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ABSTRACT

An essential component of modern recurrent sequence models is the forget gate.
While Transformers do not have an explicit recurrent form, we show that a for-
get gate can be naturally incorporated into Transformers by down-weighting the
unnormalized attention scores in a data-dependent way. We name the resulting
model the Forgetting Transformer. We show that the Forgetting Transformer
outperforms the Transformer on long-context language modeling, length extrap-
olation, and short-context downstream tasks, while performing on par with the
Transformer on long-context downstream tasks. Several analyses, including the
needle-in-the-haystack experiment, show that the Forgetting Transformer also re-
tains the standard Transformer’s superior long-context capabilities over recurrent
sequence models such as Mamba-2, HGRN2, and DeltaNet. We also introduce
a “Transformer Pro” block design that incorporates some common architectural
components in recurrent sequence models and find it significantly improves the
performance of both the Forgetting Transformer and the baseline Transformer.

1 INTRODUCTION

Despite the growing interest in reviving recurrent sequence models (Gu et al.l 2021} |Peng et al.,
2021;|Yang et al.| [2023; |Gu & Daol 2023} Sun et al.| [2023; |De et al., 2024} |Qin et al.,2024b; |Dao &
Gu, [2024; |Peng et al.| 2024; Beck et al.l [2024; Zhang et al., 2024), these models still underperform
the Transformer (Vaswani et al., 2017) in terms of long-context capabilities (Hsieh et al.| 2024;
Waleffe et al., [2024; [Shen et al., [2024; |Qin et al., 2024a), likely due to their relatively small fixed-
sized hidden states (Jelassi et al.l [2024). While the Transformer excels in handling long-context
information, it lacks an explicit mechanism for forgetting past information in a data-dependent way.
Such a mechanism — often implemented as some form of the forget gate (Gers et al.l 2000) — is
ubiquitous in recurrent sequence models and has proven critical in their success in short-context
tasks (Greff et al., [2016;|Van Der Westhuizen & Lasenby, 2018; Peng et al., 2021} Yang et al., 2023;
Gu & Daol 2023)). A natural question to ask is then: can we have a forget gate in Transformers?

To address this question, we leverage an important fact: many recurrent sequence models with a
forget gate can be written in a parallel linear attention form (Katharopoulos et al., [2020) analogous
to softmax attention (Yang et al. 2023} [Dao & Gu| [2024). In this parallel form, the forget gate
mechanism translates into down-weighing the unnormalized attention scores in a data-dependent
way. Our key insight is that this exact mechanism is also applicable to softmax attention. We name
the resulting model the Forgetting Transformer.

We show that the Forgetting Transformer outperforms the Transformer on long-context language
modeling, length extrapolation, and short-context downstream tasks, while performing on par with
the Transformer on long-context downstream tasks. Notably, it does not require any positional em-
beddings. It also retains the ability of the Transformer to perform accurate long-context retrieval and
achieves perfect accuracy in a simplified needle-in-the-haystack test (Kamradt, |2023). In contrast,
all the tested recurrent sequence models fail. We also introduce a “Transformer Pro” block de-
sign that integrates several architectural components commonly used in recurrent sequence models,
which significantly improves the performance of both the Forgetting Transformer and the baseline
Transformer. Finally, we show that the Forgetting Transformer can be implemented in a hardware-
aware way with a modified Flash Attention (Dao, [2023)) algorithm.
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2 BACKGROUND: LINEAR ATTENTION WITH A FORGET GATE

This section introduces the notation used in this work and gives a brief background on linear at-
tention. We also introduce a gated variant of linear attention and discuss its parallel form, which
naturally leads to the Forgetting Transformer. Throughout this work, we only consider causal se-
quence modeling. We also mainly consider the single-head case; extension to the multi-head case is
straightforward.

2.1 LINEAR ATTENTION

Standard causal softmax attention takes a sequence of input vectors (z;)~_; and produces a sequence
of output vectors (0;)-_,, where x;,0; € R? i € {1,..., L}. Each o; is computed as follows:

qi, kiv'vi = quivwkwi; W,x; € Rda (D
Y ke (@i ky)v; X exp(q] K)o,

i = 7 ) 2
> i1 Kexp (45, k) >y exp(q] kj)

where W,,, W, W, € R%*4 are projection matrices and ke, (q, k) = exp(q ' k) is the exponential
dot product kernelﬂ

o; =

Linear attention (Katharopoulos et al. [2020) replaces the exponential dot product kernel
Eexp (@, k) = exp(q " k) with a kernel k(q, k) with some feature representation ¢ : R — (R+)%":

o — Z;—fl ko(ai, kj)v; Z;':vl(cﬁ(qz‘)nﬁ(kj))”j 3)
LY kalai k) S d(a) To(k;)

Following Yang et al.| (2023), we call the above the parallel form of linear attention as it can be
computed with matrix multiplications. Alternatively, linear attention can be computed in a recurrent
form:

Sy =81 +vidk)’ @)

zr = zi-1 + ¢(ky) (5)
St¢(q75)

= 2 6

Oy z;é(qt) ( )

where S; € RdXd/, z € RY ,t € {0,..., L} are computed recurrently, with Sy = 0 and z; = 0.

