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ABSTRACT

Accurate prediction of antibody-antigen (Ab-Ag) interfaces is critical for vac-
cine design, immunodiagnostics and therapeutic antibody development. However,
achieving reliable predictions from sequences alone remains a challenge. In this
paper, we present ABCONFORMER, a model based on the Conformer backbone
that captures both local and global features of a biosequence. To accurately cap-
ture Ab-Ag interactions, we introduced the physics-inspired sliding attention, en-
abling residue-level contact recovery without relying on three-dimensional struc-
tural data. ABConformer can accurately predict paratopes and epitopes given
the antibody and antigen sequence, and predict pan-epitopes on the antigen with-
out antibody information. In comparison experiments, ABCONFORMER achieves
state-of-the-art performance on a recent SARS-CoV-2 Ab-Ag dataset, and sur-
passes widely used sequence-based methods for antibody-agnostic epitope pre-
diction. Ablation studies further quantify the contribution of each component,
demonstrating that, compared to conventional cross-attention, sliding attention
significantly enhances the precision of epitope prediction. To facilitate repro-
ducibility, we will release the code under an open-source license upon acceptance.

1 INTRODUCTION

Antibodies are Y-shaped glycoproteins with two arms (Fab fragments) and a stem (Fc fragment),
where the arms contain antigen-binding sites at their tips and are connected to the stem through a
flexible hinge. Each antibody has two identical heavy (Ab-H) and light (Ab-L) chains, with each
chain containing an N-terminal variable domain (VH in heavy, VL in light) followed by constant
domains (CH1-CH3 in heavy, CL in light). Within the variable domains, three hypervariable loops
from the heavy chain and three from the light chain—called complementarity-determining regions
(CDRs)—cluster together at the tip of the Fab to form the antigen-binding site, a spatially contiguous
surface on the antibody (paratopes) that engages the corresponding binding sites on the antigen
(epitopes), together forming the antibody-antigen (Ab-Ag) interfaces.

Identifying Ab-Ag interfaces is critical for vaccine design (Tarrahimofrad et al., 2021; Sarvmeili
et al., 2024), disease diagnosis (Ricci et al., 2023; Bourgonje et al., 2023), antibody engineering (Ku-
mar et al., 2024; Fantin et al., 2025) and research into immune evasion (Nabel et al., 2021; Liu et al.,
2022; Dejnirattisai et al., 2022; Liu et al., 2024), autoimmunity (Curran et al., 2023; Michalski et al.,
2024; Iversen et al., 2025) and immunotherapy (Bonaventura et al., 2022; Casirati et al., 2023; Shah
et al., 2025). Experimental techniques such as X-ray crystallography and cryo-electron microscopy
provide high-resolution Ab-Ag interactions but are resource-intensive (Brindén & Neutze, 2021;
Rubach et al., 2025). Phage display is faster but lacks atomic-level precision (Ledsgaard et al.,
2022). Therefore, many in silico methods have been developed to predict Ab-Ag interfaces.

Current computational methods for predicting Ab-Ag interfaces mainly follow two directions. The
first focuses on predicting interfaces using information from both antibodies and antigens. Repre-
sentative methods, including PECAN (Pittala & Bailey-Kellogg, 2020), Honda (Honda et al., 2020),
Epi-EPMP (Del Vecchio et al., 2021), PeSTo (Krapp et al., 2023), SEPPA-mAD (Qiu et al., 2023),
MIPE (Wang et al., 2024), DeeplInterAware (Xia et al., 2025) and Epi4Ab (Tran et al., 2025), have
shown strong performance in predicting antibody-specific interfaces. The second direction aims
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Figure 1: Interfaces sliding process. (A) Visualization of the SARS-CoV-2 Omicron BA.1 RBD in
complex with the CAB-A17 antibody (PDB ID: 8COY). Interfaces are identified using a4 A distance
cutoff (Appendix A). (B) Schematic of the interfaces sliding process.

to predict pan-epitopes on antigens in the absence of antibody information, thereby facilitating de
novo antibody design for new antigens. Widely-adopted approaches, such as BepiPred-3.0 (Clif-
ford et al., 2022), DiscoTope-3.0 (Hgie et al., 2024) and SEMA 2.0 (Ivanisenko et al., 2024), have
achieved comparatively better performance in large-scale B-cell epitope prediction.

However, accurate prediction of Ab-Ag interfaces remains challenging for several reasons. First,
except Epi4Ab, current antibody-specific methods treat the antibody input as a whole without dis-
tinguishing heavy and light chains, which lacks physical interpretability as paratopes are formed
by hypervariable loops from both VH and VL domains (Fig. 1A). Second, although some models
(e.g., Honda) employ cross-attention to capture Ab-Ag interactions, they struggle with dependen-
cies that may be distracted by distant, irrelevant positions, given that Ab—Ag interfaces are confined
to specific regions rather than spanning the entire sequence. Third, antibody-agnostic epitope pre-
diction are limited by the scarcity of experimentally solved 3D structures. Although BepiPred-3.0
and SEMA-1D 2.0 are sequence-based methods, they underperform compared to structure-based or
multi-modal methods.

Therefore, we design a sequence-based method that represents the Ab—Ag complex as three
components—Ab-H, Ab-L and Ag—to predict Ab—Ag interfaces when antibodies are provided,
and pan-epitopes from antigen alone. To capture both local patterns and long-range dependencies
of a single biosequence, we adopt the Conformer architecture that combines convolution and self-
attention (Gulati et al., 2020). To further capture interactions between biosequences, we introduce
sliding attention into our model (Feng et al., 2024). Unlike conventional cross-attention, sliding
attention accounts for spatial proximity and iteratively adjusts relative positions between two se-
quences, thereby uncovering more stable interaction patterns. In our cases, the antigen sequence first
slides against Ab-H, and then Ab-L, generating an attention map for each sliding process (Fig. 1B).

To summarize, we propose ABConformer, an interfaced-based explainable AntiBody target pre-
diction model with physics-inspired sliding-attention Conformer architecture. ABConformer has
several advantages. First, it achieves a comprehensive improvement in predicting antibody-specific
interfaces, while also outperforming all sequence-based methods in identifying antibody-agnostic
epitopes on the SARS-CoV-2 dataset filtered from 2024 onwards. Second, it simulates the molecu-
lar docking process, providing a physically interpretable view of Ab—Ag interactions and pairwise
residue relationships. Third, it enables large-scale prediction of Ab—Ag interfaces in the absence of
3D structures, which is particularly valuable in vaccine development, where numerous viral variants,
multiple antigenic targets and candidate antibodies need to be assessed.

2 METHODS

2.1 SLIDING ATTENTION

Sliding attention is motivated by the physical process of molecular docking, where a biosequence
dynamically slides along its partner to maximize the stability of interactions (Feng et al., 2024). It
computes attention from both feature similarity and spatial proximity, iteratively updating antigen
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residues first along the interaction gradients of Ab-H, then along those of Ab-L, thereby accurately
capturing the features of Ab—Ag interfaces. An algorithm is provided in Appendix B.

Feature attention. Consider a sliding sequence X () = {xgt), :vét), - ,x,(ﬁ)} and a reference se-
quence Y(¥) = {ygt)7 yét), ey yﬁf) }, where ¢ is the iteration step and the residue embeddings satisfy

acgt), yj(»t) € R%. To capture the feature similarity, embeddings are first projected into learnable latent

spaces using linear maps Eg, Er € R?*?, which yields the projected embeddings X () Eg € R™*¢
and YY) Ep € R™*<, The pairwise attention score Al(;) is then computed as:
t t
ol — (xg )ES) ) (y]( )ER)T
1] \/E Y (l)

¢ ¢ t)
Ao (4 s ).

Here, each row of the scaled dot-product matrix is shifted by its maximum to prevent numerical over-
flow. The exponential scores then lie in (0, 1], providing non-negative affinities between residues.

