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ABSTRACT

Audio-visual speech recognition (AVSR) incorporates auditory and visual modal-
ities to improve recognition accuracy, particularly in noisy environments where
audio-only speech systems are insufficient. While previous research has largely
addressed audio disruptions, few studies have dealt with visual corruptions, e.g., lip
occlusions or blurred videos, which are also detrimental. To address this real-world
challenge, we propose CAV2vec, a novel self-supervised speech representation
learning framework particularly designed to handle audio-visual joint corruption.
CAV2vec employs a self-distillation approach with a corrupted prediction task,
where the student model learns to predict clean targets, generated by the teacher
model, with corrupted input frames. Specifically, we suggest a unimodal multi-task
learning, which distills cross-modal knowledge and aligns the corrupted modalities,
by predicting clean audio targets with corrupted videos, and clean video targets
with corrupted audios. This strategy mitigates the dispersion in the representation
space caused by corrupted modalities, leading to more reliable and robust audio-
visual fusion. Our experiments on robust AVSR benchmarks demonstrate that
the corrupted representation learning method significantly enhances recognition
accuracy across generalized environments involving various types of corruption.

1 INTRODUCTION

Audio-visual speech recognition (AVSR) (Noda et al., 2015; Afouras et al., 2018a; Ma et al., 2021b;
Shi et al., 2022a; Hsu & Shi, 2022; Hu et al., 2023a) represents a significant advancement in speech
recognition by integrating both auditory and visual modalities to enhance performance. This multi-
modal integration proves particularly vital in contexts where audio-only speech recognition systems
suffer from ambient or background noise, as visual speech information like lip movements signifi-
cantly improves recognition capabilities (Makino et al., 2019; Ren et al., 2021; Chen et al., 2023).
In this sense, previous works on AVSR have primarily focused on overcoming audio disruptions,
e.g., Xu et al. (2020) training an audio enhancement sub-network, or Shi et al. (2022b) pretraining
with noise-augmented audio. Nonetheless, real-world applications often encounter scenarios where
video corruption is as critical as audio disturbances. For example, we may consider an outdoor
interview where not only is the audio disturbed by ambient noise or traffic sound but visual cues
are also intermittently occluded, either when the speaker’s hands obstruct the view of their face or a
camera is out of focus (see Figure 1a). AVSR models often fail to accurately recognize the utterance
under these corrupted environments.

Despite the effectiveness of current methods in addressing audio corruptions, there is a lack of
solutions for visual corruption, highlighting the necessity for a more robust approach to tackle audio-
visual joint corruption in AVSR systems. Recent efforts have addressed the visual corruption using
techniques such as scoring modules to assess the reliability of audio and video frames (Hong et al.,
2023), or generative pipelines to reconstruct occluded face images (Wang et al., 2024). However,
these methods often rely on specific architectures or external modules, which limit their applicability.
Building on recent advances in audio-visual self-supervised learning that highlight the efficacy of
modality-fusion representations (Shi et al., 2022a; Lian et al., 2023; Zhang et al., 2023), we propose
CAV2vec, a novel audio-visual speech representation learning method designed to handle jointly
corrupted audio-visual data. CAV2vec is trained through a corrupted prediction task, where the model
learns to predict clean targets from corrupted input sequences. For this, we employ a teacher-student
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Figure 1: (a) Real-world speech recognition challenges. AVSR models suffer from maintaining
robust representations under the corrupted environments and fail to recognize utterances. (b) Our
corrupted representation learning strategies with multimodal and unimodal corrupted prediction tasks.
(c) Speech recognition accuracy (100−WER %), where frequency denotes the number of visual
corruption events in a sequence. Our representation learning framework, CAV2vec with a unimodal
strategy (U), significantly improves robustness compared to the baseline model and even outperforms
the multimodal strategy (M).

self-distillation framework (Caron et al., 2021; Ruan et al., 2023), which has proven effective in
learning contextualized speech representations (Baevski et al., 2020; 2022; Shi et al., 2022b; Zhu
et al., 2024; Liu et al., 2024) without requiring architectural changes or additional modules. In this
framework, corrupted sequences are fed into the student model, while the self-evolving teacher model
generates the clean targets online.

Within the CAV2vec representation learning framework, the corrupted prediction task can be defined
in a multimodal or unimodal strategy. A multimodal strategy, inspired by the masked prediction
task in AV-data2vec (Lian et al., 2023), involves corrupting both audio and video inputs to generate
corrupted multimodal features, with the model learning to predict clean multimodal targets. While
this approach enhances the robustness of multimodal representations, it is less capable of isolating the
effects of corruption on individual modalities, as both inputs and targets contain mixed audio-visual
information. Multimodal fusion is often prone to combining redundant information (Hsu & Shi, 2022;
Mai et al., 2023), where discriminative unimodal information is ignored, thereby the multimodal
prediction falls into overfitting. Previous approaches have tackled this by improving cross-modal
information, such as Mai et al. (2023) applying late-fusion to filter out noisy information from
unimodal features, and Hu et al. (2023b) learning a viseme-phoneme mapping (Bear & Harvey, 2017)
to restore corrupted phonemes through visemes, but both of them rely on the information bottleneck
structure before the fusion.

To address the limitations of multimodal prediction approach, we introduce CAV2vec with a unimodal
multi-task learning strategy for corrupted prediction tasks, which leverages corrupted unimodal se-
quences to distill cross-modal knowledge. Our unimodal strategy involves predicting clean audio
targets with corrupted videos and predicting clean video targets with corrupted audios. In AVSR, this
cross-modal alignment (Ren et al., 2021; Hu et al., 2023b;c) is essential for effectively integrating in-
formation from both modalities. Our unimodal prediction strategy, as depicted in Figure 1b, improves
cross-modal alignment by reducing the dispersion in representation caused by the corrupted inputs.
Figure 1c describes the AVSR performance under audio-visual jointly corrupted environments. While
fine-tuning with corrupted data (CFT) improves robustness to some extent, it remains challenging
at higher degrees of corruption. By incorporating the corrupted representation learning before CFT,
CAV2vec demonstrates superior performance. CAV2vec with unimodal multi-task learning further
enhances the corrupted prediction framework, effectively aligning the corrupted modalities and
achieving more robust results. We summarize our contributions as follows.
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◦ We propose a novel audio-visual speech representation learning, CAV2vec, specifically designed
for robustness under audio-visual joint corruption within a self-distillation framework.

◦ CAV2vec conducts a unimodal multi-task learning for corrupted prediction tasks, predicting clean
targets from corrupted input sequences. This strategy effectively enhances cross-modal alignment
between corrupted audio and video for reliable multimodal fusion.

◦ We establish an AVSR benchmark for generalization so that our setup includes novel types of
corruption unseen during training, e.g., mouth occlusion by hands or face pixelation along with
public noise, allowing for diverse assessment of model robustness to audio-visual joint corruption.
CAV2vec demonstrates significant performance improvement on our robust AVSR benchmarks.

2 RELATED WORK

Audio-visual speech recognition models Automatic speech recognition (ASR) methods that
transcribe speech audio to text have been extensively studied for years (Schneider et al., 2019; Gulati
et al., 2020; Baevski et al., 2020; Hsu et al., 2021; Chen et al., 2022; Chiu et al., 2022). However, since
audio signals are often disrupted by background noise, multimodality, particularly visual information
from speech video, has been incorportaed into the ASR system (Makino et al., 2019; Pan et al.,
2022; Shi et al., 2022a; Seo et al., 2023; Ma et al., 2023). In these multimodal approaches, the audio
modality captures the acoustic features of speech signal, while the video modality provides visual
information about the speaker’s face and lip movements. This integration enhances the robustness of
the ASR system and improves its performance, especially in noisy audio environments.

Several studies aimed at aligning and jointly training audio-visual modalities have been developed
in an end-to-end learning framework (Dupont & Luettin, 2000; Ma et al., 2021b; Hong et al., 2022;
Burchi & Timofte, 2023) or self-supervised pretraining approach (Ma et al., 2021a; Qu et al., 2022;
Shi et al., 2022a; Seo et al., 2023; Zhu et al., 2023) that often utilizes masked modeling of speech
representations. Recently, among the multimodal speech recognition models leveraging the self-
supervised learning, a self-distillation approach (Lian et al., 2023; Haliassos et al., 2023; 2024; Zhang
et al., 2024b; Liu et al., 2024), which learns the contextualized representations by distilling the
self-evolving teacher’s knowledge for masked inputs, has demonstrated superior performances.

Learning robustness for AVSR The AVSR studies have focused on developing robust models
for various types of noise while simultaneously utilizing audio and visual information. Most of
this research has initially focused on addressing noise in the audio modality (Shi et al., 2022b;
Hu et al., 2023b;c; Chen et al., 2023; Kim et al., 2024; Ithal et al., 2024). However, more recent
efforts have explored disturbances in visual data, creating robust models by adding background
noise, such as Gaussian noise, to the speech videos. In this line of research, Hong et al. (2023)
have considered that human speech often involves a mouth region being occluded by objects and
first applied visual occlusion into speech data. This has inspired further research addressing similar
challenges by restoring the occluded images by a generative model (Wang et al., 2024). Additionally,
Fu et al. (2024) have combined prompt learning with contrastive learning to deal with audio-visual
asynchrony, while Zhang et al. (2024a) have examined the issue of a completely missing visual
modality, generating the visual hallucination during inference. Li et al. (2024) demonstrate the
effectiveness of leveraging unified cross-modal attention and a synchronization module to encode
audio and video sequences in a unified feature space. In our study, we address real-world challenges of
audio-visual joint corruption by using corrupted representation learning, offering a general framework
without relying on specific architectures or external modules.

