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ABSTRACT

Large language models (LLMs) have emerged as powerful and general solutions to
many natural language tasks. However, many of the most important applications
of language generation are interactive, where an agent has to talk to a person to
reach a desired outcome. For example, a teacher might try to understand their
student’s current comprehension level to tailor their instruction accordingly, and a
travel agent might ask questions of their customer to understand their preferences
in order to recommend activities they might enjoy. LLMs trained with supervised
fine-tuning or “single-step” RL, as with standard RLHF, might struggle which tasks
that require such goal-directed behavior, since they are not trained to optimize for
overall conversational outcomes after multiple turns of interaction. In this work, we
explore a new method for adapting LLMs with RL for such goal-directed dialogue.
Our key insight is that, though LLMs might not effectively solve goal-directed
dialogue tasks out of the box, they can provide useful data for solving such tasks by
simulating suboptimal but human-like behaviors. Given a textual description of a
goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts
of hypothetical in-domain human-human interactions. Our algorithm then utilizes
this dataset with offline reinforcement learning to train an interactive conversational
agent that can optimize goal-directed objectives over multiple turns. In effect, the
LLM produces examples of possible interactions, and RL then processes these
examples to learn to perform more optimal interactions. Empirically, we show
that our proposed approach achieves state-of-the-art performance in various goal-
directed dialogue tasks that include teaching and preference elicitation.

1 INTRODUCTION

Large language models (LLMs) have become very effective at performing a variety of real-world
natural language tasks, including open-ended question-answering (Pyatkin et al., 2022), summariza-
tion (Paulus et al., 2017; Wu & Hu, 2018; Böhm et al., 2019), code generation (Chen et al., 2021b;
Rozière et al., 2023; Zhong & Wang, 2023), and general problem-solving (Wei et al., 2023). While
LLMs shine at producing compelling and accurate responses to individual queries, their ability to
engage in goal-directed conversation remains limited. They can emulate the flow of a conversation,
but they generally do not aim to accomplish a goal through conversing. For example, we can prompt
an LLM to act as a travel agent, and it will produce realistic responses that a human may rate as
helpful. But it will not intentionally try to maximize the chance of planning a desirable itinerary
for the human. In practice, this manifests as a lack of clarifying questions, lack of goal-directed
conversational flow, and generally verbose and non-personalized responses.

The difference between an agent that simply mimics the flow of a conversation and one that pursues
conversational goals becomes more apparent when we consider how uncertainty influences the
conversation. Whether you as the end user are asking the agent to instruct you about a new AI
concept, or to plan an itinerary for an upcoming vacation, you have priviledged information which
the agent does not know, but which is crucial for the agent to do the task well; e.g., your current
background of AI knowledge matters when learning a new concept, and your travel preferences
matter when you plan a vacation. A goal-directed agent would gather the information it needs to
succeed, perhaps by asking clarification questions (e.g., are you an active person?) and proposing
partial solutions to get feedback (e.g., how does going to the beach sound?). However, today’s LLMs
largely fail at this, and are more likely to attempt a helpful but poorly informed guess right away than
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to ask appropriate questions. And as we will show in the experiments, even when carefully prompted
to gather information, they comply but generate verbose and overwhelming questions that are not
good at getting the right information.

In principle, reinforcement learning (RL) can offer a very powerful tool for bridging this gap: LLMs
trained with RL to achieve conversational goals (such as maximizing the probability that the user
will accept the planned itinerary) could take goal-directed steps, ask clarifying questions, elicit
preferences, be very clear and concise in its responses, and maybe even build a rapport with the user.
But RL requires data, either in the form of online interactions with a human simulator, or offline
human-human interactions. Online data can be computationally difficult obtain, and offline data must
be carefully curated to optimize desirable properties such as coverage and diversity (Fu et al., 2020b;
Gulcehre et al., 2020; Kumar et al., 2022).

Our key idea is that we can enable zero-shot goal-directed dialogue agents by tapping into what
LLMs are great at — emulating diverse realistic conversations; and tapping into what RL is great
at — optimizing multi-step objectives. We propose to use LLMs to “imagine” a range of possible
task-specific dialogues that are often realistic, but where the LLM does not optimally solve the task.
In effect, the LLM can imagine what a human could do, but not to what an optimal agent should do.
Conversations are then generated based on sampled hidden states. We train an agent to engage in
goal-directed conversation by training offline RL on the resulting dataset.

