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Abstract—Consumer electronics, together with artificial intel-
ligence technology, are being widely applied in the medical
field, aiding medical data collecting, health monitoring, disease
diagnosis, and survival prediction. Training an effective and
robust medical artificial intelligence model for cancer survival
prediction deployed in consumer electronic devices requires a
large amount of high-quality annotated data. However, due to
limitations in computing resources and energy, it is impractical
to train artificial intelligence models on large-scale medical
data directly in the cloud. To address the above problem, we
propose a cloud-edge collaboration framework to develop medical
electronic devices for cancer survival prediction. The framework
trains local models on edge medical electronic devices and
aggregates the model weights on the cloud server. Furthermore,
when transmitting model weights between cloud and edge,
we introduce differential privacy technology to ensure security
concerns. We evaluate our proposed cloud-edge collaboration
framework on two cancer datasets from The Cancer Genome
Atlas (TCGA). Experimental results demonstrate that our cloud-
edge collaboration framework is highly effective in both survival
prediction performance and patient privacy preservation, with
the potential to develop medical consumer electronics.

Index Terms—Cloud-edge collaboration, medical consumer
electronics, large-scale medical data, differential privacy, survival
prediction.

I. INTRODUCTION

CONSUMER electronics, combined with medical tech-
nology, has greatly promoted the development of

medical electronics, garnering increasing attention in recent
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years [1], [2]. Medical electronics, as an essential component
of consumer electronics, have a significant impact in the field
of modern medicine [3]. They offer important assistance in
health monitoring, disease diagnosis, and survival prediction
through collecting, analyzing, and transmitting large-scale
medical data such as X-rays, CT, MRI, histopathological
images, and multi-omics data [4]. For instance, medical
electronic devices such as glucose monitors and electro-
cardiographs facilitate real-time patient physiological data
monitoring, aiding doctors’ comprehension of the patient’s
health status [5]. Additionally, imaging devices such as CT
scans and MRIs offer high-resolution medical images, furnish-
ing clinicians with precise diagnostic information [6].

The success of medical consumer electronics in the medical
field is primarily attributed to artificial intelligence (AI) tech-
nology and large-scale medical data. Specifically, we typically
utilize a large amount of high-quality annotated medical
data, (e.g.,medical history, clinical notes, laboratory results,
radiomics, pathological images, and multi-omics data.) [7]
to develop a reliable and powerful AI model tailored for
healthcare applications. This facilitates medical electronics to
improve the precision of health monitoring, computer-aided
diagnosis, and survival prognosis. However, due to the scarcity
of annotated data, long-term follow-up, data collection, and
data management require considerable time and resources.
Hence, it is difficult for a single medical device to collect
such large-scale medical data. Although data centralization-
based approaches with data sharing can effectively solve the
problem of large-scale medical data collecting and improve AI
model performance, there are still two issues that need to be
solved: 1) Firstly, training AI models on large-scale medical
data directly in the cloud is impractical due to constraints
in computational resources and energy. Therefore, careful
thinking and design are needed on how to combine edge
computing with cloud computing to alleviate the problem of
computing power for training medical AI models, where edge
computing is a burgeoning computing paradigm that involves
various networks and devices around or near the user. In
this paradigm, edge nodes can deal with data close to their
source, enabling the processing of large-scale data in real
time. 2) Secondly, the transmission and sharing of medical
data between edge medical electronic devices and a cloud
server may be at risk of cyber-attacks [8], leading to the
leakage of patients’ private information and posing serious
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risks such as discrimination, extortion, and harm. Therefore,
it is vital to develop an AI approach deployed in medical
electronic devices to address computing power and privacy
preservation challenges, while enhancing the precision of AI
model performance.

