen-MLZSL [9]. Subsequently, we compare the

results of TGF using different CNN backbones and class

embeddings. After that, we perform ablation studies and hyper-

parameters sensitivity analysis for the components in TGF and

some major objective functions. Finally, we evaluate our TGF

on a novel Open-vocabulary multi-label classification (OVML)

task.

A. Experimental Setup

1) Datasets: We evaluate the proposed TGF on three multi-

label zero-shot benchmark datasets: NUS-WIDE [14], Open

Images [57], and MS COCO [58]. The NUS-WIDE dataset

includes 269,648 images, each with 81 human-annotated labels

and 925 labels extracted from Flicker user tags. Consistent

with previous work [8], [9], [10], [11], 925 and 81 labels

are used as seen and unseen classes, respectively. TheOpen

Images (v4) dataset consists of nearly 9 million training
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TABLE I

STATE-OF-THE-ART COMPARISON FOR MLZSL AND MLGZSL TASKS ON THE NUS-WIDE AND OPEN IMAGES DATASETS. TOP: NON-GENERATIVE

METHODS; BOTTOM: GENERATIVE METHODS. WE REPORT THE RESULTS IN TERMS OF MAP, AS WELL AS PRECISION (P), RECALL (R), AND F1
SCORE AT K ∈ {3, 5} FOR NUS-WIDE AND K ∈ {10, 20} FOR OPEN IMAGES. THE BEST AND THE SECOND BEST RESULTS ARE MARKED IN

BOLD AND RED, RESPECTIVELY. SINCE BIAM [10] REPORTS WEIGHTED-MAP ON OPEN IMAGES, FOR A FAIR COMPARISON WITH

OTHER METHODS, WE RE-IMPLEMENTED BIAM’S MAP ON OPEN IMAGES USING THE AUTHOR’S OFFICIAL CODE, THE

RESULTS ARE HIGHLIGHTED WITH SYMBOL *. MEANWHILE, OUR METHOD CAN ACHIEVE HIGHER WEIGHTED-
MAP THAN BIAM (86.4 FOR ZSL AND 88.5 FOR GZSL)

TABLE II

STATE-OF-THE-ART COMPARISON FOR MLZSL AND MLGZSL TASKS ON

THE MS COCO DATASET. WE REPORT THE RESULTS IN TERMS OF

MAP, AS WELL AS PRECISION (P), RECALL (R), AND F1 SCORE AT

K ∈ {3, 5}. THE BEST AND THE SECOND BEST RESULTS ARE

MARKED IN BOLD AND RED, RESPECTIVELY

images, 41,620 and 125,456 images in validation and test

sets, respectively. As in [8], [9], [10], and [11], 7186 labels

with at least 100 training images are selected as seen classes,

and the 400 test set labels that appear least frequently in

the training data are selected as the unseen classes.The MS

COCO dataset is divided into a training set and a validation

set, containing 82,783 and 40,504 images, respectively. This

dataset is commonly used in multi-label zero-shot object

detection [59], [60], here we conduct multi-label zero-shot

classification experiments by using the same split (65 seen

classes and 15 unseen classes) as in [59] and [60].

2) Evaluation Metrics: As in previous works [8], [9],

[10], [11], we use F1 score at top-K predictions [43] and

mean Average Precision (mAP) [61] as evaluation metrics.

Specifically, the F1 score measures the model’s ability to

correctly rank the labels in each image, while the mAP score

captures how accurately the model ranks the images for each

label. In addition, since F1 score is the harmonic mean of the

precision (P) and recall (R) (i.e., F1 = 2 ∗ P ∗ R/(P + R)),

so we also report the precision and recall in our experiments

for a more detailed evaluation.

