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ABSTRACT

Whole-brain connectome provides a structural blueprint for linking neural cir-
cuits to behavior, yet its application to embodied control remains largely unex-
plored. We introduce the fly-connectomic Graph Neural Network (flyGNN), a
reinforcement learning controller whose architecture is instantiated directly from
a complete adult Drosophila connectome. Our flyGNN models the connectome as
a directed message-passing graph, partitioned into afferent, intrinsic, and efferent
pathways that structure information flow from sensory inputs to motor outputs. In-
tegrated with a dynamically controllable biomechanical model of Drosophila, fly-
GNN achieves stable control across diverse locomotion tasks, including gait initia-
tion, walking, turning, and flight, without task-specific architectural tuning. These
results demonstrate that whole-brain connectivity can directly support embodied
reinforcement learning, establishing a new paradigm for connectome-based con-
trol algorithms.

1 INTRODUCTION

Figure 1: Overview of the flyGNN enabled whole-body locomotion control framework. Ob-
servations are mapped into afferent neuron states through dimensional transformation. Neural
states are then propagated through the connectome-based graph computation module, where up-
date rules are directly constrained by the FlyWire connectome. The updated efferent neuron states
are converted into actions to drive the whole-body locomotion of an embodied drosophila model
in MuJoCo. (An anonymous webpage with demonstration videos and source code is available at:
https://sites.google.com/view/flygnn).

Understanding how neural circuits give rise to behavior is a long-standing challenge shared by neu-
roscience and artificial intelligence. Recent advances in whole-brain connectomics have provided
open-source neuronal wiring diagrams of the adult Drosophila brain at synaptic resolution (Dorken-
wald et al., 2024). These resources enable the possibility of linking complete brain structure to the
sensorimotor control of a physical body. Yet, a fundamental challenge remains: how can static con-
nectomes be transformed into dynamic, functional models that reproduce the intricate and adaptive
motor behaviors of animals? Answering this question requires bridging two active lines of research:
(i) mechanistic modeling that leverages whole-brain connectivity, and (ii) learning frameworks that
generate high-dimensional whole-body movements.
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On the control side, reinforcement learning has produced controllers that can drive humanoids,
quadrupeds, and musculoskeletal agents to achieve challenging tasks. However, these policies typi-
cally rely on generic multilayer perceptrons (MLPs) or hand-crafted modules. While these architec-
tures are useful, they bear little relevance to the biological structure of the brain, making it difficult
to align them with real nervous systems. On the connectomics side, models constrained by circuit
anatomy have provided insights into sensory and premotor computations (Azevedo et al., 2024), yet
most efforts remain limited to specific subsystems and simplified behaviors. What is missing is a
whole-brain, embodied approach that respects the connectivity blueprint and operate in a closed-
loop physical environment.

Figure 2: Structure of the fly-connectomic Graph Neural Network. (a) Aggregated synapse
graph of the fly connectome, grouped into afferent (blue), intrinsic (green), and efferent (orange)
sets across left hemibrain, central, and right hemibrain compartments. Node sizes reflect the number
of neurons in each group, and arrows indicate the direction and relative strength of connectivity.
(b) Force-directed graph layout (Kobourov, 2012) of the same neural network. The spatial layout
reveals hemispheric symmetry and functional clustering.

Here, we bridge these domains by introducing the fly-connectomic Graph Neural Network (fly-
GNN), a controller whose architecture is directly adapted from the Drosophila whole-brain connec-
tome. We treat the connectome as an unweighted, directed graph and partition nodes into afferent,
intrinsic, and efferent sets following the information flow directions. At each control step, flyGNN
takes the sensory signals as input through afferent pathways, propagates the information through the
brain-wide graph via message-passing, and outputs motor actions through the efferent pathways to
actuate the body.

We evaluate flyGNN on a physics-based Drosophila model (Vaxenburg et al., 2025), demonstrating
that a single connectome-grounded policy class supports multiple locomotor behaviors, including
gait initiation, straight walking, turning, and flight. Beyond behavioral performance, we analyze
neural representations with low-dimensional embeddings and the large-scale visualizations reveal
emergent functional segregation across sensory, central, and motor populations. This differentiation
emerges solely from the connectome topology without biological priors, suggesting that structural
wiring may induce functional specialization.