3 PRELIMINARIES

3.1 NOTATIONS

Let A = [a1, a2, . . . , aT ] be the audio sequence and V = [v1, v2, . . . , vT ] be the video sequence over
time T . We define a set of corrupted indices for the audio sequence as Ca ⊆ {1, 2, . . . , T} and a
set of corrupted indices for the video sequence as Cv ⊆ {1, 2, . . . , T}. To model the corruption, we
define a family of corruption functions Ω that can transform or corrupt certain frames of data. Thus,
given some corruption functions ωa, ωv ∈ Ω, the corrupted audio sequence Ã = [ã1, ã2, . . . , ãT ]
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Figure 2: The visual and audio corruption types we use in our training and evaluation phases. Unseen
corruption types are only utilized in evaluation to assess the model’s generalizability. The speech
audio noise from LRS3 is ensured that there is no speaker overlap between train and evaluation sets.

and the corrupted video sequence Ṽ = [ṽ1, ṽ2, . . . , ṽT ] are defined as follows.

ãt =

{
ωa(at) if t ∈ Ca

at else
and ṽt =

{
ωv(vt) if t ∈ Cv

vt else
(1)

Raw audio and video data are processed by its respective feature extractor, and the resulting fea-
tures are concatenated before being input to the multimodal Transformer encoder fθ : RT×D →
RT×D. The output feature sequence for this multimodal input is denoted as Z̃av = fθ(Ã; Ṽ ) =
[z̃av

1 , z̃av
2 , . . . , z̃av

T ]. If t ∈ Ca ∪ Cv , then z̃av
t is considered a corrupted feature representation.

3.2 MASKED PREDICTION TASK

Self-distillation framework The self-distillation approach as self-supervised learning has been
shown to be highly effective in learning contextualized representations (Baevski et al., 2022; 2023;
Liu et al., 2024) without supervised labels, including in multimodal feature spaces (Zhang et al.,
2023; 2024b; Zhu et al., 2024). In this framework, a reference function f , commonly referred to
as the teacher model, is updated by an exponential moving average (EMA) of the parameterized
student model fθ with a decaying parameter η, f ← η ∗ f + (1− η) ∗ fθ. The student model learns
by predicting targets generated online by the teacher. Thus, it enables representation learning without
requiring external modules or modifications to the overall model structure.

Masked prediction task loss In AV-data2vec (Lian et al., 2023), audio and video frames are
randomly masked, and a masked prediction task is performed by predicting each masked frame with
the target feature. The target features are obtained from clean, unmasked data using the teacher model.
Then, the masked prediction loss is defined as:

LMASK =
∑

t∈Ma∪Mv

ℓ
(
[fθ(MASK(A);MASK(V ))]t, [f(A;V )]t

)
(2)

where Ma and Mv are the set of indices of masked audio and video frames, respectively. ℓ is often
used as a mean squared error (MSE) loss, and f(·) as the teacher model’s average representation—the
output sequence averaged over top-k Transformer blocks to establish the target, i.e., f(A;V ) =
1
k

∑L
l=L−k+1 f

l(A;V ), where L is the number of blocks.

4 CAV2VEC: UNIMODAL MULTI-TASK CORRUPTED PREDICTION

4.1 VISUAL AND AUDIO CORRUPTION TYPES

Figure 2 presents the visual and audio corruption types used in this study. We propose a novel
evaluation benchmark, introducing corruption types unseen during training, to assess the model’s
generalizability under diverse and realistic conditions. During training, visual corruptions include
object occlusion, Gaussian noise, and blurring, applied to video frames following Hong et al. (2023).
For object occlusion, we obscure the mouth regions by COCO (Lin et al., 2014) object images, as
presented in Voo et al. (2022). In evaluation, we apply unseen visual corruption types, using the
11k-Hands dataset (Afifi, 2019) to occlude the mouth regions with diverse hand images. Furthermore,
we apply corruption by pixelating the entire frame using the opencv library, with a 3x3 patch
interpolation. This allows us to evaluate the model’s robustness under conditions where human faces
are often pixelated due to privacy or ethical concerns.
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Figure 3: Overview of our representation learning framework with corrupted prediction tasks. For the
corrupted prediction strategies, focusing on the cross-modal alignment through unimodal multi-task
learning proves highly effective in gaining multimodal robustness.

For the audio corruption, we use various types of background noise that are recorded from different
sources, at a −10 dB SNR (signal-to-noise ratio). In the training, we apply conventionally used audio
noise types (Shi et al., 2022b; Hsu & Shi, 2022), babble, music, and natural noise sampled from
MUSAN (Snyder et al., 2015), and speech noise sampled from LRS3 (Afouras et al., 2018b), onto
the original speech signal. In the evaluation, we introduce new corruption types from the DEMAND
dataset (Thiemann et al., 2013), which includes real-world indoor and outdoor recordings. Out of 18
categories of recording, we evaluate on 8 relatively noisy environments: park, river, cafe, restaurant,
cafeteria, metro, public station, and meeting room. For results in the remaining categories, e.g., living
room or office, refer to Appendix C.2.

4.2 CORRUPTED PREDICTION TASKS OF CAV2VEC

We present CAV2vec, a robust representation learning framework to account for corrupted audio-
visual sequences. Inspired by the idea of conventional masked prediction strategy (Lian et al., 2023),
CAV2vec is trained through a corrupted prediction task. The corrupted prediction task loss is designed
to minimize the difference between the student model’s output for the corrupted data and the teacher
model’s output for the uncorrupted data. Figure 3 provides an overview of the corrupted representation
learning of CAV2vec. We apply corruption functions to both video and audio data (see Figure 2) and
perform the corrupted prediction tasks on the corrupted frames, alongside the masked prediction task
on the masked frames. We suggest different strategies in designing these corrupted prediction tasks,
depending on the modality of input and target representations.

Audio-visual corrupted prediction task A straightforward approach is using corrupted multimodal
inputs as well as clean multimodal targets ( 1⃝ in Figure 3), following the masked prediction strategy.
We name it as audio-visual corrupted prediction (AVCP) task, where the AVCP loss function is
analogously defined as:

LAVCP =
∑

t∈Ca∪Cv

ℓ
(
z̃av
t , [f(A;V )]t

)
. (3)

Here, the loss is computed only for the corrupted indices t ∈ Ca ∪ Cv, where Z̃av represents the
student model’s predictions for (possibly) corrupted sequences Ã and Ṽ , and f(A;V ) represents the
target for clean sequences A and V .
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Figure 4: Similarity scores measured between audio-visual features of sample sequences. Clean
sequence representations are compared with corrupted ones from (a) AV-data2vec and (b) CAV2vec.
The normalized L2 distance d is calculated between the clean and corrupted features per-sample.

Unimodal corrupted prediction tasks While the AVCP task in Eq. (3) is effective in learning
robustness for multimodal features, the mixed audio-visual information in both inputs and targets
makes it hard to isolate corruptions on individual modalities (Mai et al., 2023). To address this, we
introduce CAV2vec with a unimodal multi-task learning strategy for corrupted prediction, leveraging
audio-only and video-only sequences ( 3⃝ in Figure 3). These unimodal tasks enhance cross-modal
alignment, which is essential in AVSR for capturing multimodal correlations (Ren et al., 2021; Hu
et al., 2023b;c), particularly when corruption disrupts the link between two modalities. We propose
the unimodal tasks to distill cross-modal knowledge: audio corrupted prediction (ACP) task and
visual corrupted prediction (VCP) task. Their loss functions are defined as:

LACP =
∑
t∈Cv

ℓ
(
z̃v
t , [f(A;0)]t

)
, LVCP =

∑
t∈Ca

ℓ
(
z̃a
t , [f(0;V )]t

)
(4)

where Z̃v = fθ(0; Ṽ ) and Z̃a = fθ(Ã;0) denote video-only and audio-only unimodal features,
respectively. Thus, the ACP task predicts clean audio targets with corrupted videos, and the VCP task
predicts clean video targets with corrupted audios. To thoroughly examine the impact of each task and
the relationship with modality alignment, we also implement multimodal ACP and VCP tasks, called
mACP and mVCP, which use multimodal inputs Z̃av and unimodal targets ( 2⃝ in Figure 3). These
are formulated as LmACP =

∑
t∈Cv ℓ(z̃av

t , [f(A;0)]t) and LmVCP =
∑

t∈Ca ℓ(z̃av
t , [f(0;V )]t), and

their effectiveness is investigated in Section 5.3.

