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Abstract:1

Scaling mobile manipulation imitation learning is bottlenecked by expensive mo-2

bile robot teleoperation. We present Egocentric Mobile MAnipulation (EMMA),3

an end-to-end framework training mobile manipulation policies from human mo-4

bile manipulation data with static robot data, sidestepping mobile teleoperation.5

To accomplish this, we co-train the human full-body motion data with the static6

robot data. In our experiments across three real-world tasks, EMMA demonstrates7

comparable performance to baselines trained on teleoperated mobile robot data8

(Mobile ALOHA), achieving higher or equivalent task performance in full task9

success. We find that EMMA is able to generalize to new spatial configurations10

and scenes, and we observe positive performance scaling as we increase the hours11

of human data, opening new avenues for scalable robotic learning in real-world12

environments.13

Keywords: Mobile manipulation, Cross-embodiment transfer, Learning from hu-14

man demonstrations15

1 Introduction16

Mobile manipulation has emerged as one of the most challenging problems in robotics due to the17

dual demands of navigation and manipulation. While recent advances in robot policy learning have18

demonstrated impressive capabilities in static manipulation, extending these successes to mobile sce-19

narios introduces substantial challenges. The primary obstacle is data scarcity; current approaches20

tackling mobile manipulation rely on teleoperation frameworks akin to Mobile ALOHA [1] which21

face scalability limitations. This fundamental bottleneck limits dataset diversity and deployment ro-22

bustness, particularly in unpredictable real-world settings where robots must navigate novel spatial23

configurations while maintaining manipulation precision.24

Concurrently, recent work in cross-embodiment learning has explored human data as a scalable25

source of data for training end-to-end robot policies. Critically, human video data is cheap to collect,26

does not require a physical robot, and can be collected ergonomically via XR wearables [2, 3].27

Human video data has been leveraged to train better visual representations [4], extract high-level28

object affordance [5, 6, 7, 8], or even as direct action supervision via co-training [2, 3]. However,29

these works have predominantly focused on table-top manipulation.30

To this end, we introduce Egocentric Mobile Manipulation (EMMA), an end-to-end system to train31

mobile manipulation policies solely from robot static-manipulation and human mobile-manipulation32

data. While the robot data is captured via teleoperation, the human data is captured simply by wear-33

ing Project Aria glasses [9], thus avoiding costly mobile manipulation teleoperation. EMMA repre-34

sents a step toward a new data paradigm in robot learning, where we imbue a robot with new skills35

by combining a set of robot teleoperation data with a more diverse pool of human demonstrations.36

In this work, our robot teleoperation data contains no mobile manipulation demonstrations, and we37

show that this skill can be effectively transferred from human data.38
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Figure 1: EMMA learns mobile manipulation policies without collecting mobile manipulation tele-
operation data. We achieve this through bridging embodiment kinematic gaps and unified co-training
of mobile human data and static robot data.

EMMA presents a full-stack framework consisting of 1) an action retargeting pipeline which trans-39

lates human mobile manipulation actions to a bimanual robot with a differential-drive base, 2) a uni-40

fied architecture designed for co-training on heterogeneous human and robot data, and 3) an auxiliary41

phase identification mechanism that modulates between navigation and manipulation modes during42

inference. Therefore, it can switch control modes between navigation and manipulation phases43

based on predictions, preventing unintended base drift during manipulation and out-of-distribution44

arm movements during navigation.45

We evaluate EMMA across three real-world mobile manipulation tasks: table service, handover46

wine, and grocery shopping. Our experiments reveal three key findings. First, EMMA achieves47

superior performance compared to baselines trained on teleoperated mobile robot data, showing that48

human demonstrations can replace costly mobile teleoperation. Second, we observe favorable scal-49

ing properties—each additional portion of human data yields greater performance than an equivalent50

portion of teleoperated robot data. Third, EMMA exhibits robust generalization performance, suc-51

cessfully transferring navigation and manipulation skills to novel environments seen only in human52

demonstrations, unlike teleoperation-based approaches that fail to adapt. These results open new53

avenues for scalable robotic learning in real-world environments.54

2 Related Work55

Behavior Cloning (BC). Behavior Cloning (BC) has emerged as an effective approach for robot56

learning, where policies are trained with direct supervised learning from expert demonstrations.57

