
Published as a conference paper at ICLR 2021

DISCRETE GRAPH STRUCTURE LEARNING FOR FORE-
CASTING MULTIPLE TIME SERIES

Chao Shang∗
University of Connecticut
chao.shang@uconn.edu

Jie Chen†
MIT-IBM Watson AI Lab, IBM Research
chenjie@us.ibm.com

Jinbo Bi
University of Connecticut
jinbo.bi@uconn.edu

ABSTRACT

Time series forecasting is an extensively studied subject in statistics, economics,
and computer science. Exploration of the correlation and causation among the
variables in a multivariate time series shows promise in enhancing the perfor-
mance of a time series model. When using deep neural networks as forecasting
models, we hypothesize that exploiting the pairwise information among multiple
(multivariate) time series also improves their forecast. If an explicit graph struc-
ture is known, graph neural networks (GNNs) have been demonstrated as powerful
tools to exploit the structure. In this work, we propose learning the structure si-
multaneously with the GNN if the graph is unknown. We cast the problem as
learning a probabilistic graph model through optimizing the mean performance
over the graph distribution. The distribution is parameterized by a neural network
so that discrete graphs can be sampled differentiably through reparameterization.
Empirical evaluations show that our method is simpler, more efficient, and better
performing than a recently proposed bilevel learning approach for graph structure
learning, as well as a broad array of forecasting models, either deep or non-deep
learning based, and graph or non-graph based.

1 INTRODUCTION

Time series data are widely studied in science and engineering that involve temporal measurements.
Time series forecasting is concerned with the prediction of future values based on observed ones in
the past. It has played important roles in climate studies, market analysis, traffic control, and energy
grid management (Makridakis et al., 1997) and has inspired the development of various predictive
models that capture the temporal dynamics of the underlying system. These models range from
early autoregressive approaches (Hamilton, 1994; Asteriou & Hall, 2011) to the recent deep learning
methods (Seo et al., 2016; Li et al., 2018; Yu et al., 2018; Zhao et al., 2019).

Analysis of univariate time series (a single longitudinal variable) has been extended to multivariate
time series and multiple (univariate or multivariate) time series. Multivariate forecasting models find
strong predictive power in stressing the interdependency (and even causal relationship) among the
variables. The vector autoregressive model (Hamilton, 1994) is an example of multivariate analysis,
wherein the coefficient magnitudes offer hints into the Granger causality (Granger, 1969) of one
variable to another.

For multiple time series, pairwise similarities or connections among them have also been explored
to improve the forecasting accuracy (Yu et al., 2018). An example is the traffic network where each
node denotes a time series recording captured by a particular sensor. The spatial connections of the
roads offer insights into how traffic dynamics propagates along the network. Several graph neural

∗This work was done while C. Shang was an intern at MIT-IBM Watson AI Lab, IBM Research.
†To whom correspondence should be addressed.

1

Published as a conference paper at ICLR 2021

network (GNN) approaches (Seo et al., 2016; Li et al., 2018; Yu et al., 2018; Zhao et al., 2019) have
been proposed recently to leverage the graph structure for forecasting all time series simultaneously.

The graph structure however is not always available or it may be incomplete. There could be sev-
eral reasons, including the difficulty in obtaining such information or a deliberate shielding for the
protection of sensitive information. For example, a data set comprising sensory readings of the
nation-wide energy grid is granted access to specific users without disclosure of the grid structure.
Such practical situations incentivize the automatic learning of the hidden graph structure jointly with
the forecasting model.

Because GNN approaches show promise in forecasting multiple interrelated time series, in this pa-
per we are concerned with structure learning methods applicable to the downstream use of GNNs.
A prominent example is the recent work of Franceschi et al. (2019) (named LDS), which is a
meta-learning approach that treats the graph as a hyperparameter in a bilevel optimization frame-
work (Franceschi et al., 2017). Specifically, let Xtrain and Xval denote the training and the validation
sets of time series respectively, A ∈ {0, 1}n×n denote the graph adjacency matrix of the n time se-
ries, w denote the parameters used in the GNN, and L and F denote the the loss functions used dur-
ing training and validation respectively (which may not be identical). LDS formulates the problem
as learning the probability matrix θ ∈ [0, 1]n×n, which parameterizes the element-wise Bernoulli
distribution from which the adjacency matrix A is sampled:

min
θ

EA∼Ber(θ)[F (A,w(θ), Xval)],

s.t. w(θ) = argmin
w

EA∼Ber(θ)[L(A,w,Xtrain)].
(1)

Formulation (1) gives a bilevel optimization problem. The constraint (which by itself is an optimiza-
tion problem) defines the GNN weights as a function of the given graph, so that the objective is to
optimize over such a graph only. Note that for differentiability, one does not directly operate on the
discrete graph adjacency matrix A, but on the continuous probabilities θ instead.

LDS has two drawbacks. First, its computation is expensive. The derivative of w with respect to θ
is computed by applying the chain rule on a recursive-dynamics surrogate of the inner optimization
argmin. Applying the chain rule on this surrogate is equivalent to differentiating an RNN, which is
either memory intensive if done in the reverse mode or time consuming if done in the forward mode,
when unrolling a deep dynamics. Second, it is challenging to scale. The matrix θ has Θ(n2) entries
to optimize and thus the method is hard to scale to increasingly more time series.