Overall multi-task loss of CAV2vec We employ both corrupted prediction in Eq. (4) and masked
prediction in Eq. (2), but we do not allow the overlap between masked and corrupted frames to
separate the tasks, i.e., (Ma ∪Mv)∩ (Ca ∪Cv) = ∅. We have empirically found this task separation
to be effective. Incorporating the unimodal corrupted prediction tasks with modality dropout (Hsu &
Shi, 2022) as well as the masked prediction task for multimodal inputs, the loss function for CAV2vec
within multi-task learning is defined as follows:

LCAV2vec = λACP LACP + λVCP LVCP + λMASK LMASK + λMLM LMLM (5)

where LMLM is a masked language modeling-style (MLM) loss used in Shi et al. (2022a); Zhang et al.
(2023). LMLM, which predicts the cluster index of the masked features in a cross-entropy loss form,
helps the model converge faster than using LMASK alone (Zhang et al., 2023). In our experiments, we
set λACP = λVCP = λMASK = 1.0 and λMLM = 2.0 to match the scales of each loss.

As shown in Figure 4a, corruption disrupts audio-visual representations, resulting in reduced similarity
scores and increased dispersion of features, which hinders the model’s ability to maintain robust
representations. In Figure 4b, our corrupted representation learning helps the model encode highly
correlated audio-visual representations, restoring high similarity (small distance) between clean and
corrupted sequence features and leading to a more compact and resilient representation space.

5 EXPERIMENTS AND RESULTS

5.1 IMPLEMENTATION DETAILS

Datasets We train and evaluate our model on LRS3 (Afouras et al., 2018b), which contains roughly
433 hours of TED talks from over 5,000 speakers. Most of our experimental configurations follow Shi
et al. (2022b), including noise augmentation and evaluation protocols. Audio noise is extracted from
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the MUSAN (Snyder et al., 2015) (babble, music, natural) and LRS3 (speech) datasets, partitioned
into training, validation, and test sets. This noise is added to audio waveform during both training
and evaluation. The evaluation metric for AVSR is the word error rate (WER, %). For audio feature
extraction, we extract 26-dimensional log filter bank features from raw audio at a stride of 10 ms,
stacking 4 adjacent frames to achieve a frame rate of 25 fps. Video track is sampled at 25Hz, with a
96×96 region center-cropped on the speaker’s mouth. During training, we randomly crop an 88×88
region and apply horizontal flips with probability 50%.

CAV2vec and baseline models CAV2vec uses 24 Transformer (Vaswani et al., 2017) block layers
for the AVSR encoder and 9 layers for the decoder, based on the AV-HuBERT-LARGE model (Shi
et al., 2022a). The visual feature extractor is a modified ResNet-18, while the audio feature extractor
is a linear projection layer. The extracted features are concatenated to form fusion audio-visual
features, which are input to the Transformer encoder. We initialize the model using the publicly
available checkpoint from Shi et al. (2022b), the AV-HuBERT encoder pretrained on noise-augmented
LRS3 (Afouras et al., 2018b) + VoxCeleb2 (Chung et al., 2018), and proceed our representation
learning phase afterwards. This training strategy makes the whole process efficient, spanning only 2%
of AV-HuBERT’s pretraining cost (Shi et al., 2022a), as well as leveraging high-resource knowledge
of VoxCeleb2 (1,326 hours). Our representation learning can thus be considered as an uptraining
phase (Ainslie et al., 2023), an additional pretraining step that helps the model adapt to corrupted data
before fine-tuning on the supervised speech recognition task. As in prior self-distillation works (Caron
et al., 2021; Baevski et al., 2022), we employ single MLP-layer predictors assigned for each task on
the student model, which are removed after training.

For baseline models, we compare with (1) V-CAFE (Hong et al., 2022), (2) RAVEn (Haliassos
et al., 2023), (3) BRAVEn (Haliassos et al., 2024), (4) AV-HuBERT (Shi et al., 2022a), (5) AV-
data2vec (Lian et al., 2023), and (6) AV-RelScore (Hong et al., 2023). V-CAFE is an end-to-end
supervised model with a relatively small model size, while the other models are pretrained with their
own loss functions. We re-implemented RelScore on the AV-HuBERT backbone, as the original
version based on V-CAFE (Hong et al., 2023) performs poorly, and further trained the scoring module.
All baseline models are initialized from their respective pretrained checkpoints and then fine-tuned
using the same decoder architecture and training configurations as our model. For details of each
baseline model, refer to Appendix A.1.

Training configuration For CAV2vec uptraining, we sample audio noise at 0 dB SNR and randomly
perturb the clean speech signal with a 25% probability. The encoder is updated for 60K steps, with
a maximum of 16K tokens (i.e., 640 seconds) per step, which takes 8–10 hours on 4 RTX A6000
GPUs. Visual corruption is applied to every sequence, randomly corrupting 10–50% of the sequence
length with object occlusion, Gaussian noise, or blurring. Every clean audio sequence is corrupted
by augmenting strong noise of babble, speech, music, or natural, at −10 dB SNR to 30–50% of the
sequence length.

During fine-tuning, the encoder is frozen for the first 48K steps, while the decoder is trained using
sequence-to-sequence negative log-likelihood as the AVSR loss function. The entire model is then
trained for additional 12K steps. The visual corruption applied during fine-tuning is identical to that
in the uptraining phase, while we randomly corrupt 25% of the audio signal by an SNR value sampled
from a normal distribution with mean 0 and standard deviation 5. We note that all baseline models
follow the same fine-tuning procedure as ours for a fair comparison: initialized from pretrained
models and then fine-tuned with audio-visual corrupted inputs.

5.2 ROBUST AVSR BENCHMARK RESULTS

LRS3 benchmark results with audio-visual joint corruption Through our experiments, we
address two questions: (i) does representation learning with corrupted prediction task and multi-task
learning approach improve the model’s robustness to real-world audio-visual corruption? and (ii)
does it guarantee generalizability to even unseen types of corruption? The evaluation environments in
this study are specifically challenging compared to previous works since there exists audio-visual joint
corruption. In Table 1, we present the robust AVSR performance of our proposed model, CAV2vec,
which is superior to baseline models in diverse conditions. AV-HuBERT (Shi et al., 2022b) and
AV-data2vec (Lian et al., 2023) are based on a multimodal encoder and have been pretrained on
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Table 1: Comparisons of WER (%) with our model and prior works on the LRS3 dataset (Afouras
et al., 2018b). For audio corruption, babble, music, and natural noise are sampled from the MUSAN
dataset (Snyder et al., 2015), while speech noise is sampled from the held-out set of LRS3. N-WER
averages the results across all four audio noise types and five SNR (signal-to-noise ratio) values, while
N≥ S denotes noise-dominant scenarios, averaging over {-10, -5, 0} SNRs. For visual corruption, we
evaluate on (a) object occlusion and noise, (b) occlusion by hands, and (c) pixelated face.

Method Params Babble, SNR (dB) = Speech, SNR (dB) = Music + Natural, SNR (dB) = N-WER Clean
-10 -5 0 5 10 AVG -10 -5 0 5 10 AVG -10 -5 0 5 10 AVG AVG N≥S ∞

V-CAFE 49M 54.7 31.6 14.6 7.3 5.4 22.7 45.1 29.3 16.9 10.0 6.6 21.6 32.1 17.6 9.1 6.5 5.2 14.1 18.1 25.8 4.2
RAVEn 673M 43.5 25.4 8.5 4.0 2.8 16.9 58.9 42.3 17.9 5.1 3.1 25.5 23.3 11.3 5.4 3.3 2.5 9.2 15.2 23.0 2.3
BRAVEn 673M 41.1 22.2 6.1 2.5 1.8 14.7 45.6 30.4 14.9 5.2 2.2 19.7 20.3 8.3 3.5 2.1 1.8 7.2 12.2 18.7 1.8
AV-HuBERT 325M 30.6 14.4 5.1 2.7 2.1 11.0 7.7 4.3 3.0 2.2 2.0 3.9 10.9 5.2 3.0 2.3 1.8 4.6 6.0 8.6 1.6
AV-data2vec 325M 32.1 15.1 5.3 2.5 2.0 11.4 8.3 4.9 3.1 2.2 1.9 4.1 10.9 5.5 3.0 2.1 1.8 4.6 6.2 9.0 1.5
AV-RelScore 437M 30.1 14.3 5.3 2.5 1.7 10.8 6.8 4.4 2.8 2.3 2.0 3.7 10.5 5.3 2.8 2.1 1.8 4.5 5.9 8.4 1.6

(a
)O

bj
.+

N
oi

se

CAV2vec 325M 25.8 11.7 4.4 2.4 1.8 9.2 5.9 3.6 2.5 2.1 1.8 3.2 9.6 4.3 2.6 1.8 1.7 4.0 5.1 7.2 1.5

V-CAFE 49M 57.2 31.9 13.7 7.5 5.3 23.1 45.7 29.3 17.1 10.0 6.8 21.8 32.3 18.0 9.2 6.2 5.4 14.2 18.3 26.2 4.1
RAVEn 673M 46.0 25.8 9.0 4.2 2.8 17.6 60.6 44.0 18.9 5.5 2.9 26.4 23.7 11.4 5.1 3.4 2.7 9.3 15.6 23.7 2.2
BRAVEn 673M 38.3 21.6 5.7 2.5 2.0 14.0 41.8 29.0 13.9 4.6 2.4 18.4 18.5 7.5 3.3 2.2 1.9 6.7 11.4 17.4 1.7
AV-HuBERT 325M 32.0 15.5 5.3 2.7 2.0 11.5 8.1 4.2 3.0 2.3 2.0 3.9 11.5 5.3 2.9 2.3 1.8 4.8 6.2 9.0 1.6
AV-data2vec 325M 33.2 15.6 5.7 2.6 2.0 11.8 8.1 4.7 2.8 2.3 1.9 4.0 12.3 6.0 2.9 2.2 1.9 5.0 6.5 9.4 1.5
AV-RelScore 437M 31.7 14.5 5.1 2.7 2.0 11.2 7.7 4.2 2.6 2.2 1.9 3.7 11.2 5.3 3.1 2.1 1.7 4.7 6.1 8.7 1.6

(b
)H

an
ds

O
cc

.

