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Abstract

Markov Chain Monte Carlo (MCMC) methods are promising solutions to sample1

from target distributions in high dimensions. While MCMC methods enjoy nice2

theoretical properties, like guaranteed convergence and mixing to the true target, in3

practice their sampling efficiency depends on the choice of the proposal distribution4

and the target at hand. This work considers using machine learning to adapt the5

proposal distribution to the target, in order to improve the sampling efficiency in6

the purely discrete domain. Specifically, (i) it proposes a new parametrization for a7

family of proposal distributions, called locally balanced proposals, (ii) it defines8

an objective function based on mutual information and (iii) it devises a learning9

procedure to adapt the parameters of the proposal to the target, thus achieving fast10

convergence and fast mixing. We call the resulting sampler as the Locally Self-11

Balancing Sampler (LSB). We show through experimental analysis on the Ising12

model and Bayesian networks that LSB is indeed able to improve the efficiency13

over a state-of-the-art sampler based on locally balanced proposals, thus reducing14

the number of iterations required to converge, while achieving comparable mixing15

performance.16

1 Introduction17

Sampling from complex and intractable probability distributions is of fundamental importance for18

learning and inference [16]. MCMC algorithms are promising solutions to handle the intractability19

of sampling in high dimensions and they have found numerous applications, in Bayesian statistics20

and statistical physics [17, 23], bioinformatics and computational biology [3, 2] as well as machine21

learning [4, 14, 18].22

Although, MCMC can be applied to sample from any target distribution, in practice its efficiency23

strongly depends on the choice of the proposal. Indeed, common phenomena, like slow convergence24

and slow mixing, are typically the result of wrong choices of the proposal distribution. Therefore, it’s25

extremely important to devise strategies enabling the tuning of the proposal to target distributions [5,26

13]. While there has been a lot of work focusing on designing machine learning-based strategies to27

improve the efficiency of MCMC in the continuous domain [29, 20, 1, 6, 19], less effort has been28

devoted to the discrete counterpart. Most common solutions consider continuous relaxations of29

the problem by using embeddings and then leverage existing sampling strategies designed for the30

continuous case. These strategies are suboptimal, either because they consider limited settings, where31

the target distribution has specific analytic forms [29], or because they make strong assumptions on32

the properties of the embeddings, thus not having guarantees of preserving the topological properties33

of the original discrete domain [20, 1, 6, 19].34

This work focuses on MCMC strategies for the purely discrete domain. Specifically, (i) we introduce35

a new parametrization for a family of proposal distributions, called locally balanced proposals, which36

have been recently studied in [28], (ii) we define an objective function based on mutual information,37

which reduces the distance between the proposal and the target distribution and also reduces the38
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statistical dependence between consecutive samples, and (iii) we devise a learning procedure to adapt39

the parameters of the proposal to the target distribution using our objective. The resulting procedure,40

called the Local Self-Balancing sampler (LSB), automatically discovers an optimal locally balanced41

proposal, with the advantage of reducing the amount of user intervention and of improving the overall42

sampling efficiency, both in terms of convergence speed and mixing time.43

We provide some empirical analysis of sampling from the 2D Ising model and from Bayesian44

networks and show that in some cases LSB is able to halve the number of iterations required to45

converge, while achieving similar mixing performance to [28].46

We start by providing some background on locally balanced proposal distributions (Section 2),47

we introduce LSB by describing the parametrizations, the objective and the learning procedure48

(Section 3), we discuss the related work (Section 4) and the experiments (Section 5), and finally we49

conclude by highlighting the main limitations of LSB and possible future directions (Section 6).50

2 Background51

We consider the problem of sampling from a distribution p with a support defined over a large finite52

discrete sample space X , i.e. p(x) = p̃(x)/
∑

x′′∈X p̃(x
′′), where the normalization term cannot be53

tractably computed and only p̃ can be evaluated. One solution to the problem consists of sampling54

using MCMC [17]. The main idea of MCMC is to sequentially sample from a tractable surrogate55

distribution, alternatively called proposal, and to use an acceptance criterion to ensure that generated56

samples are distributed according to the original distribution. More formally, MCMC is a Markov57

chain with a transition probability of the form:58

T (x′|x) = A(x′,x)Q(x′|x) + 1[x′ = x]
∑

x′′∈X

(
1−A(x′′,x)