In light of the challenges of LDS, we instead advocate a unilevel optimization:

min
w

EA∼Ber(θ(w))[F (A,w,Xtrain)]. (2)

Formulation (2) trains the GNN model as usual, except that the probabilities θ (which parameterizes
the distribution from which A is sampled), is by itself parameterized. We absorb these parameters,
together with the GNN parameters, into the notation w. We still use a validation set Xval for usual
hyperparameter tuning, but these hyperparameters are not θ as treated by (1). In fact, formulation (1)
may need a second validation set to tune other hyperparameters.

The major distinction of our approach from LDS is the parameterization θ(w), as opposed to an inner
optimization w(θ). In our approach, a modeler owns the freedom to design the parameterization and
better control the number of parameters as n2 increases. To this end, time series representation
learning and link prediction techniques offer ample inspiration for modeling. In contrast, LDS is
more agnostic as no modeling is needed. The effort, instead, lies in the nontrivial treatment of the
inner optimization (in particular, its differentiation).

As such, our approach is advantageous in two regards. First, its computation is less expensive,
because the gradient computation of a unilevel optimization is straightforward and efficient and
implementations are mature. Second, it better scales, because the number of parameters does not
grow quadratically with the number of time series.

We coin our approach GTS (short for “graph for time series”), signaling the usefulness of graph
structure learning for enhancing time series forecasting. It is important to note that the end purpose
of the graph is to improve forecasting quality, rather than identifying causal relationship of the series
or recovering the ground-truth graph, if any. While causal discovery of multiple scalar variables is an

2

Published as a conference paper at ICLR 2021

established field, identifying causality among multiple multivariate time series requires a nontrivial
extension that spans beyond the current study. On the other hand, the graph, either learned or pre-
existing, serves as additional information that helps the model better capture global signals and
apply on each series. There does not exist a golden measure for the quality of the learned graph
except forecasting accuracy. For example, the traffic network does not necessarily offer the best
pairwise relationship a GNN can exploit for forecasting traffic series. Nevertheless, to robustify
GTS we incorporate regularization that penalizes significant departure from one’s prior belief. If
a certain “ground-truth” graph is believed, the learned graph will be a healthy variation of it for a
more accurate forecast.

2 RELATED WORK

Time series forecasting has been studied for decades by statisticians. It is out of the scope of this pa-
per to comprehensively survey the literature, but we will focus more on late developments under the
deep learning context. Early textbook methods include (vector) autoregressive models (Hamilton,
1994), autoregressive integrated moving average (ARIMA) (Asteriou & Hall, 2011), hidden Markov
models (HMM) (Baum & Petrie, 1966), and Kalman filters (Zarchan & Musoff, 2000). Generally
speaking, these are linear models that use a window of the past information to predict the next time
step, although nonlinear versions with parameterization are subsequently developed.

A notable nonlinear extension was the RNN (Williams et al., 1986), which later evolved into
LSTM (Hochreiter & Schmidhuber, 1997), BiLSTM (Schuster & Paliwal, 1997), and GRU (Cho
et al., 2014), which addressed several limitations of the vanilla RNN, such as the vanishing gradient
problem. These architectures are hard to parallelize because of the recurrent nature of the forward
and backward computation. More recently, Transformer (Vaswani et al., 2017) and BERT (Devlin
et al., 2019) were developed to address parallelization, by introducing attention mechanisms that si-
multaneously digested past (and future) information. Although these models are more heavily used
for sequence data under the context of natural language processing, they are readily applicable for
time series as well (Shih et al., 2019; Li et al., 2019).

Graph neural networks (Zhang et al., 2018; Zhou et al., 2018; Wu et al., 2019) emerged quickly in
deep learning to handle graph-structured data. Typically, graph nodes are represented by feature vec-
tors, but for the case of time series, a number of specialized architectures were recently developed;
see, e.g., GCRN (Seo et al., 2016), DCRNN (Li et al., 2018), STGCN (Yu et al., 2018), and T-
GCN (Zhao et al., 2019). These architectures essentially combine the temporal recurrent processing
with graph convolution to augment the representation learning of the individual time series.

Graph structure learning (not necessarily for time series) appears in various contexts and thus meth-
ods span a broad spectrum. One field of study is probabilistic graphical models and casual infer-
ence, whereby the directed acyclic structure is enforced. Gradient-based approaches in this context
include NOTEARS (Zheng et al., 2018), DAG-GNN (Yu et al., 2019), and GraN-DAG (Lachapelle
et al., 2020). On the other hand, a general graph may still be useful without resorting to causality.
LDS (Franceschi et al., 2019) is a meta-learning approach that demonstrates to improve the perfor-
mance on node classification tasks. MTGNN (Wu et al., 2020) parameterizes the graph as a degree-k
graph, which is learned end-to-end with a GNN for forecasting time series. We, on the other hand,
allow a more general structural prior for the graph. NRI (Kipf et al., 2018) adopts a latent-variable
approach and learns a latent graph for forecasting system dynamics. Our approach is closely related
to NRI and we will compare with it in the following section after introducing the technical details.

3 METHOD

In this section, we present the proposed GTS method, elaborate the model parameterization, and
describe the training technique. We also highlight the distinctions from NRI (Kipf et al., 2018).

Let us first settle the notations. Denote by X the training data, which is a three dimensional tensor,
with the three dimensions being feature, time, and the n series. Superscript refers to the series
and subscript refers to time; that is, Xi denotes the i-th series for all features and time and Xt

denotes the t-th time step for all features and series. There are in total S time steps for training.
The model will use a window of T steps to forecast the next τ steps. For each valid t, denote by

3

Published as a conference paper at ICLR 2021

feature
extractor

link
predictor

recurrent
graph

convolution

recurrent
graph

convolution
…

entire data X sampled graph A

windowed data forecast

sampling

learned
structure 𝜃

t + 1 t + 2 t + T t + T + 1 t + T + 𝜏

recurrent
graph

convolution

recurrent
graph

convolution
…

Figure 1: GTS architecture.