CAV2vec 325M 26.6 12.4 4.5 2.6 1.8 9.6 6.2 3.6 2.6 2.2 1.7 3.3 9.4 4.8 2.6 1.9 1.7 4.1 5.2 7.4 1.5

V-CAFE 49M 55.4 31.8 13.7 7.5 5.3 22.7 44.4 28.3 16.8 10.1 7.0 21.3 31.8 17.9 9.4 6.4 5.2 14.1 18.1 25.7 4.2
RAVEn 673M 43.7 25.2 8.5 3.6 2.8 16.8 60.0 42.8 18.2 5.0 3.2 25.8 23.4 10.9 5.2 3.2 2.6 9.1 15.2 23.1 2.3
BRAVEn 673M 39.1 21.6 5.7 2.7 1.9 14.2 42.4 31.0 13.3 4.8 2.2 18.7 18.5 7.6 3.4 2.2 1.9 6.7 11.6 17.7 1.7
AV-HuBERT 325M 29.8 13.6 5.0 2.6 1.9 10.6 7.4 4.1 2.7 2.1 2.0 3.7 10.9 5.1 2.8 2.2 1.9 4.6 5.8 8.3 1.6
AV-data2vec 325M 30.6 14.3 5.2 2.6 2.0 10.9 7.5 4.5 3.0 2.3 2.0 3.9 10.7 5.4 2.9 2.1 1.7 4.6 6.0 8.6 1.5
AV-RelScore 437M 30.1 13.1 5.2 2.6 2.0 10.6 7.3 4.3 3.0 2.2 1.9 3.7 10.3 5.0 3.1 2.1 1.8 4.5 5.8 8.3 1.5(c

)P
ix

el
at

e

CAV2vec 325M 26.0 12.0 4.7 2.5 1.9 9.4 5.8 3.6 2.5 2.3 1.7 3.2 9.6 4.2 2.6 1.9 1.7 4.0 5.1 7.3 1.5

Table 2: Performance comparison on the LRS3 dataset (Afouras et al., 2018b) with audio noise
sampled from the DEMAND dataset (Thiemann et al., 2013). For each noisy environment, WER (%)
is measured by randomly sampling the SNR value from the range [−10 dB, 10 dB].

(a) Object Occlusion + Noise (b) Hands Occlusion (c) Pixelated Face

Method PA
R

K

R
IV

E
R

C
A

FE

R
E

ST
O

C
A

FE
T

E
R

M
E

T
R

O

ST
A

T
IO

N

M
E

E
T

IN
G

AV
G

PA
R

K

R
IV

E
R

C
A

FE

R
E

ST
O

C
A

FE
T

E
R

M
E

T
R

O

ST
A

T
IO

N

M
E

E
T

IN
G

AV
G

PA
R

K

R
IV

E
R

C
A

FE

R
E

ST
O

C
A

FE
T

E
R

M
E

T
R

O

ST
A

T
IO

N

M
E

E
T

IN
G

AV
G

BRAVEn 4.6 7.3 6.6 14.9 8.1 3.3 6.1 13.5 8.1 4.0 7.0 5.7 13.6 8.3 3.8 6.1 12.5 7.6 4.8 7.3 6.6 15.6 8.4 3.3 5.7 12.3 8.0
AV-HuBERT 3.4 4.6 5.1 10.2 5.9 2.7 4.1 3.9 5.0 3.6 5.1 5.3 11.2 6.7 2.7 4.2 4.5 5.4 3.4 4.7 4.6 10.4 6.1 2.8 3.8 3.8 4.9
AV-data2vec 3.4 4.5 5.1 10.3 6.2 2.7 4.1 4.4 5.1 3.3 5.0 5.8 11.9 6.5 3.2 4.1 4.4 5.5 3.4 4.7 5.0 9.3 5.5 3.0 4.1 3.9 4.9
AV-RelScore 3.4 4.5 5.1 9.3 5.4 2.8 3.9 3.8 4.8 3.0 5.2 5.1 10.8 6.2 2.8 3.8 4.6 5.2 3.2 4.9 4.6 10.0 6.1 2.7 3.7 3.9 4.9
CAV2vec 2.8 4.3 4.4 8.4 5.1 2.3 3.8 3.5 4.3 3.0 4.0 4.0 8.9 5.1 2.7 3.4 3.5 4.3 3.0 3.9 4.5 8.6 4.6 2.4 3.3 3.6 4.2

noise-augmented audio conditions, which result in outperforming RAVEn (Haliassos et al., 2023)
and BRAVEn (Haliassos et al., 2024) that utilize two separate encoders for ASR and VSR. RAVEn
and BRAVEn particularly suffer in severely corrupted environments, i.e., SNR≤ 0 dB. While AV-
RelScore is specifically designed to address audio-visual joint corruption by assessing the modality
reliability (Hong et al., 2023) and outperforms other baselines, it entails additional parameters for a
scoring module within the encoder, making it hard to incorporate with pretrained models.

CAV2vec consistently demonstrates superior performance across all visual and audio corruption levels.
It surpasses all baseline models under the object occlusion and visual noise condition, achieving
an average N-WER of 5.1% (Table 1(a)), while AV-data2vec and AV-RelScore obtain 6.2% and
5.9%, respectively. Furthermore, CAV2vec shows effectiveness in generalizing to unseen types of
corruption, with N-WER of 5.2% and 5.1% for (b) hands occlusion and (c) pixelated face, respectively,
underscoring its practical applicability in real-world scenarios. Occlusion by hands poses a particularly
challenging situation, as the obscured region is larger than that of the COCO objects (Lin et al., 2014),
and there is visual similarity between hands and facial tones. While baseline models struggle with
such unseen visual corruption type, showing increases in average N-WER (6.5% for AV-data2vec
and 6.1% for AV-RelScore), CAV2vec maintains robustness, achieving an N-WER of 5.2%.

In the audio noise-dominant scenarios, characterized by an SNR value less than or equal to 0 dB
(denoted as N≥S), it is important to fully leverage visual cues to compensate for impaired speech
audio signal. In such conditions, corrupted video inputs can be particularly detrimental if the model
is not robust to them. CAV2vec, with its unimodal corrupted prediction tasks, effectively learns cross-
modal correlations under corruption, mitigating the recognition errors. We also highlight that our
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Figure 5: Our implemented strategies for corrupted prediction tasks. The AVCP task uses the audio-
visual targets. For the multi-task learning (MTL) designs that utilize unimodal targets, mACP and
mVCP tasks use multimodal inputs (mMTL), while ACP and VCP tasks use unimodal inputs (uMTL).

Table 4: Ablation study for the configuration of corrupted prediction tasks. We summarize the AVSR
results (average N-WER) across visual corruption types (O: object occlusion + noise, H: hands
occlusion, P: pixelate) and audio corruption types (MS: MUSAN and LRS3 noise, DM: DEMAND
noise), same evaluation procedures as Tables 1 and 2. CRL: corrupted representation learning, mMTL:
multimodal multi-task learning, uMTL: unimodal multi-task learning. Refer to Figure 5 for each
setting. Note that the masked prediction task is utilized in every setup. Best and second best results.

CRL mMTL uMTL Tasks for corruption O/MS O/DM H/MS H/DM P/MS P/DM

✗ ✗ ✗ - 6.2 5.1 6.5 5.5 6.0 4.9

✓ ✗ ✗ AVCP 5.3 4.5 5.6 4.7 5.6 4.8
✓ ✓ ✗ mACP + mVCP 5.1 4.2 5.4 4.5 5.3 4.3
✓ ✓ ✗ mACP + mVCP (within-modal) 5.2 4.4 5.4 4.6 5.3 4.5
✓ ✓ ✗ mACP + mVCP + AVCP 5.3 4.6 5.6 4.8 5.3 4.6

✓ ✗ ✓ ACP + VCP 5.1 4.3 5.2 4.3 5.1 4.2
✓ ✗ ✓ ACP + VCP (within-modal) 5.2 4.6 5.4 4.7 5.2 4.4
✓ ✗ ✓ ACP + VCP + AVCP 5.2 4.4 5.6 4.6 5.3 4.6
✓ ✓ ✓ mACP + mVCP + ACP + VCP 5.1 4.3 5.2 4.4 5.2 4.2

model consistently achieves state-of-the-art results even in the signal-dominant conditions, i.e., high
SNR values, demonstrating its versatility across varying levels of audio corruption. In addition,
to validate the model’s generalizability to real-world audio corruption, Table 2 presents the AVSR
performance with DEMAND noise that includes more realistic environments. CAV2vec effectively
achieves robust recognition capabilities in environments like indoor stores or outdoor public space.