To address the above problem, we propose a cloud-edge
collaboration framework to develop medical consumer elec-
tronic devices for cancer survival prediction. Specifically, the
framework first transfers medical data from near-end edge
devices, including histopathology images, multi-omics data,
survival time, and survival status, to an edge server via a
local area network (LAN). Then, local medical AI models are
trained by introducing an edge computing paradigm [28] on
the edge server. Subsequently, the local model weights are
transmitted to the cloud server by leveraging a differential pri-
vacy technique [9]. In the cloud, the average federated learning
technique [10] is introduced to aggregate the model weights
from various edge nodes and generate a global model. Finally,
the global model is inverted back to the edge nodes for ongoing
training or inference of survival prediction. In the local
model structure, we utilize a Vision Transformer (ViT) [11]
and a cross-attention mechanism [12] to comprehensively
fuse histopathology images and multi-omics modalities. We
evaluate our proposed cloud-edge collaborative framework
on two cancer datasets, breast invasive carcinoma (BRCA)
and lower grade glioma (LGG), from The Cancer Genome
Atlas (TCGA) [13]. The experimental results highlight the
effectiveness of our cloud-edge collaboration framework in
survival prediction performance and patient privacy preserva-
tion. Furthermore, this framework holds promising potential
for the development of medical consumer electronics.

In summary, our contributions can be outlined as follows:
1) We propose a cloud-edge collaboration framework to

develop medical consumer electronics devices for cancer
survival prediction.

2) We introduce federated learning into the framework,
enabling medical consumer electronics devices to pro-
cess large-scale medical data in real-time.

3) We incorporate differential privacy into the weights of
the survival prediction models before transmitting the
model weights between edge nodes and a cloud center,
to ensure patient data security.

The remainder of this study is structured as follows.
Section II surveys the relevant collaboration frameworks used
in medical electronic devices. Section III presents the proposed
cloud-edge collaboration framework in two primary compo-
nents. Section IV conducts experiments on two cancer datasets
to assess the efficacy of the proposed framework. Lastly,
Section V offers the conclusion of this paper.

II. RELATED WORK

With the continuous expansion of medical consumer elec-
tronic devices, data centralization enhances the reliability
of health monitoring and improves the accuracy of disease
diagnosis. In recent years, the data centralization-based multi-
center collaboration methods have shown remarkable success
in healthcare data aggregation and transmission [14]. For

instance, Imakura and Sakurai [15] introduced a collaborative
analysis framework for distributed datasets. This framework
remained the original datasets and models distributed across
multiple institutions by employing centralized machine learn-
ing [29]. Yang et al. [16] designed a solution to protect the
privacy of medical records in a cloud computing environment,
using attribute-based classification and vertical partitioning of
medical datasets to meet the privacy requirements of different
parts. Albarqouni et al. [17] introduced a novel concept by
integrating a crowdsourcing layer that enables direct crowd
participation in data aggregation, thus incorporating them into
the convolutional neural network learning process. Although
sharing data among multiple medical devices can improve the
performance of models by centralizing data, it also poses a
risk of exposing patients’ private information to cyber threats.

Federated learning (FL) is a crucial advancement of
multi-center collaboration in machine learning. It effec-
tively reduces the risk of data leakage by sharing model
weights/gradients among multi-institutions without sharing the
original data directly [30], [31]. More recently, several studies
have achieved outstanding results in FL for healthcare. For
example, Zhang et al. [19] presented an innovative framework
called SSL-FTBT, which implements self-supervised federated
learning based on pseudo-data and aims to enhance the gener-
alization of computer-aided diagnosis models and diagnostic
accuracy. Choudhury et al. [20] introduced a federated learning
framework that offers two tiers of privacy protection for
constructing global models using distributed health data stored
locally across various sites. Moreover, the studies of cloud-
edge collaboration have demonstrated outstanding success in
multi-center collaboration. Ding et al. [21] proposed a cloud-
edge collaboration framework with fast response and high
accuracy characteristics by implementing a shallow model on
edge servers and a deep model on cloud servers.