In this work, we introduce fly-connectomic Graph Neural Network (flyGNN), a neural network
controller whose architecture is directly adapted from a Drosophila whole-brain connectome. We
show that this connectome-structured network can drive diverse locomotor behaviors in a physics-
based fly simulation, including gait initiation, walking, turning, and flight. By demonstrating neural
control of movement directly from the connectome, this work establishes a framework for study-
ing how whole-brain neural architectures support whole-body movement behavior, advancing both
neuroscience and embodied artificial intelligence.
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2 RELATED WORK

Connectomics-based neural network modeling. Advances in connectomics have deepened our
understanding of circuit-level organization in central nervous systems of animal models. In partic-
ular, the FlyWire project provides a whole-brain reconstruction of Drosophila at synaptic resolu-
tion, offering the structural basis for modeling complete neural dynamics (Dorkenwald et al., 2024;
Schlegel et al., 2024; Zheng et al., 2018). Prior works have highlighted the explanatory power of
such data in restricted domains: ventral nerve cord reconstructions revealed leg–wing coordination
circuits (Azevedo et al., 2024; Lesser et al., 2024), and models of motor neurons have been ap-
plied to feeding or grooming behaviors (Shiu et al., 2024). Connectome-constrained networks have
also been used to predict neural activity in the visual system (Lappalainen et al., 2024). However,
these approaches often focus on specific subsystems or tasks, leaving open the question whether
whole-brain connectivity can generate realistic control of embodied locomotion behaviors.

Embodied movement control. In parallel, embodied intelligence research has advanced locomo-
tion in simulated humanoids (Kumar et al., 2021; Cheng et al., 2024), quadrupeds (Ding et al.,
2021), and musculoskeletal agents (He et al., 2024; Wei et al., 2025) using reinforcement learning.
In the Drosophila domain, physics-based models such as NeuroMechFly (Lobato-Rios et al., 2022;
Wang-Chen et al., 2024) and flybody (Vaxenburg et al., 2025) have enabled detailed simulations of
walking and flight in MuJoCo (Todorov et al., 2012). Yet, controllers for these systems are typically
built from generic MLPs or manually designed central pattern generators, lacking direct biological
grounding. This limits both interpretability and the ability to connect neural structure to behavior.
Our work differs by directly embedding the connectome into the controller architecture, combining
embodied simulation with structural priors to study both performance and neural representation.

3 METHOD

3.1 CONNECTOME-STRUCTURED NEURAL NETWORK ARCHITECTURE

We consider the problem of embodied sensorimotor control for a virtual fruit fly agent interacting
with a physics-based environment provided by flybody. Let the state at time step t be denoted by
st ∈ S. The agent receives an observation xt ∈ Rdin , which corresponds to a set of processed
features including proprioceptive and exteroceptive signals during movement and environmental
interaction. Based on this input, the neural controller produces an action at ∈ Rdout , representing the
motor outputs that drive the flybody model to perform locomotion behaviors.

The controller is parameterized by a graph neural network whose architecture follows the anatomical
connectivity of the Drosophila brain. Specifically, the connectome is implemented as a directed
graph G = (V,E), where each node v ∈ V corresponds to a neuron and each directed edge (u, v) ∈
E indicates the existence of a synaptic connection from neuron u to neuron v. We simplified further
biological details (such as neurotransmitter types, synapse counts, or cell morphology) and modeled
the connectome to capture the existence and direction of synaptic connections.

Following FlyWire’s classification of flow types, we partitioned the nodes into three disjoint sets:

• Afferent neurons: Va ⊂ V , which receive external sensory inputs,
• Intrinsic neurons: Vi ⊂ V , which mediate signals within the network, and
• Efferent neurons: Ve ⊂ V , which produce motor outputs to the body model.

Our flyGNN architecture implements the complete Drosophila connectome through a graph neural
network where each of the 139,246 neurons (comprising 19,262 afferent, 118,496 intrinsic, and
1,488 efferent neurons) is represented by node embeddings. The architecture’s biological fidelity
and substantial capacity support complex locomotion capabilities while maintaining the structure of
the connectome.

Thus, V = Va ∪ Vi ∪ Ve with Va ∩ Vi ∩ Ve = ∅. Each neuron v ∈ V is associated with a latent state
vector hv ∈ RC , and we collected all neuron states at time t as a matrix:

Ht ∈ R|V |×C (1)

3
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At each step, the sensory input xt was first embedded into afferent states by an encoder layer Encθ:

zt = Encθ(xt) ∈ R|Va|×C (2)

The afferent states were then updated by a gated mechanism that combined the encoded sensory
features and the previous afferent states:

h′
a = tanh

(
Wg [ zt ∥Ht[Va] ] + bg

)
, a ∈ Va, (3)

where [ ·∥· ] denotes concatenation and Wg, bg are learnable parameters. This update ensures that
sensory information is integrated with the existing neural states before message-passing.