Our main contribution is a zero-shot RL algorithm that effectively optimizes for goal-directed dialogue
tasks. Rather than directly using pretrained LLMs as optimal agents, our method aims to leverage
their strength in emulating diverse, human-like, but suboptimal conversations to generate data, which
can then be provided to an RL algorithm to actually discover more optimal behaviors. We propose
a novel system called the imagination engine (IE) that generates a dataset of diverse, task-relevant,
and instructive dialogues to be used to train downstream agents. We evaluate our approach on tasks
involving teaching of a new concept, persuasion, and preference elicitation. Our experimental results
include a user study that compares agents trained with our method to prompted state-of-the-art LLMs,
showing that our method can attain significantly better results in interactive conversations even when
using models that are orders of magnitude smaller than the prompt-based baseline.

2 RELATED WORK

Language models. Language models, particularly LLMs, have shown impressive capabilities in
text generation (Ghazvininejad et al., 2017; Li et al., 2017; Holtzman et al., 2018; Radford et al.,
2019; Yang & Klein, 2021), translation (Gu et al., 2017), question answering (Pyatkin et al., 2022),
summarization (Paulus et al., 2017; Wu & Hu, 2018; Böhm et al., 2019), and code generation (Chen
et al., 2021b; Zhong & Wang, 2023). However, success at most of these tasks is largely enabled by
supervised learning, and does not require reasoning through multiple steps of interaction to optimize
a long-term objective. LLMs have been fine-tuned via supervised learning to engage in dialogue
with human users to some success (He et al., 2018; Shuster et al., 2022b;a), but primarily to produce
realistic responses and not to accomplish an underlying goal.

RL for language models. Many existing LLMs leverage reinforcement learning (RL) fine-tuning,
where a reward model is learned from feedback directly from human experts (Ziegler et al., 2020;
Stiennon et al., 2020; Wu et al., 2021; Nakano et al., 2022; Bai et al., 2022a; Christiano et al., 2023)
or secondhand from a handcrafted AI system (Bai et al., 2022b), and is then used to fine-tune the
LLM via an RL objective. While finetuning is primarily done via online RL, recent approaches
proposed tuning LLMs from offline data (Rafailov et al., 2023; Gulcehre et al., 2023). By doing so,
LLMs are able to faithfully follow human instructions, or prompts, and can therefore act as general
problem solvers by prompt engineering (Ouyang et al., 2022). While effective, one stark downside of
RL fine-tuning approaches is that they only consider bandit objectives. Specifically, in RL fine-tuning,
LLMs are trained to maximize the learned reward model within a single-step response, and not over
the course of a multi-step dialogue. As a result, if the best response to a query is unknown due to latent
information, such as intentions or preferences, by the user, traditional LLMs will only provide the
best possible “guess” response in one step, and not attempt to gather additional information in order to
respond more optimally. Notably, Glaese et al. (2022) propose learning an information-seeking agent,
but again consider a single-step objective based on maximizing helpfulness, and do not consider nor
evaluate on tasks where gathering information is used to accomplish a long-term goal; the approach
also relies on human raters being able to identify useful information-seeking actions.
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Goal-directed dialogue. There has been numerous prior works on learning models to accomplish
tasks via conversations beyond maximizing informativeness or humanness. Goal-directed dialogue, or
alternatively task-oriented dialogue, can be formulated as an MDP from which agents can be trained
using RL. Online RL methods to optimize dialogue agents typically require a simulator of human
behavior, that is usually either handcrafted, or learned as a fixed model (Carta et al., 2023; He et al.,
2018; Gašić et al., 2011). Moreover, they involve continual collection of new samples, which incurs
a large computational cost in tasks where humans exhibit complex and nuanced behaviors, and are
often prone to reward “hacking” (Skalse et al., 2022). Alternatively, offline RL approaches have also
been considered that only require a static dataset of dialogues (Jaques et al., 2019; Jang et al., 2022;
Verma et al., 2022; Snell et al., 2023). Notably, Verma et al. (2022) propose an offline RL algorithm
to solve a goal-directed dialogue based on negotiations using a dataset of conversations between
human speakers. However, in order for offline RL to improve over supervised learning, the dataset
must be carefully curated to optimize desirable properties such as coverage and diversity (Fu et al.,
2020b; Gulcehre et al., 2020; Kumar et al., 2022), which may limit its practicality. Orthogonally,
dialogue benchmark datasets have been created that aim to evaluate the capabilities of agents at
accomplishing various tasks such as question-answering (Budzianowski et al., 2020), customer
service (Chen et al., 2021a), and negotiation (He et al., 2018). However, many such datasets are for
tasks that do not necessitate personalizing the agent’s responses to each human. In this paper, we
consider goal-directed dialogue tasks where humans behave differently due to latent factors, and
agents must gather information and personalize to each human. Because of this added complexity,
curating a human-human dataset with diverse enough human behaviors can be prohibitively difficult.