Recent advances have shown remarkable results [10, 11, 12, 13, 14, 15], including the promise of58

building general-purpose policies by learning from large-scale datasets [11, 15, 16]. In particular,59

research around large multi-embodiment datasets such as Open-X [15] represents a significant mile-60

stone, demonstrating how models trained with diverse robot embodiments can acquire generalizable61

skills across tasks without task-specific engineering. However, most of these approaches focus on62

static manipulation tasks, with mobile manipulation remaining a significant challenge.63

Learning for Mobile Manipulation. Building on successes in static manipulation, recent64

works have explored learning-based approaches for mobile manipulation that include skill primi-65

tives [17, 18, 19], reinforcement learning with decomposed action spaces [20, 21, 22], and whole-66

body control objectives [23, 24, 25]. Unlike these approaches, end-to-end imitation learning en-67

ables mapping raw pixel information to whole-body actions, showing promising results through68

large-scale training [26, 27, 28, 29, 11]. A critical challenge is to collect high-quality mobile ma-69

nipulation demonstrations. Pioneering works [30, 31] have developed new teleoperation systems70

to facilitate data collection, including tethered leader-follower system [31], VR headsets [32, 33],71
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Figure 2: Left: Architecture of joint human-robot policy learning framework. Our model processes
heterogeneous human and robot data through stems and decodes them through various action heads.
The navigation head is deployed on the robot during evaluation, demonstrating transfer without
robot supervision. Right: Our custom low-cost bimanual mobile manipulator.

motion-capture suits [34, 35, 36], smartphone-based control [37], kinesthetic teaching [38], and72

full-body teleoperation for humanoid robots [31] . However, despite these advances, collecting73

high-quality mobile manipulation data for diverse scenarios at scale remains a challenge. We pro-74

pose to leverage egocentric human data (data collected with first-person perspective) captured by75

wearable devices as an alternative for scaling up imitation learning for mobile manipulation.76

Robot Learning from Human Data. Recent work has focused on two complementary77

themes—leveraging human videos to bootstrap robot learning and finetuning with reinforcement78

learning for robust policies. In manipulation, co-training on paired egocentric human and robot79

demonstrations has been shown to boost skill performance [2], while zero- or few-shot transfer from80

human videos can be enabled by image inpainting and motion-track priors [39, 40]. Building on81

these, hierarchical planners extract latent action sequences from humans and distill them via retar-82

geters into whole-body controllers [5, 31, 41]. In navigation, fusing imitation with RL—by turning83

keypoint matches into rewards or bootstrapping from behavior cloning—yields more reliable poli-84

cies [42, 43], and inverse-dynamics models can pseudo-label passive egocentric video to distill85

intent-conditioned affordance subroutines [44]. We aim to train mobile manipulation policies from86

human data in a unified learning framework.87

3 Hardware and Data Preliminaries88

Egocentric Data Collection. In this work, we leverage a wearable smart glass Meta Project Aria [9]89

as our main data collection platform. Echoing prior work [2], we believe Aria glasses are ideal for90

capturing egocentric human data due to their ergonomic design and machine perception capability91

provided by the Machine Perception Service (MPS). Specifically, we leverage Aria glasses to cap-92

ture both exteroception (wide-FOV egocentric RGB images) and proprioception (hand tracking and93

global localization) data in human mobile manipulation behaviors.94

Low-cost Bimanual Mobile Manipulator. To effectively utilize egocentric human data for mobile95

manipulation, the robot hardware platform must resemble human sizes and kinematic workspaces.96