X̂t+T+1:t+T+τ = f(A,w,Xt+1:t+T) the model, which forecasts X̂t+T+1:t+T+τ from observations
Xt+1:t+T , through exploiting the graph structureA and being parameterized byw. Using ` to denote
the loss function between the prediction and the ground truth, a typical training objective reads∑

t `(f(A,w,Xt+1:t+T), Xt+T+1:t+T+τ). (3)

Three remaining details are the parameterization of A, the model f , and the loss `.

3.1 GRAPH STRUCTURE PARAMETERIZATION

The binary matrix A ∈ {0, 1}n×n by itself is challenging to parameterize, because it requires a
differentiable function that outputs discrete values 0/1. A natural idea is to letA be a random variable
of the matrix Bernoulli distribution parameterized by θ ∈ [0, 1]n×n, so thatAij is independent for all
the (i, j) pairs with Aij ∼ Ber(θij). Here, θij is the success probability of a Bernoulli distribution.
Then, the training objective (3) needs to be modified to

EA∼Ber(θ) [
∑
t `(f(A,w,Xt+1:t+T), Xt+T+1:t+T+τ)] . (4)

As hinted in Section 1, we further parameterize θ as θ(w), because otherwise the n2 degrees
of freedom in θ render the optimization hard to scale. Such a parameterization, however, im-
poses a challenge on differentiability, if the expectation (4) is evaluated through sample average:
the gradient of (4) does not flow through A in a usual Bernoulli sampling. Hence, we apply
the Gumbel reparameterization trick proposed by Jang et al. (2017) and Maddison et al. (2017):
Aij = sigmoid((log(θij/(1 − θij)) + (g1ij − g2ij))/s), where g1ij , g

2
ij ∼ Gumbel(0, 1) for all i, j.

When the temperature s → 0, Aij = 1 with probability θij and 0 with remaining probability. In
practice, we anneal s progressively in training such that it tends to zero.

For the parameterization of θ, we use a feature extractor to yield a feature vector for each series
and a link predictor that takes in a pair of feature vectors and outputs a link probability. The feature
extractor maps a matrixXi to a vector zi for each i. Many sequence architectures can be applied; we
opt for a simple one. Specifically, we perform convolution along the temporal dimension, vectorize
along this dimension, and apply a fully connected layer to reduce the dimension; that is, zi =
FC(vec(Conv(Xi))). Note that the feature extractor is conducted on the entire sequence rather than
a window of T time steps. Weights are shared among all series.

The link predictor maps a pair of vectors (zi, zj) to a scalar θij ∈ [0, 1]. We concatenate the two
vectors and apply two fully connected layers to achieve so; that is, θij = FC(FC(zi‖zj)). The last
activation needs be a sigmoid. See the top part of Figure 1.

3.2 GRAPH NEURAL NETWORK FORECASTING

The bottom part of Figure 1 is the forecasting model f . We use a sequence-to-sequence (seq2seq)
model (Sutskever et al., 2014) to map Xi

t+1:t+T to Xi
t+T+1:t+T+τ for each series i. Seq2seq is

4

Published as a conference paper at ICLR 2021

typically a recurrent model, but with a graph structure available among the series, we leverage
recurrent graph convolution to handle all series simultaneously, as opposed to the usual recurrent
mechanism that treats each series separately.

Specifically, for each time step t′, the seq2seq model takes Xt′ for all series as input and updates the
internal hidden state from Ht′−1 to Ht′ . The encoder part of the seq2seq performs recurrent updates
from t′ = t + 1 to t′ = t + T , producing Ht+T as a summary of the input. The decoder part uses
Ht+T to continue the recurrence and evolves the hidden state for another τ steps. Each hidden state
Ht′ , t′ = t + T + 1 : t + T + τ , simultaneously serves as the output X̂t′ and the input to the next
time step.

The recurrence that accepts input and updates hidden states collectively for all series uses a graph
convolution to replace the usual multiplication with a weight matrix. Several existing architectures
serve this purpose (e.g., GCRN (Seo et al., 2016), STGCN (Yu et al., 2018), and T-GCN (Zhao et al.,
2019)), but we use the diffusion convolutional GRU defined in DCRNN (Li et al., 2018) because it
is designed for directed graphs:

Rt′ = sigmoid(WR ?A [Xt′ ‖ Ht′−1] + bR), Ct′ = tanh(WC ?A [Xt′ ‖ (Rt′ �Ht′−1] + bC),

Ut′ = sigmoid(WU ?A [Xt′ ‖ Ht′−1] + bU), Ht′ = Ut′ �Ht′−1 + (1− Ut′)� Ct′ ,
where the graph convolution ?A is defined as

WQ ?A Y =
∑K
k=0

(
wQk,1(D−1O A)k + wQk,2(D−1I AT)k

)
Y,

with DO and DI being the out-degree and in-degree matrix and ‖ being concatenation along the
feature dimension. Here, wQk,1, wQk,2, bQ for Q = R,U,C are model parameters and the diffusion
degree K is a hyperparameter.

We remark that as a subsequent experiment corroborates, this GNN model can be replaced by other
similar ones (e.g., T-GCN), such that the forecast performance remains similar while still being
superior over all baselines. In comparison, the more crucial part of our proposal is the structure
learning component (presented in the preceding subsection), without which it falls back to a model
either using no graphs or needing a supplied one, both performing less well.