After afferent updates, the complete node states Ht were propagated through the connectome graph
by a message-passing operator MP(·). In the simplest case of a Graph Convolutional Network
(GCN) (Kipf & Welling, 2017), the update rule could be formulated as the following:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(4)

where Ã = A+ I is the adjacency matrix with self-loops, D̃ is the diagonal degree matrix, W (l) is
a learnable weight matrix, and σ(·) is a nonlinear activation. This operator propagated neural infor-
mation along the edges of the connectome, producing updated states for both intrinsic and efferent
neurons. In practice, the message-passing module can be instantiated not only as a GCN but also
with more expressive architectures such as GraphSAGE (Hamilton et al., 2018), GAT (Veličković
et al., 2018), or PNA (Corso et al., 2020), which offered improved performance and scalability (See
Appendix C for comparative experiments).

The updated efferent states Ht[Ve] were flattened and passed through a decoder layer Decϕ:

at = Decϕ
(
Ht[Ve]

)
(5)

This step maps the neural features of the efferent neurons directly into continuous motor outputs,
denoted as at. These outputs served as motor commands to actuate the flybody, a biomechanical
model of Drosophila implemented in MuJoCo (Vaxenburg et al., 2025). The agent then updated the
physical state of the fly and produced the next sensory observation xt+1, making the sensorimotor
in a closed-loop manner. Over a trajectory τ = (x0, a0, x1, . . . , xT ), the objective of the fly agent
was to generate actions that realize stable and efficient locomotion.

In summary, Algorithm 1 outlines the complete forward computation of our neural control policy
which follows the anatomical connectivity of the Drosophila brain - from sensory input through
afferent gating, message-passing across the connectome, to efferent decoding into motor actions.

Algorithm 1: fly-connectomic Graph Neural Network (flyGNN)
Input: Sensory input xt, connectome graph G = (V,E) with node partitions Va, Vi, Ve;

encoder Enc; gate (Wg, bg); message-passing MP; decoder Dec
Output: Motor output at
for each time step t do

zt ← Enc(xt) ;
Ht[Va]← tanh

(
Wg[ zt, Ht[Va] ] + bg

)
;

Ht+1 ← MP(Ht, E) ;
at ← Dec(Ht+1[Ve]) ;
Apply at to MuJoCo to obtain xt+1 ;

end

3.2 TRAINING PIPELINE

Our training pipeline consisted of two stages: first, we initialized the connectome-based policy using
imitation learning from expert trajectories, and second, we fine-tuned the model with reinforcement
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learning to directly optimize for task rewards. This two-stage design leveraged demonstration data
for rapid initialization while preserving the capability for adaptive policy improvement.

To provide an initial policy, we collected expert trajectories by rolling out an MLP-based policy for
the flybody which was originally trained with imitation learning to generate high-quality demonstra-
tions of locomotion. We used these trajectories to train our connectome-based model by imitating
the expert’s action distributions.

Specifically, the policy predicted Gaussian parameters (µs, σs) given the same observations as the
expert, and was optimized to minimize a loss combining Kullback–Leibler divergence with an an-
nealed mean squared error (MSE) regularizer:

Lt = DKL

(
N (µt, σ

2
t ) ∥ N (µs, σ

2
s)
)
+ λ(t)

(
∥µs − µt∥22 + α ∥ log σs − log σt∥22

)
(6)

where α is a constant to balance the scale of µs and log σs, and λ(t) decreases during training so that
distributional matching dominates in later stages. This procedure initialized the model with stable
behaviors for walking and flight tasks.

After initialization, we fine-tuned the connectome-structured policy using Proximal Policy Opti-
mization (PPO) to enable direct learning from rewards. For value estimation, we used a simple
MLP as the value network. The environments in MuJoCo were adapted into gym-like interfaces
with parallel rollouts to increase throughput, and distributed training with Distributed Data Parallel
(DDP) was used for scalability. The policy was updated following the clipped surrogate objective
with value and entropy regularization:

LPPO = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)
− cv(Vθ(st)−Rt)

2 + ceH[πθ(·|st)]
]

(7)

Where rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio between new and old policies, Ât is the GAE

advantage, Rt is the return, and H is the entropy bonus. This stage allowed the model to refine
beyond demonstration data and adapt to task-specific dynamics, while retaining the inductive bias
imposed by the connectome architecture.

4 EXPERIMENTS

Figure 3: Demonstration of
sensory input for locomo-
tion tasks. Visual inputs from
both eyes are integrated with
other sensations to form the
sensory input.