2.2 LINEAR ATTENTION WITH A FORGET GATE

The recurrent form of linear attention makes it natural to introduce a forget gate. Specifically, we
can compute a scalar forget gate f; = U(w?a:t + by) € Rat each timestep, where ¢ is the sigmoid

function and w; € R% b; € R are learnable parameters. The recurrent computation is then:

S = fi:Si1 + (ki) (7

z = fizeo1 + o(ky) (8)
S:(q:)

_ 2P\t 9

Oy Zt‘r(b(qt) ( )

Note that this gated variant of linear attention differs from most models in the literature. In particular,
most gated variants of linear attention models such as GLA (Yang et al., [2023) and Mamba-2 (Dao
& Gul 2024) do not have the normalization term (i.e., there is no z; and the output is just o, =
S:d(qy)). We keep the normalization term to maintain similarity with softmax attention. The most
similar model is gated-RFA (Peng et al.,[2021), with the only difference being the lack of a (1 — f3)
term in the recurrence.

"Note we omit the ﬁ scaling factor to reduce visual clutter. In practice we always scale g, k; by %‘
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Crucially, similar to the normalization-free version derived in GLA and Mamba-2, we can show that
this gated variant of linear attention also has a parallel form:

_ 23%1 Fijo(ai) " o(k;)v; _ 22%1 Fijko(qi kj)v,
Sy Fijo(ai) T o(kj) >ie Fijho(ai kj)

where F;; = H;z 41 f1. We adopt the convention that F; = 1if i = j.

. (10)

O

Our key observation is that Equation |10|and the softmax attention in Equation [2|are very similar in
form. In fact, if we just change the kernel kg4 in Equation @] back to the exponential dot product
kernel k.., we obtain the softmax attention with a forget gate. We introduce this formally in the
next section.

3 FORGETTING TRANSFORMER

Our proposed model, the Forgetting Transformer (also abbreviated as FoT throughout this work),
features a modified softmax attention mechanism with a forget gate. We name this attention mech-
anism the Forgetting Attention. Similar to the gated variant of linear attention introduced in the
previous section, we first compute a scalar forget gate f; = a(w;xt +bs) € R for each timestep t.
The output of the attention is then

B Zézl Fijexp(q; kj)v; 2321 exp(q; kj + dij)v;

0; = =5 = =L : (1n
>io1 Fijexp(q, k;) Si—1exp(q; kj + dij)
where F;; = H;:j+1 frand d;; = Z§:j+1 log f;. This can be written in matrix form:
D =log F ¢ RLXL, (12)
O = softmax(QK " + D)V € RF*?, (13)
where F' € RE*L ig a lower triangular matrix whose non-zero entries are F;;, i.e., F;; = Fj; if
i > j and 0 otherwise. We adopt the convention that log0 = —oco. Q,K,V,0 € RL*? are
matrices containing q;, k;,v;,0;,4 € {1,..., L} as the rows. The softmax operation is applied

row-wise. For multi-head attention with A heads, we maintain A instances of forget gate parameters
('wgf)) h | and (bgf))?:l and compute the forget gates separately for each head.

Hardware-aware implementation The logit bias form on the rightmost side of Equation [11] al-
lows the Forgetting Attention to be computed with a simple modification to the Flash Attention (Dao),
2023) algorithm. Here we briefly describe the forward pass. The backward pass follows a similar
idea. First, we compute the cumulative sum ¢; = ».,_, log f; for i € {1,..., L} and store it in
HBM. Note that this allows us to compute d;; = ¢; — c; easily later. Whenever we compute the
attention logit via the dot product g, k; in the GPU’s fast shared memory (SRAM) (as in Flash
Attention), we also load ¢; and c¢; to SRAM, compute d;;, and add the bias to the attention logit.
The rest of the forward pass remains the same as Flash Attention. This algorithm avoids instanti-
ating L X L d;; matrices on the slow high-bandwidth memory of the GPU. We provide a detailed
algorithm description in Appendix [D] Moreover, since the forget gates are scalars instead of vectors,
the additional computation and parameter count introduced are negligible.

Connection to ALiBi Besides its natural connection to gated linear attention, the Forgetting At-
tention can also be seen as a data-dependent and learnable version of ALiBi (Press et al.| [2021).
ALIBI applies a data-independent bias b;; = —(i — j)my, to the attention logits, where my, is a fixed
slope specific to each head h. It is easy to show that ALiBi is equivalent to Forgetting Attention with
a fixed, head-specific, and data-independent forget gate f; = exp(—my,). In Section we verify
the superiority of Forgetting Attention over ALiBi-based attention.

Positional embeddings Though we find that using Rotary Position Embeddings (RoPE) (Su et al.,
2024) slightly improves the performance of the Forgetting Transformer, it is not necessary as it is for
the standard Transformer. For simplicity, we do not use RoPE or any other positional embeddings
for the Forgetting Transformer by default. This is discussed further in Section
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Figure 1: Default architecture of FoT. (left) A single FoT block. (right) A single FoT (Pro) time-
mixing layer. All RMSNorms on the right are applied independently to each head. o is the sigmoid
activation function. ® represents element-wise multiplication. The ShiftLinear layer imple-
ments the computation in Equation [T4]