Table 3: Comparisons of WER (%) with
our model and prior works on the LRS2
dataset. We present N-WER, with bab-
ble (B), speech (S), music (M), and natu-
ral (N) noise types, as well as clean WER
results. Visual corruption type is used as
object occlusion + noise.

Method B S M N Clean

AV-HuBERT 11.6 5.3 6.1 6.0 3.0
AV-data2vec 11.5 5.6 6.5 6.2 3.0
AV-RelScore 11.1 4.8 5.9 5.5 2.9
CAV2vec 8.9 4.4 5.1 4.9 2.7

LRS2 benchmark results The LRS2 dataset
(Son Chung et al., 2017) consists of 224 hours of BBC
video recordings, encompassing a wider variety of
scenarios than LRS3, including news delivery, panel
discussion, and indoor and outdoor interviews. This
diversity allows for a more comprehensive evaluation
of the model’s generalizability. In Table 3, CAV2vec
demonstrates strong performance on the corrupted
LRS2 benchmark, further validating its robustness in
real-world conditions. We note that all models compared
are based on the LRS3-pretrained models, with LRS2
used only in the uptraining or fine-tuning phase.

5.3 ANALYSIS

5.3.1 ABLATION STUDY FOR CORRUPTED PREDICTION TASKS

In designing our corrupted prediction tasks, we have introduced the AVCP task in Eq. (3), along
with the unimodal ACP and VCP tasks in Eq. (4). Additionally, we explore the mACP and mVCP
tasks for a more comprehensive analysis. Figure 5 illustrates and compares these tasks, as well as

9



Published as a conference paper at ICLR 2025

within-modal task designs. The within-modal ACP and VCP tasks are implemented to align the
corrupted inputs and targets within the same modality. Table 4 summarizes the performance results
for each task design.

The first observation is that without incorporating the suggested corrupted representation learning,
the model struggles to achieve robust speech recognition. Therefore, it is crucial to employ any forms
of corrupted prediction task. When utilizing multimodal inputs, the mACP + mVCP tasks consistently
outperform the AVCP task alone, and even the combination with AVCP. This indicates that distilling
knowledge through unimodal targets for the corrupted modality shows effectiveness. Besides, using
unimodal inputs (ACP + VCP) proves even more effective, as these tasks generally outperform the
multimodal input tasks (mACP + mVCP). We also note that within-modal strategies are less effective
than cross-modal approaches, as they do not directly target audio-visual correlations.

These findings align with our hypothesis, as depicted in Figure 3, that directly addressing the cross-
modal alignment improves the correlation between the two modalities, which is crucial in generating
robust audio-visual features. Since the masked prediction task is maintained for learning contex-
tualized multimodal representations, the AVCP or mACP + mVCP tasks become redundant when
unimodal tasks are being employed. We thus separate the multi-task strategy as leveraging only
unimodal inputs for corrupted prediction and multimodal inputs for masked prediction.

5.3.2 SENSITIVITY STUDY ON CORRUPTION RATIOS

Table 5: Sensitivity study on the corruption ra-
tios in CAV2vec. Object occlusion with Gaus-
sian noise and blurring is used for visual cor-
ruption, along with the MUSAN audio corrup-
tion, as in Table 1(a).

N-WER
pvcorrupt pacorrupt p̂clean AVG N≥S N<S Clean

0.1–0.5 0.3–0.5 0.15 5.1 7.2 1.9 1.5

0.1 0.3 0.22 5.3 7.4 2.0 1.6
0.3 0.5 0.14 5.0 7.1 2.0 1.5
0.5 0.7 0.09 4.7 6.5 2.0 1.6
0.7 0.9 0.04 4.7 6.5 2.1 1.6

We evaluate the model across varying corruption
ratios for both audio (pacorrupt) and visual (pvcorrupt)
sequences to examine the impact of amount of cor-
ruption in learning robustness. As shown in Table 5,
higher corruption ratios naturally reduce the empir-
ical proportion of clean inputs (p̂clean). The result re-
veals a trade-off between the performance in highly
noisy environments (N≥S) and less corrupted set-
tings (N<S and Clean), depending on the model’s
exposure to clean or corrupted sequences during
training. While higher corruption ratios significantly
improve performance in noisy conditions, it is also
essential for the AVSR model to maintain reliability
in less corrupted scenarios. To balance this trade-off,
we randomly sample the visual corruption ratio from 0.1–0.5 and audio corruption ratio from 0.3–0.5,
ensuring a balance between clean and corrupted inputs. In terms of masking frames, we follow Shi
et al. (2022b); Zhang et al. (2023) by using a 0.3 masking ratio for video and 0.8 for audio. For both
corruption and masking, higher ratios for audio is necessary as audio holds more critical information
in speech. However, we note that masking is applied after corruption, and we do not allow overlap
between masked and corrupted frames, which results in effective masking ratios of roughly 0.1 for
video and 0.2 for audio. We empirically observed that adjusting the masking ratios has little effect on
the CAV2vec’s performance.

6 CONCLUSION

In this paper, we presented CAV2vec, a novel audio-visual representation learning framework de-
signed to address the challenges of audio-visual joint corruption in speech recognition. By employing
a corrupted prediction task, CAV2vec enhances multimodal robustness, while incorporating a uni-
modal multi-task learning strategy to improve cross-modal alignment shows effectiveness. Our
experiments on robust AVSR benchmarks including LRS3 and LRS2 demonstrate that CAV2vec sig-
nificantly outperforms existing baseline models, consistently exhibiting superior performance across
a variety of corrupted environments. Particularly in challenging audio noise-dominant scenarios,
CAV2vec effectively aligns corrupted modalities, leading to more reliable and robust audio-visual
fusion. Additionally, our model showcases strong generalization abilities, achieving state-of-the-art
results even in unseen corruption types such as pixelated faces with public audio noise. These findings
establish CAV2vec as a robust, adaptable framework for handling corrupted audio-visual data, setting
a new benchmark for multimodal speech recognition systems.
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specifically addressing the challenge of multimodal corruption in speech recognition systems. This
study does not involve human subjects, nor does it present any potential ethical concerns related to
harmful insights, conflicts of interest, discrimination, or bias. The datasets used in this research, in-
cluding the newly introduced corruption types (e.g., hands occlusion or background noise recordings),
are publicly available and widely used in the speech recognition community, ensuring our compliance
with data privacy and legal standards.

REPRODUCIBILITY STATEMENT
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION OF BASELINE MODELS

We present the baseline models used in our experiments and provide the details on how they have
been (re-)implemented.

V-CAFE (Hong et al., 2022) is an end-to-end supervised model for AVSR, designed to capture the
lip movement and generate a noise reduction mask by utilizing visual context. The model is built
on a Conformer-Transformer encoder-decoder architecture and employs a joint CTC/Attention loss
function (Kim et al., 2017). V-CAFE incorporates visual context through cross-modal attention to
generate a noise reduction mask, where the generated mask is applied to the encoded audio features
to mitigate noisy audio representations.

For our experiments, we use the pretrained encoder from the publicly available V-CAFE checkpoint1,
which has been trained on the LRS3 dataset. To ensure a consistent experimental setup across all
baselines and our model, we fine-tune the V-CAFE model by initializing the Transformer decoder
and training it for 120,000 steps with a learning rate of 2× 10−3. The encoder remains frozen for the
first 48,000 steps, after which the entire model is updated over the remaining 72,000 steps.

RAVEn and BRAVEn (Haliassos et al., 2023; 2024) are self-supervised learning ASR and VSR
models that encode masked inputs and predict contextualized targets generated by momentum encoder
teachers. In both models, two unimodal encoders are jointly trained, each serving as a teacher for the
cross-modal student encoder. Specifically, the audio student predicts outputs from both audio and
video teachers, while the video student predicts only audio targets. BRAVEn is the upgraded version
of RAVEn, slightly modifying the self-distillation framework with different hyperparameters to more
emphasize ASR than VSR.

We utilize the pretrained encoders of RAVEn and BRAVEn from the public repository2. Both ASR and
VSR encoders are loaded, and these models are used to encode the normalized raw audio waveform
and video frames, respectively. Although RAVEn and BRAVEn were not originally designed as
multimodal models, we follow the approach of Haliassos et al. (2024) to implement an AVSR
framework by fusing the encoded features from each modality. The fusion audio-visual features are
then fed into an initialized Transformer decoder. Thus, the modality-fusion MLP layer is also trained
with the decoder. We train the model for 120,000 steps with a learning rate of 2× 10−3 while the
encoder is frozen for the first 96,000 steps. Due to the absence of a pretrained multimodal encoder
and the fact that these models were not trained on noise-augmented data, their AVSR performance in
corrupted environments is suboptimal despite of their large number of model parameters.