We evaluated flyGNN on four locomotor tasks: gait initiation,
straight walking, turning, and flight within the flybody physics sim-
ulator (Vaxenburg et al., 2025). The environments followed the
default flybody setup, with binocular visual signals added to the
original sensory inputs in the walking tasks. This embodied set-
ting provided diverse multimodal feedback, including propriocep-
tion, mechanosensation, and vision, enabling us to test whether a
connectome-structured network could flexibly generate stable con-
trol policies across different modes of movement. Detailed train-
ing process and parameters are provided in the Appendix A and
detailed observation and action definitions are provided in Ap-
pendix B. The demonstration videos for each task are available on
our project webpage.

The flyGNN controller was evaluated under two primary task con-
figurations. For walking-related tasks (gait initiation, straight walk-
ing, and turning), the model processed a high-dimensional observa-
tion space of 1,253 features, integrating proprioceptive, exterocep-
tive, and augmented visual inputs. It subsequently output continu-
ous actions of 59 dimensions to precisely control joint actuators and
adhesion mechanisms. For the flight task, an observation space of
104 features was implemented, focusing on the core proprioceptive
and kinematic states, which generated 12-dimensional actions to modulate wing torques, body joints
and a wing pattern generator. The training process for both configurations adhered to the pipeline
mentioned above.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Gait Initiation

Building on the training pipeline described above, we evaluated flyGNN on a walking task at a target
velocity of 3 cm/s. We first examined the process of gait initiation, focusing on the transition from
rest to the onset of stable locomotion. Figure 4 illustrates snapshots of the simulated fly prior to
the first complete gait cycle. The initiation phase lasted for roughly the first 80 ms, during which
irregular steps gradually gave way to rhythmic and coordinated leg movements.

Figure 4: Gait initiation dynamics. Snapshots of the simulated fly during the onset of locomotion,
prior to the first complete gait cycle. The sequence illustrates how the agent transitions from rest
into stepping, with irregular and asymmetric leg movements gradually giving rise to a coordinated
pattern.

Straight-Line Walking

Following the analysis of gait initiation, we next evaluated flyGNN on a straight-line walking task
at a target velocity of 3 cm/s. As illustrated in Figure 5, the model produced stable forward locomo-
tion with clear tripod coordination. The simulated fly maintained a consistent body trajectory over
hundreds of milliseconds, without exhibiting drift or collapse, indicating that the learned controller
generalizes well to sustained walking.

Figure 5: Walking dynamics. Snapshots of the simulated fly walking in a straight line at a velocity
of 3 cm/s. The model maintains stable stepping sequences with tripod coordination emerging natu-
rally from flyGNN policy model.

Joint-level analysis in Figure 6 shows that actuator outputs are tightly coupled with kinematic tra-
jectories: contralateral legs alternate in phase, producing the classical tripod gait pattern seen in
Drosophila. These results demonstrate that flyGNN is sufficient to generate stable straight walking
once locomotion is initiated.

Figure 6: Joint kinematics and actuator activations during walking. We visualize the angles
(blue) and actuator activations (red) of coxa joints from left (T1–T3) and right (T1–T3) legs over
multiple gait cycles. Dashed vertical lines mark gait phases based on the troughs of the left T1 coxa.
The model reproduces alternating tripod-like coordination, with left T1/T3 synchronized with right
T2, and left T2 synchronized with right T1/T3, consistent with expected fly walking patterns.

6
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Turning

We next assessed whether the same policy could generalize to directional maneuvers. In the turning
task, the model was instructed to walk at a forward velocity of 3 cm/s while executing a leftward
turn at 10 rad/s. As shown in Figure 7, the simulated fly successfully produced a smooth curved
trajectory by modulating stride lengths asymmetrically across the body: legs on the inner side of the
turn reduced their stance amplitude, while contralateral legs extended their strides. This modulation
of gait symmetry arises naturally from the network dynamics, without requiring task-specific tuning
or additional control rules.

Figure 7: Turning dynamics. Snapshots of the virtual fly executing a high-speed left turn at 3 cm/s
and 10 rad/s. Over the course of the trajectory, stride lengths on the turning side decrease while
those on the contralateral side increase, producing a smooth curved trajectory. This asymmetry
demonstrates that flyGNN can generalize beyond straight walking to produce directed maneuvers.

The ability to perform both straight walking and turning indicates that the learned flyGNN policy
does not simply memorize a single stereotyped gait, but rather encodes a flexible control strategy
that can adapt to new locomotor demands. These findings highlight the robustness of the architecture
and suggest its potential for modeling a wider repertoire of multi-task behaviors.

Flight

To assess whether flyGNN can generalize beyond terrestrial locomotion, we additionally trained the
fly to perform a flying task. In this setting, the policy served as a higher-level neural controller that
modulated the output of the wing-beat pattern generator, thereby enabling stable flight dynamics.