In the past few years, researchers have shown significant
interest in deep learning-based multimodal models integrating
histopathological images and multi-omics data for cancer
survival prediction [22], [23]. For instance, Wang et al. [12]
introduced a hierarchical aggregation strategy and cross-
attention mechanism to the multimodal survival model,
proposing a hierarchy-based approach to combine multi-
omics data and histopathological images. Wu et al. [24]
presented a cross-aligned multimodal representation learning
approach to generate two distinct types of representations:
modality-invariant and modality-specific. This approach was
shown to improve the accuracy of cancer survival prediction.
Nonetheless, few studies have investigated the employ-
ment of multimodal survival models in federated learning
and cloud-edge collaboration frameworks. Lu et al. [25]
introduced the differential privacy and weakly-supervised
attention mechanism to multiple instance learning, proposing
a histopathological image-based privacy-preserving feder-
ated learning framework for cancer subtyping and survival
prediction. Wang et al. [26] presented a multimodal-based
vertical federated learning framework fusing multi-omics
data sourced from various institutions for cancer survival
prediction. However, the above approaches were limited to
supporting unimodal data as input.
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Fig. 1. The cloud-edge collaboration framework using federated learning and differential privacy.

III. METHOD

In this section, we will formulate our proposed framework
in two primary parts: the cloud-edge collaboration frame-
work and the local multimodal model fusing histopathological
images and multi-omics data. The details of our framework
are described in the subsequent subsections.

A. The Cloud-Edge Collaboration Framework

The overview of our proposed cloud-edge collaboration
framework is shown in Fig. 1. The framework is structured
as a pyramid with three layers: the edge device at the
bottom, the edge server in the middle, and the cloud server
at the top. The edge device layer corresponds to fundamental
medical facilities like clinics and small hospitals, tasked with
initial data collection and AI model inference. The edge
server layer pertains to larger medical centers such as general
hospitals and research institutions, often overseeing multiple
associated small hospitals for local model training. Finally,
the cloud server, situated in the cloud center, plays a vital
role in aggregating model parameters from edge servers for
comprehensive analysis.

Assuming that there are N medical institutions (edge
devices) corresponding to the N edge servers, which are
denoted as S1, . . . , SN . Each institution Sn has a local dataset
Dn collected from corresponding edge devices, where Dn

consists of histopathological images In, multi-omics on, sur-
vival time Tn, and survival status En. When training the m-th
round of the local model, the weights of the local model are
updated by:

ωm
n ← LocalUpdated

(Ln;ωm
n

)
(1)

where ω is the model weights, LocalUpdated(·) denotes the
process of optimizing local model training, and Ln refers to
the loss function of local survival model.

The cloud server aggregates the model weights received
from N edge servers using the average federated learning
method, generating global model weights for the m-th round,
which is written as:

ω̄m = 1

N

N−1∑

n=0

ωm
n (2)

Subsequently, the global model weights ω̄m are transmitted
back to all the edge servers for the next round of local model
training. When the iteration reaches a set number of rounds M,
the model training is terminated and the last round of global
model weights ω̄M are passed back to all edge devices for
deployment and online inference.

To protect the privacy of model weights during the col-
laboration between the cloud server and edge server, the
(ε, δ)-differential privacy is introduced into our cloud-edge
collaboration framework. (ε, δ)-differential privacy aims to
protect individual privacy by ensuring that the output of a
computation does not change significantly when one data point
is added or removed from the dataset. Formally, given privacy
parameters ε ≥ 0 and δ ∈ [0, 1], a randomized algorithm F
satisfies (ε,δ)-differential privacy if for all pairs of neighboring
datasets D and D′ that differ in only one data point, and for
all measurable sets C in the output space:

Pr[F(D) ∈ C] ≤ eε Pr
[F(D′) ∈ C

]+ δ (3)

where ε and δ are privacy parameters. A smaller ε indicates
stricter privacy protection. δ represents the probability that the
privacy guarantee might be breached.