Drawing inspiration from the “Eve” robot platform introduced in EgoMimic [2], we develop a low-97

cost custom mobile manipulator that comprises of two 6-DoF ViperX 300s mounted in an identical98

inverted configuration on a height-adjustable rig. The rig is mounted on an AgileX TRACER differ-99

ential drive AGV platform, which is capable of moving up to 2m/s. The full system stands a max-100

imum height of 1.75m. Similar to Eve, we propose to leverage Aria glasses as the main egocentric101

perception sensor for the robot and mount it in a way that emulates the hand-eye configuration of a102
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Figure 3: Given a 3D pose trajectory from a human demonstration, we optimize Eq. 1 to compute a
feasible 2D trajectory for a differential drive robot. This resulting trajectory can be directly executed
by the robot or used as input for policy learning.

human adult. This mitigates the human-robot camera device gap and reduces the sensor-manipulator103

kinematic gap. Each arm is equipped with an Intel Realsense D405 on its wrist to facilitate precise104

near-range manipulation.105

Human and Robot Data Streams. We collect distinct data streams from both human demonstra-106

tions (DH ) and robot execution (DR). A key shared data stream is the egocentric RGB image Iego,107

generated by the Aria glasses worn by the human or mounted on the robot. The robot provides108

RGB streams from its two wrist cameras, Iwrist. Proprioceptive data streams capture the state of109

each embodiment: For the human, we leverage the Aria Machine Perception Service (MPS) [45] to110

estimate bimanual 3D hand poses Hp ∈ SE(3) × SE(3) and the 3D head pose Hd ∈ SE(3) (in111

a SLAM-based world frame). For the robot, proprioception includes the state of its bimanual arms112

via joint positions Rq ∈ R2×7 (including gripper state) and the corresponding end-effector poses113

Rp ∈ SE(3)× SE(3).114

For navigation, we process the human head pose Hd to extract 2D base pose representations. Specif-115

ically, we project the 3D head pose onto the ground plane to obtain ht
base = (xt, yt, θt) ∈ SE(2),116

where (xt, yt) represents the 2D position and θt represents the yaw angle at time t. We maintain a117

displacement-based waypoint historyWt = {ht−ki

base }
Kh
i=1, where Kh is the maximum number of his-118

torical waypoints. New waypoints are added when the displacement ∥ht
base−ht−ki

base ∥2 ≥ dthresh (e.g.,119

every 0.5m). This displacement-based sampling ensures consistent spatial resolution regardless of120

movement speed. For policy learning, these waypoints are transformed into the current egocentric121

frame as W̃t = {T−1
ego · h

t−ki

base }
Kh
i=1, where Tego is the transformation from world to current egocen-122

tric coordinates. These egocentric waypoints provide speed-invariant spatial context for navigation123

action prediction.124

4 EMMA: System and Algorithm125

EMMA is a scalable full-stack system, which enables (1) direct transfer of navigation skills from126

egocentric human data to a differential-drive mobile manipulator and (2) scaling up full mobile127

manipulation policy performance by co-training on both human mobile manipulation data and robot128

static manipulation data.129

4.1 Data Retargeting and Alignment130

A fundamental challenge in leveraging human data (DH ) for robot learning lies in the significant131

embodiment gap, impacting both navigation and manipulation. Humans navigate omnidirection-132

ally with decoupled head-gaze, whereas our robot uses a differential-drive base with kinematically133

constrained movements. Similarly, human hand motions (Hp) captured egocentrically differ kine-134

matically and distributionally from robot end-effector motions (Rp). To enable effective knowledge135

transfer and co-training in an end-to-end imitation learning setting (Sec. 4.2), we introduce distinct136

retargeting and alignment strategies for navigation and manipulation.137

Bridging Navigation Kinematic Gap. The primary focus of our retargeting efforts is translating138

human navigation trajectories into commands suitable for our differential-drive robot (Fig. 3). Dur-139
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ing human demonstrations, we extract 2D base poses ht
base = (xt, yt, θt) by projecting the 3D head140