Knowledge distillation. Our proposed imagination engine can be considered an instance of knowl-
edge distillation (Hinton et al., 2015), where knowledge from a large model (in our case, LLMs) is
used to train a smaller model. Recently, this has become popular with LLMs acting as the teacher
model, and synthetically generating new training examples for the smaller model (Taori et al., 2023;
Chiang et al., 2023; Kim & Rush, 2016). While our approach is similar in principle, all prior ap-
proaches consider only downstream supervised learning objectives. To our knowledge, we are the
first to do synthetic dialogue generation for RL.

3 PRELIMINARIES

Markov decision processes. To formulate dialogue as a decision making problem, we use the
formalism of the Markov decision process (MDP), given by a tuple M = (S,A, P, r, ρ, γ), where S
is the state space, A is the action space, P is the transition function, r is the reward function, ρ is the
initial state distribution, and γ is the discount factor. When action a ∈ A is executed at state s ∈ S,
the next state is sampled s′ ∼ P (·|s, a), and the agent receives reward r with mean r(s, a).

Goal-directed dialogues as MDPs. Goal-directed dialogue can be viewed as an MDP, where states
are sequences of tokens from a finite vocabulary V (Ramamurthy et al., 2023). All tokens that the
agent initially observes are used as our initial state, s0 = (x0, . . . , xm), where xi ∈ V,∀i ∈ [m].
At timestep t, an action at ∈ V is some token in the vocabulary. As long as at is not a special
end-of-sequence <EOS> token, the transition function deterministically appends at to state st to
form st+1. Otherwise, the agent observes (potentially stochastic) responses from their conversational
partner ot = (y0, . . . , yn), which also consist of tokens in the vocabulary; then, the transition function
appends both at and responses ot to state st. This continues until the last timestep T where we obtain
a state sT and the agent receives a deterministic reward r(sT ).

In many real-world tasks that require dialogue with a human, humans exhibit a range of different
behaviors. For example, in a travel agent task, humans will respond differently to the agent according
to their own activity interests, budget, and other personal factors. Such factors are often latent,
but affect how an optimal agent should respond. Rather than conventional MDPs, these tasks can
instead be formulated as hidden parameter MDPs (Doshi-Velez & Konidaris, 2013), given by a
tuple M = (S,A,Z, P, r, ρ, γ), where Z also parameterizes the transition and reward functions. In
practice, solutions to hidden parameter MDPs do not need to model Z explicitly, and instead use a
sequence model (i.e., a standard language model) to handle implicitly infer it from the history of
observations. Nevertheless, we view Z as helpful formalism for understanding why information-
gathering is important in effective dialogue agents.

Reinforcement learning. The goal of reinforcement learning (RL) is to learn a policy π that
maximizes the expected discounted return

∑∞
t=0 γ

trt in an MDP. The Q-function Qπ(s, a) for a
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Figure 1: Diagram illustrating our proposed approach, where an imagined dataset of dialogues
between humans and a potentially suboptimal agent is synthesized by our imagination engine, then
used to train a downstream RL agent. Blue boxes indicate handcrafted quantities.

policy π represents the discounted long-term reward attained by executing a given state s and then
following policy π thereafter. Qπ satisfies the Bellman recurrence:

Qπ(s, a) = BπQπ(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q(s′, a′)]

The value function V π is the expectation of the Q-function V π(s) = Ea∼π(·|s) [Q
π(s, a)]. The

expected discounted return can be expressed as J(π) = Es0∼ρ [V
π(s0)]. In offline RL, we are

provided with a dataset D = {(si, ai, s′i, ri)}i∈[N ] of size |D| = N , generated by an unknown
behavior policy πβ (which might correspond to a mixture of multiple policies). The offline RL setup
is particularly useful when online interaction with the real world is costly or unavailable.

4 REINFORCEMENT LEARNING ON IMAGINED CONVERSATIONS

In this paper, we present an approach for zero-shot training of agents in a goal-directed dialogue
task. Rather than traditional offline RL approaches that require a curated dataset D of human-human
data, the only input required by our system is a task description D. The primary novelty of our
proposed approach is an imagination engine (IE) that enables the generation of a diverse dataset D̂ of
task-relevant dialogues for any task description D. Then, once the dialogue dataset D̂ is generated,
we optimize for an agent π̂ via offline RL on the imagined dialogues. We go over both parts in detail.