The Gaussian mechanism is widely used to achieve (ε,δ)-
differential privacy by adding Gaussian noise to query results,
ensuring information privacy. To compute the mean and
variance of Gaussian noise efficiently, we can utilize the
properties of Gaussian distribution. The mean of Gaussian
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Fig. 2. The local multimodal model fusing histopathological images and multi-omics.

noise is typically set to zero. For arbitrary ε ∈ (0, 1), the
standard deviation derived from [27] is written as:

σ ≥ �2(F)
√

2 ln(1.25/δ)/ε (4)

where �2(F) is the �2-sensitivity of the function F , which is
computed as follows:

�2(F) = max
‖D−D′‖1=1

∥∥F(D)− F(D′)∥∥2 (5)

Due to the complexity of our local model consisting of
multiple modules and many layers with trainable weights, it is
intractable to calculate the �2(F) directly. Hence, we simplify
the formula of the standard deviation by setting �2(F) to 1
and ε to 1. As a result, the distribution of Gaussian noise can
be written as:

ξ ∼ N (0, 2 ln(1.25/δ)) (6)

When adding the Gaussian noise to our framework, the
Eq. (2) is updated as:

ω̄m = 1

N

N−1∑

n=0

(
ωm

n + ξm
n

)
(7)

B. Local Multimodal Model Fusing WSIs and Multi-Omics
Data

In this section, we outline a comprehensive description
of our local multimodal model that fuses histopathological
images and multi-omics data for cancer survival analysis, as
illustrated in Fig. 2.

Given that In = {In,l}Ll=1 ∈ R
L×(256×256×3) and on ∈ R

3×300

are the preprocessing results of histopathological images and
multi-omics, respectively, where L is the number of image
patches with 256 × 256 pixels. Each image patch In,l is fed
into a pre-trained Vision Transformer (image encoder), which
is proposed by Dosovitskiy et al. [11] and pre-trained using
histopathological image patches of sizes 256 × 256 by our
previous work [12], for obtaining the image representations:

xn−im = AttnPool
(

ViT
({

In,l
}L

l=1

))
, xn−im ∈ R

L×d (8)

where ViT(·) is the pre-trained ViT model, AttnPool(·) signifies
the global attention pooling operation, and d is the dimension
of ViT outputs.

Moreover, a shared fully connected layer (omics encoder)
is employed to learn the omics presentations, while aligning
the dimension of the multi-omics data with the dimensions of
the ViT encoder outputs:

xn−om = MLP(on), xn−om ∈ R
3×d (9)
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Subsequently, we present a cross-attention-based
multimodal encoder, namely Cross-Transformer, for integrat-
ing the histopathological images and multi-omics data. The
integrative processes are written as:

xn−fuse = CrossAttn
(
wqxn−om, wkxn−im, wvxn−im

)

= Softmax

(
wqxn−omxT

n−imwT
k√

d

)

wvxn−im

(10)

xn = AttnPool
(
Trans

([
xn−fuse ⊕ xn−om

]))
(11)

where wv, wk, wq ∈ R
d×d indicate learnable weights multi-

plied by the values xn−im, keys xn−im, and queries xn−om,
respectively. Trans(·) is the standard Transformer with several
blocks, ⊕ is the concatenation operation, and xn is the final
multimodal representation.

Lastly, the final representations xn integrating multimodal
data are fed into a Cox layer, which is implemented by a
fully-connected network, for computing the survival risk score.
During survival prediction, the average negative log partial
likelihood [12] is adopted to combine the survival risk, survival
time Tn, and survival status En, as the objective function of
our local multimodal model, which is denoted as:

L (xn, En, Tn) =

− 1

nE

∑

i:En,i=1

⎛

⎝αx(i)
n − log

∑

j:Tn,j>Tn,i

eαx(j)
n

⎞

⎠ (12)

where α denotes the learnable weights in the fully-connected
linear layer, and the linear layer αx(i)

n is utilized for predicting
the survival risk score. nE represents the quantity of uncen-
sored samples.