pose Ht
d onto the ground plane. These poses form navigation waypoints that capture the human’s141

intended path.142

However, directly mapping this sequence of waypoints to robot base commands is ill-posed due to143

differential-drive constraints (the robot can only move in straight lines and circular arcs) and the fixed144

alignment between the robot’s torso-mounted Aria sensor and its heading. To overcome this, we for-145

mulate an optimization problem: given a sequence of desired waypoints {hk
base = (xd

k, y
d
k, θ

d
k)}Kk=1146

extracted from human trajectory, find velocity commands z = [(v1, ω1), ..., (vK , ωK)] that mini-147

mize:148

min
z

K∑
k=1

[
λpos∥pk(z)− pdk∥22 + λyawwrap(θk(z)− θdk)

2

+ λsmooth
(
(vk − vk−1)

2 + (ωk − ωk−1)
2
) ]

(1)

subject to the differential-drive dynamics:149

xk+1 = xk + vk cos(θk)∆t, yk+1 = yk + vk sin(θk)∆t, θk+1 = θk + ωk∆t (2)

and constraints vmin ≤ vk ≤ vmax, ωmin ≤ ωk ≤ ωmax.150

Here, pk(z) = (xk, yk) represents the robot position at step k resulting from applying the ve-151

locity sequence z, pdk = (xd
k, y

d
k) is the desired position from the human waypoint, and wrap(·)152

ensures angular differences are in [−π, π]. The weights λpos, λyaw, and λsmooth balance position153

tracking, heading alignment, and velocity smoothness respectively. This constrained optimization154

yields smooth, kinematically feasible trajectories that approximate human navigation patterns while155

respecting differential-drive constraints.156

Aligning Manipulation Action Data. For manipulation, we address mismatches between human157

hand data (Hp) and robot end-effector data (Rp). Inspired by prior work like EgoMimic [2], we first158

unify coordinate frames by transforming all upper-body action chunks (both human and robot) into159

the reference frame of the camera at the time of observation, using SLAM estimates for human data160

and hand-eye calibration for robot data. This makes predictions relative to the current view. Second,161

acknowledging persistent distributional gaps due to biomechanics and sensors, we apply Z-score162

normalization independently to the transformed pose and action data within each source (DH and163

DR), using their respective dataset statistics.164

4.2 Human and Robot Data Co-training165

The goal of our system is to transfer knowledge from egocentric human mobile manipulation data166

(DH ) to scale policy performance, while still leveraging limited static robot manipulation data (DR)167

for precise manipulation steps. The re-targeting and action alignment steps detailed in Sec. 4.1 al-168

low us to treat human and robot data as equal parts in a continuous spectrum of embodied data169

sources. But large domain gaps exist in the two data sources, in both sensing modalities and dis-170

tributions. Thus, effectively learning from these data necessitates a unified learning framework171

capable of processing heterogeneous data sources. Inspired by recent works in cross-embodiment172

policy learning [46, 47, 48], we design an architecture based on a decoder-only Transformer with173

modality-specific input stems, a shared trunk, and multiple action and auxiliary output heads (Fig. 2).174

Stems. Stems are shallow networks that encode raw observations from different modalities into175

a sequence of fixed-dimension tokens. Crucially, we employ a shared vision stem for processing176

the main egocentric RGB images (Iego) from the Aria glasses (human and robot) to enforce visual177

feature alignment. Separate stems handle inputs from the robot’s wrist cameras (Iwrist), which does178

not exist in human data.179

Trunk. The Trunk is a standard multi-layer decoder-only transformer that processes the concate-180

nated token sequences from all active stems. A sequence of M learnable tokens, representing the181

action chunk length, is prepended to the input sequence constructed from all of the stems.182
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Heads. The heads are shallow MLPs that map the first M output tokens from the trunk to the183

respective action spaces or auxiliary predictions. We define four heads for predicting robot bimanual184

joint actions (RK×14), human cartesian end-effector actions (RK×3), robot base navigation actions185