Figure 8: Flight dynamics. Snapshots of the virtual fly executing a straight flight task at a velocity
of 20 cm/s.

As shown in Figure 8, the trained controller maintained stable forward flight at a constant speed and
kept body orientation aligned with the target direction, demonstrating that the connectome-based
network can extend from walking to flight locomotion.

These results suggest that connectome-structured networks are not limited to walking but can sup-
port a broader repertoire of multimodal behaviors, highlighting the generality of this modeling
framework for embodied control.

7
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Neural Representations Analysis

Figure 9: Neural representations during turning task (0–350 ms). (a) Force-directed graph layout
of the fly connectome at 200 ms, with neurons colored by flow annotations (afferent: blue, intrinsic:
green, efferent: red) and reduced neural representation intensity. (b) Temporal dynamics of reduced
neural representation intensity from 0–350 ms, grouped by flow and superclass annotations. Each
row corresponds to one neuron, sorted within its superclass by similarity, and group widths are
schematic rather than scaled to neuron counts. The visualization reveals rhythmic patterns aligned
with the gait cycle and distinct functional differentiation across superclasses. These results indicate
that functional specialization of neurons emerges from the connectome during locomotor control.

One of the key motivations for implementing locomotion through a connectome-based architecture
is the opportunity to analyze internal neural representations and study how information propagates
through the network. By examining the activity patterns of individual graph nodes, which corre-
spond to neurons, we can ask whether structured and meaningful dynamics emerge, thereby offering
a form of connectome-level interpretability. To probe this question, we rolled out trained flyGNN
model in simulation and recorded the representations of all neurons at every timestep. These high-
dimensional representations were reduced and normalized, yielding the quantity we term reduced
neural representation intensity, a proxy for neural activity similar to measures commonly used in
neuroscience.

We visualized these reduced neural representations in two complementary ways. First, force-
directed graph layouts were used to highlight how intensity distributes across the connectome topol-
ogy. As shown in Figure 9(a), the snapshot at 200 ms of a turning task reveals structured spatial
patterns. When paired with synchronized video of locomotion (available on our anonymous project
page), these dynamics reveal that subsets of neurons exhibit rhythmic and heterogeneous oscillations
distributed across superclasses. This suggests that the graph’s structure itself induces meaningful
partitioning of activity rhythms.

Second, we adopted visualization which aggregates representations by annotated flow and super-
class labels. We employed random down-sampling to balance visibility across groups. Within each
superclass, neurons were reordered using a spectral method based on the Fiedler vector of the Lapla-
cian constructed from similarity matrices of neural activity, thereby clustering neurons with similar
dynamics. Despite the fact that our model only encodes neurons by flow type rather than by finer
superclass distinctions, the result shown in Figure 9(b) highlights distinct temporal organization
across superclasses. The figure demonstrate that reduced neural representation intensities not only
align with locomotor rhythms but also uncover emergent specialization across superclasses, showing
how connectomic topology alone drives differentiated functional roles. Similar patterns were also

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

observed in straight-walking tasks (see Appendix E), indicating that these findings are consistent
across episodes and tasks.

Taken together, these findings demonstrate that flyGNN develops functional specialization among
neuronal groups directly from connectomic structure, without explicit supervision. The emergence
of distinct, task-aligned activity profiles suggests that the architecture not only generates behav-
iorally valid locomotion but also yields potentially interpretable internal representations.

5 CONCLUSION AND DISCUSSION

This study demonstrates that the fly-connectomic Graph Neural Network can serve as a reinforce-
ment learning controller for the high-dimensional dynamical systems of a simulated fruit fly to
achieve diverse movement tasks such as gait initiation, straight walking and turning. By structuring
information flow according to the FlyWire connectome, flyGNN replaces fully connected policy
networks with a graph-based network that directly reflect the wiring diagram of the brain.

These results demonstrate that structural priors at the connectome scale provide a powerful inductive
bias for embodied reinforcement learning. Even when simplified to an unweighted directed graph
without synapse counts or neurotransmitter types, the connectome is sufficient to drive diverse high-
dimensional motor control. This suggests that wiring diagrams, long viewed as static anatomical
maps, can be directly instantiated as functional networks for closed-loop control.

From the perspective of machine learning, flyGNN offers a new disign paradigm for neural ar-
chitecture design. Instead of relying on existing artificial structures, we can adapt structure from
evolved biological networks. This provides a systematic alternative to generic architectures, poten-
tially improving data efficiency, stability, and transferability across tasks. The approach also opens
the possibility of scaling to larger connectomes and more complex agents, where the inductive biases
of real nervous systems may be particularly advantageous.