C. Implementation Details

Herein, Algorithm 1 illustrates our framework for col-
laboratively training a multimodal survival model between
a cloud server and multiple edge servers. The cloud-edge
collaboration framework is developed using PyTorch and runs
on a workstation featuring three NVIDIA A100 GPUs, each
with a capacity of 80 GB. The structure of the ViT-based image
encoder is kept the same as the original ViT base model. The
standard Transformer used in the multimodal encoder consists
of 3 blocks and 12 heads. The Adam optimization with a
learning rate of 5e-4 and a weight decay of 1e-3 is used for
training the local model. Since the histopathological images
have various sizes of patches, the batch size is configured as
1 with 60 steps of gradient accumulation. The training epoch
is set to 80.

Moreover, the interaction between multiple edge nodes and
the cloud center for model parameters is implemented by using
a rough and straightforward strategy. Initially, we execute
a Python script for the cloud center and three analogous
Python scripts with different datasets for three edge nodes.
Subsequently, edge scripts train the local model, save a model
checkpoint to the local disk, and then enter a loop to await
the global model checkpoint. Next, the cloud script checks
whether all local model checkpoints at the current round are

Algorithm 1 The Cloud-Edge Collaboration Framework
INPUT: Number of edge servers N, number of training
epochs M, privacy parameter δ for generating Gaussian
noise, and local datasets D = {[In, on, Tn, En]}N−1

n=0 .
OUTPUT: The final global weights ω̄M−1.
TRAIN:

initialize all model weights ω̄0, ω0
0, ω

0
1, . . . , ω

0
N−1

For m = 0, 1, . . . , M − 1 do
For n = 0, 1, . . . , N − 1 in parallel do

xm
n = F(In, on;ωm

n

)

ωm
n ← LocalUpdated

(L(xm
n , En, Tn

);ωm
n

)

end for
ω̄m = 1

N

∑N−1
n=0

(
ωm

n + ξm
n

)

For n = 0, 1, . . . , N − 1 do
ωm+1

n ← ω̄m

end for
end for
Return ω̄M−1

ready. Once confirmed, the cloud script aggregates them and
saves the checkpoint to the local disk as the global model
weight. After that, edge scripts reload the global model weight
and continue training the model.

IV. EXPERIMENTS

In this section, we start by introducing the datasets and
the preprocessing pipeline applied in this paper. Subsequently,
we show the experimental results on multi-institutional
multimodal data under various settings. Finally, we study the
impact of model generalization and the frequency of model
weight updates on performance.

A. Data Preprocessing

We conduct experiments on BRCA and LGG cancer datasets
sourced from TCGA. Each patient sample consists of two
modalities: histopathological images and multi-omics data.
The multi-omics data comprises three types of omics: namely
RNA-Seq, miRNA, and DNA methylation. We removed
patient samples with missing data types to implement the local
multimodal model. In addition, patients with a survival time of
fewer than 30 days or lacking follow-up information were not
included [12]. Finally, the sample sizes for BRCA and LGG
were 724 and 451, respectively.

Following our previous work [12], the CLAM model [18]
was applied to identify high-value regions within histopatho-
logical images and crop them into 256 × 256 patches.
Moreover, the K-nearest neighbor interpolation, differential
expression analysis, and random survival forest were intro-
duced to select the top 300 important genes.

To simulate cloud-edge collaboration across multi-
institutions (multiple edge nodes), we randomly divide
the BRCA and LGG datasets into 3 non-overlapping,
approximately equal-sized subsets to construct 3 different
institutional sites, respectively. The data partitions are shown
in Table I. Furthermore, the metric of concordance index
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Fig. 3. Performance comparison of Centralized setting and our framework with Federated settings using Kaplan-Meier curves.