Architecture design Forgetting Attention can be used as a drop-in replacement for standard soft-
max attention in any Transformer architecture. In this work we test two different architectures.
First, we replace softmax attention + RoPE in the LLaMA architecture (Touvron et al.| [2023)) with
Forgetting Attention and refer to this model as FoT (LLaMA). Second, we test an improved “Trans-
former Pro” architecture that incorporates output gatesﬂ and output normalization used in GLA and
Mamba-2 (with slight variations). We also use QK-norm (Dehghani et al.| 2023)) and apply a sim-
plified variant of data-dependent token shift (Peng et al., [ 2024) to the keys and values (KV-shift).
Concretely, to compute the keys (k;)Z ;, we perform the following computation with additional
parameters w € R? for each timestep :

k, = Wyx, € RY, ozlt(ey = o(w,;r:ct) eR

. - (14)
k; = RMSNorm(af%k,_1 + (1 — oA¥)k,)

The values (v;)~ ; are computed in the same way, but without RMSNorm. As discussed in|Olsson
et al.|(2022), token shift may be beneficial for forming induction heads. The overall architecture is
shown in FigureT]and detailed in Appendix [A] We refer to the resulting model as FoT (Pro).

4 EMPIRICAL STUDY

The advantage of Transformers in long-context capabilities over recurrent sequence models have
been demonstrated multiple times (Hsieh et al., 2024} Waleffe et al.l [2024; [Shen et al., [2024} |Qin
et al., |2024a). However, a forget gate introduces a recency bias. It is thus natural to ask whether
the Forgetting Transformer still maintains this advantage. Therefore, our empirical study places a
special focus on long-context capabilities.

4.1 EXPERIMENTAL SETUP

Dataset We focus on long-context language modeling and train all models on
LongCrawl64 (Buckman, 2024). LongCrawl64 is a filtered long-sequence subset of RedPajama-
v2 (Together Computer, [2023). It consists of pre-tokenized sequences truncated to exactly
65536 tokens.The sequences are tokenized with the TikToken tokenizer (OpenAl, [2022) for
GPT-2 (Radford et al., [2019).

Baselines We are interested in two types of comparisons. First, to understand the benefits of the
forget gate, we compare our proposed models with the standard Transformer. For the standard Trans-
former, we also test both the LLaMA architecture and our enhanced “Transformer Pro” architecture

>When output gates are used, we reduce the number of parameters in the MLPs so the total number of
parameters remains the same.
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(referred to as Transformer (LLaMA) and Transformer (Pro) repsectively). Similar to [Xiong et al.
(2023), we find it crucial to use a large RoPE angle 6 for the Transformer. Following Xiong et al.
(2023)) we use 8 = 500000.

Second, to show the advantage of the Forgetting Transformer over recurrent sequence models in
long-context capabilities, we compare with Mamba-2 (Dao & Gu, [2024), HGRN2 (Qin et al.,
2024a)), and DeltaNet (Yang et al.,2024). Notably, all of them have reported better language model-
ing perplexity and short-context downstream task performance than Transformers. The implemen-
tation of all models is based on the Flash Linear Attention repository (Yang & Zhang, 2024)).

Training setup Due to limited compute resources, for our main experiments, we train models with
760M non-embedding parameters on a 15 x 23°-token (roughly 16B tokens) subset of LongCrawl64
with a training context length of 16384 tokens. This roughly matches the compute-optimal model
size/data ratio in Chinchilla scaling law (Hoffmann et al., |2022). For the validation set, we use a
2 x 230_token (roughly 2.1B tokens) subset of the LongCrawl64 held-out set consisting of sequences
of 65536 tokens. We choose a much longer validation context length than the training context length
to test the length generalization capabilities of the models.

All models are trained with AdamW (Loshchilov, 2017) with (51, 82) = (0.9,0.95). We use a
linear learning rate warmup from 0 to 1.25 x 10~ for the first 256 x 22° tokens and then a cosine
decay schedule to 1.25 x 10~%. Each training batch contains 0.5 x 22° (roughly 0.5M) tokens. All
models use a weight decay of 0.1 and gradient clipping of 1.0. We use bf1oat 16 mixed-precision
training for all models. More details of the experimental setup can be found in Appendix [B]

4.2 LONG-CONTEXT LANGUAGE MODELING

Metrics Before we present our results, it is important to understand one of our main metrics: per-
token loss on the validation set at different token positions. To be precise, let V' be the vocabulary

size, ylj ) e {0,1}V be the one-hot vector encoding the language modeling target for the i-th token

in the j-th validation sequence, and pz(-] ) € RV be the corresponding output probabilities of the
model, then the per-token loss L(¢) at token position 1 is simply

Z log[(p?) Ty, (15)

where M is the number of validation sequences.

The per-token loss is particularly meaningful for understanding the long-context capabilities of a
model. Informally, a monotonically decreasing L(i) with a steep slope indicates the model is using
the full context well. On the other hand, if L(i) plateaus after some token position , it indicates
the model struggles to use tokens that are k tokens away from the current token position for its
prediction. This correspondence between the slope of L(i) and the model’s context utilization is
explained in more detail in Appendix [C]

Besides per-token loss, we also report perplexity over different validation context lengths P(1).

Specifically, perplexity over a context length [ is defined as P(l) = exp(7 Zi‘:l L(3)). We warn the
readers that the slope of P(l) is less meaningful. Since P(1) is just the exponential of the cumulative
average of L(7), even if L(i) plateaus after some token position k, P(I) will still monotonically
decrease after k, giving the wrong impression that the model can make use of the part of the context
that is k tokens away.