Spatial attention. The spatial proximity matrix S() € R™*" is estimated using a Gaussian kernel
over the sequence positions. Assuming that the reference positions Q = (q1,...,qy,) are fixed

integers along Y, and the sliding positions P(*) = (pgt)7 ey pS,?) are learnable positions of X at

iteration ¢, the spatial attention score Si(;) is written as:

(t) 2
(t) _ (pi” —4)
Si = exp <_2h2 ) . 2

Here, h is the bandwidth determined by the length of the reference sequence Y. A smaller h restricts
the receptive field, causing sliding residues at pl(-t) to be attracted to less distant residues in Y, thereby
confining each sliding process to a specific region. Assuming a binary mask M € {0, 1}™*™, where
M;; = 1if (4, j) is valid and 0 if padding. The bandwidth % is determined by the valid length of Y,

scaled by a factor ¢, and constrained to the range [Amin, Pmax):

h = min{hmaX7 max{hmin, jil ?}} 3)

Weighted attention. After obtaining feature and spatial attention, the weighted attention matrix is
computed as the Hadamard product of them:

Here, W captures the combined affinity between residues of the sliding and reference sequences,
with higher values indicating stronger potential interactions. Since W is unnormalized, we perform
row-wise and column-wise normalization to convert it into convex combination weights suitable for
attention aggregation:

W= T D T (5)
o= Wiy, +e D k1 ij te

where ¢ is a small constant added for numerical stability. Row-normalization ensures that each
sliding residue x; distributes its attention over the reference residues y;, and column-normalization
guarantees that each reference residue aggregates contributions from all sliding residues.

Embedding updates. Using the normalized attention weights, residue embeddings are iteratively

updated via cross-attention with residual connections:
XD — WOy O R, + x®
. ’ 6
YD) = (WOHYT(XBE) +Y®, ©

Here, Ex, Fy € R%*? are linear projections mapping embeddings into value spaces. Each sliding
residue in X ) queries all residues in Y'(*) through W (*), aggregating contextual information, and
similarly, each residue in Y (*) aggregates information from X ) via W(*).
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Figure 2: Overview of the ABConformer architecture, comprising (I) an encoding layer, (II) Con-
former layers, and (III) sliding attention modules. Six layers of stage II and III are stacked in the
standard ABConformer (Appendix E). MHSA denotes multi-head self-attention.

Position updates. Finally, the sliding positions themselves are refined according to the attention
distribution, which is computed as:

P (t+1) W(t Q (7)

An equivalent expression of this process is (Appendix B):

(t+1 Z )) (8)

Here, the update can be intuitively understood as each residue in the sliding sequence being ‘pulled’
toward regions where the reference residues collectively exert stronger interactions. Each reference
residue contributes to this movement proportionally to its weighted attention, so residues naturally
migrate toward positions of higher cumulative affinity. Conceptually, this process is analogous to
mean-shift mode seeking (Cheng, 1995), where each iteration shifts residue x; along the gradient of
an underlying density function. In our case, this density is the accumulated interaction magnitude at

the current position: f (pgt)) >0 M A(t t) . And z; moves along the gradient of f (pl(-t)).

2.2 ABCONFORMER

ABConformer adopts a three-branch architecture for Ab-H, Ab-L and the antigen (Fig. 2). In the
antigen branch, sequence embeddings are first encoded using ESM-2 150M (Lin et al., 2023), fol-
lowed by a feedforward layer and a multi-head self-attention (MHSA) module (Vaswani et al., 2017)
both with residual connections (He et al., 2016). The antigen embeddings then interact with Ab-H
and Ab-L through sliding, iteratively updating both the embeddings (Eq. 6) and sequence positions

(Eq. 7). After T steps, this process produces two sets of antigen embeddings, XP(IT) and XéT), which
are linearly combined as

Xae = aX{" + (1 - a)x™, (9)

where o € [0, 1] is a weight controlling the contributions of Ab-H and Ab-L. The combined embed-
ding X, is then passed to the remaining Conformer stage, followed by a convolution block and an
additional feed-forward layer both with residual connections.

The Ab-H and Ab-L branches are structurally similar, except that the MHSA module is omitted,
as it contributes little to paratope prediction when sliding is applied (Appendix G). In the standard
ABConformer, six layers of this three-branch backbone (except the encoding part) are stacked, bal-
ancing the computational cost with predictive performance (Appendix E).
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3 EXPERIMENTS

3.1 EXPERIMENTS SETUP

Dataset. The training set of ABConformer was obtained from AACDB (Zhou et al., 2025), which
contains 7,488 experimentally solved structures. A single PDB entry may contain multiple identical
complexes arising from repeated copies in the crystal or multiple asymmetric units in the unit cell.
To remove redundant entries while retaining a diverse collection of Ab-Ag samples, we selected
only one complex per PDB ID, resulting in the final dataset of 3,674 entries. Then we analyzed all
antigens from the 3,674 entries and constructed a phylogenetic tree with ClustalOmega (Sievers &
Higgins, 2018), resulting in six clusters (Appendix D). Each cluster was then evenly divided into
five parts, and one part of each cluster was combined to form a fold. In this way, five folds were
generated for cross-validation.

To further evaluate our model compared with other baselines, we extracted an external dataset of
SARS-CoV-2 from CoV-AbDab (Raybould et al., 2021). The SARS-CoV-2 set, filtered since 2024,
comprises 35 solved structures that has no overlap with the original training data (Appendix D).

Embedding and Interface Labeling. Each complex was rigorously decomposed into one Ab-H,
Ab-L and Ag chain. Each chain was then embedded using ESM-2 150M to generate a representation
of 640 dimensions. Paratopes and epitopes were identified using a4 A distance cutoff between heavy
atoms of antibody and antigen chains (Van Regenmortel, 2009).

Training and Evaluation. ABConformer was initially trained and evaluated via five-fold cross-
validation on the AACDB dataset, then retrained on the full dataset to capture more patterns. After
retraining, its performance was compared with multiple state-of-the-art methods on the SARS-CoV-
2 dataset.

Performance metrics. To assess the performance of paratope and epitope predictions, we computed
two types of metrics (Appendix C). First, binary classification metrics, including intersection over
union (IoU), precision (Prec), recall (Rec), F1 score, and Matthews correlation coefficient (MCC).
Second, score-based metrics, including Pearson correlation coefficient (PCC), and the areas under
the receiver operating characteristic (ROC) and precision-recall (PR) curves. Higher values of these
metrics indicate better predictive performance.

Target | Method | oUT Prect Rect F1t MCCT PCCtT ROCT PR7T

PECAN 0373 0.520 0.569 0.543 0.497 0516 0.869 0.527

Honda 0414 0.595 0.578 0.586 0.565 0.591 0.885 0.595

Epi-EPMP 0.406 0.608 0.551 0.578 0.550 0.573 0.893 0.584

Ab-Ag PeSTo 0419 0.573 0.610 0.591 0.572 0594 0904 0.602

P MIPE 0.466 0.705 0.580 0.636 0.603 0.620 0912 0.638

ara DeepInterAware | 0.430 0.645 0.563 0.601 0.585 0.605 0.907 0.614
EpidAb - - -

AF2 Multimer | 0.403 0.527 0.630 0.574 0.542 - - -
ABConformer | 0.482 0.693 0.613 0.651 0.622 0.632 0.904 0.651

PECAN 0.230 0.311 0470 0374 0342 0397 0.885 0.302

Honda 0.260 0.340 0.517 0413 0407 0458 0914 0.357

Epi-EPMP 0248 0.329 0.505 0398 0389 0441 0.897 0.341

Ab-Ag PeSTo 0.243 0307 0.539 0391 0379 0424 0907 0.326
Epi MIPE 0.311 0412 0.560 0.475 0463 0496 0923 0419
Pt DeeplInterAware | 0.273 0364 0.523 0429 0414 0469 0915 0.369
Epi4Ab 0.305 0423 0.521 0467 0457 0493 0928 0415