3) Implementation Details: Following previous works [8],

[9], [10], [43], we employ the ℓ2 normalized 300-dimensional

GloVe [32] vector corresponding to the class name as the

word vector w. The dimension of the noise z is equal to

the dimension of the multi-label semantic embedding s (i.e.,

600). Both SEAs and FTN in our method are implemented as

a multilayer perceptron (MLP) with one hidden layer. SEAs

have 600 hidden units with LeakyReLU as non-linearity; FTN

has 8192 hidden units with ReLU as non-linearity. For our

FGNs, Et , El , Dt , and Dl are all two-layer fully connected

(FC) networks with 4096 hidden units and use LeakyReLU as

nonlinear activation function. Both G t and Gl consist of two

FC+LeakyReLU layers with 4096 hidden units, and a residual

branch (an MLP with one hidden layer and 8192 hidden units),

and the output layers of G t and Gl use Sigmoid as nonlinear

activation function. FGNs is trained using the Adam optimizer

with a learning rate of 1e−4 and a batch size of 64 for

35 epochs on NUS-WIDE and 5 epochs on Open Images.

In addition, both MLZSL and MLZSL classifiers are trained

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on August 26,2024 at 14:59:57 UTC from IEEE Xplore.  Restrictions apply. 



3416 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 5, MAY 2024

on NUS-WIDE and Open Images using (batch size, learning

rate) of (256, 1e−3). Our TGF is implemented with PyTorch,

and all the experiments are performed on an NVIDIA GeForce

RTX 3090 GPU.

B. Comparing With the State-of-the-Art

Table I presents the performance comparison of the current

state-of-the-art MLZSL methods. Among them, the non-

generative methods [8], [10], [11], [43], [54], [55], [56] learn

a multi-label classification model on the seen classes and

directly transfer it for unseen class recognition. The generative

methods [9], [12] regard MLZSL as an unseen data-missing

problem, and transform MLZSL into a traditional supervised

classification task by synthesizing unseen class samples.

As can be seen from Table I, our TGF outperforms all

state-of-the-art methods (both in ZSL and GZSL tasks) on

NUS-WIDE dataset with absolute gains of 4.8% (ZSL) and

3.7% (GZSL) in mAP, and in terms of F1 score at K ∈ {3, 5}

consistent improvements are also obtained. This demonstrates

the effectiveness of our method.

Additionally, on Open Images, we achieve state-of-the-art

mAP and F1 score for the GZSL task; and for the ZSL task,

we also achieve the highest mAP and competitive F1 score

(third best at K = 10 and second best at K = 20). Compared

to NUS-WIDE, Open Images contains a significantly larger

number of seen (7186) and unseen (400) classes and more

training samples (close to 9 million), which makes the learning

of SEAs, FTN, and FGNs in our TGF more challenging, so it

is better to construct more complex network architectures for

them. However, in this paper, both SEA and FTN use an MLP

with only one hidden layer, and FGNs only uses a simple f-

VAEGAN [15] as the generative backbone. We believe that for

Open Images, the proposed TGF can integrate more complex

network architectures to further improve the performance.

We also conduct experiments on the MS COCO dataset and

compare the performance of our TGF with the previous best

non-generative methods (i.e., BIAM [10] and SDL [11]) and

generative methods (i.e., Gen-MLZSL [9]). Since an image

contains at most three unseen classes in the validation set of

MS COCO, we only report the F1 score at K = 3 for the

ZSL task. From the results in Table II, we can see that our

TGF achieves the highest mAP and F1 score at K ∈ {3, 5}

on the GZSL task. For the ZSL task, TGF also achieves the

highest mAP with an absolute gain of 2.4%, while achieving

the second-best F1 score at K = 3, only 0.8% lower than

SDL.

Furthermore, our TGF shows great superiority compared

to two existing generative MLZSL methods [9], [12],

significantly improving F1 score and mAP in both ZSL

and GZSL tasks. This provides further evidence for the

effectiveness of TGF. It can generate discriminative multi-

label semantic embeddings using SEAs, and transform original

global features into an embedding space that is semantic-

related and more suitable for multi-label classification using

FTN, thus providing better semantic and visual inputs for

FGNs. Meanwhile, FGNs can generate both global and local

features to train the final classifiers, which is beneficial for

recognizing both dominant and small categories in multi-

label images. In summary, our TGF is state-of-the-art among

all existing generative MLZSL methods and is a successful

exploration of using generative models to tackle MLZSL task.