Results In Figure l we show the per-token loss L(z) at different token indices ¢ and perplexity
P(l) over different validation context lengths [. As shown in Figure l 2| the Forgetting Transformer
consistently outperforms the standard Transformer with either architecture, though with the Pro ar-
chitecture the advantage with the training context length is less significant. Similarly to the standard
Transformer, it also maintains a monotonic decreasing per-token loss within the training context
length, indicating that it utilizes the entire training context for its prediction. In contrast, the per-
token loss curves of all recurrent sequence models start flattening at around 5k tokens and completely
plateau after 10k tokens. This indicates that these recurrent sequence models struggle to use the full
context effectively for their prediction.
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Figure 2: (left) Per-token loss L(7) at different token position 7. (right) Validation perplexity P(I)
over different validation context length [. The vertical dashed line indicates the training context
length. The per-token loss is typically noisy, so we smooth the curve using a moving average sliding
window of 101 tokens. In this plot 15 = 1024.
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Figure 3: Visualization of the forget gate weight matrix F' (top row) and the attention score matrix
A (bottom row) from two heads in different layers. Since A is very sparse, we only show entries
with scores larger than 0.5. These results use FoT (LLaMA).

The Forgetting Transformer also generalizes beyond the training context length with either archi-
tecture. Interestingly, although Transformer (LLaMA) performs poorly beyond the training context
length, Transformer (Pro) shows decent length extrapolation. In Appendix [E2] we show that this is
likely due to the use of QK-norm. In terms of the absolute values of the loss and perplexity, the
Forgetting Transformer also clearly outperforms HGRN2 and DeltaNet, and outperforms Mamba-2
when using the Pro architecture.

Visualization of forget gate values and attention map In Figure[3] we visualize the forget gate
weight matrix F and the attention scores A = softmax(QK " +log F') from two heads in different
layers. The head on the left-hand side exhibits strong decay, and most entries of F' are close to zero;
accordingly, the attention focuses on local entries. The head on the right-hand side has much weaker
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Figure 4: Needle-in-the-haystack analysis for different models. The results are scored on a scale of
1 (red) to 10 (green) by GPT-40. The vertical dashed line indicates the training context length.

decay, and the attention is distributed across the entire context. This shows that the Forgetting
Transformer can learn to retain information across long contexts when necessary.

4.3 NEEDLE IN THE HAYSTACK

The needle-in-the-haystack analysis 2023) (referred to as the “needle test” in the follow-
ing) is a popular test for the long-context retrieval abilities of language models. Following
, we use an “easy mode” of the needle test, where the “needle” placed within the context
includes both the question and the answer. This easy mode is particularly suitable for base models
that have not been instruction-tuned. Full details, including the prompts used, are in Appendix B3]

In Figure ] we show the results of the needle test for Transformer (Pro), FoT (Pro), Transformer
(LLaMA), FoT (LLaMA), Mamba2, and DeltaNet. HGRN2 performs even worse than Mamba-2
and we leave it to Appendix [E.6] As shown in Figure {] with either architecture, both FoT and
Transformer achieve near-perfect needle retrieval within the training context length, and FoT ex-
trapolates better than the Transformer. In contrast, Mamba-2 and DeltaNet (and also HGRN2 in
Appendix [E.6) fails even within the training context length, except when the needle is placed right
at the end of the text. These results are consistent with the previous analysis of the slope of per-token
loss curves in Section [£.2]
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Table 1: Evaluation results on LM-eval-harness. All models have roughly 760M non-embedding pa-
rameters and are trained on roughly 16B tokens on LongCrawl64. “acc-n” means length-normalized
accuracy. Bold and underlined numbers indicate the best and the second best results, respectively.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c COPA OBQA SciQA BoolQ | Avg
ppld ppll accT accT acc-nT  accl accT acc-nT accT acc-nT accT accT 1T
FoT (Pro) 2794 21.31 | 39.03 61.81 3395 50.83 48.78 25.68 62.00 27.00 79.40  61.13 | 48.96
Transformer (Pro) 28.54 23.86 | 3742 60.83 33.89 5043  47.85 24.83 65.00 30.20 81.40 5416 | 48.60
FoT (LLaMA) 3249 2828 | 3555 5941 3223 50.51 46.97 23.89 67.00 27.20 7740 5376 | 47.39
Transformer (LLaMA) | 32.51 3394 | 33.09 60.55 30.89 51.14 44.32 24.23 61.00 27.80 7490 5291 | 46.08
Mamba-2 3311 4274 | 26.80 60.77 3274 5146 4571 23.29 69.00 28.40 7630  60.80 | 47.53
HGRN2 39.27 3187 | 3346 60.12 3156 4996  47.60 23.55 63.00 27.20 73770 4297 | 4531
DeltaNet 3512 4749 | 2824 60.07 30.83 51.07 46.30 25.26 65.00 28.00 71.40  50.80 | 45.69