3.3 TRAINING, OPTIONALLY WITH A PRIORI KNOWLEDGE OF THE GRAPH

The base training loss (per window) is the mean absolute error between the forecast and the ground
truth

`tbase(X̂t+T+1:t+T+τ , Xt+T+1:t+T+τ) = 1
τ

∑t+T+τ
t′=t+T+1 |X̂t′ −Xt′ |.

Additionally, we propose a regularization that improves graph quality, through injecting a priori
knowledge of the pairwise interaction into the model. Sometimes an actual graph among the time
series is known, such as the case of traffic network mentioned in Section 1. Generally, even if an
explicit structure is unknown, a neighborhood graph (such as a kNN graph) may still serve as reason-
able knowledge. The use of kNN encourages sparsity if k is small, which circumvents the drawback
of `1 constraints that cannot be easily imposed because the graph is not a raw variable to optimize.
As such, we use the cross-entropy between θ and the a priori graph Aa as the regularization:

`reg =
∑
ij −Aa

ij log θij − (1−Aa
ij) log(1− θij). (5)

The overall training loss is then
∑
t `
t
base + λ`reg, with λ > 0 being the regularization magnitude.

3.4 COMPARISON WITH NRI

GTS appears similar to NRI (Kipf et al., 2018) on the surface, because both compute a pairwise
structure from multiple time series and use the structure to improve forecasting. In these two meth-
ods, the architecture to compute the structure, as well as the one to forecast, bare many differences;
but these differences are only secondary. The most essential distinction is the number of structures.
To avoid confusion, here we say “structure” (θ) rather than “graph” (A) because there are combina-
torially many graph samples from the same structure. Our approach produces one single structure
given one set of n series. On the contrary, the autoencoder approach adopted by NRI produces dif-
ferent structures given different encoding inputs. Hence, a feasible use of NRI can only occur in the

5

Published as a conference paper at ICLR 2021

following two manners. (a) A single set of n series is given and training is done on windowed data,
where each window will produce a separate structure. (b) Many sets are given and training is done
through iterating each set, which corresponds to a separate structure. Both cases are different from
our scenario, where a single set of time series is given and a single structure is produced.

Fundamentally, NRI is a variational autoencoder and thus the inference of the structure is an amor-
tized inference: under setting (b) above, the inferred structure is a posterior given a set of series. The
amortization uses an encoder parameterization to free off the tedious posterior inference whenever a
new set of series arrives. Moreover, under the evidence lower bound (ELBO) training objective, the
prior is a graph, each edge of which takes a value uniformly in [0, 1]. In our case, on the contrary, a
single structure is desired. Thus, amortized inference is neither necessary nor relevant. Furthermore,
one may interpret the a priori information Aa for regularization as a “structural prior;” however, for
each node pair it offers a stronger preference on the existence/absence of an edge than a uniform
probability.

4 EXPERIMENTS

In this section, we conduct extensive experiments to show that the proposed method GTS outper-
forms a comprehensive set of forecasting methods, including one that learns a hidden graph structure
(LDS, adapted for time series). We also demonstrate that GTS is computationally efficient and is
able to learn a graph close to the a priori knowledge through regularization, with little compromise
on the forecasting quality.

4.1 SETUP

Data sets. We experiment with two benchmark data sets METR-LA and PEMS-BAY from Li et al.
(2018) and a proprietary data set PMU. The first two are traffic data sets with given graphs serving
as ground truths; we perform no processing and follow the same configuration as in the referenced
work for experimentation. The last one is a sensor network of the U.S. power grid without a given
grid topology. For details, see Appendix Section A. For all data sets, we use a temporal 70/10/20
split for training, validation, and testing, respectively.

Baselines. We compare with a number of forecasting methods:

1. Non-deep learning methods: historical average (HA), ARIMA with Kalman filter (ARIMA), vec-
tor auto-regression (VAR), and support vector regression (SVR). The historical average accounts
for weekly seasonality and predicts for a day by using the weighted average of the same day in
the past few weeks.

2. Deep learning methods that treat each series separately (i.e., no graph): feed-forward neural
network (FNN) and LSTM.

3. GNN method applied on the given graph (or kNN graph for PMU): DCRNN (Li et al., 2018).

4. GNN methods that simultaneously learn a graph structure. We use LDS (Franceschi et al., 2019)
to learn the graph, wherein the forecast model is DCRNN. We name the method “LDS” for short.
Additionally, we compare with NRI (Kipf et al., 2018).

5. Variant of GTS: We maintain the graph structure parameterization but replace the DCRNN fore-
cast model by T-GCN (Zhao et al., 2019). We name the variant “GTSv.”

Except LDS and NRI, all baselines follow the configurations presented in Li et al. (2018). For LDS,
we follow Franceschi et al. (2019). For NRI, we follow Kipf et al. (2018).

Evaluation metrics. All methods are evaluated with three metrics: mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percentage error (MAPE).

For details on hyperparameter setting and training platform, see Appendix Section B.

6

Published as a conference paper at ICLR 2021

4.2 RESULTS

Forecasting quality. We first evaluate the performance of GTS through comparing it with all the
aforementioned baselines. Because of the significant memory consumption of NRI, this method is
executed on only the smaller data set PMU. The tasks are to forecast 15, 30, and 60 minutes.

Table 1: Forecasting error (METR-LA).