C. mAP Improvement Comparison

To demonstrate the effectiveness of our TGF, we perform

Average Precision (AP) comparisons on each category with

the previous state-of-the-art generative method Gen-MLZSL

[9] on NUS-WIDE. Figure 6 shows the AP comparison of

all 81 unseen classes, our TGF surpasses Gen-MLZSL on

67 classes. TGF achieves significant improvements (more than

20%) on several unseen labels such as ‘protest’ and ‘airport’,

while has relatively smaller (less than 10%) negative effects

on labels such as ‘moon’ and ‘wedding’. In addition, TGF is

especially better at recognizing some abstract concepts (e.g.,

‘protest’, ‘cityscape’, ‘sunset’, ‘town’, ‘military’, ‘nighttime’,

and ‘sports’), which suggests that: (1) Our proposed SEAs

effectively capture the correlations between labels in a

multi-label image, it can generate discriminative multi-label

semantic embeddings. (2) The proposed FTN enhances the

visual-semantic consistency, which benefits our FGNs to

generate semantic-related multi-label features to help the

recognition of corresponding abstract semantic concepts. (3)

In addition to global features, our proposed FGNs can also

generate local features, which are beneficial to recognize

the class labels of multiple small objects in a multi-label

image, thereby recognizing abstract concepts according to their

interdependencies.

D. Qualitative Results

Figure 7 shows a comparison between the top-5 tags

returned by the previous state-of-the-art generative method

Gen-MLZSL [9] and our TGF for some unseen example

images from NUS-WIDE. The tags in olive green color appear

in ground-truth annotations; those in red color are the wrong

tags. From Figure 7, we can see that our TGF significantly

outperforms Gen-MLZSL. In detail, in Figure 7a, Gen-MLZSL

only predicts the dominant class ‘mountain’ which occupies a

larger region of the image, while our TGF also recognizes

the class ‘dog’ which occupies a relatively smaller region

of the image. In Figure 7d, Gen-MLZSL only recognizes

the dominant categories ‘house’ and ‘sky’, while our TGF

can also accurately predicts small object ‘tree’. In Figure 7e

and Figure 7f, Gen-MLZSL can only recognize the dominant

categories ‘ocean’, ‘sky’ and ‘clouds’ in the image, while our

TGF further successfully predicts the very small class ‘boats’.

These qualitative results demonstrate the effectiveness of our

TGF. It can synthesize both discriminative global and local

features to exploit their ability to recognize the dominant and

minor object in a multi-label image, respectively.

In addition, in Figure 7b, Gen-MLZSL only recognizes

two dominant classes of ‘sky’ and ‘buildings’, while our

TGF successfully predicts two abstract concepts of ‘nighttime’

and ‘cityscape’. In Figure 7c, Gen-MLZSL only recognizes

the dominant classes ‘sky’, ‘ocean’ and ‘mountain’, while

our TGF can also predict the abstract concept ‘sunset’.
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Fig. 6. Comparison of mAP improvement between our TGF and the previous state-of-the-art generative method Gen-MLZSL [9] on NUS-WIDE. Among
all 81 unseen classes, our TGF outperforms Gen-MLZSL on 67 classes in terms of AP.

Fig. 7. Qualitative results on several unseen exemplar images from the NUS-WIDE test set. The top-5 predictions per image for both methods are shown
in olive green (true positives) and red (false positives). Best viewed in color.

This is consistent with the results in Section IV-C, further

demonstrating the effectiveness of our TGF in recognizing

abstract categories: (a) TGF utilizes SEAs to learn the

correlation between labels in a multi-label image, thereby

generating multi-label semantic embeddings to synthesize

discriminative multi-label features. (b) TGF uses FTN to

enhance the visual-semantic consistency, which facilitates

subsequent FGNs to generate semantic-related multi-label

features to help the recognition of corresponding abstract

semantic concepts. (c) The local features generated by FGNs

are beneficial for classifying multiple small objects in a

multi-label image, thereby recognizing abstract concepts based

on their interdependencies. Overall, the results demonstrate

the superior performance of our proposed TGF over

Gen-MLZSL.

E. t-SNE Visualization

To gain further insight into the quality of the multi-label

semantic embeddings and visual features generated by our

TGF, we visualize them on the NUS-WIDE dataset using t-

SNE [62]. Since an image contains more than one category in

a multi-label dataset, this prevents us from assigning a label to

a sample for t-SNE visualization like in a single-label dataset.

Therefore, we design new schemes for the visualization of

multi-label semantic embeddings and multi-label features, the

details are as follows.