Table 2: Evalution results on LongBench. All models have roughly 760M non-embedding parame-
ters and are trained on roughly 16B tokens on LongCrawl64. Bold and underlined numbers indicate
the best and the second best results, respectively.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code
& L
Model & x \ad N <& . o
& F & e e ¢S
2 ¢ & Ry &
o o $ o S K 8 S S &E o v &
FoT (Pro) 10.03 14.44 19.17 111 16.84 5.44 22.87 11.15 12.87 56.0 28.51 219 13.11 7.98
Transformer (Pro) 1023 1567  20.11 9.81 21.24 552 16.58 10.64 1278  63.5 24.37 19.09 1029 11.59
FoT (LLaMA) 8.15 13.09 18.51 722 16.92 43 15.59 12.4 11.51 33.0 14.78 828 11.38 13.92
Transformer (LLaMA) 9.32 13.14 16.27 6.96 14.89 5.17 14.86 10.9 12.28 50.0 15.49 10.58 10.33 14.57
Mamba-2 6.63 8.93 16.93 6.39 17.01 3.43 6.89 13.07 7.64 115 11.64 144 1572 10.38
HGRN2 6.09 7.98 13.26 4.9 12.23 3.06 6.64 9.76 7.54 17.5 12.46 1.06 11.19 16.28
DeltaNet 6.6 7.57 15.25 5.13 12.88 321 6.94 10.49 79 135 13.6 6.04 1752 18.43

4.4 DOWNSTREAM TASKS

We evaluate the models on two sets of downstream tasks: a set of short-context tasks from LM-
evaluation-harness (Gao et al., [2024) and a set of long-context tasks from LongBench (Bai et al.,
2023).

Short-context tasks We use Wikitext (Merity et al., 2016), LAMBADA (Paperno et al., [2016),
PiQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Zellers et al.,[2019), ARC-
easy, ARC-challenge (Clark et al.,|2018), Copa (Roemmele et al.| 2011)), SciQA (Auer et al.||2023),
OpenbookQA (Mihaylov et al.l 2018), and BoolQA (Clark et al., |2019). Following |Yang et al.
(2023), we report perplexity for Wikitext and LAMBADA, length-normalized accuracy for Hel-
laSwag, ARC-challenge, and OpenbookQA, and accuracy for all other tasks (we also report accu-
racy for LAMBADA). All results are zero-shot.

As shown in Table([I] the Forgetting Transformer outperforms the Transformer with either architec-
ture. FoT (Pro) performs the best among all models.

Long-context tasks We use 14 tasks from LongBench: HotpotQA (Yang et al., 2018]), 2WikiMul-
tihopQA (Ho et al.;2020), MuSiQue (Trivedi et al.,2022)), MultiFieldQA-en, NarrativeQA (Kocisky
et al., 2018), Qasper (Dasigi et al., [2021), GovReport (Huang et al., [2021)), QMSum (Zhong et al.,
2021)), MultiNews (Fabbri et al., 2019), TriviaQA (Joshi et al.,[2017), SAMSum (Gliwa et al., 2019),
TREC (Li & Roth, 2002), LCC (Guo et al.,2023)), and RepoBench-P (Liu et al.,[2023). We use the
default metrics of LongBench for different tasks, which are either F1, Rough-L, accuracy, or edit
similarity.

As shown in Table [2] with either architecture, the Forgetting Transformer performs on par with the
Transformer and better than the recurrent sequence models. This provides further evidence that the
forget gate does not damage the long-context capabilities of the model.

4.5 ABLATION STUDIES

We present two sets of ablation studies. First, we investigate the contribution of each component
in FoT and the effect of RoPE. Second, we study the importance of using a forget gate that is data-
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Table 3: Ablation experiments for the Forgetting Transformer. All models have roughly 360M non-
embedding parameters and are trained on roughly 7.5B tokens on LongCrawl64. The perplexity
is measured over a validation context length of 16384 tokens. For the bottom half, all addition
(+) or removal (-) of components are relative to FoT (Pro). Per-token loss curves are shown in

Appendix [E-T]

Model ‘ RoPE Forget gate QK-norm Output gate Output norm KV-shift ‘ Perplexity

Transformer (LLaMA) w/o RoPE 14.49
Transformer (LLaMA) v 7.52
v v 7.19

FoT (LLaMA) v 7.22
v v 7.09

v v v 6.89

v v v v 6.84

FoT (Pro) v v v v v 6.65
- QK-norm v v v v 6.78
- output gate v v v v 6.90
- output norm v v v v 6.72
- KV-shift v v v v 6.84
+ RoPE v v v v v v 6.65
- forget gate + RoPE (i.e. Transformer (Pro)) v v v v v 6.83
- forget gate v v v v 7.37
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Figure 5: Data-dependent forget gate (data-dep) vs. data-independent (data-indep) and fixed
forget gate (i.e., ALiBI). (leftmost and middle-left) Comparison using the LLaMA architecture.
(middle-right and right-most Comparison using the Pro architecture. All per-token loss curves are
smoothed by a moving average sliding window of 1001 tokens. The vertical dashed line indicates
the training context length.

dependent. For these experiments, we use models with 360M non-embedding parameters trained on
roughly 7.5B tokens.

Component analysis We present both (1) an “incremental” style analysis where we incrementally
add/remove components from Transformer (LLaMA) to obtain the complete FoT (Pro) model and
(2) a “perturbation” style analysis where we add/remove components from FoT (Pro). The results
are shown in Table 3] First, as mentioned previously, adding RoPE to FoT (LLaMA) and FoT
(Pro) results in minor and no improvement, respectively. Second, both types of analyses show that
all components in FoT contribute positively. Also note that with either the LLaMA or the Pro
architecture, removing both the forget gate and RoPE results in poor performance (the first and the
last row of the table).