Several limitations highlight opportunities for future progress. First, our implementation simplified
biophysical details, leading to the loss of important biological information. Incorporating richer
information could improve biological fidelity. Second, compared to MLP-based controllers, our
model requires longer per-step computation and higher memory usage, which could be improved.
Finally, extending the framework beyond locomotion will provide a more comprehensive test of the
generality of connectome-based control.

In summary, flyGNN demonstrates that whole-brain connectomes can be used for embodied motor
control. By grounding policy architectures in biological wiring diagrams, this approach suggests a
possible towards more human-aligned AI systems, where the inductive biases that shape adaptive
behavior in animals can be systematically transferred to artificial agents.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human or animal subjects, private or sensitive data, or potentially harmful
applications. The research uses publicly available connectome datasets and simulated environments,
and follows the ICLR Code of Ethics in ensuring fairness, transparency, and responsible stewardship
of trustworthy research.

REPRODUCIBILITY STATEMENT

We provide detailed model descriptions and training procedures in the main text, with implementa-
tion details in the appendix. Methods for visualizations are described, and source code is available
at our anonymous webpage.

LARGE LANGUAGE MODELS USAGE STATEMENT

We acknowledge the use of Large Language Models (LLMs) to assist with improving the grammar
and clarity of the manuscript. The authors carefully reviewed and verified all content to ensure
accuracy and correctness. The authors take full responsibility for the final version of this work.

REFERENCES

Azevedo, A. et al. Connectomic reconstruction of a female drosophila ventral nerve cord.
Nature, 631(8020):360–368, July 2024. ISSN 0028-0836, 1476-4687. doi: 10.1038/
s41586-024-07389-x.

Cheng, X. et al. Expressive whole-body control for humanoid robots, 2024. URL https://
arxiv.org/abs/2402.16796.

Corso, G., Cavalleri, L., Beaini, D., Liò, P. and Veličković, P. Principal neighbourhood aggregation
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A DETAILS OF MODEL ARCHITECTURE AND TRAINING PROCESS

A.1 MODEL ARCHITECTURE AND IMPLEMENTATION

The flyGNN model is implemented using the PyTorch Geometric (PyG) (Fey & Lenssen, 2019; Fey
et al., 2025) library to construct a graph neural network that directly mirrors the Drosophila connec-
tome. The network architecture is structured as a directed graph where nodes represent neurons and
edges represent synaptic connections, partitioned into afferent, intrinsic, and efferent sets based on
information flow. The model processes inputs through the following components:

Input Normalization: A RunningNorm layer is applied to observations to stabilize training by main-
taining running estimates of mean and variance. This layer operates online and is updated during
training.

Encoder: Observations are projected into the afferent neuron state space via a linear layer followed
by ReLU activation.

Graph Propagation: Information is propagated through the connectome using a message-passing
mechanism with gated updates combining previous states and incoming messages.

Decoder: Efferent neuron states are aggregated and passed through a multi-layer perceptron with
ReLU activations, outputting action means and standard deviations via linear and softplus heads,
respectively.

The model uses simplified biological assumptions—connections are treated as unweighted and di-
rected, ignoring synaptic counts or neurotransmitter types. All experiments were conducted on
servers equipped with NVIDIA A100 80GB PCIe GPUs and Intel Xeon Gold 6348 CPUs.

A.2 TRAINING PIPELINE

Training proceeds in two stages:

Imitation Learning: The policy is initialized by mimicking expert trajectories generated by a pre-
trained MLP controller provided by flybody. This stage uses PyTorch Lightning for distributed
training across multiple workers.

Reinforcement Learning: The model is fine-tuned with Proximal Policy Optimization to maximize
task rewards. This stage is implemented using PyTorch Distributed Data Parallel (DDP) for scala-
bility.

Optimization uses AdamW with a learning rate scheduler (ReduceLROnPlateau) that reduces the
learning rate upon validation loss improving. Both stages employ gradient clipping to ensure stabil-
ity.

A.3 TASK-SPECIFIC CONFIGURATIONS

Walking Task:

• Observation dimension: 1,253 (proprioceptive + exteroceptive + visual inputs),
• Action dimension: 59 (joint actuators and adhesion controls),
• Learning rate: 1× 10−4,
• Message-Passing: GraphSAGE, 16 node channels, 4 message-passing layers,
• Expert policy architecture: 512–512–512–512 fully-connected layers with LayerNorm +

Tanh (first layer) and ELU activations, outputting mean (Linear) and std (Linear + Softplus)
for 59-dimensional actions.