)
Q(x′′|x)) (1)

where Q(x′|x) is the probability of sampling x′ given a previously sampled x, namely the proposal59

distribution, 1[·] is the Kronecker delta function and A(x′,x) is the probability of accepting sample60

x′ given x, e.g. A(x′,x) = min
{
1, p̃(x

′)Q(x|x′)
p̃(x)Q(x′|x)

}
.1 In this work, we consider the family of locally61

informed proposals [28], which are characterized by the following expression:62

Q(x′|x) =
g
( p̃(x′)
p̃(x)

)
1[x′ ∈ N(x)]

Z(x)
(2)

where N(x) is the neighborhood of x based on the Hamming metric.263

Note that the choice of g has a dramatic impact on the performance of the Markov chain, as64

investigated in [28]. In fact, there is a family of functions called balancing functions, satisfying the65

relation g(t) = tg(1/t) (for all t > 0), which have extremely desirable properties, briefly recalled66

hereunder.67

Acceptance rate. The balancing property allows to rewrite the acceptance function in a simpler68

form, namely A(x′,x) = min
{
1, Z(x)

Z(x′)

}
. Therefore, a proper choice of g can increase the ratio69

between the normalization constants Z(x) and Z(x′) with consequent increase of the acceptance70

rate even in high dimensional spaces.71

Detailed balance. Note that for all x′ = x, detailed balance trivially holds, viz. p(x)T (x′|x) =72

p(x′)T (x|x′). In all other cases, detailed balance can be proved, by exploiting the fact that T (x′|x) =73

A(x′,x)Q(x′|x) and by using the balancing property (see the Supplementary material for more74

details). Detailed balance is a sufficient condition for invariance. Consequently, the target p is a fixed75

point of the Markov chain.76

Ergodicity. Under mild assumptions, we have also ergodicity (we leave more detailed discussion77

to the Supplementary material). In other words, the Markov chain converges to the fixed point p78

independently from its initialization.79

1Other choices are available [17] as well.
2In other words, we consider all points having Hamming distance equal to 1 from x.
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Efficiency. The efficiency of MCMC is generally measured in terms of the resulting asymptotic80

variance for sample mean estimators. This is indeed a proxy to quantify the level of correlation81

between samples generated through MCMC. Higher levels of asymptotic variance correspond to82

higher levels of correlation, meaning that the Markov chain produces more dependent samples and83

it is therefore less efficient. Balancing functions are asymptotically optimal according to Peskun84

ordering [28].85

The work in [28] proposes a pool of balancing functions with closed-form expression together with86

some general guidelines to choose one. However, this pool is only a subset of the whole family of87

balancing functions and several cases do not even have an analytical expression. Consequently, it is88

not clear which function to use in order to sample efficiently from the target distribution. Indeed, we89

will see in the experimental section that (i) the optimality of the balancing function depends on the90

target distribution and that (ii) in some cases the optimal balancing function may be different from the91

ones proposed in [28]. In the next sections, we propose a strategy to automatically learn the balancing92

function from the target distribution, thus achieving fast convergence (burn-in) and fast mixing.93

3 LSB: Local Self-Balancing Strategy94

We start by introducing two different parametrizations for the family of balancing functions in95

increasing order of functional expressiveness. Then, we propose an objective criterion based on96

mutual information, that allows us to learn the parametrization with fast convergence and fast mixing97

on the target distribution.98

3.1 Parametrizations99

We state the following proposition and then use it to devise the first parametrization.100