((x, y, ω) ∈ RK×3), and, as an auxiliary output, the predicted task phase (p ∈ {0, 1}K , see Sec. 4.3).186

Co-training from heterogeneous sources. The model is trained jointly on batches drawn from187

two sources: (1) the collected human mobile manipulation demonstrations DH (with navigation188

actions processed by the retargeting module described in Sec. 4.1) and (2) static robot manipulation189

demonstrations DR (e.g., collected via teleoperation). When processing a human data batch, the190

human proprioception, shared ego vision stem, human manipulation action head, navigation action191

head and the shared phase prediction head are active. For a robot batch, the robot proprioception,192

wrist image stem, shared ego vision stem, and robot manipulation action head are active. The shared193

trunk and ego vision stem is updated by all sources and modalities, forcing them learn versatile194

representations. The navigation head primarily learns from the retargeted human data, transferring195

human navigation strategies to the robot. The complete architecture is illustrated in Fig. 2196

4.3 Auxiliary Phase Identification and Control Modulation197

Mobile manipulation tasks naturally alternate between navigation and manipulation phases, requir-198

ing different control strategies. We introduce an unsupervised phase identification mechanism that199

automatically segments demonstrations and modulates control during deployment.200

Phase Detection. We identify phases based on motion dynamics. For each frame, we compute201

the ratio of hand velocity to head velocity. Manipulation phases exhibit high hand-to-head velocity202

ratios (> τratio) with low absolute head velocity (< τhead), indicating dexterous hand motion while203

stationary. We filter candidate segments shorter than τduration frames to remove transient gestures.204

Algorithm 1 Unsupervised Phase Identification

1: Input: Head poses phead, hand poses phand

2: Output: Phase labels ϕ ∈ {0, 1}N
3: vhead, vhand ← ∥∆phead∥/∆t, ∥∆phand∥/∆t
4: r ← vhand/(vhead + ϵ)
5: M← {i : ri > τratio ∧ vhead,i < τhead}
6: Fit GMM(K) on {phead,i : i ∈M}
7: ϕi ← GMM.pdf(phead,i) < τpdf

To spatially localize K manipulation205

zones, we fit a Gaussian Mixture Model206

(GMM) with K components to head po-207

sitions during these high-ratio periods.208

Each frame is classified as manipulation209

(phase 0) if its probability density under210

the GMM exceeds τpdf , otherwise navi-211

gation (phase 1). GMM provides direct212

probability density estimates needed for213

phase classification without requiring la-214

beled training data, while being computationally efficient and interpretable for spatial clustering.215

Phase-Aware Control: During deployment, predicted phases modulate the navigation action chunk216

to prevent unintended movements:217

• Manipulation phases: Navigation actions interpolate from zero to the first future naviga-218

tion waypoint.219

• Navigation phases: Any future manipulation-phase positions are replaced with the current220

navigation endpoint.221

This phase-aware modulation removes the base action noise introduced from head movements dur-222

ing manipulation and ensures smooth switch between the two phases.223

5 Experiments224

We aim to validate three key hypotheses. H1: EMMA can achieve performance comparable to225

systems trained on teleoperated mobile manipulation data. H2: Key design decisions of EMMA226

improve downstream task performance and robustness. H3: Given an initial amount of static robot227

manipulation data, it is more valuable to collect addition human mobile manipulation over mobile228

robot teleoperation data. We evaluate these hypotheses through three long horizon mobile manipu-229

lation tasks.230
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Figure 4: Cumulative success rates across subtasks for three mobile manipulation tasks. EMMA
(blue), trained without mobile teleoperation data, significantly outperforms Mobile ALOHA (or-
ange) on Grocery Shopping and Handover Wine tasks (p < 0.05). Table Service variants show
comparable performance. Error bars represent 95% confidence intervals from 50 trials.