AF2 Multimer | 0.215 0.275 0.496 0.354 0.307 - - -
ABConformer | 0.336 0.467 0.545 0.503 0.492 0.510 0.931 0.441

BepiPred-3.0 | 0.077 0.087 0.403 0.143 0.162 0.187 0.862 0.094
Ag SEMA-1D2.0 | 0.082 0.089 0.510 0.152 0.164 0.195 0.804 0.107
Epi DiscoTope-3.0 | 0.161 0.194 0.487 0.277 0.273 0.325 0.870 0.231
ABConformer | 0.144 0.197 0.348 0.252 0.248 0.283 0.855 0.192

Table 1: Comparison of antibody-specific methods (Ab—Ag, evaluated on paratopes and epitopes)
and antibody-agnostic methods (Ag, evaluated on epitopes) on the SARS-CoV-2 dataset. The best-
performing values are highlighted in bold, and the second-best values are underlined.
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3.2 COMPARISON EXPERIMENTS

To evaluate the performance of predicting antibody-specific interfaces, we selected PECAN, Honda,
Epi-EPMP, PeSTo, MIPE, DeeplnterAware and Epi4Ab as baseline methods. Each method was
evaluated on the SARS-CoV-2 dataset to assess the performance in predicting Ab-Ag interfaces.
Furthermore, since AlphaFold2 Multimer (Mirdita et al., 2022) is widely used for predicting protein
complex structures, many previous studies have extracted interfaces based on its structural predic-
tions (DeRoo et al., 2024; Clifford et al., 2025). Here, we also used AlphaFold2 Multimer v3 to
model all complexes and identified interface residues with a 4 A distance cutoff, enabling a direct
comparison of ABConformer with commonly used tools.

To further assess pan-epitope prediction on antigens, we compared ABConformer with BepiPred-
3.0, DiscoTope-3.0 and SEMA-1D 2.0. Both BepiPred-3.0 and SEMA-1D 2.0 are sequence-based
methods for conformational epitope prediction, while DiscoTope-3.0 relies on antigen PDB struc-
tures. Here, the input for ABConformer only contains antigen sequences, with antibody embeddings
set to zero, yielding a classic Conformer architecture (i.e., the sliding-attention module has no effect)
for epitope prediction.

Results show that ABConformer comprehensively improves the prediction of paratopes and epitopes
compared to all antibody-specific methods, as measured by IoU, F1, MCC, PCC and PR (Tab. 1).
Notably, epitope precision is increased by 0.044 relative to the second-best method, indicating that
the sliding process enhances the accurate docking between antigen and antibody chains. Further-
more, when antibody information is ignored, ABConformer outperforms current sequence-based
antibody-agnostic methods in pan-epitope prediction across IoU, F1, MCC, PCC and PR (Tab. 1).
However, the recall is substantially lower than that of other methods. This is attributed to two factors.
First, different methods were trained and evaluated using different datasets and epitope identification
protocols (Appendix F). Second, ABConformer trades off recall to achieve a substantial improve-
ment in precision.

3.3 ABLATION STUDIES

To dissect the components of ABConformer, we performed ablation studies from three perspectives:
encoding, sliding attention mechanism, and Conformer modules, which also correspond to three
stages (I, III, IT) as shown in Figure 2. We first replaced the ESM-2 encoding with one-hot encoding
that represents each residue along with its 15 upstream and downstream neighbors, resulting in
a 651-dimensional feature vector (21 dimensions per residue x 31 residues in context window).
This dimensionality was slightly higher than the 640-dimensional embeddings produced by ESM-2
150M. Then we compared sliding attention with conventional cross-attention, which lacks distance
constraints (Eq. 2) and position updates (Eq. 7), as well as with MHSA without chain interactions.
Finally, we ablated the Conformer backbone by selectively removing either the convolutional blocks
or the MHSA modules. Each variant was evaluated on the AACDB dataset using cross-validation,
with metrics demonstrating the mean values of five folds.

I: Encoding III: Attention | II: Conformer Ag Ab-H | Ab-L
one-hot ESM-2 |self cross slide | Conv. MHSA |Prect Rect PCC?T ROCt PRt |PCC1|PCCT

0.660 0.546 0.611 0.906 0.589| 0.741 | 0.697
0.499 0.490 0.536 0.892 0.502| 0.737 | 0.691
0.469 0.453 0.485 0.877 0.415]| 0.736 | 0.675
0.543 0.588 0.581 0.903 0.562| 0.739 | 0.691
0.557 0.539 0.572 0.901 0.539]| 0.735 | 0.687
0.610 0.559 0.597 0.905 0.576| 0.739 | 0.693
0.460 0.447 0.484 0.859 0.411] 0.732 | 0.667

* X X X X% \ %
ANENENE AN
X X X X\ X X
X X X N\ X X %
AN NN
AN NR I NN NN
EESENENENENEN

Table 2: Ablation studies of ABConformer on antibody-specific interface prediction. The mean
metrics of five-fold cross-validation were evaluated on the AACDB dataset (N=3,674) across differ-
ent encoding strategies (stage I), attention mechanisms (stage III) and Conformer modules (stage II)
(Appendix G).
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Figure 3: Sensitivity analysis. The box plots show the distribution of metrics from the last twenty
training epochs, evaluated on epitopes using the same validation set and random seed (Appendix H).
Analyses correspond to (A) sliding step 7', (B) bandwidth scaling factor ¢, (C) maximum bandwidth
hmaz and (D) minimum bandwidth h,,;, (see METHODS). Default values are indicated in pink.

Here, we analyze the results in two parts: paratope prediction and epitope prediction. For antibody-
specific paratope prediction, each variant attains slightly lower performance of paratope prediction
on the AACDB dataset (Tab. 2). Variants that remove all attention mechanisms or replace sliding
attention with self-attention show notable decreases in predictive performance on Ab-L.

For epitope prediction, each component of ABConformer makes a substantial contribution to the
overall performance (Tab. 2). In stage I, ESM-2 embeddings considerably outperform one-hot en-
coding in predictive performance and input dimensionality. In stage II, removing either convolution
blocks or MHSA modules results in modest performance degradation. In stage III, replacing sliding
attention with MHSA markedly reduces predictive performance, while substituting it with cross-
attention increases recall by 0.042. This is because sliding attention guides antigen residues toward
more stable binding configurations limited by the bandwidth, resulting in more conservative scores
when two residues are too far apart; while cross-attention distributes interactions across entire se-
quences, where distant and irrelevant features can inflate attention scores for residues. However, in
general, sliding attention achieves superior precision and also outperforms in PCC, ROC and PR.

3.4 SENSITIVITY ANALYSIS

In METHODS, we introduced sliding attention along with several hyperparameters, including the
number of sliding steps (7"), the bandwidth scaling factor (c), and the maximum and minimum
bandwidths (Apax, Amin). Here, we varied these hyperparameters while keeping all other training
settings unchanged to assess their influence on the overall model. Experiments were conducted on a
fold (Fold 0) of AACDB dataset (Appendix D), training on 2,939 Ab-Ag complexes and evaluating
on 735 complexes, all using the same random seed. The results were reported on the valiadation
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Figure 4: Case study. (A-D) Weighted attention maps from the final sliding step: left, antigen with
Ab-H; right, antigen with Ab-L. Color bars attached to the axes indicate the true interface positions.
(A,B) 7yvl; (C,D) 8bgb6. (E-F) Structural visualization of interface predictions for 7yvl and 8bgb6.
Surfaces in yellow, blue and green correspond to the antigen, Ab-H and Ab-L, respectively.

set from epochs 40 to 60, which showed the predictive capability near convergence (Appendix E).
Additional analyses are provided in Appendix H.