The RAVEn and BRAVEn results in Table 1 exhibit poor performances than those reported in the
original paper. This discrepancy can be attributed to different evaluation settings. Our settings are
designed to assess noise-robust audio-visual models under real-world conditions, where the type and
extent of modality corruption are unpredictable. These results (WER: RAVEn 2.3% and BRAVEn
1.8%) are measured under visual corruption, whereas the published results pertain to clean audio
conditions using a standalone ASR model. Although standalone ASR models excel in clean audio
environments, their performance significantly degrades under noisy conditions.

BRAVEn has reported low-resource AVSR performance (WER: RAVEn 4.7% and BRAVEn 4.0%),
but it does not provide results in high-resource settings or under audio-visual corruption. Moreover,
the specific hyperparameters used for fine-tuning in conjunction with pretrained ASR and VSR
encoders and a decoder have not been detailed. The performance gap might also stem from the larger
unlabeled dataset and self-training technique during pretraining and the use of a language model
during inference, which were not employed in our experimental setup. Also, while (B)RAVEn used
CTC/attention loss for fine-tuning, we only used attention loss to ensure a fair comparison across all

1https://github.com/ms-dot-k/AVSR
2https://github.com/ahaliassos/raven

16

https://github.com/ms-dot-k/AVSR
https://github.com/ahaliassos/raven


Published as a conference paper at ICLR 2025

models. These variations in decoding approaches can influence outcomes, although they could be
orthogonally applied to any models.

AV-HuBERT and AV-data2vec (Shi et al., 2022a; Lian et al., 2023) are self-supervised learning
models for audio-visual multimodal processing within a single framework, both using masked inputs
to predict unmasked targets. They share the same structure for the encoder, with 24 Transformer
blocks. The key difference lies in how they generate the targets: AV-HuBERT uses the cluster indices
of MFCC (mel-frequency cepstral coefficient) features, while AV-data2vec uses the EMA teacher’s
output sequence. AV-HuBERT updates its targets after each iteration of training using the current
model, whereas AV-data2vec generates online targets with a self-evolving teacher. Both methods are
effective in learning contextualized audio-visual multimodal features.

Since AV-HuBERT pretrained models are publicly available3 but AV-data2vec models are not, we
implement AV-data2vec on top of the AV-HuBERT pretrained model, and uptrained it for 60,000
steps in a similar manner to CAV2vec. We use the Adam optimizer with a weight decay of 0.01 and a
learning rate of 2× 10−4. We fine-tune the decoder for both AV-HuBERT and AV-data2vec models,
building on the respective pretrained encoders. The fine-tuning process employs an attention-based
sequence-to-sequence cross-entropy loss, with accuracy as the validation metric. The initial learning
rate is 10−3, scheduled with 20,000 warmup steps followed by decaying over the next 40,000 steps.
During fine-tuning, the encoder remains frozen for the first 48,000 steps, updating only the decoder.
After 48,000 steps, both the encoder and decoder are updated for the final 12,000 steps.

AV-RelScore (Hong et al., 2023) leverages a reliability scoring module (RelScore) to assess
the reliability of each input modality at every frame. RelScore modules are appended after the
feature extractor for each modality and consist of three convolutional layers followed by a sigmoid
activation, which outputs a scalar value for each frame. The original model is based on the V-CAFE
backbone (Hong et al., 2022), which has a smaller architecture and subpar performance on large-scale
datasets. To ensure a fair comparison with our baselines, we implement RelScore on the AV-HuBERT-
LARGE backbone, leveraging its pretrained knowledge. For training AV-RelScore, we freeze the
encoder and feature extractors, training only the RelScore modules and the decoder for 50,000 steps.
Afterward, we update the entire model, including the encoder, for an additional 40,000 steps. Since
the RelScore modules introduce additional parameters and are located before the pretrained encoder,
AV-RelScore requires more fine-tuning steps until convergence than required by AV-HuBERT.

A.2 TRAINING DETAILS OF CAV2VEC

We perform uptraining using a Transformer-based AV-HuBERT-LARGE architecture via unimodal
corrupted prediction tasks. Both audio and video data are processed at 25 frames per second (fps)
and augmented with various corruptions (refer to Figure 2). Each sample sequence is trimmed to a
maximum length of 400 frames during pre-processing. For audio, 25% of the sequences are applied
with noise at SNR = 0 dB, following the noise augmentation strategy from Shi et al. (2022b), while the
remaining 75% undergo partial corruption at SNR =−10 dB. A single chunk within each sequence is
corrupted, with the corruption length randomly selected between 30–50% of the sequence length.
The visual modality is corrupted at a frequency of 1, where frequency denotes the number of visual
corruption events in the entire sequence. Object occlusion applied to the speaker’s lips occurs once,
followed by Gaussian noise or blurring, each with a probability of 0.3. The visual corruption length
is randomly selected as 10–50%.

We also apply frame masking for contextualized representation learning. Following the strategy in
previous works (Shi et al., 2022a), 80% of audio frames are masked, with each mask segment lasting
10 frames, while 30% of video frames are masked, with each segment lasting 5 frames. The high
audio masking ratio helps the model focus on the most relevant information from the audio context.
However, we note that masking is applied after corruption, and we do not allow overlap between
masked and corrupted frames. Therefore, the effective masking ratio is lower than the initially set
probability.

Additionally, modality dropout is applied to both audio and visual inputs, each with a dropout rate of
0.25. In our implementation of CAV2vec with unimodal multi-task learning, we use audio targets

3https://github.com/facebookresearch/av_hubert
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Figure 6: Visualization of the modality gap of (1st row) AV-data2vec and (2nd row) CAV2vec.
Each column shows representation comparisons between different modality configurations: (1st
column) multimodal-to-multimodal comparisons, (2nd column) unimodal-to-multimodal comparisons
(averaged across audio-to-multimodal and video-to-multimodal), and (3rd column) unimodal-to-
unimodal comparisons in a cross-modal manner. davg represents the distance between the average
embeddings of each modality.

when the audio input is dropped out (video-only input) and video targets when the video input is
dropped out (audio-only input). The audio-visual target is always used for the masked prediction
task. CAV2vec is optimized using a multi-task loss function that includes ACP + VCP losses, each
weighted at 1.0 (λACP = λVCP = 1.0). The masked prediction loss coefficient is weighted at 1.0, while
the MLM loss is weighted at 2.0 (λMASK = 1.0, λMLM = 2.0), balancing the scales of self-distillation
regression loss and MLM cross-entropy loss.

We use the Adam optimizer (Kingma, 2014) with a weight decay of 0.01 and a learning rate of 10−4.
The EMA decaying parameter η starts from 0.99 and increases up to 0.999 over training. The model
is updated for 60,000 steps, using a polynomial decay learning rate scheduler with a warmup phase
of the first 5,000 updates. Each model update consumes a batch of 16,000 tokens, equivalent to 640
seconds of audio-visual data. For fine-tuning, we largely follow AV-HuBERT and apply the same
procedure to all baseline models. This involves initializing the 9-layer Transformer decoder and
training the AVSR task with a sequence-to-sequence negative log-likelihood loss. For simplicity of
fine-tuning, we do not use connectionist temporal classification (CTC) loss (Graves et al., 2006).

A.3 EVALUATION DETAILS

For evaluation, we assess the model’s performance under various audio-visual joint corruption
scenarios, including corruption types that were not encountered during training. For visual corruption
types, object occlusion and Gaussian noise (or blurring) are applied with a frequency of 1 each,
consistent with the training phase. For unseen visual corruptions, i.e., hands occlusion and pixelated
face, we randomly sample a frequency from {1, 2, 3}, resulting in an average of two corruption
occurrences per sequence, similar to the object occlusion + noise. The model’s AVSR performance
is measured using the word error rate (WER) across five SNR values: {−10,−5, 0, 5, 10}. Audio
corruption is introduced using noise from the MUSAN dataset, including babble, music, and natural
noise, as well as LRS3 speech noise. To ensure that there is no speaker overlap between the training
and test sets, LRS3 speech noise is generated using distinct speakers. Additionally, when evaluating
the model with unseen DEMAND noise, we corrupt audio by randomly sampling an SNR value from
the range [−10, 10] for each environment category.

B VISUALIZATION OF MODALITY GAP

Figure 6 visualizes the modality gap across different comparisons: multimodal-to-multimodal,
unimodal-to-multimodal, and unimodal-to-unimodal. Similar to Figure 4, we measure the repre-
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sentation similarity scores between sequence features, along with the distance between the average
embeddings over 50,000 samples. The diagonal line in the similarity matrix effectively captures the
modality gap, as it indicates the distance between different modalities for the same sample. The
results demonstrate that the modality gap widens as more unimodal features are introduced, following
the intuition that the unimodal-to-unimodal prediction task best improves cross-modal alignment.
According to Table 4, representation learning is enhanced when directly targeting the larger modality
gap ( 3⃝ > 2⃝ > 1⃝ in Figure 3). In addition, we present the representation similarity of CAV2vec in
the second row of Figure 6, observing that the modality gaps are smaller compared to AV-data2vec.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY FOR CORRUPTED PREDICTION TASKS

In Table 4, we have investigated different configurations of the proposed corrupted prediction tasks.
To clearly outline the definitions for each acronym used, these are summarized in Table 6.

