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ABSTRACT

In drug discovery, prioritizing compounds for experimental testing is a critical task
that can be optimized through active learning by strategically selecting informa-
tive molecules. Active learning typically trains models on labeled examples alone,
while unlabeled data is only used for acquisition. This fully supervised approach
neglects valuable information present in unlabeled molecular data, impairing both
predictive performance and the molecule selection process. We address this limi-
tation by integrating a transformer-based BERT model, pretrained on 1.26 million
compounds, into the active learning pipeline. This effectively disentangles repre-
sentation learning and uncertainty estimation, leading to more reliable molecule
selection. Experiments on Tox21 and ClinTox datasets demonstrate that our ap-
proach achieves equivalent toxic compound identification with 50% fewer itera-
tions compared to conventional active learning. Analysis reveals that pretrained
BERT representations generate a structured embedding space enabling reliable
uncertainty estimation despite limited labeled data, confirmed through Expected
Calibration Error measurements. This work establishes that combining pretrained
molecular representations with active learning significantly improves both model
performance and acquisition efficiency in drug discovery, providing a scalable
framework for compound prioritization.

1 INTRODUCTION

Active learning (AL) is a semi-supervised machine learning approach that selects new data points
to be labeled in an iterative process. Starting with a small initial dataset, the model strategically
identifies and requests labels for the most informative samples from a larger unlabeled pool. These
newly labeled points are then incorporated into the training set, and the model is retrained, progres-
sively improving its predictive accuracy through each iteration(Cohn et al., [1994). This iterative
approach enables efficient model development with minimal labeled data, making it particularly
valuable when labeling is expensive or time-consuming.

The effectiveness of active learning critically depends on accurate uncertainty estimation to guide
the selection of informative training samples. In predictive modeling, two fundamental uncertainty
types exist: epistemic uncertainty, arising from insufficient data coverage in chemical space, and
aleatoric uncertainty, stemming from experimental measurement noise (Hiillermeier & Waegeman,
2021). Traditional approaches to uncertainty quantification in drug discovery like distance met-
rics and ensemble variance only capture epistemic uncertainty (Liu & Wallqvist, 2019} [Lakshmi-
narayanan et al.,2017), and auxiliary neural networks are needed for aleatoric uncertainty estimation
(Hirschfeld et al., 2020). However, Bayesian frameworks offer a unified approach to capture both
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uncertainty types in a principled manner (Kendall & Gal, [2017b} Zhang & Leel[2019). Bayesian ex-
perimental design (BeD) formalizes the selection process by modeling uncertainties in predictions
and using them to guide experimental choices. Several Bayesian acquisition functions have been
developed to optimize the selection process. Bayesian Active Learning by Disagreement (BALD)
selects samples that maximize information gain about model parameters (Houlsby et al.l [2011)),
while Expected Predictive Information Gain (EPIG) prioritizes samples expected to most improve
predictive performance (Smith et al.,2023)).

However, the success of these Bayesian approaches fundamentally depends on the quality of molec-
ular representations. Traditional quantitative structure-property relationships (QSPR) methods rely
on handcrafted molecular descriptors (Cherkasov et al., 2014])), which fail to capture complex chem-
ical patterns, leading to poorly calibrated uncertainty estimates that compromise the effectiveness of
even sophisticated Bayesian acquisition functions. While modern deep learning approaches, partic-
ularly graph neural networks and transformer-based architectures, overcome this through end-to-end
representation learning (Cherkasov et al.,[2014; Heid et al.,[2024), they require large training datasets
and are impractical in active learning scenarios that begin with limited data (=100 molecules).

To address these limitation, we leverage MolBERT (Fabian et al.| 2020), a BERT-based model pre-
trained on 1.26 million compounds, by using its learned molecular representations as features in our
active learning pipeline. This integration enables robust uncertainty estimation with limited labeled
data, bridging the gap between deep learning capabilities and active learning constraints in drug
discovery.

2 MATERIALS AND METHODS

2.1 BAYESIAN EXPERIMENTAL DESIGN AND ACTIVE LEARNING

Bayesian experimental design provides a principled framework for optimizing experiment utility
(Rainforth et al., 2024). Let £ € = be the design in space = and y be the experimental output with
likelihood p(y|€). The optimal design £* is obtained by maximizing the expected utility U (£, y):

& = ar% max Eympyle) [UE 9] M
SS5)

where the expectation accounts for unobserved outcomes.