1) Visualization of Multi-label Semantic Embeddings: We

consider all 1006 categories (925 seen and 81 unseen) in

NUS-WIDE as subcategories, and use K-means to cluster

them into 50 parent categories. Then, we randomly divide
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Fig. 8. t-SNE visualization on NUS-WIDE dataset. (a) Features generated by the previous state-of-the-art generative method Gen-MLZSL [9]. (b) Multi-label
semantic embeddings obtained by our SEAs. (c) Local features synthesized by our FGNs. (d) Global features synthesized by our FGNs.

TABLE III

THE RESULTS OF USING DIFFERENT CNN BACKBONES ON

NUS-WIDE. THE BEST RESULTS ARE MARKED IN BOLD

these 50 parent categories into 10 groups. For each group,

subcategories are randomly sampled from each parent category

each time to form a multi-label combination, and each

group is sampled 500 times. Next, we use SEAs to

generate multi-label semantic embeddings for these multi-label

combinations. Finally, we treat the multi-label combinations

belonging to the same group as the same category and

assign them the same label for t-SNE visualization. Here

we give a simple example for easy understanding: suppose

Group_1 = {Parent_category_1, Parent_category_2, . . . ,

Parent_category_5}, and Parent_category_1 = {dog, cat,

. . . , puppy}, Parent_category_2 = {car, truck, . . . , jeep},

Parent_category_3 = {football, basketball, . . . , soccer},

Parent_category_4 = {dress, clothing, . . . , shoes}, Par-

ent_category_5 = {girl, woman, . . . , child}. First, we sample

from each parent category separately to construct multi-label

combinations (e.g., {dog, car, basketball, dress, woman}, {cat,

truck, soccer, shoes, child}, {puppy, car, football, clothing,

girl}, etc.). We then use SEAs to generate multi-label semantic

embeddings for these multi-label combinations belonging to

the Group_1, and assign them the same label for t-SNE

visualization. The result of multi-label semantic embedding

visualization is shown in Figure 8b. It can be seen that our

SEAs aggregates multi-label semantic embeddings belonging

to the same group and easily separates multi-label semantic

embeddings belonging to different groups. This demonstrates

that our SEAs can generate discriminative multi-label semantic

embeddings that preserve semantic information belonging to

multiple categories.

2) Visualization of Multi-label Visual Features: We ran-

domly construct 10 multi-label combinations for the 81 unseen

classes of NUS-WIDE, and use TGF to generate 500 multi-

label features for each multi-label combination. Here we

treat each multi-label combination as a class for t-SNE

visualization as in single-label dataset. For example, Multi-

label_combination_1 = {moon, animal, rocks, military, cat},

we first use SEAs to generate multi-label semantic embeddings

for this multi-label combination, and then use this multi-

label semantic embedding as the conditional input of FGNs

to generate 500 local features and 500 global features.

Additionally, we also generate features for these 10 multi-label

combinations using the previous state-of-the-art generative

method Gen-MLZSL [9]. It can be seen from Figure 8a that

for different multi-label combinations, the feature distributions

generated by Gen-MLZSL are highly overlapping, while our

TGF generated local features (Figure 8c) and global features

(Figure 8b) both have good intra-class compactness and inter-

class separation, which further demonstrates the effectiveness

of our TGF. It is worth mentioning that compared with global

features, the generated local features are more diverse and

contain more noise, which is consistent with our conjecture in

Section III-E: local features contain more image details and are

more beneficial to recognize small object categories in a multi-

label image, while global features are more discriminative and

generalizable, and it focuses on dominant object categories that

occupy larger areas of the image.

F. Comparison of Different CNN Backbones

Previous works [7], [8], [9], [10], [11], [12] all use

VGG [49] or ResNet [50] pre-trained on Imagenet [51] as

feature extractors. To eliminate the influence of different

CNN backbones and ensure a fair comparison, we employ

VGG19 and Res101 to extract image features respectively,

and compare the performance of our TGF with the previous

state-of-the-art generative MLZSL method Gen-MLZSL [9].