Table 6: Summary of notations for each task or loss in the CAV2vec framework.

Notation Description Input modality Target modality

MP masked prediction - -
CP corrupted prediction - -

AVCP audio-visual CP AV AV
mACP multimodal audio CP AV A
mVCP multimodal visual CP AV V
ACP unimodal audio CP V A
VCP unimodal visual CP A V

Table 7: Ablation study for the configuration of corrupted prediction tasks. We summarize the AVSR
results (average N-WER) across visual corruption types (O: object occlusion + noise, H: hands
occlusion, P: pixelate) and audio corruption types (MS: MUSAN and LRS3 noise, DM: DEMAND
noise), same evaluation procedures as Tables 1 and 2. CRL: corrupted representation learning, mMTL:
multimodal multi-task learning, uMTL: unimodal multi-task learning. Refer to Figure 5 for each
setting. The masked prediction task is utilized in every setup. (w) denotes the within-modal strategies.

CRL mMTL uMTL Tasks for corruption O/MS O/DM H/MS H/DM P/MS P/DM

✗ ✗ ✗ - 6.2 5.1 6.5 5.5 6.0 4.9
✓ ✗ ✗ AVCP 5.3 4.5 5.6 4.7 5.6 4.8

✓ ✓ ✗ mACP + mVCP 5.1 4.2 5.4 4.5 5.3 4.3
✓ ✓ ✗ mACP (w) + mVCP (w) 5.2 4.4 5.4 4.6 5.3 4.5
✓ ✓ ✗ mACP + mVCP + AVCP 5.3 4.6 5.6 4.8 5.3 4.6

✓ ✗ ✓ ACP + VCP 5.1 4.3 5.2 4.3 5.1 4.2
✓ ✗ ✓ ACP (w) + VCP (w) 5.2 4.6 5.4 4.7 5.2 4.4
✓ ✗ ✓ ACP + VCP + ACP (w) 5.1 4.4 5.4 4.5 5.2 4.3
✓ ✗ ✓ ACP + VCP + VCP (w) 5.1 4.3 5.3 4.5 5.3 4.5
✓ ✗ ✓ ACP + VCP + ACP (w) + VCP (w) 5.1 4.5 5.3 4.7 5.2 4.3
✓ ✗ ✓ ACP + VCP + AVCP 5.2 4.4 5.6 4.6 5.3 4.6

✓ ✓ ✓ mACP + mVCP + ACP + VCP 5.1 4.3 5.2 4.4 5.2 4.2
✓ ✓ ✓ mACP (w) + mVCP (w) + ACP (w) + VCP (w) 5.2 4.3 5.4 4.6 5.3 4.4

In addition to the results presented in Table 4, we provide complete results for the ablation study on
corrupted prediction tasks in Table 7. We have included additional results on within-modal strategies,
as Haliassos et al. (2023) explored similar training strategies for unimodal encoders. They concluded
that, while the VSR student model benefits from using an ASR teacher, the ASR student model
requires guidance from both ASR and VSR teachers. This is because the ASR model provides more
contextual information, leading to effective training of both encoders.
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Table 8: Performance comparison on the LRS3 dataset (Afouras et al., 2018b) with audio noise
sampled from the DEMAND dataset (Thiemann et al., 2013). For each noisy environment, WER (%)
is measured by randomly sampling the SNR value from the range [−10 dB, 10 dB].
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BRAVEn 4.0 7.0 5.7 13.6 8.3 3.8 6.1 12.5 2.2 3.9 1.7 1.9 2.2 1.8 2.9 3.1 2.0 1.8 4.7
AV-HuBERT 3.6 5.1 5.3 11.2 6.7 2.7 4.2 4.5 2.2 3.2 1.6 1.8 1.9 1.8 2.6 2.5 2.0 1.6 3.6
AV-data2vec 3.3 5.0 5.8 11.9 6.5 3.2 4.1 4.4 2.2 3.2 1.6 1.8 2.2 1.8 2.5 2.7 1.9 1.5 3.6
AV-RelScore 3.0 5.2 5.1 10.8 6.2 2.8 3.8 4.6 2.2 3.2 1.7 1.9 2.1 1.7 2.2 3.0 2.1 1.7 3.5
CAV2vec 3.0 4.0 4.0 8.9 5.1 2.7 3.4 3.5 1.8 2.8 1.5 1.9 1.9 1.6 2.1 2.6 1.9 1.6 3.0

(a) Hands Occlusion

BRAVEn 4.8 7.3 6.6 15.6 8.4 3.3 5.7 12.3 2.5 3.9 1.7 1.7 2.2 1.8 2.8 3.2 2.1 1.7 4.9
AV-HuBERT 3.4 4.7 4.6 10.4 6.1 2.8 3.8 3.8 2.1 3.0 1.7 1.7 1.9 1.7 2.5 2.4 1.8 1.6 3.3
AV-data2vec 3.4 4.7 5.0 9.3 5.5 3.0 4.1 3.9 2.1 3.2 1.7 1.8 2.1 1.6 2.3 2.6 1.8 1.5 3.3
AV-RelScore 3.2 4.9 4.6 10.0 6.1 2.7 3.7 3.9 1.9 3.0 1.8 1.8 2.0 1.8 2.4 2.3 1.8 1.7 3.3
CAV2vec 3.0 3.9 4.5 8.6 4.6 2.4 3.3 3.6 1.9 2.6 1.7 1.7 1.8 1.7 2.2 2.4 1.7 1.5 2.9

(b) Pixelated Face

Table 9: Comparisons of WER (%) with our model and prior works on the LRS2 dataset (Son Chung
et al., 2017). We follow the experimental setup as in Table 1.

Method Params Babble, SNR (dB) = Speech, SNR (dB) = Music + Natural, SNR (dB) = N-WER Clean
-10 -5 0 5 10 AVG -10 -5 0 5 10 AVG -10 -5 0 5 10 AVG AVG N≥S ∞

AV-HuBERT 325M 28.8 15.2 6.7 3.9 3.5 11.6 9.4 5.6 4.3 3.6 3.4 5.3 11.7 6.8 4.7 3.7 3.3 6.0 7.2 9.7 3.0
AV-data2vec 325M 28.1 14.8 6.8 4.3 3.7 11.5 9.6 6.2 5.0 4.0 3.5 5.6 12.3 7.2 5.1 3.8 3.4 6.4 7.5 10.0 3.0
AV-RelScore 437M 28.5 14.3 5.8 3.5 3.2 11.1 8.3 5.4 4.1 3.3 2.9 4.8 11.9 6.3 4.1 3.3 2.9 5.7 6.8 9.2 2.9

(a
)O
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ec

t

CAV2vec 325M 21.2 10.9 5.5 3.7 3.1 8.9 7.1 4.9 3.6 3.2 3.2 4.4 9.4 5.5 3.9 3.3 3.0 5.0 5.8 7.5 2.7

AV-HuBERT 325M 28.9 15.0 7.0 4.1 3.7 11.7 8.6 5.7 4.2 3.7 3.4 5.1 12.7 7.1 4.5 3.6 3.2 6.2 7.3 9.8 3.0
AV-data2vec 325M 30.2 15.2 7.4 4.3 3.4 12.1 9.7 5.9 4.6 3.8 3.7 5.5 13.3 7.2 4.7 3.8 3.5 6.5 7.6 10.3 3.2
AV-RelScore 437M 34.3 15.7 6.4 3.7 3.1 12.6 10.0 6.2 4.0 3.5 3.0 5.3 14.2 7.2 4.5 3.4 3.0 6.5 7.7 10.7 2.7

(b
)H

an
ds

CAV2vec 325M 21.2 12.2 6.4 3.7 3.2 9.3 7.6 5.8 4.0 3.5 3.2 4.8 10.4 6.3 4.5 3.6 3.5 5.7 6.4 8.3 2.7

AV-HuBERT 325M 28.3 14.7 6.1 4.1 3.5 11.4 9.2 5.8 4.0 3.8 3.3 5.2 12.4 7.4 4.6 3.6 3.2 6.2 7.3 9.7 2.9
AV-data2vec 325M 28.9 15.3 6.9 4.6 3.6 11.9 9.6 6.4 4.9 4.0 3.4 5.6 12.1 6.7 4.8 3.8 3.4 6.1 7.4 9.9 3.1
AV-RelScore 437M 34.1 16.0 6.1 4.0 3.2 12.7 9.9 5.6 4.2 3.4 3.1 5.3 14.0 6.8 4.3 3.3 3.0 6.3 7.6 10.5 2.7

(c
)P
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CAV2vec 325M 22.2 12.5 6.2 4.3 3.3 9.7 7.9 5.6 4.4 3.5 3.2 4.9 10.0 6.6 4.3 3.5 3.4 5.6 6.4 8.4 2.7

We can similarly incorporate ACP and VCP tasks in a within-modal manner, which allows us to
experiment with an audio-to-audio guidance approach. However, in Table 7, adding the within-modal
ACP task has not gained improvement, nor has the within-modal VCP task. We find that only using
cross-modal ACP + VCP tasks is sufficient, even surpassing the task configurations with mACP +
mVCP tasks. This is distinct from Haliassos et al. (2023) where within-modal strategy is crucial for
ASR, while our model is a unified multimodal framework that requires cross-modal knowledge.