As shown in Figure 3, three key observations can be drawn. First, increasing the number of sliding
steps 1" progressively improves predictive precision, with three iterations showing the best overall
performance in our settings. Second, a smaller bandwidth h tends to improve precision by down-
weighting the contributions of more distant residues, while reducing recall since these residues may
still carry relevant information (Eq. 3). Third, the overall performance shows minor fluctuations
across the hyperparameter ranges considered, indicating the robustness of the sliding-attention algo-
rithm in our tasks.

3.5 CASE STUDY

To illustrate the interpretability of our model, we selected two examples of weighted attention maps
(Eq. 4) and structural visualizations from the SARS-CoV-2 test set. The attention maps show that
ABConformer accurately captures three CDRs on VH (i.e., CDR-H1, CDR-H2 and CDR-H3) as
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well as CDRs on VL, with strong attention scores concentrated on these regions (Fig. 4A-D). Fur-
thermore, ABConformer highlights antigen residues that are highly related and proximal to the an-
tibody CDRs (Fig. 4A-D). The structural visualizations further demonstrate the high precision and
recall achieved by our model in predicting Ab—Ag interfaces (Fig. 4E,F).

4 RELATED WORK

Antibody-specific interface prediction methods. PECAN integrates graph representation, graph
convolution, attention, and transfer learning to model Ab-Ag structural relationships and contex-
tually predict interfaces (Pittala & Bailey-Kellogg, 2020). Honda’s work introduces convolution
encoders, transformer encoders and a cross-transformer encoder into the backbone, achieving a
multi-task model that simultaneously predicts antibody paratopes and antigen epitopes (Honda et al.,
2020). Epi-EPMP employs a graph attention network (GAT) with fully connected layers to capture
structural cues on antibodies and antigens (Del Vecchio et al., 2021). PeSTo is a parameter-free
geometric transformer that directly encodes protein structures as atomic point clouds, using pair-
wise geometry and multi-head attention to update atom-level scalar and vector states for binding site
prediction (Krapp et al., 2023). MIPE uses multi-modal contrastive learning (CL)—intra-modal CL
to separate binding and non-binding residues within each modality, and inter-modal CL to align se-
quence and structure representations—along with multi-head attention layers that compute attention
matrices for antibodies and antigens to capture their interaction patterns (Wang et al., 2024). Deep-
InterAware can evaluate Ab-Ag affinity, identify binding sites, and predict the binding free energy
changes due to mutations. Its Interaction Interface-aware Learner (IIL) embeds antigens with ESM-
2 and antibodies with AbLang (Olsen et al., 2022), using bilinear attention and convolution blocks to
capture interfaces of Ab-Ag complexes (Xia et al., 2025). Epi4Ab encodes antigen sequences with
ESM-2 and antibody CDRs with AntiBERTYy (Ruffolo et al., 2021), and integrates them with struc-
tural features of Ab-Ag into residual interaction graphs, a graph attention network then classifying
residues as epitopes, potential epitopes or non-epitopes (Tran et al., 2025).

Antibody-agnostic epitope prediction methods. BepiPred-3.0 uses ESM-2 embeddings as input
to a feedforward neural network (FFNN) to predict both linear and conformational B-cell epitopes
(Clifford et al., 2022). DiscoTope-3.0 uses inverse folding representations from ESM-IF1 (Hsu et al.,
2022) and is trained on both predicted and solved structures using a positive-unlabelled ensemble
strategy, enabling structure-based B-cell epitope prediction (Hgie et al., 2024). SEMA-1D 2.0 adds a
fully-connected layer on an ensemble of five ESM-2 models, while SEMA-3D 2.0 follows the same
design but replaces ESM-2 with pre-trained Structure-aware Protein language models (SaProt) (Su
et al., 2023; Ivanisenko et al., 2024).

5 CONCLUSION

In this study, we propose ABConformer, an interface prediction model based on the sliding-attention
Conformer architecture. The experimental results highlight three key findings. First, ABConformer
demonstrates improvement in several key metrics (e.g., F1 and PCC) for antibody-specific interface
prediction and surpasses widely used sequence-based methods in antibody-agnostic epitope pre-
diction. Second, the sliding-attention algorithm considerably improves the precision of antibody-
specific epitope prediction while keeping the overall performance at a high level. Third, ABCon-
former produces interpretable attention maps for antigen—Ab-H and antigen—Ab-L interactions, with
feature and spatial attention accurately capturing epitopes and paratopes within the CDRs.

Future work. Several avenues remain to be explored. First, previous antibody-specific methods
have incorporated antibody embedding techniques such as AntiBERTy (Ruffolo et al., 2021) and
AbLang (Olsen et al., 2022); assessing the effectiveness of such embeddings is important for opti-
mizing ABConformer. Second, ABConformer need further evaluation on additional datasets with
experimentally resolved structures, and its utility in practical applications requires validation. Third,
pan-epitope prediction still leaves substantial room for improvement. Note that in this study, we sim-
ply set antibody embeddings to zero to assess the performance of pan-epitope prediction, while this
task does not benefit from either the antibody branches or the sliding-attention modules. As fu-
ture work, we intend to develop a pure Conformer architecture dedicated to antigen sequences, and
further examine how convolution and self-attention individually support epitope prediction.
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REPRODUCIBILITY STATEMENT

Training details are provided in Appendix E. All code and data will be made publicly available upon
acceptance.
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STATEMENT OF LLM USAGE

Large Language Models (LLMs) were only used to polish the language of this paper. No LLM was
used to generate research ideas, experiments, or analyses.

A ANTIBODY-ANTIGEN INTERFACES

Antibody structure. A crystal structure of
mouse immunoglobulin G (IgG) is shown on
the right (Fig. 5), with the paired variable do-
mains at both Fab tips having the ability to in-
teract with specific antigens.

Interface identification. Ab-Ag interfaces
play a critical role in determining binding
specificity and affinity. During immune recog-
nition, epitopes are typically composed of mul-
tiple spatially adjacent residues. To capture
this interaction, the notions of residue-neighbor
and residue-patch were introduced. A residue-
neighbor is defined when the minimum dis-
tance between heavy atoms of two residues is
less than 4 A, and a residue-patch refers to a
group of residues whose atoms lie within 10
A of a central residue. To identify the inter-
action residues between the antibody and anti-
gen, we focused on the residue-neighbor rela-
tionship, which is given as:

min |la —b|| < 44, (10)

a€ri, ber;

where r; and r; are residues from the antigen
and antibody chains respectively, and a, b rep-
resent the heavy atoms within these residues.

Figure 5: Cartoon representation of a full-length
immunoglobulin (PDB ID: 1IGT), with domains
annotated. Two identical heavy chains are shown
in yellow and blue, and the identical light chains
are shown in pink and green.

CDRs. Antigen-binding sites are located on the VH and VL domains, where the interacting regions
are primarily the CDRs, particularly CDR-H3. The remainder of the variable domain, outside the
CDRes, is structurally well conserved and often referred to as the framework region. Antibody design
is commonly formulated as the task of selecting CDR sequences that optimally conform to a given
framework region. In the case study, we show that weighted attention maps of sliding attention
accurately capture three CDRs in VH domains, which demonstrates the applicability of our model

in identifying functional CDRs.
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B SLIDING ATTENTION

Equation 8. The position update for sliding attention is defined in Equation 7 as
pl+l) — /W(t)Q,

where W () € R™*" is the row-normalized weighted attention matrix, and Q € R”" represents the
fixed reference sequence positions. Expanding by rows, the update of the i-th sliding residue is:

t+1) Z (11)

The displacement from the previous position can be expressed as:

ptY Z P (12)

Since W®) is row-normalized, i.e., Z W(f) = 1, we can factor out p; (t) to recover Equation 8 in

the main text:
p£t+1 Z W(t t))

Algorithm. Here, an algorithm of sliding attention for a sliding sequence X and reference sequence
Y is shown below:

Algorithm 1: Sliding Attention

Input: Sliding embeddings X (°), reference embeddings Y (%), initial positions P(*), reference
positions @, mask M, linear projections Fg, EFr, Ex, Ey, iteration steps 7, bandwidth
constraints hyin, Pmax, scaling factor ¢, small constant €.