As shown in Table III, no matter using VGG19 or Res101

as the feature extraction network, our TGF significantly

outperforms Gen-MLZSL, which further demonstrates the

effectiveness of our method. The inferior performance of Gen-

MLZSL can be attributed to the fact that ALF and FLF
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TABLE IV

COMPARISON OF mAP WITH DIFFERENT CLASS EMBEDDINGS

ON NUS-WIDE. THE BEST RESULTS ARE MARKED IN BOLD

destroy the structure and distribution of the original data due

to simple averaging, and inevitably lose some discriminative

information. In addition, Gen-MLZSL also requires a complex

attention module to fuse the features output by ALF and FLF,

which is computationally expensive and requires a significant

memory footprint. In contrast, our TGF generates discrimina-

tive multi-label semantic embeddings via SEAs, using FTN

transforms global features extracted from a CNN pre-trained

on single-label images into semantic-related and more suitable

features for multi-label classification. Furthermore, TGF also

utilizes FGNs to synthesize discriminative global and local

features to exploit their ability to recognize dominant and

minor objects in a multi-label image, respectively.

G. The Impact of Different Class Embeddings

For a fair comparison with previous MLZSL methods [8],

[9], [10], [43], we use the GloVe model [32] trained on

Wikipedia articles to extract semantic word vectors as class

embeddings. Here we study the effect of using different

class embeddings on the performance of TGF. In Natural

Language Processing (NLP), there are two approaches

to representing words or phrases as numerical vectors:

syntactic embedding and semantic embedding. Syntactic

embedding methods [63], [64] focus on capturing the

grammatical or syntactic structure of words or phrases,

which represent words or phrases based on their syntactic

relationships and dependencies. In a syntactic embedding

model, words like ‘tiger’ and ‘chase’ may have similar vector

representations because they often appear together in subject-

verb relationships. Semantic embedding methods [32], [65]

aim to capture the semantics of words or phrases, which

represent words or phrases based on semantic similarity and

relatedness. In a semantic embedding model, words like ‘tiger’

and ‘elephant’ would have similar vector representations

because they semantically share similar properties, i.e., both

are animals. Furthermore, recently popular Vision-language

pre-training (VLP) models such as CLIP [66] are trained on

billions of image-text pairs and have a powerful image-text

matching ability.

We use the syntactic embedding model SynGCN [63],

the semantic embedding model Glove [32] and the text

encoder of VLP-based model CLIP [66] to extract class

embeddings for experiments. From Table IV, we can see

that SynGCN has the worst performance because it fails

to learn the semantic similarity and correlation between

categories. In addition, although GloVe significantly enhances

the performance compared to SynGCN by capturing the

semantics of categories, it is trained only with text such as

TABLE V

THE RESULTS OF ABLATION STUDY FOR OBJECTIVE FUNCTIONS OF

SEAs ON NUS-WIDE. THE BEST RESULTS ARE MARKED IN BOLD

TABLE VI

THE RESULTS OF ABLATION STUDY FOR COMPONENTS IN TGF
ON NUS-WIDE. THE BEST RESULTS ARE MARKED IN BOLD

Wikipedia articles, so the obtained class semantic embeddings

are poorly correlated with the corresponding visual features.

Finally, CLIP-based class embeddings achieve the best

performance on both ZSL and GZSL tasks. This indicates

that CLIP-based class embeddings have better consistency

with the corresponding categories of visual features, and our

TGF can further improve performance by utilizing better class

embeddings.

H. Ablation Studies and Hyper-Parameters Sensitivity

Analysis

1) Ablation Studies for Objective Functions of SEAs: In

this section, we conduct ablation studies for three objective

functions (i.e., Lsim , Lavg and Lrec) in the proposed SEAs

to evaluate their respective importance. Table V presents the

MLZSL results using different objective functions on NUS-

WIDE. As can be seen in Table V, competitive performance

is achieved using only Lsim , which shows that with Lsim ,

we learn the semantic similarity between ssim and all word

vectors corresponding to a multi-label image, thus preserving

the class-specific semantic information. When adding Lavg ,

both the F1 score and mAP achieved further improvement.

This is because by optimizing Lavg , savg learns the correlation

between categories in a multi-label image. Finally, the

combination of Lsim, Lavg, and Lrec results in the highest

MLZSL classification accuracy, which indicates that these

three objective functions work together to enhance each other

to generate discriminative multi-label semantic embeddings.