4.1 IMAGINATION ENGINE: SYNTHESIZING DIVERSE TASK-RELEVANT DIALOGUES

We assume access to a LLM PLLM(· | p) that can be used to generate a response for any prompt p.
The IE consists of three steps, which are outlined in Figure 1 and we describe below. We also provide
explicit examples of the process (including prompts used) for two different tasks in Appendix A.

Reasoning step: synthesize task-relevant personas. Recall that goal-directed dialogues can be
formulated as hidden-parameter MDPs with hidden space Z , where each human has a different z ∈ Z
that affects how they behave, and how an agent should optimally respond. Without access to prior data,
we would naı̈vely rely on having task-specific knowledge of Z . However, our insight is that LLMs
contain a much wider domain of knowledge than any individual human, and therefore can provide
task-specific knowledge when humans cannot. Therefore, we propose querying PLLM(· | fr(D)),
where fr(D) is a reasoning prompt using task description D; the prompt asks the LLM to output
textual descriptions of personas ϕ(z) for z ∈ Z . These descriptions ϕ(z) can be used to generate
human responses under different behaviors (Serapio-Garcı́a et al., 2023; Park et al., 2023).

Imagination step: generate synthetic dialogues. The goal in this step is to imagine dialogues τ
between a (potentially suboptimal) agent and a human. Formally, this involves generating synthetic
rollouts in the underlying hidden parameter MDP. Note that in real world, samples from both the
transition function P and behavior policy πβ of the MDP are simply human responses. Therefore,
successfully synthesizing trajectories can be reduced to simulating human-human dialogue.
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In order to accomplish this, we leverage LLMs to generate synthetic dialogues between an agent and
human, where we condition generation on how the human behaves, and the reward that the agent
achieves. This is done as follows. First, we sample ϕ(z) for some persona z ∈ Z that we obtained
in the reasoning step, and also sample r ∈ {0, 1} indicating whether the agent fails or succeeds in
the generated dialogue. The assumption of binary rewards is only to be task-agnostic, and more
expressive rewards can be considered if they exist for a particular task. A conditional dialogue can be
sampled τ ∼ PLLM(· | fi(D,ϕ(z), r)) where fi(D,ϕ(z), r) is an imagination prompt that asks the
LLM to output a dialogue between two humans that is task-relevant, and where the human behaves
according to z and the agent ultimately achieves reward r.

Critique step: refine dialogues. Though the synthetic dialogues from the imagination step are
mostly plausible interactions, the humans in the dialogue sometimes produce potentially unrealistic
responses. For example, humans in the dialogues often reveal their underlying personas, without
the agent asking any questions, or even building general rapport with them. Since inferring the
human’s persona is an important skill we want downstream learning agents to acquire, we want
information-gathering strategies to be reflected in the imagined conversations, even if they are not
deployed optimally or strategically (as would be required for the optimal agent).

To remedy this, we propose revising the imagined dialogues based on a set of criteria c on what
constitutes pedagogical conversations for our downstream learning. Our criteria c are task-specific
but generally include the following principles: (1) the “human” should not reveal their latent behavior
immediately, but only make it apparent gradually through back-and-forth conversation with the agent;
(2) the human’s sentiment at the end of the dialogue should accurately reflect the reward that the agent
achieves. Our criteria can be used analogously to a constitution to improve the quality of generated
responses (Bai et al., 2022b). Formally, we sample a revised dialogue τ ′ ∼ PLLM(· | fc(D, τ, c))
from the same LLM where critique prompt fc(D, τ, c) encapsulates the original dialogue and criteria
c. Iterating the imagination and critique steps allows us to curate a dataset D̂ of diverse dialogues.

4.2 RL OPTIMIZATION ON THE IMAGINED DATASET

While the imagination engine can produce plausible dialogues, this does not by itself produce effective
agents – that is, we use LLMs to synthesize plausible scenarios, including strategies that an agent
may take, but not necessarily what an optimal agent should do. In order to determine the optimal
strategy that an agent should actually take to achieve a desired outcome, we require multi-step RL to
optimize an agent to maximize probability of succeeding at the desired task. Therefore, the main
question we aim to answer in this section is the following: How do we use a static dataset of synthetic
dialogues to train an RL agent? Our solution involves running offline value-based RL to learn a
policy purely from the synthetic dataset, without any on-policy samples.