Data independent and fixed forget gates To show the importance of using a forget gate that is
data-dependent, we test a data-independent forget gate ft(h) = o(b™), where the superscript (h)
means for the h-th head. We also test a forget gate that has fixed values (i.e., ft(h) = o(b™), but we

do not update b(") during training). As discussed in Section [3| using a fixed forget gate is equivalent
to ALiBi. For these experiments, we use FoT (LLaMA) with 125M parameters trained on roughly
2.6B tokens.

For these data-independent forget gate designs, we find it crucial to initialize b(*) properly. To

understand the initialization, we first define a function T'(b) = m. This function is defined
such that o(b)T(®) = 1/e is always true. We then initialize b(*) = bl(lﬁt) such that T’ (bg:])it)) =

exp(log Timin + (log Tinax — log Tmin)%), where T, and Ty, are hyperparameters and H
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is the number of heads. It can be shown that ALiBi with a maximum slope % and a minimum

slope ﬁ (the default values in Press et al.[ (2021)) is equivalent using a fixed forget gate with
(Tmin, Tmax) = (2,256). We refer to this initialization as long-initﬂ We always set Tinin = 2.

In Figure 5] we show the per-token loss of different forget gate designs with both the LLaMA and
the Pro architecture. As shown in Figure[J] a fixed forget gate (i.e., ALiBi) always underperforms
the data-dependent forget gate. With careful initialization, the performance of the data-independent
forget gate can approach the data-dependent forget gate within the training context length, though it
is still worse in terms of length extrapolation.

5 RELATED WORK

Recurrent sequence models While the Transformer has become the de facto standard architec-
ture for sequence modeling, there has been a growing interest in reviving recurrent sequence mod-
els (Katharopoulos et al.,[2020; Peng et al.| 2021} |Gu et al., 2021} [Orvieto et al.,|2023; |Yang et al.,
2023} |Gu & Daol 2023} |[Katschl 2023} [De et al., 2024} |Sun et al., 2024; |Peng et al., 2024} |Qin
et al.|2024a}; |Dao & Gu, [2024; Beck et al.| 2024} |Zhang et al.l 2024} [Buckman et al.| 2024). Many
recent recurrent sequence models feature some form of the forgetr gate, which has been shown to
be essential in these architectures (Qin et al., | 2024b; |Gu & Dao, 2023} Yang et al., [2023). Notably,
GLA (Yang et al.;,|2023) and Mamba-2 (Dao & Gu,|2024) show that gated variants of linear attention
could be written in a form similar to softmax attention, which directly inspired our work. Several
works (Ma et al., [2022; 2024} Ren et al., [2024)) combine recurrent layers with quadratic attention.
However, unlike our method which embeds the forget gate into the attention mechanism, in these
hybrid architectures, the recurrent layers and the quadratic attention layers are independent.

Modifications of softmax attention Several positional embedding methods (Press et al., 2021}
Raffel et al., |2020; (Chi et al., 2022afb) add bias to the attention logits depending on the distances
between the keys and queries, which can implement data-independent decay. L AS-attention (Zimer-
man & Wolf) applies multiplicative exponential decay to the attention logits. RoPE (Su et al., [2024)
also has a similar decay effect that becomes stronger with increasing relative query/key distances.
However, all these methods can only achieve data-independent decay based on the relative distances
of the queries and keys. CoPE (Olsson et al., [2022) and Selective Attention (Leviathan et al., [2024))
modify the attention logit at the current timestep based on cumulative sums of some transformation
of attention logits from previous timesteps. Our method is distinct from these in that we calculate
forget values separately for the decay instead of reusing the attention logits. Crucially, it is unclear
whether CoPE and Selective Attention can be integrated into Flash Attention, which is essential for
efficient long-context training.

6 CONCLUSION

We propose the Forgetting Transformer, a Transformer variant with a forget gate. Our experiments
show that the Forgetting Transformer outperforms the standard Transformer and several recurrent
sequence models on long-context language modeling and various downstream tasks. We also show
that our Transformer Pro block design greatly outperforms the basic LLaMA architecture, with or
without a forget gate. We thus recommend future work to adopt FoT (Pro) and Transformer (Pro) as
baselines in replace of the commonly used LLaMA architecture.

We discuss several limitations of our work and potential future work. First, due to our limited
computing resources, we can only perform experiments on models up to 760M parameters and a
training context length of 16384 tokens. Thus, an important future work is to extend the Forgetting
Transformer to larger scales. Second, we only consider causal sequence modeling. It would be
interesting to extend the Forgetting Transformer to the non-causal case. Finally, it is possible to
perform KV-cache eviction based on the forget gate values, which may greatly reduce inference
costs.