Flight Task:

• Observation dimension: 104 (simplified proprioceptive and kinematic inputs),
• Action dimension: 12 (wing torques, pattern generator modulation, body joints),
• Learning rate: 1× 10−5,
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• Message-Passing: GraphSAGE, 8 node channels, 4 message-passing layers,
• Expert policy architecture: 256–256–256 fully-connected layers with LayerNorm + Tanh

(first layer) and ELU activations, outputting mean (Linear) and std (Linear + Softplus) for
12-dimensional actions.

Both tasks use identical graph topology derived from the FlyWire connectome but differ in in-
put/output dimensions and network hyperparameters due to behavioral constraints. Training metrics
are logged for performance monitoring.

B DETAILED SETTINGS OF LOCOMOTION ENVIRONMENT

Our experiments follow the locomotor task design introduced in the flybody simulator, which pro-
vides imitation-learning datasets for terrestrial (walking) and aerial (flight) behaviors.

We evaluate four tasks:

• Gait initiation: generating stable stepping patterns from rest,
• Straight-line walking: tracking forward centre-of-mass (CoM) trajectories,
• Turning: executing lateral turns at constant speed,
• Flight: stabilizing and steering free flight trajectories.

For walking-based tasks, the default setting of flybody receives a 741-dimensional propriocep-
tive/exteroceptive observation, comprising:

• accelerometer (3), gyro (3), velocimeter (3), world z-axis (3),
• actuator activations (59),
• appendage pose (21), force sensors (18),
• joint positions (85) and velocities (85),
• tactile contacts (6),
• reference displacement (195) and root quaternion (260).

We augment this with binocular visual input: left and right eye cameras (32 × 32 × 3 RGB each)
downsampled and resized to two 16×16 grayscale figures. The final observation dimension is 1,253.

Actions remain 59-dimensional, actuating adhesion, head/abdomen motion, and all leg joints as in
default settings of flybody walking task.

For the flight task, we keep the flybody sensory design with a 104-dimensional input comprising:

• accelerometer (3), gyro (3), velocimeter (3), world z-axis (3),
• joint positions (25) and velocities (25),
• reference displacement (18) and root quaternion (24).

The policy outputs 12 control signals: instantaneous wing torques, head/abdomen angles, and Wing-
Pattern Generator (WPG) frequency modulation. The WPG provides a nominal wing-beat template,
while the policy learns residual corrections.

C ABLATION STUDIES ON MESSAGE-PASSING OPERATORS

We evaluated flyGNN across several message-passing operators, including GCN (Kipf & Welling,
2017), EdgeCNN (Wang et al., 2019), GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al.,
2018) and PNA (Corso et al., 2020). Table 1 shows the evaluation KL loss and the average reward
within 500 episodes of different message-passing operators. We used the imitation learning dataset
provided by flybody, and because different imitation trajectories exhibit variability, the rewards nat-
urally show high fluctuation. The results show that simpler operators (e.g., GCN, EdgeCNN) gen-
erally converged with higher KL divergence to the teacher and lower average reward, while more
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Table 1: Performance comparison of flyGNN with different message-passing operators.
Model Node dim Depth Eval KL ↓ Avg. reward ↑

GCN 16 4 7.93 43.13
GraphSAGE(c = 2) 2 6 6.85 62.85
EdgeCNN 4 2 5.54 90.48
GAT 8 2 3.43 132.65
GraphSAGE 16 4 3.31 125.55
PNA 4 2 2.89 145.33

Figure 10: Performance across message-passing operators. Distribution of episode rewards ob-
tained by GCN, GraphSAGE, EdgeCNN, GAT, and PNA. More expressive operators (GraphSAGE,
PNA) achieved higher average rewards and more stable rollouts compared to simpler operators
(GCN, EdgeCNN).

expressive operators (e.g., PNA, GraphSAGE) achieved closer distributional matching and longer
average rollout stability.

Across all variants, the models exhibited stable locomotion; notably, even the weaker ones retained
sufficient ability for walking and turning, and an extreme GraphSAGE variant with only two node
channels still performed acceptably.

D NEURAL DYNAMICS DURING GAIT INITIATION

To probe the neural dynamics underlying gait initiation, we visualized internal neuron states sampled
from the same episode before the first stable gait cycle. Specifically, we collected 16-dimensional
features from all 139,246 neurons at selected times [0, 20, 40, 60, 80] ms and reduced them to two
dimensions using UMAP (McInnes et al., 2018).