Before running offline RL, we need to postprocess the dataset of synthetic dialogues into RL training
examples. Recall that we constructed a dataset D̂ = {(τi, ri)}i∈[N ] of N imagined dialogues, where
each dialogue τi a sequence of tokens in vocabulary V that constitute utterances between a simulated
agent and simulated human. For each dialogue τi, we isolate all tokens a by the agent, then generate
(s, a, s′, r) where state s consist of all tokens before a, next state s′ consist of all tokens before the
next token a′ by the agent, and r = ri only if s′ = τi is the full dialogue. Using this procedure, we
construct a dataset D̂′ = {(si, ai, s′i, ri)}i∈[N ′].

Then, we run value-based RL to learn a policy π̂. Specifically, we learn Q̂ and V̂ functions that
estimate the optimal Q-function and value function, respectively, and then use these functions to
extract a policy π̂. The functions can be learned using Bellman recurrence:

Q̂ = argmin
Q

E(s,a,s′,r)∼D̂′

[(
r + γV̂ (s′)−Q(s, a)

)2
]
, V̂ = argmin

V
Es∼D̂′

[(
max
a′

Q̂(s, a′)− V (s)

)2
]
.

When π̂ is a language model, we use these functions in combination with the base language model
π̂LM to extract the policy (Snell et al., 2022), via π̂(a | s) ∝ πLM(a | s)eβ(Q̂(s,a)−V̂ (s)).

If the policy is learned purely from offline data, naı̈vely training from value-based RL can suffer from
distribution shift (Fujimoto et al., 2018; Kumar et al., 2019), which offline RL algorithms remedy by
ensuring that the learned Q̂, V̂ functions are pessimistic (Kumar et al., 2020; Kostrikov et al., 2021).
Note that our imagination engine is agnostic to the RL algorithm; in our experiments we use Implicit
Language Q-Learning (ILQL) (Snell et al., 2022) for its performance on natural language tasks.
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5 EXPERIMENTS

Hypotheses. Our experiments evaluate our proposed zero-shot dialogue agent training procedure
on two goal-directed dialogue tasks. The tasks require the agent to perform information gathering
in order to personalize their responses to the user, which necessitates goal-directed conversational
strategies such as asking clarifying questions, or building rapport with the user to better understand
their intentions. We aim to answer the following research questions:

1. Is leveraging LLMs in our imagination engine to generate synthetic data to train downstream
agents preferred over using them naı̈vely to behave as agents themselves?

2. Is offline RL on the imagined data better than simply using imitation learning on the same data?

The first research question targets our main hypothesis, that LLMs should be leveraged for generating
data rather than for solving goal-directed tasks. The second targets whether the specifics of how we
train on the imagined data are important. We hypothesize that while in the average case both BC and
RL perform similarly, the contrast between RL and BC agents is noticeable in situations that are not
well represented in the imagined conversations. In particular, RL agents should be more robust when
humans behave in ways that are not represented in any one dialogue in our imagined dataset, but
perhaps in concatenations of multiple dialogues. This is because RL agents are exhibited to compose
new strategies via a phenomenon called “trajectory stitching” (Fu et al., 2020a; Levine et al., 2020).

Approaches. To answer both questions, we consider the following approaches:

GPT. This approach prompts GPT-3.5 (OpenAI, 2022), which is a powerful LLM shown in prior
work to be able to effectively solve numerous natural language tasks (Ouyang et al., 2022), to directly
behave as the agent. The prompt includes both the task description, as well as the insight that the
resulting agent needs to gather information about the human user in order to optimally respond to
them. This is the traditional usage of LLMs to solve dialogue tasks.

IE+BC (ablation). This version of our approach trains an agent on the imagined dataset generated
by our proposed imagination engine, but via a behavioral cloning (BC) objective, where the agent
straightforwardly mimics the synthetic data. This is equivalent to supervised fine-tuning on the
imagined dataset. This is an ablation of our proposed approach.

IE+FBC (ablation). Rather than BC on the entire imagined dataset, this method trains the agent
using filtered BC instead, which imitates only the successful trajectories in the dataset. This is another
ablation of our proposed approach.

IE+RL. This is the full version of our approach, which trains the agent using offline RL. Specifically,
we use ILQL (Snell et al., 2022) as the offline RL algorithm.

Across methods that use the imagination engine, we use GPT-3.5 (OpenAI, 2022) as the LLM in
the imagination engine to generate synthetic data. However, our downstream agents that are trained
on imagined data utilize a much smaller decoder-only GPT-2 model (Radford et al., 2019). This
is to show that we only need to leverage state-of-the-art LLMs to generate data, as the resulting
agents can be much smaller; this makes our approach practical if computational cost is an important
consideration, or if modern LLMs are deployed with only inference APIs, which are both hurdles
encountered in our empirical evaluations. For each task, we defer implementation details of our
imagination engine (including prompts used and results) and RL optimization to Appendix A.