In active learning, we apply this framework to optimize the labeling process, starting with a small
initial labeled set (=100 samples) and a large pool of unlabeled data. Consider a probabilistic
model f(x; ¢) with likelihood p(y|x, ¢) for predicting molecular properties y from molecules x,
where ¢ has prior p(¢). Given a labeled dataset D = {(z;,;)}.\.,, the posterior is p(¢|D)

va p(yi|zi, #)p(4). From the unlabeled pool D, = {(x)}¥* (analogous to =), we select the
most informative sample x4 (analogous to &) to label, updating the posterior with the new observa-

tion (x¥, ys).

The informativeness of unlabeled data points is defined by the acquisition function explained below:

Uniform (Random) Acquisition Function: The uniform(random) acquisition function randomly

selects unlabeled data points with equal probability, serving as a baseline strategy. Specifically, for

any unlabeled input € D, the uniform acquisition function is defined as:
1

DI’

where |D| is the size of the pool dataset. While simple, this strategy provides an important baseline

for comparing more sophisticated acquisition functions like BALD and EPIG, as it helps quantify
the benefits of active learning over random sampling.

UNIFORM(z) = 2)

BALD Acquisition Function: Bayesian Active Learning by Disagreement (BALD) (Houlsby
et al., [2011)), which is the expected information gain, measured by the reduction in Shannon en-
tropy of the model parameter ¢ from labeling @ across all possible realizations of its label y given
by p(y|z, D). Specifically, we have BALD(x) = E, ., (y=,p) [H[¢|D] — H[$|x,y, D]], which is
usually intractable due to the high-dimensional posterior over the parameters. By observing the
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equivalence between BALD and the conditional mutual information between the parameter and the
unknown output, I[¢, y|x, D], BALD can be rearranged to compute the information in the output
space:

BALD(z) =1[¢, y|z, D] = Hly|z, D] — Eyp(yip) [Hly|, 9] 3)
with the optimal design * = arg max, BALD(x). The first term in BALD measures the total un-
certainty on the output y for its input & while the second term measures its aleatoric uncertainty, i.e.,
the irreducible uncertainty from observational noise. Therefore, BALD selects & with the highest
epistemic uncertainty, i.e., the reducible uncertainty from the lack of data (Kendall & Gal, [2017a)).

EPIG Acquisition Function: BALD targets global uncertainty reduction on the parameter space
¢. However, in most supervised learning tasks, users are interested in improving the model accuracy
on a target set p(x.), e.g., the test set. Therefore, recent work (Smith et al.| [2023) claimed that as
acquisition function, Expected Predictive Information Gain (EPIG), explicitly reducing the model
output uncertainty on random samples from p(x.) is more effective than BALD in improving the
model performance, defined as:

EPIG(SC) = Ep(m*) [H[y*|m*, D] — Ep(y\m,D) [H[y*\m*, Y, .’13]]] (4)

is expected reduction of the “expected predictive uncertainty” over the farget input distribution
p(x.) by observing the label of x. Intuitively, compared with BALD which reduces the param-
eter uncertainty globally, EPIG only reduces the parameter uncertainty that reduces model output
uncertainty on p(x.,).

2.2  SEMI-SUPERVISED ACTIVE LEARNING (SSAL)

Traditional supervised learning relies solely on labeled data, which is inefficient for active learn-
ing given the initially limited dataset. Learning a good input manifold for uncertainty estimation
becomes particularly challenging in the complex chemical space (Zhou et al., [2019). While semi-
supervised active learning approaches (Zhang et al., 2019; Hao et al.} [2020) attempt to address this
by leveraging both initial labeled-set and unlabeled pool-set, most public molecular datasets remain
too small for effective representation learning.

In this paper, we propose to use molecular representations from a pretrained self-supervised learning
model. Specifically, we encoded the molecular SMILES sequences into corresponding embeddings,
utilizing a large transformer model MolBERT, pretrained on 1.26 million SMILES via masking,
alongside physicochemical properties (Fabian et al., 2020). The embedding of each SMILES se-
quence is a pooled output from the pretrained MolBERT with dimension 764. We employed these
embeddings from MoIBERT to train a fully connected (i.e., MLP) head. This strategy allowed us
to leverage a significant volume of molecule data, offering particular benefits for conducting active
learning on relatively small datasets.