2) Ablation Studies for Components in TGF: To better

assess the contribution of each component in TGF, we perform

an ablation study as shown in Table VI. In order to be able

to use the generative model to solve the MLZSL task, Gen-

MLZSL [9] proposes ALF (i.e., averaging all word vectors

corresponding to each multi-label image at the input of the

generator) and FLF (i.e., averaging the single-label features

generated by all word vectors corresponding to each multi-

label image at the output of the generator) to obtain a
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TABLE VII

COMPARISON OF SEAs AND FTNs USING ONE AND TWO HIDDEN LAYERS

ON NUS-WIDE. THE BEST RESULTS ARE MARKED IN BOLD

uniform input and output size. From the results in table VI,

it can be observed that training FGN-t with the multi-label

semantic embeddings s obtained from SEAs and the original

global features xg (i.e., FGN-t + SEAs) outperforms FGN-

t + ALF and FGN-t + FLF. This demonstrates that simple

averaging in ALF and FLF destroys the original data structure

and distribution (especially for samples containing a large

number of classes), and inevitably loses some discriminative

information, which is suboptimal for MLZSL. It also verifies

that our proposed SEAs can generate discriminative multi-

label semantic embeddings, enabling generative models to be

trained to generate multi-label features for unseen classes.

When replacing xg with semantic-related multi-label

features xt obtained from FTN (i.e., FGN-t + SEAs + FTN),

we achieve further improvements in both mAP and F1 score

for MLZSL tasks. This demonstrates that our FTN enhances

semantic-visual consistency and generates more discriminative

multi-label features. Finally, adding local features xl to

train FGN-l (i.e., FGN-t + SEAs + FTN + FGN+l)

significantly improves the F1 score, while mAP only slightly

decreases compared to SEAs+FTN+FGN-t. This validates our

conjecture that local features are helpful for recognizing small

objects in multi-label images, and it improves the model’s

ability to correctly rank all labels for each image. In addition,

compared with the more discriminative and generalizable

global features, local features contain more image details and

thus more noise. The mAP, which reflects the ranking accuracy

of all images for each label, is more sensitive to noise than the

F1 score. Therefore, the mAP decreases slightly after adding

local features.

3) FTN and SEAs With More Complex Network Architec-

tures: In this paper, both SEA and FTN in our TGF are

implemented as an MLP with only one hidden layer, and this

simple network architecture has been able to achieve state-

of-the-art performance on three MLZSL benchmark datasets.

This suggests that our novel idea is the driving force behind

the observed performance enhancement rather than complex

network architecture. In order to investigate the impact of

network complexity on TGF, this section explores the effect

of increasing the number of hidden layers of both SEA and

FTN from one to two layers. The outcomes of this analysis,

as illustrated in Table VII, indicate that as the number of

network layers increases, TGF achieves mAP improvement

on both MLZSL and MLGZSL tasks. These findings confirm

that more complex network architectures have the potential to

further enhance the performance of TGF.

4) The Impact of Different N for SEAs: Hyper-parameter

N determines how many SEA we need to learn. As shown

in Figure 9a, when N = 20, we obtained the highest F1

score at both K = 3 and K = 5 for the MLZSL and

MLGZSL tasks. As mentioned in Section III-C, for NUS-

WIDE, N = 20 already encompasses 99% of the training

set samples. We think that N = 20 is suitable for model

training and also in line with real-world scenarios. Because

N is too small (such as 5) to encompass an adequate number

of training samples, too large N (such as 50) implies that one

sample contains too many classes, which is very rare in both

datasets and realistic scenarios, and can be seen as abnormal

data that is detrimental for training. Therefore, we set N = 20,

N = 15 and N = 8 for NUS-WIDE, Open Images and MS

COCO, respectively.

5) The Effect of Hyper-Parameters ³ and ´: ³ and ´ are

the hyper-parameters that control the C-VAE and C-WGAN

loss weights and the FGN-t and FGN-l loss weights in FGNs,

respectively. As can be seen in Figure 9b, when ³ = 10,

we achieve the best performance for both MLZSL and

MLGZSL tasks. This indicates that the weight of C-WGAN

is preferably slightly larger than that of C-VAE. Moreover,

Figure 9c shows that the variation of ´ has almost no effect

on the performance, which indicates that global and local

features are equally important for multi-label classification.