User study setup. We test our two hypotheses in a two-part user study with 12 users. To test whether
leveraging LLMs for the imagination engine is better than directly using LLMs as agents through
prompting, we use a within-subjects design and have users interact with GPT and IE+RL (in a
randomized order to avoid ordering effects) across two tasks, which we describe below. We then ask
them to rate the agents, for each task, according to four criteria, on a 5-point Likert scale:

(A) How well the agent accomplished the task at hand.
(B) How realistic and natural the resulting dialogue was.
(C) How effective was the agent at asking questions relevant for information-gathering.
(D) Overall satisfaction with the agent.

To provide a more fine-grained evaluation that compares RL-based and BC-based IE agents, we
specifically analyze challenging scenarios where humans exhibit particularly unusual or difficult
personas. Such scenarios exacerbate the shortcomings of BC-based methods, that simply emulate
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GPT Agent:
H: Hi, I’ve been hearing about something called
”behavior cloning” in AI, but I don’t really know
what it is. Can you explain it to me?
AI: Certainly! Let’s start by understanding your
background in AI to provide an explanation that
matches your level of knowledge. Please an-
swer the following questions:
1. Have you ever studied or worked with artifi-
cial intelligence or machine learning concepts
before, even at a basic level?
2. Are you familiar with terms like ”neural net-
works,” ”training data,” or ”supervised learning”?
3. Are you interested in a high-level overview or
a more detailed explanation ...

IE+RL Agent:
H: Hi there! I’ve heard about this thing called ”be-
havior cloning” in AI, but I don’t really understand
what it is. Can you explain it to me?
AI: Of course! I’d be happy to explain behavior
cloning. To start, could you tell me if you’ve ever
come across the terms ”artificial intelligence” or
”machine learning” before?
H: Yes, I’ve heard those terms, but I’m not exactly
sure what they mean.
AI: No problem at all! Let’s take it step by step.
Have you ever used a computer or a smart-
phone?
H: Yes, I use my computer and phone all the time.
AI: Great! Imagine that a computer ...

Figure 2: Comparison of dialogues between GPT and IE+RL agents in instruction task. The IE+RL agent
exhibits a much more intelligent strategy of asking incremental questions.

the conversational flow in the data rather than optimizing for the task reward. To test whether the
RL agent is more robust when the human behaves in ways not reflected in any one dialogue in
the dataset, we analyze the generated data, identify unrepresented behaviors (such as ambiguous
or unsatisfied users), and emulate them to generate conversations with the IE+BC, IE+FBC, and
IE+ILQL agents. We do this because these are behaviors that are less likely to naturally occur through
free-flow interactions. We show these conversations to users and ask them to rate the agents as above.
We report snippets of evaluated dialogues in the main paper, and defer full dialogues to Appendix B.

Synthetic study setup. In addition to the user study on 12 human users, we also conduct a larger
scale evaluation in simulation. Due to space, we defer details to Appendix C.

5.1 TASK DESCRIPTIONS

We consider two goal-directed dialogue problems based off of the real-world tasks:

Instruction. In this task, a human asks an agent to teach them about some concept they are unfamiliar
with. Specifically, the human will ask the agent about one of five concepts in RL: “behavior cloning”,
“policy gradient”, “actor-critic”, “model-based reinforcement learning” and “offline reinforcement
learning”. Though this task is similar to general question-answering (Budzianowski et al., 2020),
we consider the case where the agent must additionally tailor their instruction to the background
knowledge of the human. Hence, in this task, the background of the human constitutes Z of the
hidden-parameter MDP. Example dialogues for this task are shown in Figure 2.

Preference elicitation. Here, the agent must build rapport with the human with the objective of
uncovering their underlying preferences. We specifically consider a travel agent task alluded to earlier
in our paper, where the agent must recommend personalized activities for the human from a fixed
set of activities provided in the task description. We have a set of 18 activities grouped into six
categories: nature exploration, beach, wellness, food, shopping, and cultural experiences. In contrast
to the instruction task, the space of hidden parameters Z that affect human behavior is much more
complicated. Specifically, in addition to uncovering the human’s activity preferences, the agent must
also figure out and account for additional factors such as personality, budget, or family dynamic. For
example, if the human has an indecisive nature, the agent should be wary of overwhelming them with
too many options, and rather offer a few choices at a time.