2.3 BASELINES

We consider three acquisition functions, random, BALD, and EPIG (Section @) and two learn-
ing paradigms, supervised active learning (AL) and semi-supervised active learning (SSAL). In
SSAL, we use the BERT features pretrained on 1.26 million SMILES, and in AL, we use ECFP,
or Extended-Connectivity Fingerprints, directly. ECFP is a method used in cheminformatics to
represent molecular structures as binary fingerprints, capturing structural information by encod-
ing the presence or absence of substructural features within a specified radius around each atom.
Through iterative traversal of the molecular structure, unique substructural fragments are identified
and hashed into a fixed-length bit vector, generating a binary fingerprint where each bit indicates the
presence or absence of a specific substructural fragment. We encoded each molecule into a fixed
1024-dimensional binary vector using a radius of 4.

3 RESULTS AND DISCUSSION

For the Tox21 dataset, the impact of feature quality on active learning efficiency manifests dis-
tinctly across acquisition functions. BERT-EPIG demonstrates superior learning dynamics with a
steeper improvement slope compared to ECFP-EPIG, indicating more efficient sample selection
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Figure 1: Active learning performance comparison on Tox21 and ClinTox datasets using BERT and
ECFP molecular representations. BERT features consistently outperform ECFP, with EPIG showing
superior sample selection over BALD and uniform sampling. Lines show mean performance (aver-
aged across 12 tasks and 3 seeds for Tox21; 10 seeds for ClinTox) with 95% confidence intervals
(shaded regions). Evaluation metric is average precision.

per iteration. The timing of separation from random baseline reveals feature quality’s influence
on uncertainty estimation - BERT-BALD diverges from random sampling at 400 iterations, while
ECFP-BALD requires 600 iterations, underscoring how better features enable earlier identification
of informative samples.

The ClinTox results further emphasize this pattern while revealing task-specific behaviors. BERT-
EPIG achieves convergence significantly earlier (300 iterations) compared to ECFP-EPIG (600 it-
erations), demonstrating how high-quality representations accelerate learning. Notably, BALD un-
derperforms random sampling in both feature spaces, aligning with previous findings about BALD’s
potential limitations in certain scenarios. These observations, combined with our UMAP visualiza-
tion showing BERT’s more structured embedding space, strongly support our hypothesis that ef-
fective active learning fundamentally depends on the quality of molecular representations enabling
reliable uncertainty estimation.

3.1 BETTER FEATURES ENABLE BETTER UNCERTAINTY ESTIMATION
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Figure 2: Performance gains of EPIG and BALD compared to random sampling baseline for Tox21
and ClinTox. BERT features (light colors) show consistently higher gains than ECFP (dark colors),
with EPIG demonstrating more stable improvements than BALD across iterations. The y-axis shows
the difference in average precision between each acquisition function and its corresponding random
baseline (averaged across 12 tasks and 3 seeds for Tox21; 10 seeds for ClinTox).

Our experimental results reveal two key aspects of active learning performance: absolute gains
from feature representations and relative gains from acquisition functions. Comparing absolute
performance (Figure T), BERT features consistently outperform ECFP, with BERT-EPIG achieving
the highest average precision (0.38 for Tox21, 0.50 for ClinTox). While this superior performance
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could stem from better feature quality, we demonstrate it primarily arises from improved uncertainty
estimation.

To disentangle these factors, we analyzed relative gains over random sampling baselines (Figure [2).
The steeper slope of BERT-EPIG’s gain curve in early iterations (0-200) indicates more accurate un-
certainty estimation, leading to efficient sample acquisition. BERT-EPIG achieves a maximum gain
of 0.05 over BERT-Random in Tox21, compared to ECFP-EPIG’s 0.02 gain over ECFP-Random.
This disparity suggests BERT features not only provide better base performance but also enable
more reliable uncertainty estimation for superior sample selection.