3We also tested long-init for the data-dependent forget gate but did not find it useful.
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A DETAILED FOT PRO LAYER COMPUTATION

We describe the computation of a FoT (Pro) layer (depicted in Figure [I] right) in detail. Each FoT
layer takes an input sequence (x;)%, and produces an output sequence (y;)~_,. We first describe
the computation for the single head case with head dimension dj,g. For each time step ¢, we first
compute the key k; € R, query q; € R%, value v; € R, forget gate f; € R, and output
gate g; € R as follows:

g: = RMSNorm(W,x;) (16)
ki = Wiz, & =o(w]x;) eR (17)
k; = RMSNorm(of¥k,_1 + (1 — oX)k,) (18)
Oy = Wiy, o)™ =o(w]x;) €R (19)
v = Q™G + (1 — ™), (20)
fi=o(wjz, +bs) €R (1)
gr = Wyx,. (22)

This is followed by the computation of the attention output:

L exp(q, k; + d;;)v;
0; = ZJJ p(q; k; i)v; 23)

2221 exp(q; kj + dij)

where d;; = Z;: j+1108 fi. We then apply the output normalization, output gate, and the final
output projection:

y; = W,(RMSNorm(o;) ® g;). (24)

For the multi-head case, each head h maintains an independent copy of the parameters and com-
putes its output sequence (yz(h))iL:1 independently. yi(h)’s from different heads are then summed
together to obtain the final output y,. Note that similar to the standard Transformer, even though the
computation and parameters of different heads are conceptually independent, the computation can
be implemented equivalently by properly splitting/concatenating the intermediate vectors/weight

matrices of different heads.

B EXPERIMENTAL DETAILS

B.1 MODEL AND TRAINING HYPERPARAMETERS

All models in the main experiment have roughly 760M non-embedding parameters. We do not share
the embedding parameters with the last linear layer. All models have a hidden dimension of 1536,
a head dimension of 128, and 24 blocks of multi-head attention + MLP layers. As mentioned in
the main text, we use § = 500000 for RoPE. For other hyperparameters including initialization
methods, we use the default settings in Flash Linear Attention (Yang & Zhang} 2024)).

For the ablation experiments in Section[4.5] all models have roughly 360M non-embedding param-
eters. The hidden dimension is 1024. For other model hyperparameters, we use the default values
in Flash Linear Attention (Yang & Zhang, 2024). We use a linear learning rate warmup from 0 to
1.5 x 1073 for the first 256 x 220 tokens and then a cosine decay schedule to 1.5 x 10~%. Other
training-related hyperparameters are the same as the 760M-parameter setting except for the Trans-
former we use a head dimension of 64.

B.2 MODEL PARAMETERS, ESTIMATED FLOPS, AND THROUGHPUT

We report the exact number of (non-embedding) parameters, estimated FLOPs and throughput in
Table ] Note that the attention kernels in FoT (Pro), Transformer (Pro) and FoT (LLaMA) are im-
plemented in Triton by us while Transformer (LLaMA) uses the official Flash Attention implemen-
tation (Dao| 2023))) implemented in CUDA. We expect these four models to have similar throughput
if their kernels are all implemented in CUDA.
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Model | Parameters estimated FLOPs/token Throughput (token/sec)
FoT (Pro) 758M 8.18 x 10° 38k
Transformer (Pro) 757TM 8.18 x 10 38k
FoT (LLaMA) 757M 8.18 x 10° 47k
Transformer (LLaMA) 756M 8.18 x 10 60k
Mamba-2 780M 4.96 x 10° 72k
HGRN2 756M 4.63 x 10° 70k
DeltaNet 757TM 4.64 x 10° 70k

Table 4: Comparison of different models in terms of number of parameters, estimated FLOPs per
token, and model throughput. We count non-embedding parameters as the embedding parameters’
contribution to computational costs are negligible. For the estimated FLOPs, we omit sub-leading
terms such as RMSNorm and residual connections. For the FLOPs of recurrent models, we assume
they use the most FLOP-efficient sequential recurrent form of computation and thus the estimation
is a strict lower bound of the FLOPs in practice. Throughputs are measured on 4 A100-80GB GPUs.

Since we use a very long training context length, recurrent models have a huge advantage in theo-
retical FLOPs due to their linear complexity. Though an exact FLOPs-matched comparison would
be interesting, it will require recalibrating the scaling law for the long-context setting and is beyond
the scope of this work. Nevertheless, empirical evidence in the literature suggests it is unlikely that
using larger models will qualitatively change the poor long-context capabilities of recurrent models.
For example, |Qin et al|(2024a)) trains 3B-parameter HGRN2 and Mamba and both still perform
poorly in the needle-in-the-haystack task.

B.3 NEEDLE IN THE HAYSTACK DETAILS

We use the needle test in the LongAlign (Yushi Bai, 2024)), which is adapted from the original needle
test reposiroty (Kamradt, [2023) for HuggingFac models. The prompt has the following structure:

[irrelevant context...]

What is the best thing to do in San Francisco? Answer: The best thing to
do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny
day.

[irrelevant context...]

There is an important piece of information hidden inside the above
document. Now that you’ve read the document, I will quiz you about it.
Answer the following question: What is the best thing to do in San
Francisco? Answer:

The results are scored by GPT-40 on a scale from 1 to 10.

C EXPLANATION ON THE RELATIONSHIP BETWEEN PER-TOKEN-LOSS SLOPE
AND CONTEXT UTILIZATION

To understand the relationship between the slope of the per-token loss and context utilization of
the model, we first point out that LongCrawl64 applies the preprocessing of randomly “rolling” the
sequencef]to remove any position bias. This means that when given contexts of the same length, the
difficulty of predicting tokens at different positions is roughly the same on average. For example,
predicting the 100-th tokens in the sequences only given the previous 90 tokens is roughly as difficult
as predicting the 90-th tokens when given the full previous 90-token context. Therefore, if L(100) <
L(90), it indicates that the first 10 tokens in the context contribute to the model’s predictions for the
100-th token; and larger the difference L(90) — L(100) is, the more these distant tokens contribute.