Proposition 1. Given n balancing functions g(t) = [g1(t), . . . , gn(t)]
T and a vector of scalar101

positive weights w = [w1, . . . , xn]
T , the linear combination g(t) .= wTg(t) satisfies the balancing102

property.103

Proof. g(t) = wTg(t) =
∑n
i=1 wigi(t) = t

∑n
i=1 wigi(1/t) = twTg(1/t) = tg(1/t)104

Despite its simplicity, the proposition has important implications. First of all, it allows to convert the105

problem of choosing the optimal balancing function into a learning problem. Secondly, the linear106

combination introduces only few parameters (in the experiments we consider n = 4) and therefore107

the learning problem can be solved in an efficient way. The requirement about positive weights is108

necessary to guarantee ergodicity (see Supplementary material on ergodicity for further details).109

The first parametrization (LSB 1) consists of the relations wi = eθi/
∑n
j=1 e

θj for all i = 1, . . . , n,110

where θθθ = [θ1, . . . , θn] ∈ Rn. Note that the softmax is used to smoothly select one among the n111

balancing functions. Therefore, we refer to this parametrization as learning to select among existing112

balancing functions.113

The second parametrization (LSB 2) is obtained from the following proposition.114

Proposition 2. Given gθθθ(t) = min{hθθθ(t), thθθθ(1/t)}, where hθθθ is a universal real valued function115

approximator parameterized by vector θθθ ∈ Rk (e.g. a neural network), and any balancing function `,116

there always exists θ̃θθ ∈ Rk such that gθ̃θθ(t) = `(t) for all t > 0.117

Proof. Given any balancing function `, we can always find a θ̃θθ such that hθ̃θθ(t) = `(t) for all t > 0118

(because hθθθ is a universal function approximator). This implies that hθ̃θθ satisfies the balancing property,119

i.e. hθ̃θθ(t) = thθ̃θθ(1/t) for all t > 0. Consequently, by definition of gθθθ, we have that gθθθ(t) = hθ̃θθ(t).120

And finally we can conclude that gθθθ(t) = `(t) for all t > 0.121

In theory, LSB 2 parameterizes the whole family of balancing functions and it allows to find the122

optimal one from the whole set.3 In practice, it is better to restrict the analysis only to monotonic123

increasing functions, as we prefer to choose a proposal distribution sampling from regions of higher124

3Note also that gθθθ(t) is a balancing function for any parameter θθθ.
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probability mass. In the following proposition, we provide sufficient conditions to ensure the125

monotonicity of LSB 2.126

Proposition 3. Define gθθθ as in LSB 2. Assume that hθθθ(t) is a differentiable and monotonic increasing127

function with respect to variable t, satisfying the relation hθθθ(1/t) ≥ 1
t
dhθθθ(1/t)

dt for all t > 0. Then,128

gθθθ is a monotonic increasing function in t.129

Proof. We have that hθθθ(1/t) − 1
t
dhθθθ(1/t)

dt ≥ 0 for all t > 0. Also, note that dthθθθ(1/t)
dt =130

hθθθ(1/t) − 1
t
dhθθθ(1/t)

dt > 0. Therefore, thθθθ(1/t) is a monotonic increasing function in t for131

all t > 0. Now, consider any t1, t2 with t1 ≥ t2 > 0, gθθθ(t1) = min{hθθθ(t1), t1hθθθ(1/t1)}132

and gθθθ(t2) = min{hθθθ(t2), t2hθθθ(1/t2)}. By monotonicity of hθθθ(t) and thθθθ(1/t), we have that133

hθθθ(t1) ≥ hθθθ(t2) and t1hθθθ(1/t1) ≥ t2hθθθ(1/t2). Therefore, we can conclude that gθθθ(t1) ≥ gθθθ(t2) for134

all t1, t2 with t1 ≥ t2 > 0.135

Therefore, to build gθθθ, we need a monotonic function hθθθ(t). Specifically, we can choose a monotonic136

network [24] and constrain hθθθ to satisfy the condition hθθθ(1/t) ≥ 1
t
dhθθθ(1/t)

dt for all t > 0 (see the137

Supplementary material for further information on how to impose the condition on hθθθ). In the138