The acquisition function comparison further reveals EPIG’s advantages over BALD. While BALD
shows positive gains after 400-600 iterations, EPIG maintains consistent improvements from early
stages. This difference is most pronounced in ClinTox, where ECFP-BALD initially degrades per-
formance (-0.125) before recovery, while EPIG maintains stable gains. These findings demonstrate
that successful molecular property prediction requires both high-quality representations and well-
calibrated uncertainty estimation, with BERT-EPIG optimally combining both aspects.

3.2 FURTHER ANALYSIS

BERT features exhibit a more structured organization with distinct clusters of positive samples, en-
abling better-informed predictions about unlabeled samples, while ECFP representations display
a scattered distribution with significant overlap between positive and negative regions, as demon-
strated in Figure [A.T] This structural difference manifests in sample acquisition efficiency, where
BERT-EPIG identifies approximately 70% of toxic compounds within 400 iterations, compared to
600 iterations for BERT-BALD and 800 iterations for BERT-Uniform (Figure[A.2] panel 3). The su-
periority of BERT-based approaches is further established through Expected Calibration Error (ECE)
analysis, where BERT features demonstrate consistently better uncertainty calibration, particularly
in early learning stages (Figure panels 1 and 2). While EPIG with BERT features achieves
the fastest reduction in ECE, ECFP-based methods maintain elevated ECE values for longer periods
and require substantially more labeled data to achieve comparable calibration. This comprehen-
sive analysis reveals that the effectiveness of Bayesian acquisition functions fundamentally depends
on well-structured molecular representations that enable reliable uncertainty estimation from lim-
ited training data, thus explaining the significant performance advantage of BERT-based approaches
over ECFP in active learning scenarios.

4 CONCLUSION

Our study demonstrates that the success of active learning in molecular property prediction depends
critically on the synergy between feature representations and acquisition functions. BERT features
enable more effective uncertainty estimation compared to ECFP, as evidenced by faster ECE con-
vergence and steeper learning curves. EPIG consistently outperforms BALD, maintaining stable
improvements from early iterations across both datasets. The superior performance of BERT-EPIG
stems from two key factors: (1) BERT’s structured representation space, which clusters chemically
similar compounds, facilitating reliable uncertainty estimation from limited data, and (2) EPIG’s
ability to leverage this structure for efficient sample acquisition, particularly in identifying rare pos-
itive samples. These findings highlight that successful active learning requires both high-quality
molecular representations and well-calibrated uncertainty estimation. Future work should incorpo-
rate biological context during pretraining, leveraging protein-ligand interaction data and pathway
information to enhance the model’s ability to capture biologically relevant molecular features, lead-
ing to more robust uncertainty estimation that is crucial for active learning applications.
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A APPENDIX

A.1 DATASETS

Tox21: The Tox21 dataset, or Toxicology in the 21st Century dataset, is a publicly available dataset
used in the field of computational toxicology (Richard et al.l[2021). The Tox21 dataset consists of a
large collection of chemical compounds, each of which is associated with various types of toxicity
outcomes. These outcomes are typically measured using high-throughput screening assays to eval-
uate the potential toxic effects of the compounds. The dataset provides a quantitative assessment
(in form of binary labels) of toxicity of ~ 8000 compounds in 12 different toxicity pathways. The
Tox21 dataset is widely used as a benchmark in the development of in silico toxicology models.
In this dataset, 6.24% measurements are active (ranges from 2% to 12%), 73% are inactive, while
20.56% are missing values.

ClinTox: The ClinTox dataset (Gayvert et al.l 2016) combines data from two distinct sources:
FDA-approved drugs and drugs that failed clinical trials due to toxicity. It contains information for
1,484 compounds with binary labels. The dataset provides valuable insights into the relationship
between chemical structures and drug safety profiles in human clinical trials.

A.2 DATA SPLITTING

Test, Train set: For the better of evaluation of generalization, we employed scaffold splitting with
80:20 ratio to create distinct training and testing sets. Scaffold splitting partitions a molecular dataset
according to core structural motifs identified by the Bemis-Murcko scaffold representation (Bemis
& Murcko, [1996), prioritizing larger groups while ensuring that the train and test sets do not share
identical scaffolds. The test set is identical for all the experiments.

Initial and Pool Sets: A balanced initial set was constructed by randomly selecting 100 molecules
from the training set, with equal representation of positive and negative instances. Subsequently, a
pool set was generated by excluding the initial set from the training set.