Output: X (1) Y (1), Wi(jT), /Wi(f).
01: h < min{Amax, max{Amin, Z?=1 M. ;/c}} (Eq. 3);
02: fort =0to7 — 1do
03: //alsoforalli € [1,m]and j € [1,n];
04:  // feature attention (Eq. 1);
05: aff « (2 Bs) - (v Er) "V,
06: A(t) + exp(a; (-) — maxy, az(.z));
07: /1 spatlal attentlon (Eq. 2);
08: Si(]t-) —exp(— (pl(t) —q;)?/2h?%);
09: // weighted attention (Eq. 4, 5);
100 W 4 My (AD © 8®);
11: W”<—W“/(Z,€Wf,f +e);
: (t) (t) (t)
12: - W7 = Wi /(2 Wiy +€)s
13:  // Update sliding embeddings and reference embeddings (Eq. 6);
14: XD  WOYOE,) 4 XO;
150 YD)  (WO)T(XOEL) + YO,
16:  // Update sliding positions (Eq. 7);
17:  PO+D « WO,

18: return X (D) y(T) /V[?Z_(jT)7 Wi(jT)'
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C PERFORMANCE METRICS

Binary predictions. In the main text, we report intersection over union (IoU), precision (Prec),
recall (Rec), F1 score and Matthews correlation coefficient (MCC) for paratope and epitope predic-
tions. These metrics quantify the agreement between predicted and true binding sites after binariza-
tion, with higher values indicating better predictive performance:

o = TN
Prec = TPTi—fFP
Rec = %

i et

TP-TN — FP-FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

where TP, TN, FP and FN denote true positives, true negatives, false positives and false negatives.

Score predictions. Metrics that can be computed from continuous prediction scores include Pearson
correlation coefficient (PCC), areas under the receiver operating characteristic (ROC) and precision-
recall (PR) curves, Brier score and binary cross-entropy (BCE). These metrics assess the probabilis-
tic calibration and ranking quality of predictions, which are computed as follows:

COV(yi » Ui )
Oy; 0g;

POC =
1

ROC-AUC = / TPR(t) d FPR(1)
0

1
PR—AUC:/ Prec(t) d Rec(t)
0

N

. 1 N2
Brier = N Z:l(il/z — i)

N
BCE = —% > [yilog(@i) + (1 — i) log(1 — §i)]

i=1

Here, y; € {0,1} is the true label of residue 4, §; € [0,1] is the predicted score, and N is the
total number of residues. The threshold ¢ € [0, 1] is used to binarize the predicted scores when

computing TPR, FPR, Rec and Prec, which are defined as TPR(t) = %,FPR@) =
FP(t TP(t TP(t
FP(t)-i-(T)N(t)’ReC(t) = TP(t)-i-(F)l\I(t)7PreC(t) = TP(t)-i-(F)P(t)'
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D DATASET

. Ab-H Ab-L Ag
Fold  Split
Avg. Len. Int. Rate Avg.Len. Int. Rate Avg.Len. Int. Rate
0 Train 182.1 0.073 175.9 0.051 345.7 0.077
Val 179.6 0.076 173.0 0.053 351.8 0.075
1 Train 181.8 0.074 175.3 0.052 345.6 0.076
Val 180.9 0.072 175.5 0.051 3524 0.077
2 Train 181.2 0.074 175.0 0.052 348.4 0.077
Val 183.0 0.073 176.6 0.050 341.2 0.075
3 Train 181.7 0.073 175.5 0.051 346.9 0.076
Val 181.2 0.074 175.0 0.052 347.0 0.077
4 Train 181.2 0.074 175.0 0.052 348.1 0.076
Val 183.2 0.073 176.8 0.051 342.4 0.078

Table 3: Dataset statistics across 5-fold splits. For each fold, we report the average sequence length
and the average proportion of interfaces for Ab-H, Ab-L and Ag.

Fold | Cluster 1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 SUM

Fold 0 156 57 17 220 17 268 735
Fold 1 156 57 16 220 18 268 735
Fold 2 156 57 16 220 18 268 735
Fold 3 155 57 16 221 18 268 735
Fold 4 155 57 16 220 18 268 734

Table 4: Distribution of validation samples across clusters for each fold.

AACDB. The original 7,488 PDB struc-
tures were filtered to ensure that each
PDB ID appeared only once, resulting in
a final set of 3,674 complexes. Anti-
gen sequences were then extracted from
these complexes, and a phylogenetic tree
of the these sequences was constructed
using ClustalOmega. As shown in Fig-
ure 6, six clusters were identified based on
evolutionary relationships. Each cluster
was subsequently divided into five folds,
which were then combined to form the fi-
nal cross-validation datasets, yielding four
folds with 735 validation samples (2,939
training samples) and one fold with 734
validation samples (2,940 training sam-
ples) (Tab. 4). A detailed analysis of av-
erage sequence lengths and average inter-
face proportions for all chains is provided
in Table 3.

B Cluster1 778
Cluster2 285
Cluster3 81
Cluster4 1101
Cluster5 89
Cluster6 1340

Figure 6: Phylogenetic tree of antigens in the AACDB
3674 dataset, with six clusters obtained.

In practice, structures that do not distin-

guish Ab-H and Ab-L (i.e., only the full

antibody sequence provided) exist. In such cases, we duplicate the chain into both Ab-H and Ab-L
to meet the input requirements of our model.

SARS-CoV-2. The SARS-CoV-2 dataset, filtered from CoV-AbDab since 2024, comprises 35 ex-
perimentally resolved PDB complexes. Among these, 12 antibodies can target pre-Omicron (SARS-
CoV-2 WT and its «, /3 variants, etc.), 4 can target Omicron, and 19 have the ability to target both
strains. By extracting the Ab-H, Ab-L and corresponding antigen chain from each complex, we
obtained 46 entries. This curated small dataset will be made publicly available.
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E TRAINING AND EVALUATION

A B 1.00
0.10 Ab-H 0.95
' Ab-L '
A 0.90
0.08 9
0.85
w O 0.80
g 0.06 8
0.75
0.04 0.70
Ab-H
0.02 0.65 Ab-L
0.60 Ag
10 20 30 40 50 60 10 20 30 40 50 60
Epoch Epoch

Figure 7: Metrics across training epochs. Metrics were computed on the training set (N=3674)
every five epochs for Ab-H, Ab-L and Ag. Each reported value represents the mean calculated over
the corresponding epoch together with its two preceding and two succeeding epochs (a five-epoch
window). (A) BCE. (B) PCC.

A 1.0 B 1.0 C 1.0
0.8 0.8 0.8
0.6 0.6 0.6
4 "4 o
a , a , a Y
= / = e [ i
0.4 H, ROC-AUC (0.973) 0.4 L, ROC-AUC (0.969) 0.4 Ag, ROC-AUC (0.906)

Fold 0 (AUC=0.973)
Fold 1 (AUC=0.975)

Fold 0 (AUC=0.970)
Fold 1 (AUC=0.968)

Fold 0 (AUC=0.913)
Fold 1 (AUC=0.913)

0.2 Fold 2 (AUC=0.973) 0.2 Fold 2 (AUC=0.967) 0.2 Fold 2 (AUC=0.893)

Fold 3 (AUC=0.969) Fold 3 (AUC=0.969) Fold 3 (AUC=0.911)
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Fold 1 (AUC=0.782)
0.2 Fold 2 (AUC=0.765) 0.2
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Figure 8: Cross-validation across five folds. The (A-C) ROC-AUC and (D-F) PR-AUC curves are
plotted on Ab-H, Ab-L and Ag.