next paragraphs, we propose an objective and a learning strategy to train the parameters of the two139

parametrizations.140

3.2 Objective and Learning Algorithm141

The goal here is to devise a criterion to find the balancing function with the fastest speed of conver-142

gence/mixing on the target distribution p. Note that the ideal case would be to sample from p in an143

independent fashion. We have already mentioned that this operation is computationally expensive144

due to the intractability of computing the normalizing constant. In our case, we have to consider145

the agnostic case, because the proposal distribution is a tractable surrogate for p. In this regard, we146

define a criterion taking into account the distance from this ideal case. Specifically, we measure the147

distance of the transition probability of the Markov chain in Eq. 1 from the target p and the amount148

of dependence between consecutive samples generated through it. In other words, we introduce the149

following criterion, which is indeed a form of mutual information objective:150

Iθθθ = KL
{
p(xxx)T̃θθθ(xxx

′|xxx)‖p(xxx)p(xxx′)
}
= Ep

{
KL{T̃θθθ(xxx′|xxx)‖p(xxx′)}

}
(3)

where KL is the Kullback Leibler divergence and Ep is the expected value of random vector xxx151

distributed according to p and152

T̃θθθ(xxx
′|xxx) .=

{
Tθθθ(xxx

′|xxx)
ZT

∀xxx′ 6= xxx
0 otherwise

(4)

is a conditional distribution defined over the transition probability Tθθθ(xxx′|xxx) in Eq. 1, where we have153

explicited the dependence on θθθ and we have introduced the normalizing constant ZT , to ensure154

that T̃θθθ(xxx′|xxx) is a proper probability distribution. Note also that T̃θθθ(xxx′|xxx) discards all pair of equal155

samples, i.e. xxx′ = xxx, as they are samples rejected by the Markov chain.156

Minimizing Eq. 3 allows us to find the configuration of parameters bringing us "closer" in terms157

of Kullback Leibler to the ideal case, namely Tθθθ(xxx′|xxx) = p(xxx′) for all xxx′ 6= xxx. The expectation in158

Eq. 3 requires access to samples from p and therefore cannot be computed. Nevertheless, note that159

the KL term in Eq. 3 can be rewritten in an equivalent form (see the Supplementary material for the160

derivation):161

KL{T̃θθθ(xxx′|xxx)‖p(xxx′)} ∝ J (θθθ,xxx)
.
= EQθθθ0

{
ωθθθ,θ0θ0θ0Aθθθ(xxx

′,xxx) log
Aθθθ(xxx

′,xxx)Qθθθ(xxx
′|xxx)

p̃(xxx′)

}
(5)

where ωθθθ,θθθ0 = Qθθθ(xxx
′|xxx)

Qθθθ0 (xxx
′|xxx) and θθθ0 is the reference parameter vector for the proposal distribution.162

Alternatively to Eq. 3, we can minimize the following quantity:4163

J(θθθ) = EQinit{J (θθθ,xxx)}+ EQθθθ0 {J (θθθ,xxx)} (6)

where Qinit is the distribution used at initialization, typically uniform on the support X . Note that164

the first and the second terms in Eq. 6 encourage fast burn-in and fast mixing, respectively. Therefore,165

θ can be learnt using the procedure described in Algorithm 1.166

4See the Supplementary material for the modification of the objective for parametrization LSB 2.
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Algorithm 1: Local Self-Balancing Training Procedure.
Learning rate η = 1e− 4, initial parameter θθθ0, burn-in iterations K and batch of samples N .
{xxx(i)0 }Ni=1 ∼ Qinit ;

while k=1:K do
{xxx(i)init}Ni=1 ∼ Qinit ;
while i=1:N do
Ĵ (i)′ ← Estimate of J (θθθ,xxx(i)init) using one sample from Qθθθ0(xxx|xxx

(i)
init) ;