Metric HA ARIMA VAR SVR FNN LSTM DCRNN LDS GTSv GTS

15
m

in MAE 4.16 3.99 4.42 3.99 3.99 3.44 2.77 2.75 2.61 2.39
RMSE 7.80 8.21 7.89 8.45 7.94 6.30 5.38 5.35 4.83 4.41
MAPE 13.0% 9.6% 10.2% 9.3% 9.9% 9.6% 7.3% 7.1% 6.8% 6.0%

30
m

in MAE 4.16 5.15 5.41 5.05 4.23 3.77 3.15 3.14 2.94 2.65
RMSE 7.80 10.45 9.13 10.87 8.17 7.23 6.45 6.45 5.62 5.06
MAPE 13.0% 12.7% 12.7% 12.1% 12.9% 10.9% 8.8% 8.6% 7.9% 7.0%

60
m

in MAE 4.16 6.90 6.52 6.72 4.49 4.37 3.60 3.63 3.46 2.99
RMSE 7.80 13.23 10.11 13.76 8.69 8.69 7.59 7.67 6.67 5.85
MAPE 13.0% 17.4% 15.8% 16.7% 14.0% 13.2% 10.5% 10.34% 9.9% 8.3%

Table 1 summarizes the results for METR-LA. A few observations follow. (1) Deep learning meth-
ods generally outperform non-deep learning methods, except historical average that performs on par
with deep learning in some metrics. Seasonality is a strong indicator of the repeating traffic patterns
and not surprisingly HA performs reasonably well despite simplicity. (2) Among the deep learning
methods, graph-based models outperform non-graph models. This result corroborates the premise
of this work: graph structure is helpful. (3) Among the graph-based methods, LDS performs slightly
better than DCRNN. The difference between these two methods is that the latter employs the given
graph, which may or may not imply direct interactions, whereas the former learns a graph in the
data-driven manner. Their performances however are quite similar. (4) The most encouraging result
is that the proposed method GTS significantly outperforms LDS and hence DCRNN. GTS learns a
graph structure through parameterization, rather than treating it as a (hyper)parameter which is the
case in LDS. (5) The performance of the variant GTSv stays between GTS and LDS. This observa-
tion corroborates that the proposed structure learning component contributes more crucially to the
overall performance than does a careful choice of the GNN forecasting component.

To dive into the behavioral difference between GTS and DCRNN, we plot in Figure 2 two forecasting
examples. One sees that both methods produce smooth series. In the top example, overall the GTS
curve is closer to the moving average of the ground truth than is the DCRNN curve (see e.g., the left
part and the U shape). In the bottom example, the GTS curve better captures the sharp dip toward
the end of the series. In both examples, there exist several short but deep downward spikes. Such
anomalous data are captured by neither methods.

Figure 2: One-day forecast (METR-LA).

Figure 3: Training time per epoch. Not learn-
ing a graph (DCRNN) is the fastest to train
and learning a graph by using LDS needs
orders of magnitude more time. Our model
learns a graph with a favorable overhead.

7

Published as a conference paper at ICLR 2021

Additionally, we summarize the results for PEMS-BAY and PMU in Table 3 and 2, respectively.
(see Appendix Section C for the former). The observations are rather similar to those of METR-
LA. Our model produces the best prediction in all scenarios and under all metrics. Additionally, for
the PMU data set, NRI performs competitively, second to GTS/GTSv and better than LDS in most
of the cases.

Table 2: Forecasting error (PMU).

Metric FNN LSTM DCRNN LDS NRI GTSv GTS

15
m

in MAE (×10−3) 1.23 1.02 0.71 0.49 0.66 0.26 0.24
RMSE (×10−2) 1.28 1.63 1.42 1.26 0.27 0.20 0.19

MAPE 0.20% 0.21% 0.09% 0.07% 0.14% 0.05% 0.04%

30
m

in MAE (×10−3) 1.42 1.11 1.08 0.81 0.71 0.31 0.30
RMSE (×10−2) 1.81 2.06 1.91 1.79 0.30 0.23 0.22

MAPE 0.23% 0.20% 0.15% 0.12% 0.15% 0.05% 0.05%

60
m

in MAE (×10−3) 1.88 1.79 1.78 1.45 0.83 0.39 0.41
RMSE (×10−2) 2.58 2.75 2.65 2.54 0.46 0.32 0.30

MAPE 0.29% 0.27% 0.24% 0.22% 0.17% 0.07% 0.07%

Computational efficiency. We compare the training costs of the graph-based methods: DCRNN,
LDS, and GTS. See Figure 3. DCRNN is the most efficient to train, since no graph structure learn-
ing is involved. To learn the graph, LDS needs orders of magnitude more time than does DCRNN.
Recall that LDS employs a bilevel optimization (1), which is computationally highly challenging.
In contrast, the proposed method GTS learns the graph structure as a byproduct of the model train-
ing (2). Its training time is approximately three times of that of DCRNN, a favorable overhead
compared with the forbidding cost of LDS.

Effect of regularization. We propose in Section 3.3 using regularization to incorporate a priori
knowledge of the graph. One salient example of knowledge is sparsity, which postulates that many
node pairs barely interact. We show the effect of regularization on the data set PMU with the use
of a kNN graph as knowledge. The task is 15-minute forecasting and results (expected degree and
MAE) are plotted in Figure 4. The decreasing curves in both plots indicate that using a smaller k
or increasing the regularization magnitude produces sparser graphs. The bars give the MAEs, all
around 2.4e-4, indicating equally good forecasting quality. (Note that the MAE for LDS is 4.9e-4.)