Training details. ABConformer was trained using per-residue cross-entropy loss with masking to
ignore padded positions. For a batch of sequences, the loss for each chain (Ab-H, Ab-L and Ag) is
independently computed as:

1 .
Letain = S ;mi Zy 10g Jic» (13)

where m; is a binary mask for valid positions, y; . is the one-hot target for position ¢ and class c,
and 9, . is the predicted probability after softmax. The final loss is averaged across three chains:
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Laver | Eoch | Ab-H \ Ab-L \ Ag | Param | MACs
y P [ PCCT FIf [PCCT FIf [PCCT FIf | M) G
4 40-60 | 0.733 0.732 | 0.684 0.670 | 0.603 0.578 | 108.764 | 259.828
6 40-60 | 0.736  0.737 | 0.689 0.677 | 0.615 0.593 | 162.940 | 389.111
8 40-60 | 0.736 0.738 | 0.691 0.678 | 0.614 0.590 | 217.116 | 518.394

Table 5: Performance metrics across different layers of Conformer and sliding-attention. Each
model was trained on fold O (Appendix D) and evaluated on the validation set at epochs 40-60, with
the reported values representing the average over these twenty epochs. Params and MACs were
calculated assuming a batch size of 2, and all sequences in the batch padded to a length of 512.

1
L= §(£H+£L+£Ag)~ (14)

Several optimization and stabilization techniques were also employed. First, the model parame-
ters were optimized using AdamW with weight decay, and gradients were clipped to a maximum
norm of 1.0 to prevent instability during backpropagation. Second, to reduce memory usage, we ap-
plied automatic mixed precision (AMP). Third, an exponential moving average (EMA) of the model
weights was maintained throughout training, improving the stability of evaluation metrics. Finally,
the learning rate and loss values were recorded at each iteration using a smoothed logging utility to
monitor the optimization process.

The training process of the standard ABConformer (i.e., six layers of stages II and III) on the full
AACDB dataset is shown in Figure 7. Predictive performance for Ab-H and Ab-L converges around
epoch 40, while Ag converges around epoch 50. This explains our choice of epochs 40-60 in the
sensitivity analysis.

Five-fold cross-validation. In the ablation studies, all ABConformer variants were evaluated using
five-fold cross-validation on the AACDB dataset. Here, we show the five-fold ROC and PR curves
for the original ABConformer. As shown in Figure 8, the curves are plotted separately for Ab-H, Ab-
L and Ag, indicating similar performance across folds. Notably, epitope prediction performance is
consistently lower than that for paratopes. This suggests that the model accurately captures paratope
residues within CDRs, and residues between CDRs receive less attention; While antigen binding
sites are more variable, making them inherently more challenging for prediction.

Conformer and sliding-attention layers. A standard ABConformer consists of six layers of Con-
former and sliding-attention modules (Fig. 2). To investigate the effect of model depth, we also
explored different numbers of layers. As reported in Table 5, six layers provide the best trade-off
between predictive performance and computational cost. Note that in this table, parameter counts
(Params) and multiply-accumulate operations (MACs) were calculated using a batch size of 2 and
a sequence length of 512. However, during actual training, dynamic sequence length padding was
applied for each batch, and a batch size of 6 could be supported in our environment.

Configuration. A complete configuration is shown below:

Parameter  Value Description

dmodel 640 Embedding dim of input features.
dimyy 1280  Hidden dim of feedforward modules. Env Spec
Nheads 10 Number of attention heads. -
conv_kernel 5 Kernel size of convolution modules. 0S Linux 3.10.0-35
Python 3.9.23
Nblocks 6 Number of stacked blocks. CPU 24C / 48T
min_bw 48 Minimum bandwidth.
. . Memory 334 GB
max_bw 144 Maximum bandwidth. GPU 4 x A100 (40GB)
scale 3 Scaling factor for the bandwidth.
sliding_step 3 Number of sliding steps. . .
@ 0.5  Weight for Ag update from Ab-H. Table 7: Environment configuration.

Table 6: Model configuration.
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Figure 9: Metrics across thresholds evaluated on the SARS-CoV-2 dataset. The light-red dashed
lines indicate the thresholds selected in the comparison experiments. (A—C) Antibody-specific in-
terface prediction on Ab-H, Ab-L and Ag, respectively. (D) Antibody-agnostic epitope prediction
on Ag.

Alphafold Multimer v3. We used Alphafold Multimer ColabFold v3 with 4 seeds, 5 models and 3
recycles, generating 20 structures per complex. Then we selected the top-ranked predicted structure
for each complex and extracted interfaces based on a 4 A distance cutoff.

Antibody-specific methods. Open-source implementations of PECAN, Epi-EPMP, PeSTo, Deepln-
terAware and Epi4Ab are available on GitHub. PECAN, DeeplnterAware and Epi4Ab were trained
on the AACDB-3674 dataset (with Epi4Ab operating on Ab-H and Ab-L seperately) and then eval-
uated on the SARS-CoV-2 dataset. For PeSTo, a parameter-free method with detailed usage guide-
lines, predictions were obtained by following the provided instructions. Epi-EPMP lacks detailed
training code; therefore, we reconstructed the network following their paper and conducted the anal-
ysis. For the remaining baselines, we re-implemented their architectures following the descriptions
in the original publications.

Antibody-agnostic methods. BepiPred-3.0, DiscoTope-3.0 and SEMA 2.0 provide publicly avail-
able web platforms for direct use. SEMA-1D 2.0 adopts a 12 A distance cutoff, achieving the highest
recall (Tab. 1). SEMA-3D 2.0 provides a log-scaled score representing the expected number of con-
tacts with antibody residues and annotations of predicted N-glycosylation sites, the interpretation of
this score as a probability remains unclear. Hence, we did not report its results.

ABConformer. Figure 9 shows metrics evaluated across different thresholds on the SARS-CoV-2
dataset. The thresholds selected for classifying interfaces are 0.2, 0.13 and 0.3 for Ab-H, Ab-L and
Ag, respectively, and a threshold of 0.11 was chosen for antibody-agnostic epitope prediction.
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G ABLATION

Ab | Ab-H \ Ab-L \ Ag | Param | MACs
MHSA| FIf PCCT PRT|[FIf PCCT PRT|FIf PCCT PRT| M) (&)

X 0.738 0.741 0.770|0.679 0.697 0.702]0.597 0.611 0.589‘162.940‘389.111

v 0741 0.743 0.770|0.677 0.701 0.705|0.591 0.608 0.585|167.862 |394.144

Table 8: Ablation study of MHSA modules in antibody branches. Mean metrics of 5-fold cross-
validation were evaluated on the AACDB dataset.