Ĵ (i) ← Estimate of J (θθθ,xxx(i)0 ) using one sample from Qθθθ0(xxx|xxx
(i)
0 ) ;

end
Ĵ(θθθ) = 1

N

∑N
i=1 Ĵ (i)′ + 1

N

∑N
i=1 Ĵ (i) ;

θθθ ← θθθ − η
N∇θθθĴ(θθθ) ;

Update {xxx(i)0 }Ni=1 with accepted samples ;
θθθ0 ← θθθ ;

end

4 Related Work167

It’s important to devise strategies, which enable the automatic adaption of proposals to target168

distributions, not only to reduce user intervention, but also to increase the efficiency of MCMC169

samplers [5, 13]. Recently, there has been a surge of interest in using machine learning and in170

particular deep learning to learn proposals directly from data, especially in the continuous domain.171

Here, we provide a brief overview of recent integrations of machine learning and MCMC samplers172

according to different parametrizations and training objectives.173

Parametrizations and objectives in the continuous domain. The work in [27] proposes a strategy174

based on block Gibbs sampling, where blocks are large motifs of the underlying probabilistic graphical175

structure. It parameterizes the conditional distributions of each block using mixture density networks176

and trains them using meta-learning on a log-likelihood-based objective. The work in [25] considers177

a global sampling strategy, where the proposal is parameterized by a deep generative model. The178

model is learnt through adversarial training, where a neural discriminator is used to detect whether or179

not generated samples are distributed according to the target distribution. Authors in [10] propose a180

global sampling strategy based on MCMC with auxiliary variables [12]. The proposals are modelled181

as Gaussian distributions parameterized by neural networks and are trained on a variational bound182

of a log-likelihood-based objective. The works in [15, 8] propose a gradient-based MCMC [7, 9],183

where neural models are used to learn the hyperparameters of the equations governing the dynamics184

of the sampler. Different objectives are used during training. In particular, the work in [8] uses185

a log-likelihood based objective, whereas the work in [15] considers the expected squared jump186

distance, namely a tractable proxy for the lag-1 autocorrelation function [21]. The work in [30]187

proposes a global two-stage strategy, which consists of (i) sampling according to a Gaussian proposal188

and (ii) updating its parameters using the first- and second-order statistics computed from a properly189

maintained pool of samples. The parameter update can be equivalently seen as finding the solution190

maximizing a log-likelihood function defined over the pool of samples. Finally, the work in [22]191

extends this last strategy to the case of Gaussian mixture proposals. All these works differ from the192

current one in at least two aspects. Firstly, it is not clear how these parametrizations can be applied193

to sampling in the discrete domain. Secondly, the proposed objectives compute either a distance194

between the proposal distribution and the target one, namely using an adversarial objective or a195

variational bound on the log-likelihood, or a proxy on the correlation between consecutive generated196

samples, namely the expected squared jump distance. Instead, our proposed objective is more general197

in the sense that it allows to (i) reduce the distance between the proposal and the target distribution as198

well as to (ii) reduce the statistical dependence between consecutive samples, as being closely related199

to mutual information.200

Sampling in the discrete domain. Less efforts have been devoted to devise sampling strategies201

for a purely discrete domain. Most of the works consider problem relaxations by embedding202

the discrete domain into a continuous one, applying existing strategies like Hamiltonian Monte203

Carlo [29, 20, 1, 6, 19] on it and then moving back to the original domain. These strategies are204
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(a) Noisy (b) Clean

Figure 1: Examples of ααα in different settings of the Ising model (30× 30), i.e noisy µ = 1, σ = 3
and clean µ = 3, σ = 3.

suboptimal, either because they consider limited settings, where the target distribution has specific205

analytic forms [29], or because they make strong assumptions on the properties of the embeddings,206

thus not preserving the topological properties of the discrete domain [20, 1, 6, 19].5. The work207

in [28] provides an extensive experimental comparison between several discrete sampling strategies,208

including the ones based on embeddings, based on stochastic local search [11] and the Hamming ball209

sampler [26], which can be regarded as a more efficient version of block Gibbs sampling. Notably,210

the sampling strategy based on locally informed proposals and balancing functions proposed in [28]211

can be considered as the current state of the art for discrete MCMC. Our work builds and extends212

upon this sampler by integrating it with a machine learning strategy. To the best of our knowledge,213

this is the first attempt to consider the integration of machine learning and MCMC in the discrete214

setting.215

5 Experiments216

Firstly, we analyze samplers’ performance on the 2D Ising model. Then, we perform experiments217

on additional UAI benchmarks. Code to replicate the experiments in this section is available in the218