TABLE I
DATA PARTITIONS FOR CONSTRUCTING INSTITUTIONAL SITES

(C-index) with 5-fold cross-validation was utilized to evaluate
the performance of cancer survival prediction.

B. Results on Multi-Institutional Multimodal Data

To verify the effectiveness of our proposed cloud-edge
collaboration framework, we conduct experiments on multi-
institutional multimodal data under the following settings:

1) Edge server 1/2/3: Models were trained solely on in-
institution training data and evaluated using testing sets
from all edge servers.

2) Centralized: Models were trained and evaluated using
training and testing sets from all servers, respectively.

3) Federated (w/ DP): Our proposed cloud-edge collabora-
tion framework with FL and DP.

4) Federated (w/o DP): Our proposed cloud-edge collabo-
ration framework with FL, but without adding DP.

The experimental results are depicted in Table II. The
Centralized setting obtained the highest C-index values in both
the BRCA and LGG datasets, indicating that direct data aggre-
gation is the most effective way to improve performance, but
it is at the highest privacy risk. Moreover, the Federated (w/o
DP) setting, our framework without DP, achieves suboptimal

TABLE II
CLOUD-EDGE SURVIVAL PREDICTION

results, followed by the Federated (w/ DP) setting, our frame-
work with DP. Compared to the Centralized and Federated
settings, the survival prediction performance of the local
model within any of the isolated institutional sites is relatively
poor. The experimental results demonstrate that our frame-
work effectively enhances the survival prediction performance
without directly sharing data, safeguarding patient privacy.
Furthermore, the Kaplan-Meier curves, along with their
respective log-rank test p-values generated by Centralized and
Federated settings, are illustrated in Fig. 3. Similarly, our
framework with federated settings achieves comparable results
to the framework with the centralized setting. In addition,
the p-value of a cloud-edge collaboration framework increases
when introducing differential privacy into the local multimodal
model.

C. Study of Model Generalization

In this section, we examine the performance of breast
cancer survival prediction within and among institutional
data to evaluate the robustness and generalization of mod-
els corresponding to various settings. As displayed in
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TABLE III
SURVIVAL PREDICTION PERFORMANCE TESTED ON INTRA VS. INTER-INSTITUTIONAL TEST DATA

Fig. 4. The performance of cloud-edge collaboration framework for different
communication pace.

Table III, undoubtedly, the Centralized setting achieves the
best performance in any isolated institutional data set
(inter-institution) and testing set from all institutions (intra-
institution). Besides, our cloud-edge collaboration framework,
including Federated (w/ DP) and Federated (w/o DP) settings,
exhibits highly competitive performance against the settings
in any isolated institution.

D. Study on the Frequency of Model Weight Updates

To explore how many training epochs to aggregate and
update the model weights can achieve optimal performance,
we investigate the impact of the frequency at which model
weights are updated on the performance of survival prediction.
We configured the aggregation and updating of model weights
at intervals of 1, 2, 5, and 10 epochs, respectively. The
performance of the survival prediction is illustrated in Fig. 4.
It is evident that aggregating the weights of local models and
updating them after each epoch is more suitable for our cloud-
edge collaboration framework.

V. CONCLUSION

In this work, we propose a cloud-edge collaboration frame-
work based on federated learning and differential privacy
to develop medical consumer electronics devices for can-
cer survival prediction. The framework trains local medical
AI models on a range of edge nodes and aggregates the
model weights from various edge nodes on the cloud center.
Moreover, the differential privacy technique is introduced into
the survival prediction models before transmitting the model

weights between edge nodes and a cloud center to safeguard
patient data confidentiality. We evaluate the performance of
our proposed cloud-edge collaboration framework on BRCA
and LGG cancer datasets, which are sourced from TCGA.
The experimental results demonstrate that our cloud-edge
collaboration framework improves the accuracy of survival
prediction models while safeguarding patient privacy, thereby
presenting a novel perspective on the progress of medical
electronic devices.
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