Figure 11 reveals clear temporal changes in the organization of neural states. At initialization (0
ms), neuron features were randomly distributed, with optic and central neurons largely overlapping.
As the episode progressed, neurons formed increasingly distinct clusters, with optic and central
populations separating into identifiable regions by 80 ms. This indicates that the flyGNN architecture
simulates connectome-based neural dynamics that promote functional specialization of different
neural groups during locomotor tasks.

These results suggest that the flyGNN framework can capture meaningful reorganization of neural
states during behavior. The observed emergence of functional segregation highlights the potential
of this approach for investigating neural plasticity. In particular, it may help elucidate the interplay
between developmental trajectories, learning mechanisms, and the structural organization of the
connectome.
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Figure 11: Neuron state representation during gait initiation. UMAP projections of neural fea-
tures at different time points (0 ms, 40 ms, 80 ms). Top: neurons colored by FlyWire flow type (af-
ferent, intrinsic, efferent). Bottom: neurons colored by ‘superclass’ annotations. The visualization
shows that initially mixed features gradually separate into distinct clusters, with optic and central
populations becoming clearly differentiated by 80 ms. This structured reorganization indicates that
the flyGNN policy induces meaningful neural dynamics, supporting functional specialization as gait
coordination emerges.

Figure 12: Neural representations during straight walking (0–350 ms). Temporal dynamics
of reduced neural representations, grouped by flow and superclass annotations. Widths of super-
class groups are schematic and not proportional to actual neuron counts. The visualization reveals
rhythmic activity aligned with gait cycles, while motor and descending groups show sparser but
phase-locked dynamics. Unlike turning, the straight-walking condition lacks the optic phase shift,
indicating more symmetric activation patterns during forward locomotion.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E VISUALIZATION OF NEURAL REPRESENTATIONS IN WALKING TASK

To complement the turning-task analysis, we also visualized reduced neural representation intensi-
ties during walking task (see Sec. 4). Figure 12 shows temporal dynamics of neural activity from
0–350 ms, including the first 80 ms of gait initiation, after dimensionality reduction with principal
component analysis and normalization. Neurons are grouped by flow type and superclass annota-
tions, with width adjusted schematically for visibility, and reordered within each superclass using
spectral similarity sorting.

The visualization highlights distinct temporal activation profiles across neural groups. In particular,
optic and central populations display rhythmic modulations aligned with gait cycles, while motor
and descending neurons show sparser but phase-locked activation. Compared to the turning condi-
tion, the straight-walking trajectories exhibit more symmetric activation patterns without the optic
phase shift observed during turning. This difference suggests that lateralized activation dynamics
may specifically support asymmetric motor outputs during directional maneuvers, whereas straight
walking is driven by more synchronized, globally coordinated patterns.

F DETAILED METHOD FOR VISUALIZATION

F.1 FIGURE 2(A)

We visualized the aggregated synapse graph of the fly connectome using the FlyWire FAFB v783
dataset, with nodes classified by superclass labels provided by FlyWire. The node size reflects the
number of neurons in each class, while the thickness and darkness of the directed edges represent
the number of aggregated synaptic connections.

F.2 FIGURE 2(B)

In the visualization of the network of connectome, we did not incorporate the three-dimensional
structural priors of Drosophila neurons. Instead, we employed a force-directed layout algo-
rithm (Kobourov, 2012) for graph drawing. In this method, edges are modeled as springs while
nodes exert repulsive forces on each other, and the system iteratively evolves toward a low-energy
equilibrium. This layout highlights the topological organization of the network, making the rela-
tionships among different super-classes and subgroups more visually apparent. For visualization,
we applied a threshold of more than 25 synapses and retained only connections exceeding this cut-
off.

F.3 FIGURE 9(B)

Figure 9(b) presents the temporal dynamics of reduced neural representation intensity across the
fly connectome during a 350 ms turning maneuver. To visualize population activity patterns, we
first extracted high-dimensional neural features from the model, with shape T × N × C (time ×
neurons × channels). These features were compressed into a single-channel intensity measure via
PCA, retaining only the first principal component along the channel dimension. The resulting values
were then clipped to the 5th–95th percentile range and min-max normalized to [0, 1] to improve
comparability and reduce outlier effects.

Due to the extreme imbalance in superclass sizes (e.g., > 77000 neurons in optic classes versus
only 106 in motor classes), we employed stratified random downsampling to ensure visibility across
all functional groups while preserving relative proportions. The downsampling thresholds were
set as follows: sensory: 400, ascending: 200, optic: 1500, central: 400, visual projection: 120,
visual centrifugal: 120, descending: 120, motor: 100, endocrine: 60. This approach maintained the
diversity of neural responses while creating visually interpretable group representations.
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