(a) Fix regularization magnitude = 1 and vary k.
The case k = 0 means no kNN regularization.

(b) Fix k = 5 and vary regularization λ.

Figure 4: Effect of regularization (PMU). “Degree” means expected degree of the graph.

Learned structures. To examine the learned structure θ, we further show its difference from the
given graph adjacency matrix Aa (binary) and visualize one particular example in Figure 5. The
difference is defined as `reg/n

2 (average cross entropy; see (5)). One reads that when λ = 20, the
difference is 0.34. It indicates that the learned probabilities in θ are on average 0.3 away from the
entries of Aa, because − log(1 − 0.3) ≈ 0.34. When using 0.5 as a cutoff threshold for θ, such a
difference possibly results in false-positive edges (existing in θ but not in Aa; orange dashed) and
false-negative edges (existing in Aa but not in θ; none in the example).

8

Published as a conference paper at ICLR 2021

Note that the regularization strength λ weighs the forecasting error (MAE) and the cross entropy in
the loss function. When λ = 0, the training loss is not regularized, yielding optimal forecast results
reported in Table 2. When λ = ∞, one effectively enforces θ to be identical to Aa and hence the
model reduces to DCRNN, whose forecasting performance is worse than our model. The interesting
question is when λ interpolates between the two extremes, whether it is possible to find a sweet spot
such that forecasting performance is close to our model but meanwhile θ is close to Aa. Figure 5
suggests positively. We stress that our model does not intend to learn a “ground-truth” graph (e.g.,
the traffic network or the power grid); but rather, learn a structure that a GNN can exploit to improve
forecast.

λ = 1 λ = 2 λ = 10 λ = 20

15 min CE 1.93 1.87 0.53 0.34
MAE 2.47e-4 2.74e-4 2.83e-4 2.87e-4

30 min CE 1.93 1.87 0.53 0.34
MAE 3.02e-4 3.26e-4 3.44e-4 3.59e-4

60 min CE 1.93 1.87 0.53 0.34
MAE 4.14e-4 4.33e-4 4.78e-4 5.12e-4

Figure 5: Learned structures (PMU). Left: difference between Aa and θ (in terms of average cross
entropy) as λ varies. Right: Aa overlaid with θ (orange edges exist in θ but not in Aa) when λ = 20.

Other structural priors. In the PMU data set, we use a synthetic kNN structure prior Aa due to
the lack of a known graph. For METR-LA and PEMS-BAY, however, such as graph can be con-
structed based on spatial proximity (Li et al., 2018). We show in Figure 6 the effect of regularization
for these data sets. Similar to the findings of PMU, moving λ between 0 and ∞ interpolates two
extremes: the best forecast quality and recovery of Aa. With a reasonable choice of λ (e.g., 0.3),
the forecast quality degrades only slightly but the learned structure is rather close to the given Aa,
judged from the average cross entropy.

Figure 6: Effect of regularization (left: METR-LA; right: PEMS-BAY; 60 min forecast). Average
cross entropy measures departure from Aa.

5 CONCLUSIONS

We have presented a time series forecasting model that learns a graph structure among multiple time
series and forecasts them simultaneously with a GNN. Both the graph and the GNN are learned
end-to-end, maximally exploiting the pairwise interactions among data streams. The graph struc-
ture is parameterized by neural networks rather than being treated as a (hyper)parameter, hence
significantly reducing the training cost compared with a recently proposed bilevel optimization ap-
proach LDS. We conduct comprehensive comparisons with a number of baselines, including non-
deep learning methods and deep learning methods (which either ignore the pairwise interaction, use
a given graph, or learn a graph by using LDS), and show that our approach attains the best forecast-
ing quality. We also demonstrate that regularization helps incorporate a priori knowledge, rendering
the learned graph a healthy variation of the given one for more accurate forecast.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENT AND DISCLAIMER

This material is based upon work supported by the Department of Energy under Award Number(s)
DE-OE0000910. C. Shang was also supported by National Science Foundation grant IIS-1718738
(to J. Bi) during this work. J. Bi was additionally supported by National Institutes of Health grants
K02-DA043063 and R01-DA051922. This report was prepared as an account of work sponsored by
agencies of the United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal li-
ability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof.

REFERENCES

Dimitros Asteriou and Stephen G. Hall. ARIMA models and the Box-Jenkins methodology. In
Applied Econometrics, pp. 265–286. Palgrave MacMillan, 2011.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state markov
chains. The Annals of Mathematical Statistics, 37(6):1554–1563, 1966.

Kyunghyun Cho, Bart van Merrienboera, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In ICML, 2017.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In ICML, 2019.

C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica, 37(3):424–438, 1969.

James D. Hamilton. Time Series Analysis. Princeton University Press, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jignesh M. Pa-
tel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical challenges. Commun.
ACM, 57(7):86–94, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-Softmax. In
ICLR, 2017.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In ICML, 2018.

Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based
neural DAG learning. In ICLR, 2020.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In NeurIPS, 2019.

10

Published as a conference paper at ICLR 2021

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In ICLR, 2018.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In ICLR, 2017.

Spyros G. Makridakis, Steven C. Wheelwright, and Rob J Hyndman. Forecasting: Methods and
Applications. Wiley, 3 edition edition, 1997.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, 1997.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. arXiv:1612.07659, 2016.

Shun-Yao Shih, Fan-Keng Sun, and Hung yi Lee. Temporal pattern attention for multivariate time
series forecasting. Machine Learning volume, 108:1421–1441, 2019.