C.2 ADDITIONAL DEMAND NOISE TYPES

The original DEMAND dataset (Thiemann et al., 2013) contains 18 categories of recorded envi-
ronments. In Table 2, we have presented results for 8 out of these categories, specifically excluding
relatively quieter environments. In Table 8, we provide full results across all 18 categories, which
include the following noise environments: park, river, cafe, restaurant, cafeteria, metro (subway),
public station, meeting room, kitchen, living room, washroom, sports field, hallway, office, public
square, traffic intersection, bus, and car. Still, CAV2vec generally outperforms the baselines in the
remaining, relatively less noisy environments.

C.3 FULL RESULTS OF LRS2 EVALUATION

In Tables 9 and 10, we show the full results of our evaluation on the LRS2 benchmark (Son Chung
et al., 2017), with the same experimental setup as LRS3 evaluation. CAV2vec outperforms the
baselines across all audio-visual corruption, effectively demonstrating the model’s robustness under
real-world conditions.
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Table 10: Performance comparison on the LRS2 dataset (Son Chung et al., 2017) with audio noise
sampled from the DEMAND dataset (Thiemann et al., 2013). We follow the experimental setup as in
Table 2.

(a) Object Occlusion + Noise (b) Hands Occlusion (c) Pixelated Face
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AV-HuBERT 4.8 5.2 5.8 11.6 7.1 4.2 5.5 6.0 6.3 5.1 5.7 6.5 12.5 7.6 4.2 5.4 6.2 6.6 4.6 6.5 6.4 10.1 7.4 4.1 5.0 6.3 6.3
AV-data2vec 5.0 6.6 7.0 11.7 6.9 4.5 5.4 6.2 6.7 5.2 6.0 7.7 12.4 7.6 4.4 5.9 6.3 6.9 5.1 5.7 6.9 10.9 7.4 4.2 5.5 6.1 6.5
AV-RelScore 4.7 5.9 6.1 12.2 7.5 3.8 5.0 6.5 6.5 5.0 5.9 6.7 12.9 8.8 4.6 5.0 6.5 6.9 5.1 5.8 6.7 11.8 7.5 4.0 5.2 6.4 6.6
CAV2vec 5.1 5.7 6.1 9.4 6.8 4.0 4.9 5.4 5.9 4.6 5.6 6.0 9.6 6.7 3.7 5.2 5.0 5.8 5.0 5.7 6.3 10.0 6.5 4.1 5.4 5.3 6.0

C.4 SENSITIVITY ANALYSIS ON TASK LOSS COEFFICIENTS

We explore the sensitivity of task loss coefficients for the corrupted prediction and masked prediction
tasks, where both tasks employ the self-distillation MSE loss. The loss coefficients for these tasks
are initially set to 1.0, matching the scale with that of the MLM-style cross-entropy loss, which is
assigned a coefficient of 2.0. Table 11 summarizes the result of our experiments varying these loss
coefficients within the CAV2vec framework.

Our observation indicates that the model performs consistently well across different coefficient
settings. Meanwhile, it is recommended that the masked prediction loss coefficient is not set lower
than the coefficients for ACP and VCP tasks. The masked prediction task plays a crucial role in
contextualized representation learning. We also observe that when λACP = 1.0 and λVCP = 0.5, the
model outperforms particularly in conditions with low audio noise level. This result may be attributed
to the informative nature of the audio target, as similarly reported in Haliassos et al. (2024), where
stronger audio guidance than visual guidance is utilized for training the ASR model. However, this
configuration has resulted in suboptimal performance under more challenging conditions, such as
high noise levels or unseen DEMAND noise types.

Table 11: Sensitivity analysis on task loss coefficients, exploring different values for the ACP, VCP,
and masked prediction tasks under various noise conditions. We present N-WER for each noise type
as well as clean WER results. Visual corruption type is used as object occlusion + noise.

λACP λVCP λMask Babble Speech Music Natural Clean

0.5 0.5 1.0 9.2 3.2 4.0 4.0 1.5
0.5 1.0 1.0 9.0 3.2 4.0 3.7 1.5
1.0 0.5 1.0 9.0 3.1 3.9 3.9 1.4
1.0 1.0 1.0 9.2 3.2 4.1 3.9 1.5
1.0 2.0 1.0 9.3 3.2 4.2 4.1 1.6
2.0 1.0 1.0 9.1 3.2 3.9 3.9 1.6
2.0 2.0 1.0 9.2 3.3 4.0 3.9 1.6

1.0 1.0 0.5 9.1 3.1 4.1 4.0 1.6
1.0 1.0 1.0 9.2 3.2 4.1 3.9 1.5
1.0 1.0 2.0 9.4 3.2 4.1 3.9 1.6

C.5 ASR AND VSR RESULTS

Completely missing modalities are common in real-world scenarios, and evaluating the single-
modality performance, i.e., ASR and VSR, under corrupted conditions is also essential. In Table 12,
we evaluated ASR and VSR tasks, comparing three models: AV-HuBERT, AV-RelScore, and CAV2vec.
For ASR, we used audio corruptions such as babble, speech, music, and natural noises (N-WER),
and for VSR, we used object occlusion with noise, hands occlusion, and pixelated face. We also
report results in clean conditions. The results confirm that our CAV2vec framework robustly works
with both unimodal and multimodal data across all conditions, demonstrating its effectiveness in
producing robust representations even when modalities are partially or completely corrupted.
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Table 12: ASR and VSR task results on the LRS3 benchmark.

ASR VSR
Method Babble Speech Music Natural Clean Object Hands Pixelate Clean

AV-HuBERT 35.8 22.6 13.9 12.8 1.6 34.9 37.2 35.6 28.7
AV-RelScore 36.2 22.5 15.0 13.5 1.7 34.2 37.7 36.0 28.6
CAV2vec 35.2 20.3 13.6 12.3 1.5 33.9 36.6 35.6 27.9

C.6 PRETRAINING FROM DIFFERENT INITIALIZATIONS

In our experiments, we have utilized pretrained AV-HuBERT model to train CAV2vec, since fully
training an audio-visual representation learning model from scratch requires substantial resources.
For instance, training AV-HuBERT using LRS3 (433h) + VoxCeleb2 (1326h) requires 600K training
steps on 64 GPUs, which spans ∼4 days to complete (Shi et al., 2022a). Given our limited resources,
conducting full pretraining from scratch has not been feasible. Thus, the use of pre-existing weights
allowed us to achieve robust performance with minimal additional training cost, demonstrating the
efficiency of our method in achieving robustness with fewer resources.

Nevertheless, to investigate the effect of initialization, we compared different pretraining strategies,
AV-data2vec and CAV2vec, within our resource constraints. This includes the performance of
models with random initialization, pretraining on LRS3 (433h) for 120K steps with 4 GPUs, using
4 forward passes per update step to compensate for the small batch size. Table 13 shows that
CAV2vec pretraining with corrupted prediction significantly outperforms AV-data2vec. Furthermore,
the performance enhancement gap becomes more pronounced when the models are trained from
scratch, implying the potential benefits of our method if more extensive resources were available.

Table 13: Comparison between the models pretrained from different initializations.

Method Unlabeled hrs Init. O/MS O/DM H/MS H/DM P/MS P/DM

AV-data2vec 433h random 10.5 8.5 11.1 9.0 10.0 8.2
CAV2vec 433h random 8.8 7.7 9.0 7.8 8.9 7.4

AV-data2vec 433h + 1326h pretrained 6.2 5.1 6.5 5.5 6.0 4.9
CAV2vec 433h + 1326h pretrained 5.1 4.3 5.2 4.3 5.1 4.2

C.7 COMPARISON BETWEEN SELF-SUPERVISED PRETRAINING WITH CORRUPTED DATA

In the framework of CAV2vec, we designed the corrupted prediction tasks to highlight the importance
of robust representation learning, and demonstrated the advantages of a unimodal strategy in corrupted
representation learning. To dissect the impact of data corruption and CAV2vec’s training by corrupted
prediction tasks, other SSL methods could also be trained on corrupted data during the representation
learning. We conducted uptraining within the AV-HuBERT and AV-data2vec pretraining frameworks,
using the same data corruptions and same number of training steps as CAV2vec. As demonstrated in
Table 14, the incorporation of corrupted prediction tasks in CAV2vec is critical in robust representation
learning with corrupted data, highlighting its effectiveness compared to other methods which do not
gain large robustness through corrupted data augmentation.

Table 14: Comparison between different self-supervised pretraining frameworks under corrupted
environments. When pretraining (PT) with corrupted data, we use the same training and data configu-
rations across all models.

Method PT w/ corrupted data O/MS O/DM H/MS H/DM P/MS P/DM

AV-HuBERT ✗ 6.0 5.0 6.2 5.4 5.8 4.9
AV-data2vec ✗ 6.2 5.1 6.5 5.5 6.0 4.9

AV-HuBERT ✓ 5.8 4.9 5.9 5.1 5.8 4.7
AV-data2vec ✓ 5.8 4.9 6.0 5.0 5.9 4.8
CAV2vec ✓ 5.1 4.3 5.2 4.3 5.1 4.2
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