Supplementary material. All experiments are performed on a laptop provided with 4 Intel i5 cores (2219

GHz) and 16 GB of RAM memory.220

5.1 2D Ising Model221

The Ising model has been introduced in statistical mechanics in 1920 and it has been applied in222

several domains since then. In this section, we consider an application to image analysis, where the223

goal is to segment an image to identify an object from its background. Consider a binary state space224

X = {−1, 1}V , where (V,E) defines a square lattice graph of the same size of the analyzed image,225

namely n× n. For each state configuration x = (xi)i∈V ∈ X , define a prior distribution226

pprior(x) ∝ exp

{
λ
∑

(i,j)∈E

xixj

}
where λ is a non-negative scalar used to weight the dependence among neighboring variables in the227

lattice. Then, consider that each pixel yi is influenced only by the corresponding hidden variable228

xi and generated according to a Gaussian density with mean µxi and variance σ2. Note that each229

variable in the lattice tells whether the corresponding pixel belongs to the object or to the background230

(1 or -1, respectively). The corresponding posterior distribution of a hidden state x given an observed231

image is defined as follows:232

p(x) =
1

Z
exp

{∑
i∈V

αixi + λ
∑

(i,j)∈E

xixj

}
(7)

where αi = yiµ/σ
2 is a coefficient biasing xi towards either 1 or −1. Therefore, ααα = (αi)i∈V233

contains information about the observed image. Figure 1 shows two synthetically generated examples234

of ααα. Our goal is to analyze the sampling performance on the distribution defined in Eq. 7.235

Universally optimal balancing function. We start by comparing the balancing functions proposed236

in [28], namely g(t) = t/(1+t) (a.k.a Barker function),
√
t,min{1, t} and max{1, t}, in order to test237

5For example by considering transformations that are bijective and/or by proposing transformations which
allow to tractably compute the marginal distribution on the continuous domain.
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(a) Independent (burn-in) (b) Dependent (burn-in) (c) Independent (mixing) (d) Dependent (mixing)

Figure 2: Samplers’ performance on noisy and clean cases of the Ising model (30× 30). (a)-(b) are
the traceplots for the burn-in phase, (c)-(d) are the autocorrelation functions for the mixing one.

Table 1: Quantitative performance for mixing measured by effective sample size on the noisy and
clean cases of the Ising model (30× 30). max{1, t} is performing significantly worse in statistical
terms than the other functions.

Setting t
1+t

√
t min{1, t} max{1, t}

Noisy 2.48± 0.212.48± 0.212.48± 0.21 2.30± 0.222.30± 0.222.30± 0.22 2.42± 0.192.42± 0.192.42± 0.19 1.75± 0.17
Clean 2.58± 0.732.58± 0.732.58± 0.73 1.99± 0.431.99± 0.431.99± 0.43 2.56± 0.622.56± 0.622.56± 0.62 1.26± 0.12

whether there is a universally optimal balancing function among this subset. In particular, we run the238

samplers over two instances of the Ising model, viz. a setting with independent (λ, µ, σ) = (0, 1, 3)239

and another one with dependent (λ, µ, σ) = (1, 1, 3) variables. We evaluate the performance over 30240

repeated trials by analyzing the convergence speed during the burn-in phase (using traceplots) and241

the mixing time (computing the autocorrelation function and the effective sample size). We visualize242

the corresponding results in Figure 2 and report the quantitative performance in Table 1. Further243

details about the simulations are available in the Supplementary Material.244

By comparing the performance of convergence speed and mixing time in Figure 2, we observe that245