ABConformer | IoUT Prect Rect FI1 MCCT PCCt ROCT PRfT Brier|{ BCE]

fold0 | 0.588 0.742 0.740 0.741 0.722 0.741 0973 0.767 0.031  0.200

fold1 | 0.589 0.717 0.768 0.741 0.723 0.743 0975 0.782 0.030 0.185

Ab-H fold2 | 0.587 0.696 0.789 0.739 0.721 0.746 0973 0.765 0.031 0.192
fold3 | 0.587 0.719 0.761 0.739 0.720 0.742 0969 0.770 0.031 0.197

fold4 | 0.575 0.763 0.701 0.731 0.713 0.732 0973 0.768 0.031 0.211

AVG | 0.585 0.727 0.752 0.738 0.720 0.741 0973 0.770 0.031  0.197

fold0 | 0.520 0.703 0.666 0.684 0.669 0.695 0970 0.713 0.025 0.150

fold1 | 0.513 0.676 0.680 0.678 0.662 0.697 0968 0.684 0.026 0.164

Ab-L fold2 | 0.513 0.710 0.649 0.678 0.665 0.698 0.967 0.700 0.024 0.162
fold3 | 0.506 0.718 0.632 0.672 0.659 0.694 0969 0.711 0.025 0.166

fold4 | 0.521 0.687 0.684 0.685 0.671 0.701 0970 0.702 0.025 0.172

AVG | 0.514 0.699 0.662 0.679 0.665 0.697 0.969 0.702 0.025 0.163

fold0 | 0.432 0.639 0.571 0.603 0.586 0.616 0913 0.589 0.030 0.206

fold1 | 0.420 0.673 0.528 0.592 0.579 0.605 0913 0.589 0.029 0.231

A fold2 | 0.415 0.644 0.539 0.587 0571  0.600 0.893 0.574 0.031 0.232
€ | fold3 | 0437 0674 0555 0.609 0594 0622 0911 0594 0.029 0217
fold4 | 0.424 0.668 0.538 0.596 0.582 0.610 0.899 0.597 0.032 0.230

AVG | 0.426 0.660 0.546 0.597 0.583 0.611 0.906 0.589 0.030 0.223
I: one-hot | IoUT Prect Rect FIf MCCt PCCtT ROCT PR{ Brier] BCE]
fold0 | 0.572 0.687 0.774 0.728 0.708 0.741 0974 0.760 0.031 0.134

fold1 | 0.571 0.705 0.751 0.727 0.707 0.738 0970 0.761 0.031 0.147

Ab-H fold2 | 0.570 0.707 0.746 0.726 0.705 0.733 0973 0.757 0.032 0.154
fold3 | 0.569 0.716 0.734 0.725 0.705 0.732 0961 0.739 0.031 0.185

fold4 | 0.572 0.691 0.768 0.728 0.708 0.739 0971 0.757 0.030 0.146

AVG | 0.571 0.701 0.755 0.727 0.707 0.737 0970 0.755 0.031 0.153

fold0 | 0.502 0.651 0.687 0.669 0.653 0.693 0967 0.688 0.024 0.104

fold1 | 0.510 0.672 0.680 0.676 0.660 0.694 0964 0.695 0.025 0.122

Ab-L fold2 | 0.505 0.632 0.716 0.671 0.655 0.691 0967 0.690 0.026 0.118
fold3 | 0.511 0.664 0.689 0.676 0.661 0.689 0951 0.683 0.024 0.158

fold4 | 0.502 0.675 0.663 0.669 0.653 0.687 0964 0.699 0.023 0.127

AVG | 0.506 0.659 0.687 0.672 0.657 0.691 0.963 0.691 0.025 0.126

fold0 | 0.324 0.486 0492 0489 0464 0536 0.896 0.507 0.033 0.141

fold1 | 0319 0.535 0441 0483 0463 0536 0.891 0.507 0.034 0.164

A fold2 | 0.294 0447 0461 0454 0427 0496 0886 0.453 0.036 0.150
€ |fold3 | 0362 0514 0550 0532 0508 0559 0.890 0520 0.035 0.188
fold4 | 0.341 0.511 0.507 0.509 0.485 0551 0.898 0.526 0.034 0.149

AVG | 0.328 0.499 0.490 0.493 0470 0.536 0.892 0.502 0.034 0.158
II: cross-att | IoUT Prect Rect FIT MCCT PCCtT ROCtT PR?T Brier] BCE]
fold0 | 0.589 0.722 0.761 0.741 0.722 0.744 0972 0.769 0.032 0.197

fold1 | 0.588 0.717 0.766 0.741 0.722 0.744 0972 0.767 0.031 0.204

Ab-H fold2 | 0.578 0.741 0.725 0.733 0.714 0.734 0971 0.759 0.031 0.207
fold3 | 0.574 0.708 0.753 0.730 0.710 0.734 0968 0.748 0.032 0.191

fold4 | 0.586 0.714 0.765 0.739 0.720 0.740 0974 0.762 0.031 0.208

AVG | 0.583 0.721 0.754 0.737 0.718 0.739 0971 0.761 0.031 0.201

fold0 | 0.520 0.720 0.651 0.684 0.670 0.690 0974 0.718 0.025 0.168

fold1 | 0.509 0.641 0.713 0.675 0.659 0.691 0969 0.703 0.026 0.146

Ab-L fold2 | 0.512 0.682 0.672 0.677 0.662 0.685 0969 0.700 0.025 0.169
fold3 | 0.520 0.685 0.683 0.684 0.669 0.693 0964 0.688 0.025 0.163

fold4 | 0.518 0.647 0.721 0.682 0.667 0.695 0972 0.698 0.025 0.148

AVG | 0.516 0.675 0.688 0.680 0.666 0.691 0.970 0.701 0.025 0.159
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fold0 | 0.401 0.552 0.594 0.572 0.551 0595 0912 0.554 0.033 0.215

fold1 | 0.395 0.541 0.595 0.567 0546 0578 0916 0.578 0.035 0.221

A fold2 | 0.385 0.543 0.570 0.556 0.534 0575 0903 0.575 0.035 0.217
€ | fold3 | 0399 0.553 0590 0.571 0550 0584 0.896 0.544 0.034 0219
fold4 | 0.386 0.527 0.591 0.557 0.535 0572 0.891 0.556 0.032 0.224

AVG | 0.393 0.543 0.588 0.565 0.543 0.581 0.903 0.562 0.034 0.219
HI: self-art | IoUT Prect Rect F1t MCCt PCCtT ROCT PRT Brier] BCEJ
fold0 | 0.587 0.716 0.765 0.740 0.720 0.741 0972 0.771 0.032 0.218

fold1 | 0.575 0.719 0.741 0.730 0.711 0.730 0971 0.743 0.030 0.192

Ab-H fold2 | 0.577 0.713 0.751 0.731 0.712 0.729 0970 0.740 0.033 0.212
fold3 | 0.587 0.738 0.742 0.740 0.721 0.739 0971 0.774 0.031 0.241

fold4 | 0.588 0.720 0.763 0.741 0.722 0.741 0971 0.769 0.032 0.224

AVG | 0.583 0.721 0.752 0.736 0.717 0.736 0971 0.759 0.032 0.217

fold0 | 0.517 0.663 0.702 0.682 0.666 0.691 0961 0.696 0.026 0.183

fold1 | 0.482 0.629 0.673 0.650 0.633 0.657 0945 0.638 0.028 0.189

Ab-L fold2 | 0.485 0.643 0.664 0.653 0.636  0.657 0.948 0.633 0.028 0.201
fold3 | 0.518 0.687 0.678 0.682 0.667 0.689 0962 0.686 0.025 0.179

fold4 | 0.508 0.684 0.664 0.673 0.658 0.682 0950 0.674 0.026 0.178

AVG | 0.502 0.661 0.676 0.668 0.652 0.675 0953 0.665 0.026 0.186

fold0 | 0.310 0.485 0462 0473 0449 0495 0875 0425 0.037 0.245

fold1 | 0.292 0431 0475 0452 0425 0466 0874 0.393 0.039 0.239

A fold2 | 0.288 0462 0434 0448 0422 0482 0875 0414 0.034 0214
€ | fold3 | 0302 0501 0431 0464 0441 0487 0879 0419 0.036 0231
fold4 | 0.303 0467 0463 0465 0440 0.495 0.882 0425 0.036 0.231