Ilya Sutskever, Oriol Vinyals, and Quoc Viet Le. Sequence to sequence learning with neural net-
works. In NIPS, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Ronald J. Williams, Geoffrey E. Hinton, and David E. Rumelhart. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. Preprint arXiv:1901.00596, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In KDD, 2020.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In IJCAI, 2018.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
networks. In ICML, 2019.

Paul Zarchan and Howard Musoff. Fundamentals of Kalman Filtering. American Institute of Aero-
nautics and Astronautics, Incorporated, 2000.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. Preprint
arXiv:1812.04202, 2018.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on
Intelligent Transportation Systems, 2019.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. DAGs with NO TEARS: Con-
tinuous optimization for structure learning. In NeurIPS, 2018.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. Preprint
arXiv:1812.08434, 2018.

11

Published as a conference paper at ICLR 2021

Appendices
A ADDITIONAL DETAILS OF DATA SETS

METR-LA is a traffic data set collected from loop detectors in the highway of Los Angles, CA (Ja-
gadish et al., 2014). It contains 207 sensors, each of which records four months of data at the
frequency of five minutes. A graph of sensors is given; it was constructed by imposing a radial basis
function on the pairwise distance of sensors at a certain cutoff. For more information see Li et al.
(2018). We perform no processing and follow the same configuration as in Li et al. (2018)

PEMS-BAY is also a traffic data set, collected by the California Transportation Agencies Perfor-
mance Measurement System. It includes 325 sensors in the Bay Area for a period of six months, at
the same five-minute frequency. Construction of the graph is the same as that of METR-LA. No
processing is performed.

PMU contains time series data recorded by the phasor measurement units (PMUs) deployed across
the U.S. power grid. We extract one month of data (February 2017) from one interconnect of the
grid, which includes 42 PMU sources. Each PMU records a number of state variables and we use
only the voltage magnitude and the current magnitude. The PMUs sample the system states at high
rates (either 30 or 60 Hertz). We aggregate every five minutes, yielding a data frequency the same
as the above two data sets. Different from them, this data set offers neither the grid topology, the
sensor identities, nor the sensor locations. Hence, a “ground truth” graph is unknown.

However, it is highly plausible that the PMUs interact in a nontrivial manner, since some series are
highly correlated whereas others not much. Figure 7 shows three example series. Visually, the first
series appears more correlated to the second one than to the third one. For example, in the first
two series, the blue curves (the variable ip m) are visually seasonal and synchronous. Moreover,
inside the purple window, the red curves (the variable vp m) in the first two series show three down-
ward spikes, which are missing in the third series. Indeed, the correlation matrix between the first
two series is

(
0.76 −0.04
−0.31 0.96

)
and that between the first and the third series is

(
0.18 −0.10
0.22 0.22

)
. Such an

observation justifies graph structure learning among the PMUs.

It is important to note a few processing steps of the data set because of its noisy and incomplete
nature. The data set contains a fair amount of unreliable readings (e.g., outliers). Hence, we consult
domain experts and set lower and upper bounds to filter out extremely small and large values. Ac-
counting for missing data, within every five minutes we take the mean of the available readings if
any, or impute with the mean of the entire series.

B ADDITIONAL DETAILS OF EXPERIMENT SETTING

Hyperparameters. Several hyperparameters are tuned through grid search: initial learning rate
{0.1, 0.01, 0.001}, dropout rate {0.1, 0.2, 0.3}, embedding size of LSTM {32, 64, 128, 256}, the
k value in kNN {5, 10, 20, 30}, and the weight of regularization {0, 1, 2, 5, 10, 20}. For other
hyperparameters, the convolution kernel size in the feature extractor is 10 and the decay ratio of
learning rate is 0.1. After tuning, the best initial learning rate for METR-LA and PEMS-BAY is
0.01 and for PMU is 0.001. The optimizer is Adam.

Because the loss function is an expectation (see (1) and (2)), the expectation is computed as an
average of 10 random samples. Such an averaging is needed only for model evaluation. In training,
one random sample suffices because the optimizer is a stochastic optimizer.

Platform. We implement the models in PyTorch. All experiments are run on one compute node of
an IBM Power9 server. The compute node contains 80 CPU cores and four NVidia V100 GPUs, but
because of scheduling limitation we use only one GPU.

Code is available at https://github.com/chaoshangcs/GTS.

12

https://github.com/chaoshangcs/GTS

Published as a conference paper at ICLR 2021

C ADDITIONAL RESULTS FOR FORECASTING QUALITY

See Table 3 for the forecast results of PEMS-BAY. The observations are rather similar to those of
Tables 1 and 2 in Section 4.2. In particular, GTS produces the best prediction in all scenarios and
under all metrics.

Figure 7: Example time series from the PMU data set. Data have been standardized and the vertical
axes do not show the raw value.

Table 3: Forecasting error (PEMS-BAY).