A.3 PRACTICAL BAYESIAN NEURAL NETWORKS

In this work, we use a Bayesian neural network to account for the model uncertainty. Previous stud-
ies on dropout variational inference (Gal & Ghahramani, |2016) suggest that a practical Bayesian
neural network for a wide variety of architectures can be obtained by simply training a neural net-
work with dropout (MC dropout), and interpreting this as being equivalent to variational inference
(Blei et al.,2017). The uncertainty is then estimated by using multiple forward-passes with different
dropout masks. Although the uncertainty from MC dropout is often underestimated, it has been a
popular choice for Bayesian active learning with neural networks and shows promise on real-world
datasets (Gal et al., 2017; Rakesh & Jain, [2021}).

This neural network uses x( initialized as the input features a, which can be either BERT fea-
tures (in the semi-supervised AL) or binary fingerprints (in the supervised AL). We utilize dropout
for uncertainty estimation, batch normalization for training stability, and the rectified linear unit
(ReLU) activation function as the default activation. Additionally, the network incorporates a skip
connection, merging the input and output of the hidden layer, enhancing information flow. Finally,
the output layer generates logits, which can be transformed into probabilities by passing through a
sigmoidal activation function.

o =ax BERT features or ECFP

2y = Dropout(ReLU(BatchNorm(Wyx( + by)))

Z¢1+1 = BatchNorm(Wy 1@y + byy1) 5)
@11 = Dropout(ReLU(x¢ + &y41))

Tout = Weq2Ter1 +bygg

The hyper-parameters of this model are given in table
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Approximating acquisition functions: In practice, the posterior p(¢|D) is intractable, but we can
approximate each of the acquisition functions using an approximated distribution ¢(¢), such as the
dropout distribution (Gal & Ghahramanil [2016) used in Section [A.3] Specifically, for BALD, the
acquisition function can be rewritten as:

BALD(z) = H[y|z, D] — E4p(sip) [Hly|z, 9]

=— Y ply=cle,D)logp(y = clx, D) +Egiy | Y ply=cla,¢)logp(y = clz,¢)| ,
ce{0,1} ce{0,1}
(6)
where c is the class label that y can take and p(y = c|z, D) = Eq4) [p(y = clz, 9)].
For EPIG (Smith et al.},2023)), first we observe
EPIG(x) = Ep(a.) [KL [p(y, y«|2, ., D)|p(y|z, D)p(y« |2+, D)I] (7
where p(y|x, D) ~ Eq(y) [p(ylz, ¢)] and p(y, ys |z, 2+, D) = Ey(g) [p(ylz, 0)p(y«| @, 9)].

All expectations in above acquisition functions can be approximated with Monte Carlo sampling.
For example, with 7" samples from g(¢):

T

By Iy, 0l > 7 > plyla, 6), ®

t=1
where ¢(*) ~ ¢(¢).

A.4 ANALYSIS OF LEARNED REPRESENTATIONS
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Figure A.1: UMAP visualization of molecular features projected into 2D space, BERT (left) and
ECFP (right). The points represent individual molecules colored by their class labels (red for posi-
tive, green for negative)

To understand why BERT-based approaches significantly outperform ECFP in active learning, we
visualized both representation spaces using UMAP dimensionality reduction (Figure [AT). The
BERT features exhibit more structured organization, where positive samples (red points, 6.8% of
dataset) are distributed in distinct clusters, indicating that semantically similar molecules are mapped
to nearby regions. This structured manifold enables the model to make better-informed predictions
about unlabeled samples based on their proximity to labeled examples, even with limited initial
training data.

In contrast, ECFP representations show a more scattered distribution with significant overlap be-
tween positive and negative regions, making it difficult for the model to learn meaningful patterns
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from small initial labeled sets. This poorly structured space leads to unreliable uncertainty estimates,
explaining why ECFP-based Bayesian acquisition functions (BALD, EPIG) show only marginal
improvement over uniform sampling. The visualization results support our finding that the effec-
tiveness of uncertainty-based active learning methods critically depends on having well-structured
molecular representations that enable reliable uncertainty estimation from limited training data.