5.2 IS IE BETTER THAN PROMPTING? Task Metric GPT Agent IE+RL Agent

Instruction (A) 3.4± 0.21 4.3± 0.18
(B) 2.3± 0.23 3.8± 0.11
(C) 3.3± 0.33 4.0± 0.13
(D) 2.4± 0.14 4.2± 0.08

Preference (A) 3.8± 0.21 4.1± 0.11
Elicitation (B) 2.9± 0.19 3.7± 0.10

(C) 2.9± 0.12 4.0± 0.13
(D) 3.5± 0.16 4.1± 0.11

Table 1: Mean and standard error of ratings from users inter-
acting with agents across both tasks.

We first aim to quantitatively and qualita-
tively address the first research question:
is leveraging LLMs as generators of data
for RL more effective than directly using
them as agents via prompting? For each
of the evaluated tasks, we conduct a user
study where users interact with the GPT
and IE+RL agent three times each, where
the agents are anonymous and the order in

7



Under review as a conference paper at ICLR 2024

GPT Agent:
H: I am looking for recommendations for activities
to do around here.
AI: Of course! I’d be delighted to help you find
the perfect activities. To get started, could you
tell me a bit more about your interests? Are you
looking for adventure, culture, relaxation, great
food, shopping, nightlife, nature, history, or well-
ness experiences?
H: I guess I like being outdoors.
AI: Great! Enjoying the outdoors can be a won-
derful experience. We have several options for
outdoor activities. If you enjoy a bit of adventure,
you might want to consider an adventure hike
through our scenic trails, or ...

IE+RL Agent:
H: I am looking for recommendations for activities
to do around here.
AI: Hello! Welcome to our travel agency. Can
you tell me a bit about what you enjoy during
your travels?
H: Yeah, I guess I like being outdoors sometimes.
AI: That’s great! Exploring the outdoors can be
quite refreshing. Are you more inclined towards
peaceful natural spots or do you enjoy exploring
cities and their cultural sites?
H: Um, I’m not sure. Both sound good to me.
AI: I completely understand. How about I narrow
down some options for you? ...

Figure 3: Comparison of dialogues between GPT and IE+RL agents in preference elicitation task. The IE+RL
agent adapts to the user giving vague responses by asking questions with more narrow options.

Task Metric IE+BC Agent IE+FBC Agent IE+RL Agent

Instruction (A) 2.4± 0.18 2.1± 0.12 3.9± 0.10
(B) 2.1± 0.21 2.5± 0.10 3.6± 0.26
(C) 1.9± 0.08 2.2± 0.23 4.0± 0.19
(D) 1.8± 0.16 1.6± 0.13 3.7± 0.11

Preference (A) 1.4± 0.10 1.6± 0.12 3.8± 0.21
Elicitation (B) 2.7± 0.12 2.4± 0.12 3.1± 0.19

(C) 2.5± 0.11 2.2± 0.10 2.6± 0.11
(D) 1.9± 0.27 1.5± 0.09 3.4± 0.10

Table 2: Mean and standard error of ratings from users evaluating pre-generated dialogues by agents in both
tasks. The RL agent drastically outperforms the BC and FBC agents when interacting with users that are not
well-represented in the data.

which the user interacts with them is random. Afterwards, each user reports ratings for metrics (A) to
(D). The results are shown in the Table 1. In both tasks, our proposed IE+RL agent outperforms the
GPT agent across all metrics, particularly in terms of the naturalness of the resulting dialogue and
user satisfaction.

Next, we qualitatively evaluate dialogues between the human user and each agent. In Figure 2, we
show a dialogue snippet between an agent in the instruction task and a human who appears to be a
layman unfamiliar with AI and RL concepts. In this example, though the GPT agent does make an
attempt at information gathering (since it was explicitly instructed to do so in the prompt), it tries
to do so in one long survey, which is cumbersome and inconvenient for the human. In contrast, our
IE+RL agent gathers information step-by-step by asking natural, easy-to-answer questions, with
each question building intelligently on the previous one. The IE+RL agent first asks if the human
is familiar with AI, and when the human responds negatively, asks a friendly follow-up question
to gauge how familiar they are with technology in general. Next, in Figure 3, we show dialogue
snippets between an agent in the preference elicitation task and a human who appears indecisive and
gives vague answers. Our IE+LQL agent adapts and offers more narrow questions for the human to
answer, whereas the GPT agent continues to asks overly verbose and non-personalized questions.
Full dialogues for both examples can be found in Appendix B.