unbounded functions, like max{1, t} and
√
t, tend to converge faster while having slower mixing246

compared to the other two functions, thus being in line with the empirical findings of [28]. This is due247

to the fact that unbounded functions have an intrinsic preference for visiting more likely regions at the248

cost of a reduced amount of exploration. Moving a step further, we compare Figure 2a and Figure 2b249

and observe that the optimal function is different for the two cases (i.e. max{1, t} in the independent250

case and
√
t in the dependent one). These results suggest that optimality not only depends on the251

performance of burn-in and mixing but also on the distribution we are sampling from. This allows252

us to reject the hypothesis about the existence of a universal optimum among the pool of balancing253

functions proposed in [28] and to motivate our next set of experiments, where the aim is to learn to254

adapt the balancing function to the target distribution.255

Learning the balancing function. We compare the four balancing functions used in the previous256

set of experiments with our two parametrizations on four different settings of the Ising model, namely257

independent and noisy (λ, µ, σ) = (0, 1, 3), independent and clean (λ, µ, σ) = (0, 3, 3), dependent258

and noisy (λ, µ, σ) = (1, 1, 3) and dependent and clean (λ, µ, σ) = (1, 3, 3) cases and show the259

corresponding performance in Figure 3 and Table 2. We leave additional details and results to the260

Supplementary Material.261

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 3: Samplers’ performance on four cases of the Ising model (30× 30) for the burn-in phase.
(a) Case 1: Independent-noisy, (b) case 2: Independent-clean, (c) case 3: Dependent-noisy, (d) case 4:
Dependent-clean
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Table 2: Quantitative performance for mixing measured by effective sample size on the four cases of
the Ising model (30× 30). max{1, t} is performing significantly worse in statistical terms than the
other functions.

Setting t
1+t

√
t min{1, t} max{1, t} LSB 1 LSB 2

Case 1 2.48± 0.212.48± 0.212.48± 0.21 2.30± 0.222.30± 0.222.30± 0.22 2.42± 0.192.42± 0.192.42± 0.19 1.75± 0.17 2.50± 0.282.50± 0.282.50± 0.28 2.46± 0.282.46± 0.282.46± 0.28
Case 2 3.33± 0.323.33± 0.323.33± 0.32 2.94± 0.362.94± 0.362.94± 0.36 3.33± 0.333.33± 0.333.33± 0.33 1.72± 0.18 2.98± 0.242.98± 0.242.98± 0.24 3.33± 0.433.33± 0.433.33± 0.43
Case 3 2.58± 0.732.58± 0.732.58± 0.73 1.99± 0.431.99± 0.431.99± 0.43 2.56± 0.622.56± 0.622.56± 0.62 1.26± 0.12 2.48± 0.612.48± 0.612.48± 0.61 2.67± 0.842.67± 0.842.67± 0.84
Case 4 32.8± 9.232.8± 9.232.8± 9.2 18.5± 6.818.5± 6.818.5± 6.8 31.8± 10.031.8± 10.031.8± 10.0 2.60± 1.46 18.4± 8.018.4± 8.018.4± 8.0 30.8± 9.230.8± 9.230.8± 9.2

(a) Case 3 (b) Case 4

Figure 4: Realizations obtained after 500 (Case 3) and 300 (Case 4) burn-in iterations on the Ising
model.

From Figure 3, we can see that our first parametrization LSB 1 is able to always "select" an unbounded262

balancing function during burn-in, while when approaching convergence it is able to adapt to preserve263

fast mixing, as measured by the effective sample size in Table 2. It’s interesting to mention also that264

the softmax nonlinearity used in LSB 1 can sometimes slow down the adaptation due to vanishing265

gradients. This can be observed by looking at the case 4 of Figure 3, where for a large part of the266

burn-in period the strategy prefers max{1, t} over
√
t. Nevertheless, it is still able to recover a267

solution different from max{1, t} at the end of burn-in, as confirmed by the larger effective sample268