Table Service. Two tables are set 2m apart. The kitchen table has an oven with four croissants, a231

plate, and wrapped utensils. The dining table has a mat with a wine glass in the corner. The robot232

picks up the utensils and navigates to the dining table, placing them on the left side. It then returns233

to the kitchen table, picks and places a croissant onto the plate, and navigates back to place the plate234

in the center of the dining mat, avoiding the wine glass.235

Handover Wine. The robot picks up a wine glass randomly placed within a 30cm×45cm area on a236

table. It turns right and navigates toward a human standing in a 3m×3m area. At a safe range, the237

robot hands the wine glass to the human’s right hand, testing precise navigation and state coverage238

transfer from human data.239

Grocery Shopping. The robot faces a grocery shelf and simultaneously grabs a juice pouch from the240

left and a chip bag from the right, placing them into a shopping bag. It then uses both arms to pick241

a large popcorn bag from the center shelf and add it to the bag. Finally, the robot lifts the shopping242

bag and navigates to a table behind it, testing long-horizon bimanual manipulation and navigation.243

Baselines. We implement Mobile ALOHA [1] as our primary baseline to compare against teleop-244

erated mobile robot data. Critically, it exemplifies the exact data collection paradigm—expensive245

mobile teleoperation—that EMMA aims to replace with human egocentric data. To ensure fair com-246

parison, we modify it to the same HPT [47] backbone used in EMMA, isolating the comparison to247

data sources (human vs. teleoperation) rather than architectural differences. This baseline receives248

identical input modalities (egocentric RGB, wrist cameras, proprioception) and outputs robot joint249

actions Rq ∈ R14 plus base velocities (v, ω) ∈ R2 recorded from the AgileX Tracer wheel encoders.250

In addition, we evaluate two ablation baselines. EMMA w/o action retargeting replaces replaces251

our optimization-based retargeting (Eq. 1) with raw human navigation actions, testing whether kine-252

matic alignment is necessary for successful transfer. EMMA w/o phase identification removes the253

phase identification mechanism that modulates control during deployment, allowing both arm and254

base to move simultaneously throughout execution.255

Evaluation protocols. To ensure statistical significance of the results, We conduct 50 trials per256

task/model variant configuration, and record error bars with 95% confidence interval, while record-257

ing both success metrics and failure modes for qualitative analysis (Fig. 6). Each trial has a maxi-258

mum duration of 2 minutes. For method comparison across all baseline and ablation experiments,259

we ensure identical environmental conditions and object positions. Alltogether, we conducted 950260

mobile manipulation rollout evaluations to produce the results in this paper.261

5.1 Main Results262

EMMA achieves favorable performance compared to systems trained on teleoperated mobile263

robot data (H1). EMMA consistently outperforms teleoperation-based baselines across a range of264

mobile-manipulation tasks by leveraging egocentric human demonstrations (Fig. 4). In the Han-265

dover Wine task, with the same 100 demos of static robot data, replacing one hour of teleoperated266
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Figure 5: (a) For Handover Wine task, starting with a fixed amount of static manipulation data, we
show that adding more human fullbody motion data for EMMA (blue) yields greater performance
gains compared to adding mobile robot teleoperation data collected under an equivalent amount
of time for Mobile ALOHA (orange). The performance gap expands from 10% to 30% as data
increases from 15 to 60 minutes. (b) EMMA generalizes to an unseen scene with 54% full task
success rate. (c) Ablation study on the Handover Wine task. Removing either retargeting or phase
switch causes significant performance drop.

mobile robot data with one hour of human mobile manipulation yields an 82% success rate—a 30%267

increase over teleoperated robot data, which had a 52% success rate. This improvement demon-268

strates the benefit of learning from egocentric human-human interaction. Leveraging egocentric hu-269

man mobile manipulation data has also shown improvement in bimanual tasks found in the Grocery270

Shopping task. Lastly, using egocentric human mobile manipulation data has shown comparable271

performance to teleoperated mobile robot data on long-horizon Table Service task, a task that re-272

quires long-distance point-to-point navigation, where robot-teleoperated methods benefit from zero273

perspective gap. Taken together, these results show that egocentric human mobile manipulation data274

matches or even improves the value of equivalent robot teleoperation data and delivers safer, more275

reliable, and more scalable policies across diverse mobile-manipulation challenges.276

Figure 7: EMMA co-trains static robot data in lab
(left) with human demonstrations in a novel scene
(right) to enable robot deployment in previously
unseen environments.