5.3 IS OFFLINE RL BETTER THAN BC?
Next, we address the second research question: is training on the imagined data with RL more
effective than directly imitating it with supervised learning? Recall that we posit that RL optimization
outperforms imitation learning in challenging scenarios where strategies exactly reflected in the
data do not suffice. To get such examples, we pose as humans who exhibit potential challenging
behaviors and interact with agents. Specifically, in the instruction task, we consider humans who
overestimate their understanding of a particular concept. By doing so, an agent’s understanding
of the human’s knowledge background will not align with their true background, resulting in the
user not understanding the agent’s explanation. Meanwhile, in the preference elicitation task, we
consider users who express discontent with the agent’s initial recommendation. For each task, we
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IE+FBC Agent:
H: Can you explain it to me what ”offline reinforce-
ment learning” is?
AI: Of course! Before I explain offline reinforce-
ment learning, are you familiar with the basic
concepts of reinforcement learning?
H: I’m familiar with reinforcement learning but not
offline.
AI: Great! In that case, offline reinforcement
learning, also known as batch reinforcement
learning, is a specific approach where an agent
...
H: I’m sorry. I didn’t understand your explanation.
AI: No problem! Reinforcement learning is a type
of machine learning where an agent learns to
make decisions through trial and error. The agent
interacts ...

IE+RL Agent:
H: Can you explain it to me what ”offline reinforce-
ment learning” is?
AI: Of course! Before I explain offline reinforce-
ment learning, are you familiar with the basic
concepts of reinforcement learning?
H: I’m familiar with reinforcement learning but not
offline.
AI: Great! In that case, offline reinforcement
learning, also known as batch reinforcement
learning, is a specific approach where an agent
...
H: I’m sorry. I didn’t understand your explanation.
AI: My apologies. To help me understand your
background a bit better, are you aware of the
difference between online and offline learning in
other domains of machine learning?...

Figure 4: Comparison of dialogues between IE+FBC and IE+RL agents in instruction task. The IE+RL agent is
much more effective at responding to the user being confused.

IE+FBC Agent:
H: Hi there! I’m in the process of planning a vaca-
tion and I’m looking for some ideas on activities
to do during my trip. ...
H: That sounds really tempting, but I’m con-
cerned about the cost. I want to make sure I
stick to my budget for the trip.
AI: Absolutely, your satisfaction is our priority. I’ll
continue to tailor my recommendations to your
preferences and budget. If you have any...

IE+RL Agent:
H: Hi there! I’m in the process of planning a vaca-
tion and I’m looking for some ideas on activities
to do during my trip. ...
H: That sounds really tempting, but I’m con-
cerned about the cost. I want to make sure I
stick to my budget for the trip.
AI: I understand your concern. If you are looking
for budget-friendly shopping options, our location
has ...

Figure 5: Comparison of dialogues between IE+FBC and IE+RL agents in travel agent task. The IE+RL agent
responds to negative feedback from the user by revising their suggestions.

generated three dialogue prefixes of challenging situations, then evaluate the capability of the IE+BC,
IE+FBC, and IE+RL agents to recover from them. Then, we show such dialogues to each user
in the user study, and ask the user to rate the capabilities of each agent for the same metrics (A)
to (D). The results are reported in Table 2, where we see clear improvement of the IE+RL agent,
especially in asking effective information-gathering questions. In Figure 4, we show corresponding
snippets of conversations with the IE+FBC and IE+RL agents in the instruction task. Here, the user
expresses confusion with the agent’s explanation. The IE+FBC agent decides to paraphrase the
prior explanation, whereas the IE+RL agent decides to ask more questions to understand the user’s
background better. Then, in Figure 5, we show corresponding examples in the preference elicitation
task. Here, the user expresses discontent with the agent’s expensive recommendation. Only the
IE+RL agent decides to offer cheaper alternatives, whereas the IE+FBC agent appears to ignore the
user’s dissatisfaction. Full dialogues for both examples can be found in Appendix B.

6 DISCUSSION

In this paper, we propose an algorithm that achieves zero-shot acquisition of goal-directed dialogue
agents. The approach leverages a novel imagination engine, which generates a synthetic dialogue
dataset that is task-relevant, realistic, and exhibits diverse behaviors. The imagined dataset can then
be used to train dialogue agents via offline RL optimization. The key hypothesis that our work
demonstrates is that LLMs should not be used directly as goal-directed dialogue agents, but rather
as generators for dialogue that can be used for downstream optimization. We show, on a variety
of dialogue tasks including teaching and preference elicitation, that our approach is a much more
effective usage of LLMs than traditional approaches that prompt LLMs to act directly as agents.
Overall, our approach avoids the careful curation of human-human dialogue traditionally used to train
dialogue agents via RL. However, we still require human intervention in the form of task-specific
prompts. Future work can aim to automate this process further, so that a zero-shot dialogue agent can
be trained from any task description.
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