Metric HA ARIMA VAR SVR FNN LSTM DCRNN LDS GTSv GTS

15
m

in MAE 2.88 1.62 1.74 1.85 2.20 2.05 1.38 1.33 1.16 1.12
RMSE 5.59 3.30 3.16 3.59 4.42 4.19 2.95 2.81 2.27 2.16
MAPE 6.8% 3.5% 3.6% 3.8% 5.2% 4.8% 2.9% 2.8% 2.3% 2.3%

30
m

in MAE 2.88 2.33 2.32 2.48 2.30 2.20 1.74 1.67 1.44 1.34
RMSE 5.59 4.76 4.25 5.18 4.63 4.55 3.97 3.80 2.97 2.74
MAPE 6.8% 5.4% 5.0% 5.5% 5.4% 5.2% 3.9% 3.8% 3.1% 2.9%

60
m

in MAE 2.88 3.38 2.93 3.28 2.46 2.37 2.07 1.99 1.81 1.58
RMSE 5.59 6.50 5.44 7.08 4.98 4.96 4.74 4.59 3.78 3.30
MAPE 6.8% 8.3% 6.5% 8.0% 5.9% 5.7% 4.9% 4.8% 4.1% 3.6%

13

Published as a conference paper at ICLR 2021

D UPDATES OF TABLES 1, 2, AND 3

Our implementation had been developed based on the PyTorch version of DCRNN (https:
//github.com/chnsh/DCRNN_PyTorch). It was brought to our attention recently that this
version calculated the evaluation metrics MAE/RMSE/MAPE in a manner slightly different from
that used to report the results of DCRNN in the official publication (https://github.com/
chnsh/DCRNN_PyTorch/issues/3). We updated Tables 1, 2, and 3 by correcting the cal-
culations to be consistent with the official DCRNN results. See Tables 4, 5, and 6. Despite the
correction, observations and conclusions regarding the comparison of different methods remain un-
changed.

Table 4: (Correction of Table 1) Forecasting error (METR-LA).

Metric HA ARIMA VAR SVR FNN LSTM DCRNN LDS GTSv GTS

15
m

in MAE 4.16 3.99 4.42 3.99 3.99 3.44 2.77 2.75 2.74 2.64
RMSE 7.80 8.21 7.89 8.45 7.94 6.30 5.38 5.35 5.09 4.95
MAPE 13.0% 9.6% 10.2% 9.3% 9.9% 9.6% 7.3% 7.1% 7.3% 6.8%

30
m

in MAE 4.16 5.15 5.41 5.05 4.23 3.77 3.15 3.14 3.11 3.01
RMSE 7.80 10.45 9.13 10.87 8.17 7.23 6.45 6.45 6.02 5.85
MAPE 13.0% 12.7% 12.7% 12.1% 12.9% 10.9% 8.8% 8.6% 8.7% 8.2%

60
m

in MAE 4.16 6.90 6.52 6.72 4.49 4.37 3.60 3.63 3.53 3.41
RMSE 7.80 13.23 10.11 13.76 8.69 8.69 7.59 7.67 6.84 6.74
MAPE 13.0% 17.4% 15.8% 16.7% 14.0% 13.2% 10.5% 10.3% 10.3% 9.9%

Table 5: (Correction of Table 2) Forecasting error (PMU).

Metric FNN LSTM DCRNN LDS NRI GTSv GTS

15
m

in MAE (×10−3) 1.23 1.02 0.71 0.49 0.66 0.35 0.26
RMSE (×10−2) 1.28 1.63 1.42 1.26 0.27 0.22 0.20

MAPE 0.20% 0.21% 0.09% 0.07% 0.14% 0.06% 0.04%

30
m

in MAE (×10−3) 1.42 1.11 1.08 0.81 0.71 0.45 0.37
RMSE (×10−2) 1.81 2.06 1.91 1.79 0.30 0.29 0.26

MAPE 0.23% 0.20% 0.15% 0.12% 0.15% 0.07% 0.06%

60
m

in MAE (×10−3) 1.88 1.79 1.78 1.45 0.83 0.63 0.59
RMSE (×10−2) 2.58 2.75 2.65 2.54 0.46 0.43 0.41

MAPE 0.29% 0.27% 0.24% 0.22% 0.17% 0.11% 0.10%

Table 6: (Correction of Table 3) Forecasting error (PEMS-BAY).

Metric HA ARIMA VAR SVR FNN LSTM DCRNN LDS GTSv GTS

15
m

in MAE 2.88 1.62 1.74 1.85 2.20 2.05 1.38 1.33 1.35 1.32
RMSE 5.59 3.30 3.16 3.59 4.42 4.19 2.95 2.81 2.64 2.62
MAPE 6.8% 3.5% 3.6% 3.8% 5.2% 4.8% 2.9% 2.8% 2.9% 2.8%

30
m

in MAE 2.88 2.33 2.32 2.48 2.30 2.20 1.74 1.67 1.69 1.64
RMSE 5.59 4.76 4.25 5.18 4.63 4.55 3.97 3.80 3.45 3.41
MAPE 6.8% 5.4% 5.0% 5.5% 5.4% 5.2% 3.9% 3.8% 3.9% 3.6%

60
m

in MAE 2.88 3.38 2.93 3.28 2.46 2.37 2.07 1.99 1.99 1.91
RMSE 5.59 6.50 5.44 7.08 4.98 4.96 4.74 4.59 4.05 3.97
MAPE 6.8% 8.3% 6.5% 8.0% 5.9% 5.7% 4.9% 4.8% 4.7% 4.4%

14

https://github.com/chnsh/DCRNN_PyTorch
https://github.com/chnsh/DCRNN_PyTorch
https://github.com/chnsh/DCRNN_PyTorch/issues/3
https://github.com/chnsh/DCRNN_PyTorch/issues/3

	Introduction
	Related Work
	Method
	Graph Structure Parameterization
	Graph Neural Network Forecasting
	Training, Optionally with a Priori Knowledge of the Graph
	Comparison with NRI

	Experiments
	Setup
	Results

	Conclusions
	Additional Details of Data Sets
	Additional Details of Experiment Setting
	Additional Results for Forecasting Quality
	Updates of Tables 1, 2, and 3