EMMA generalizes to unseen scenes. We277

evaluate scene generalization by testing278

EMMA in a novel environment seen only279

through human demonstrations. Specifically,280

we collect 30 minutes of human demonstra-281

tions in a new spatial layout where the wine282

recipient stands randomly within a larger 5m283

× 2m area (Fig. 7). Despite never seeing robot284

data from this environment, EMMA achieves285

54% success rate (Fig. 5 (b)), demonstrating286

two key capabilities: (1) navigation behaviors287

learned from human data naturally adapt to the288

expanded spatial configuration, and (2) manipulation skills remain robust to visual domain shifts289

from the new environment. In contrast, Mobile ALOHA—trained exclusively on teleoperated data290

from the original environment is unable to complete the initial grasp due to the environmental291

changes (Fig. 6 (j)). This experiment validates that human data provides superior generalization292

through its inherent diversity compared to lab-constrained teleoperation.293

Ablation Studies (H2). Our ablation experiments on the Handover Wine task (Fig. 5 (c)) reveal294

the critical importance of both key components. Without kinematic retargeting, the success rate295

drops by 30%, as the robot frequently loses track of the human recipient when executing kine-296

matically infeasible trajectories. The phase identification mechanism proves equally crucial—its297

removal causes complete task failure due to unintended base movements during grasping and un-298

necessary arm motions during navigation, resulting in collisions and dropped objects. These results299
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(g). Shared success case for EMMA and Mobile ALOHA.
(h). Shared failure case of both methods missing human in FOV.
(i). Mobile ALOHA overshoots the initial turn.

(j). Mobile ALOHA attempts to handover while picking up the glass.
(k). EMMA navigates into sofa due to human-robot kinematics gap.
(l). EMMA succeeds wine glass handover.
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Figure 6: Qualitative comparison of EMMA and Mobile ALOHA across three mobile manipulation
tasks, showing representative success and failure modes.

validate that both human-robot embodiment alignment and learned phase modulation are essential300

for successful human-to-robot skill transfer in mobile manipulation.301

Human data scales mobile manipulation performance more efficiently compared to teleoper-302

ated robot data (H3). Keeping one hour of static robot manipulation data fixed, EMMA’s success303

rate climbs steadily from 0.36 to 0.82 as we increase human mobile manipulation data from 15304

minutes to one hour. Mobile ALOHA also improves—from 0.26 to 0.52—when its robot tele-305

operation data grows from 15 minutes to one hour, but remains consistently below EMMA. This306

demonstrates that additional human mobile manipulation demonstrations yield substantially greater307

returns than equivalent increases in mobile robot teleoperation data. Qualitatively EMMA shows308

better robustness to target pose, fewer collisions with the environment and greater overall success.309

This is summarized in Fig. 6310

6 Conclusion311

In conclusion, we presented EMMA, a novel framework that enables mobile manipulation without312

requiring expensive mobile teleoperation. We find that EMMA outperforms Mobile ALOHA style313

teleoperation with equivalent data collection time and demonstrates superior scaling properties. Fur-314

ther, we ablate our key design decisions and observe that both the motion retargeter and the phase315

identification module are integral to downstream performance. Overall, we have demonstrated the316

possibility of scaling robot mobile manipulation performance with egocentric human data. We hope317

this result spurs new research and informs future researchers of potential opportunities and chal-318

lenges.319
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