AVG | 0.299 0.469 0453 0460 0435 0485 0.877 0415 0.037 0.232
II: noconv | IoUT Prect Rect FIfT MCCtT PCCt ROCT PRT Brier] BCE|
fold0 | 0.565 0.700 0.746 0.722 0.701 0.733 0970 0.749 0.032 0.163

fold1 | 0.567 0.720 0.728 0.724 0.704 0.734 0971 0.760 0.030 0.166

Ab-H fold2 | 0.566 0.720 0.726 0.723 0.703 0.730 0968 0.738 0.031 0.163
fold3 | 0.578 0.709 0.757 0.732 0.713 0.739 0964 0.739 0.031 0.170

fold4 | 0.579 0.713 0.755 0.734 0.714 0.739 0970 0.748 0.031 0.168

AVG | 0.571 0.713 0.742 0.727 0.707 0.735 0.969 0.747 0.031 0.166

fold0 | 0.516 0.690 0.673 0.681 0.666 0.694 0.968 0.692 0.024 0.138

fold1 | 0.498 0.653 0.678 0.665 0.649 0.678 0960 0.679 0.026 0.167

Ab-L fold2 | 0.505 0.663 0.679 0.671 0.656 0.685 0961 0.662 0.024 0.143
fold3 | 0.500 0.631 0.706 0.666 0.651 0.687 0.964 0.672 0.026 0.138

fold4 | 0.512 0.671 0.682 0.677 0.662 0.691 0963 0.677 0.024 0.139

AVG | 0.506 0.662 0.684 0.672 0.657 0.687 0.963 0.676 0.025 0.145

fold0 | 0.379 0.547 0.553 0.550 0.528 0.580 0.906 0.551 0.032 0.181

fold1 | 0.379 0.560 0.539 0.549 0.529 0572 0.895 0.534 0.032 0.195

A fold2 | 0.367 0.560 0.517 0.537 0.516 0.558 0900 0.518 0.034 0.210
€ | fold3 | 0398 0.607 0537 0.570 0551 0599 0904 0.575 0.030 0.192
fold4 | 0.359 0.510 0.548 0.529 0.505 0.552 0.898 0.516 0.036 0.215

AVG | 0.377 0.557 0.539 0.547 0.526 0.572 0901 0.539 0.033 0.198
II: no MHSA | IoUt Prect Rect FI1t MCCT PCCt ROCT PRfT Brier|/ BCE]
fold0 | 0.590 0.736 0.748 0.742 0.723 0.743 0974 0.781 0.031 0.192

fold1 | 0.578 0.738 0.728 0.733 0.714 0.735 0970 0.762 0.031 0.199

Ab-H fold2 | 0.578 0.709 0.757 0.732 0.713 0.739 0964 0.739 0.031 0.170
fold3 | 0.583 0.742 0.731 0.737 0.718 0.739 0970 0.778 0.031 0.200

fold4 | 0.589 0.704 0.784 0.741 0.723 0.740 0969 0.735 0.031 0.206

AVG | 0.584 0.726 0.749 0.737 0.718 0.739 0970 0.759 0.031 0.193

fold0 | 0.508 0.667 0.681 0.674 0.658 0.691 0960 0.673 0.027 0.167

fold1 | 0.522 0.640 0.738 0.686 0.672 0.695 0973 0.699 0.026 0.162

Ab-L fold2 | 0.500 0.631 0.706 0.666 0.651 0.693 0964 0.672 0.026 0.148
fold3 | 0.512 0.674 0.681 0.678 0.662 0.694 0969 0.711 0.025 0.153

fold4 | 0.511 0.670 0.683 0.676 0.661 0.693 0.968 0.672 0.025 0.165

AVG | 0.511 0.656 0.698 0.676 0.661 0.693 0.967 0.685 0.026 0.159

fold0 | 0.415 0.609 0.566 0.587 0.568 0.600 0.903 0.580 0.031 0.219

fold1 | 0.401 0.571 0.574 0.572 0.551 0.581 0908 0.569 0.034 0.244

A fold2 | 0.398 0.607 0.537 0.570 0.551 0599 0904 0.575 0.030 0.212
€ | fold3 | 0422 0604 0583 0593 0574 0604 0917 0593 0032 0224
fold4 | 0.419 0.659 0.534 0.590 0.575 0.601 0.894 0.565 0.031 0.243

AVG | 0411 0.610 0.559 0.582 0.564 0.597 0905 0.576 0.032 0.229
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IL II: noatt | IoUT Prect Rect FIT MCCtT PCCt ROCT PRt Brier] BCEJ|

fold0 | 0.572 0.705 0.753 0.728 0.708 0.732 0946 0.730 0.033  0.221

fold1 | 0578 0.706 0.761 0.732 0.713 0.735 0956 0.734 0.031 0.215

Ab-H fold2 | 0.575 0.705 0.757 0.730 0.711 0.734 0958 0.730 0.031 0.196
fold3 | 0.564 0.704 0.740 0.721 0.701 0.728 0.957 0.722 0.032 0.204

fold4 | 0.571 0.711 0.743 0.727 0.707 0.733 0951 0.724 0.031  0.199

AVG | 0.572 0.706 0.751 0.728 0.708 0.732 0954 0.728 0.032  0.207

fold0 | 0.493 0.638 0.684 0.660 0.644 0.676 0932 0.639 0.026 0.165

fold1 | 0473 0.611 0.676 0.642 0.625 0.661 0927 0.623 0.027 0.178

Ab-L fold2 | 0.484 0.647 0.657 0.652 0.636 0.674 0929 0.654 0.025 0.148
fold3 | 0.471 0.624 0.658 0.640 0.623 0.660 0.927 0.624 0.026 0.157

fold4 | 0.477 0.652 0.640 0.646 0.629 0.666 0930 0.633 0.025 0.154

AVG | 0479 0.635 0.663 0.648 0.631 0.667 0.929 0.635 0.026 0.161

fold0 | 0.302 0475 0453 0464 0439 0490 0.864 0417 0.036 0.222

fold1 | 0.287 0.436 0457 0446 0420 0479 0860 0.403 0.036 0.218

A fold2 | 0.283 0438 0444 0441 0413 0474 0861 0.398 0.038 0.225
€ | fold3 | 0300 0483 0443 0462 0437 0492 0850 0418 0.036 0.246
fold4 | 0.294 0471 0439 0454 0429 0487 0.863 0420 0.037 0.234

AVG | 0.293 0.460 0.447 0.453 0427 0484 0.859 0.411 0.037 0.229

Table 9: Details of Ablation Studies. Performance of interface prediction was evaluated on Ab-H,
Ab-L and Ag using five-fold cross-validation. AACDB (N=3,674; four folds with 735 validation
complexes, one with 734). Threshold: 0.33.

Ablation of ABConformer. Initially, we designed ABConformer by integrating sliding attention
into the Conformer architecture. However, the ablation of MHSA modules on the antibody branches
indicates that MHSA contributes little to paratope prediction while increasing the computational
cost (Tab. 8). The complete results of the ablation studies are shown in Table 9.
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Figure 10: Sensitivity analysis on (A) « (Eq. 9) and (B) convolution kernel.

Here, we further analyzed the weights for updating antigen embeddings after sliding with Ab-H and
Ab-L, as well as the convolution kernel in the model (Fig. 10). The results indicate that biasing
the weight toward Ab-H or Ab-L reduces epitope precision, while weights above 0.5 (favoring Ab-
H) slightly improve recall. Additionally, large convolution kernels tend to overlook fine-grained
features within interaction sites, thus decreasing overall performance.
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Figure 11: More cases in the SARS-CoV-2 dataset. Surfaces colored in yellow, blue and green
represent the antigen, Ab-H and Ab-L, repectively. (A) 7yvm. (B) 8gsb. (C) 8gou. The other pair
of antibody chains in 8gou was hidden in the subfigure.

Additional SARS-CoV-2 prediction cases are shown in Figure 11. We further analyzed a complex
containing multiple antibody chains (i.e., two paired VH and VL domains) bound to the SARS-
CoV-2 Omicron spike protein (PDB ID: 8gou). Since ABConformer requires only one Ab-H, Ab-L
and the antigen as input, it additionally predicts pan-epitopes on all possible regions of the antigen.
Notably, these pan-epitope predictions coincide with the true binding sites of the other antibody
chains, highlighting the potential of our model to generalize to more complex Ab—Ag assemblies.
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