A.5 ANALYSIS OF SAMPLE ACQUISITION PATTERNS

Expected Calibration Error (ECE) Comparison
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Figure A.2: (Panel 1) Evolution of Expected Calibration Error (ECE) for Tox21 (averaged across 12
tasks and 3 seeds)

(Panel 2) Evolution of ECE for ClinTox (averaged across 10 seeds). Lower ECE indicates better-
calibrated uncertainty estimates. EPIG with BERT features (solid red) achieves the fastest conver-
gence to low ECE values, demonstrating superior uncertainty calibration.

(Panel 3) Comparison of positive sample acquisition rates across different feature representations
and acquisition functions on the ClinTox dataset. The plot shows cumulative toxic compound iden-
tification starting from a balanced initial set (50 positive, 50 negative). BERT representations with
uncertainty-based acquisition (EPIG, BALD) identify positive samples more efficiently compared
to uniform sampling and ECFP-based approaches, demonstrating better exploration of the chemical
space when starting with limited labeled data.

To further understand why BERT representations enable more effective active learning, we analyzed
the cumulative acquisition of positive samples (toxic compounds) across iterations (Figure [A2]
panel 3). Starting from a balanced initial set (50 positive, 50 negative samples), the acquisition
patterns reveal key differences between BERT and ECFP approaches in handling the significant
class imbalance present in the pool set (22 positive out of 835 samples).

BERT-EPIG shows the most efficient acquisition rate for positive samples, identifying approxi-
mately 70% of toxic compounds within 400 iterations, compared to 600 iterations for BERT-BALD
and 800 iterations for BERT-Uniform. This accelerated discovery of minority class samples aligns
with the structured representation space observed in UMAP visualization, where BERT features
organize molecules into meaningful clusters that facilitate identification of informative toxic com-
pounds.

Interestingly, while ECFP-EPIG initially shows comparable acquisition rates to BERT-EPIG, its
performance plateaus earlier, suggesting that the scattered representation space limits its ability to
make reliable uncertainty estimates as learning progresses. ECFP-BALD exhibits similar limita-
tions, highlighting that even sophisticated Bayesian acquisition functions struggle when the under-
lying representation space lacks clear structure for learning from limited initial data.

To further investigate why Bayesian acquisition functions might underperform with ECFP features,
we analyzed the Expected Calibration Error (ECE) throughout the active learning process. ECE
measures the difference between model confidence and actual accuracy, with lower values indicating
better-calibrated uncertainty estimates. Figure [A.2] (panel 1 and 2) shows the evolution of ECE
across different feature types and acquisition functions.

The results reveal a clear relationship between feature quality and uncertainty estimation. All meth-
ods initially exhibit high ECE (0.30-0.38), indicating poor calibration due to limited training data.

10
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However, the BERT-based approaches demonstrate consistently lower ECE compared to their ECFP
counterparts throughout the early stages of active learning (iterations 0-200). This aligns with our
previous observation that ECFP features lead to less reliable uncertainty estimates, which in turn
compromises the effectiveness of Bayesian acquisition functions like BALD and EPIG.

Particularly noteworthy is the EPIG acquisition function with BERT features, which achieves the
fastest reduction in ECE (solid red line), suggesting it learns well-calibrated uncertainties more
efficiently. This explains its superior performance in the main task, as shown in Figure[I] In contrast,
ECFP-based methods maintain higher ECE for a longer period, indicating persistent struggles in
uncertainty estimation despite sophisticated acquisition strategies.

While all methods eventually converge to well-calibrated uncertainties (ECE ; 0.1) after 600-800
iterations, the path to achieving good calibration is markedly different. ECFP-based approaches re-
quire substantially more labeled data to achieve comparable calibration, which is particularly prob-
lematic in the active learning setting where labeled data is initially scarce. This finding reinforces
our hypothesis that the success of Bayesian acquisition functions is fundamentally limited by the
quality of input representations and their ability to enable reliable uncertainty estimation from lim-
ited training data.

Hyperparameter Values
BNN Activation [ReLU]
Batch normalization [True]
Skip connection [True]
Input layer [768, 1024]
hidden layer dim [128]
Number of hidden layers  [1]
Dropout probability [0.3]
Training  Optimizer [Adam]
Learning rate [10—3]
Weight decay [le-2]
Scheduler [CosineAnnealingl.R]
T-max (LR cycle) [10]
Batch size [16]
Epochs [110]
num. Forward pass [20]

Table 1: Hyperparameters used of BNN and training
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