Global features tend to recognize the dominant categories,

while local features help us to recognize smaller categories

in a multi-label image. Overall, the variation of both hyper-

parameters ³ and ´ have little impact on performance, which

demonstrates the robustness of our TGF.

I. Open-Vocabulary Multi-Label Classification

The recently developed Open-vocabulary object detection

(OVOD) [67], [68], [69], [70] and Open-vocabulary semantic

segmentation (OVSS) methods [71], [72], [73], [74] leverage

the multi-modal knowledge of image-text pairs in Vision-

language pre-training (VLP) models and achieve impressive

performance. Inspired by these methods, [75] proposes Open-

vocabulary multi-label classification (OVML), which aims to

recognize multiple categories described by arbitrary text in a

multi-label image. The difference between OVML and classic

MLZSL is that the label embedding (e.g., GloVe [32]) used

in classic MLZSL can only handle word labels (e.g., the label

of ‘fox’) well, while OVML can be easily extended to text

labels (e.g., the label of ‘white fox’) by jointly exploring the

multi-modal knowledge of the VLP model. References [75]

proposes an OVML framework called Multi-modal knowledge

transfer (MKT). MKT uses knowledge distillation to transfer

the image-text matching ability of the pre-trained CLIP model,

and performs prompt tuning to further update the label

embedding. To further recognize multiple objects in a multi-

label image, it also develops a dual-stream module to capture

both local and global features. References [75] also propose

an OVML baseline CLIP-FT, which is a pre-trained CLIP

model [66] fine-tuned on seen categories according to ranking

loss. In order to evaluate the ability of our TGF to utilize

the multi-modal knowledge of the VLP model for OVML,

we directly use the pre-trained CLIP image encoder (ViT-B/16,

the same as MKT for fair comparison) and text encoder to

extract global image features and class semantic embeddings
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Fig. 9. The impact of different hyper-parameters N , ³, ´ on NUS-WIDE.

TABLE VIII

STATE-OF-THE-ART COMPARISON FOR MLZSL AND MLGZSL TASKS IN OPEN-VOCABULARY (OV) SETTING ON THE NUS-WIDE DATASET.
WE REPORT THE RESULTS IN TERMS OF mAP, AS WELL AS PRECISION (P), RECALL (R), AND F1 SCORE AT K ∈ {3, 5}. THE BEST RESULTS ARE

MARKED IN BOLD

respectively to train our TGF, and the results are shown in

Table VIII. It is worth noting that here we only use FGN-t +

SEAs for experiments, without prompt tuning like MKT and

without using additional local features. However, this simple

integration of TGF with pre-trained CLIP has surpassed the

state-of-the-art OVML method MKT, which further proves the

effectiveness of our TGF, and also demonstrates that generative

methods are a better choice to solve the unseen class samples

missing problem (such as MLZSL and OVML).

V. CONCLUSION

This paper proposes a novel TGF for multi-label zero-shot

learning that combines the advantages of SEAs, FTN, and

FGNs. SEAs can encode class-level word vectors into sample-

level multi-label semantic embedding, which fundamentally

solves the limitations of generative models applied to MLZSL,

thus enabling the transfer of arbitrarily existing generative

SLZSL models to solve the MLZSL task. In addition, FTN

further improves the performance of MLZSL by transforming

the global features into a semantic-related and more suitable

embedding space for multi-label classification. Finally, FGNs

can generate both global and local features to exploit their

ability to recognize dominant and small categories in a multi-

label image, respectively. Extensive experimental results and

analyses demonstrate the effectiveness of our TGF. Overall,

TGF sets a new state-of-the-art on three multi-label zero-shot

datasets, achieving absolute gains of up to 20.5% for ZSL and

27.9% for GZSL in terms of mAP compared to the previous

best generative MLZSL method. It is worth mentioning that

in this paper, TGF utilizes very simple architectures, and

several components (SEAs, FTN, and FGNs) in it can be

replaced by more complex network architectures to further

improve the performance. TGF provides some inspiration for

the application of generative models in MLZSL and MLGZSL.
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