size in Table 2 compared to the one achieved by max{1, t}.269

Furthermore, we observe that our second parametrization LSB 2, which is functionally more expres-270

sive compared to LSB 1, allows to outperform all previous cases in terms of convergence speed, while271

preserving optimal mixing, as shown in Figure 3 and Table 2. This provides further evidence that272

the optimality of the balancing function is influenced by the target distribution and that exploiting273

such information can dramatically boost the sampling performance (e.g. in case 3 of Figure 3, LSB 2274

converges twice time faster as the best balancing function
√
t). Figure 4 provides some realizations275

obtained by the samplers for the cases with dependent variables λ = 1. We clearly see from these276

pictures that convergence for LSB 2 occurs at an earlier stage than the other balancing functions and277

therefore the latent variables in the Ising model converge faster to their ground truth configuration.278

(a) BN 1 (burn-in) (b) BN 2 (burn-in) (c) BN 1 (mixing) (d) BN 2 (mixing)

Figure 5: Samplers’ performance on Bayesian networks from UAI competition (100 variables).
(a)-(b) are the traceplots for the burn-in phase, (c)-(d) are the autocorrelation functions for the mixing
one.
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Table 3: Quantitative performance for mixing measured by effective sample size on two Bayesian
networks from UAI competition.

Dataset t
1+t

√
t min{1, t} max{1, t} LSB 1 LSB 2

BN 1 2.90± 0.76 3.41± 0.77 2.54± 0.32 2.70± 0.63 3.19± 0.46 3.22± 0.38
BN 2 3.43± 0.75 3.92± 0.94 3.78± 0.50 3.63± 0.67 3.52± 0.42 3.44± 0.44

5.2 Bayesian Networks: UAI data279

We evaluate how our strategy generalizes to different graph topologies compared to the one of the280

Ising model. In particular, we consider two Bayesian networks, with 100 discrete variables each281

and near-deterministic dependencies, from the 2006 UAI competition.6 Similarly to the previous282

experiments for the Ising model, we measure the performance over 5 repeated trials by analyzing283

the convergence speed during the burn-in phase (using traceplots) and the mixing time (computing284

the autocorrelation function and the effective sample size). Further details about the simulations are285

available in the Supplementary Material.286

We observe that the proposed strategy is able to adapt to the target distribution, thus achieving fast287

convergence (Figure 5) while preserving fast mixing (both Figure 5 and Table 3) compared to existing288

balancing functions.289

6 Conclusion290

We have presented a strategy to learn locally informed proposals for MCMC in discrete spaces. The291

strategy consists of (i) a new parametrization of balancing functions and (ii) a learning procedure292

adapting the proposal to the target distribution, in order to improve the sampling performance, both293

in terms of convergence speed and mixing.294

Note that the LSB sampler belongs to the family of local sampling strategies, thus inheriting their295

limitations. The locality assumption can be quite restrictive, for example when sampling from discrete296

distributions with deterministic dependencies among variables. In such situations, local sampling297

might fail to correctly sample from the target in a finite amount of time, as being required to cross298

regions with zero probability mass. This remains an open challenge to be investigated in future work.299

It’s important to mention that this work is foundational and general. The proposed strategy reduces300

the amount of user intervention and improves the sampling efficiency. However, these results could301

have potential impacts on society. At first glance, one could argue that the automation of the sampling302

procedure could have a negative impact on society as reducing the amount of human labour required303

to run the sampling strategy. However, we think that the benefits are of a far greater number compared304

to the negative aspects. In fact, the procedure reduces the costs of domain knowledge, with the305

advantage of democratizing the sampling strategy and reducing suboptimal configurations of the306

algorithm resulting from possibly wrong human decisions. Furthermore, the proposed strategy307

introduces a small amount of additional computation, which is used to reduce the amount of queries308

to the target distribution, thus improving the query and the sampling efficiency. We think that this last309

aspect could contribute positively towards devising more energy-efficient algorithms and therefore310

being more environment friendly.311
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