Ynttps://huggingface.co/
3Concretely, this can be implemented with np . ro11 with random shift value
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On the other hand, if L(100) is roughly the same L(90) (i.e., the graph of L(¢) plateaus after { =
100), it means the first 10 tokens do not contribute to the model’s prediction for the 100-th token,
either because they are inherently not useful for this prediction or the model are unable to utilize
them.

In summary, the slope of (%) at token position ¢ reflects how much tokens from roughly i steps
earlier contribute to the model’s prediction at the current token position.

D HARDWARE-AWARE IMPLEMENTATION OF FORGETTING ATTENTION

Algorithm 1 Forgetting Attention Forward Pass

Require: Matrices Q, K,V € RV*? vector ¢ € RY in HBM, block sizes B, B,.
I: Divide Q into T, = [Bi] blocks Q1 ..., Qr, of size B, x d each, and divide K,V in to

T, — [Bﬂ} blocks K1, ..., Kz, and Vi, ..., Vi, of size B, x d each.
2: Divide the output O € RY*? into T, blocks Oy, ..., Or, of size B, x d each, and divide the

logsumexp L into T} blocks L1, ..., Ly, of size B, each.
3: Letc? = c. Devide ¢? into T’ blocks cf, ..., 7,
4: Let ¢® = c. Devide ¢ into T blocks cf, ..., ¢k,
5:for1 <i<T,do
6: Load Q;, ¢ from HBM to on-chip SRAM.
7: On chip, initialize 0\°) = (0)p,xq € RE >4 1Y = (0. € RB m\¥ = (—c0)p, €
RE,
8: forl1<j<T.do
9: Load K, Vj, €} from HBM to on-chip SRAM.
10: On chip, compute S}j) = QK] e RP>Pe,
11: On chip, compute D\ = ¢/1T — 1(ck)T € RBr*Be
12: On chip, compute S = §¥) 1 DY) € RB-xBe |
13: On chip, compute S = mask(S, i, j) € RBr*Be.
14: On chip, compute m!” = max(m’ ™" rowmax(8")) € RB-, PY) = exp(SY) —
mZ(J)) € RB-xBe (pointwise), éz(‘]) _ emy*l)—my)&(j—l) + rOWSum(]ai('j)) c RBr.
15: On chip, compute 07@ = diag(emgrl)’mgj))*loz(]_l) + Isi(])Vj.
16:  end for

17:  On chip, compute O; = diag(ﬁch))*lOgTa).
18:  On chip, compute L; = mETC) + log(égTC)).
19:  Write O; to HBM as the i-th block of O.

20:  Write L; to HBM as the i-th block of L.

21: end for

22: Return the output O and the logsumexp L.

In Algorithm [1|and 2] we provide the algorithm for computing the forward pass and backward pass
of Forgetting Attention in a hardware-aware way. The algorithm is reproduced from Flash Attention
2 (Daol 2023)), with the changes needed to implement Forgetting Attention added and highlighted.
In this algorithm, we assume that we pre-computed the cumulative sum ¢ = cumsum(log f). The
mask operation properly sets some entries of its first operand to —oo to satisfy the causality re-
quirement. Note for the backward pass for ease of presentation we combine the computation of
dK,dV,dc" and the computation of dQ, dc? in a single algorithm, but in practice these are com-
puted in two different kernels for implementation simplicity.
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Algorithm 2 Forgetting Attention Backward Pass

Require: Matrices Q, K,V ,0,dO € RY*? in HBM,  vector ¢,de € RY | vector L € RY in

10:
11:

12:
13:

14:

15:
16:
17:
18:
19:
20:

21:

22:

23:
24:
25:
26:
27:

28:

HBM, block sizes B,., B,.

. Divide Q into T, — [Bﬂ] blocks Q1. .., Qr. of size B, x d each, and divide K,V in to

T, — [Bﬂ] blocks K, ..., Kr, and Vi, ..., Vi, of size B, x d each.

Divide O into T, blocks Oy,...,Or, of size B, x d each, divide dO into T, blocks
dOq,...,dOr, of size B, x d each, and divide L into 7). blocks L, ..., L1, of size B, each.

- Initialize dQ = (0) N xq in HBM and divide it into 7). blocks dQ,...,dQr, of size B, x d

each. Divide dK,dV € RY*?into T, blocks dK1,...,dK7 anddVy,...,dV 1, of size
B. x d each.

k k

Let ¢? = ¢* = c. Devide ¢? into T} blocks ¢, . .. ,c‘:’}r. Devide c* into 7, blocks c’f, e

Let dc? = dc® = (0) . Devide de? into T}, blocks de?, . . ., dcj, . Devide dc” into T, blocks
deb, ... 7dc"fpc.

Compute D = rowsum(dO o O) € RY (pointwise multiply), write D to HBM and divide it
into T, blocks D, ..., D, of size B, each.

cfor1 <5 <T.do

Load K, V}, c;‘-’ from HBM to on-chip SRAM.
Initialize dI{j = (O)BC xds de = (O)BC «d on SRAM.
for1 <i<T,do
Load Q;,0;,d0,,dQ,, L;, D;, €] from HBM to on-chip SRAM.

On chip, compute Si(j) = Q,KJT € RB-xBe,

On chip, compute D;j) =c1T —1(ch)T e RE-XBe |

On chip, compute S’i(j ) — ,S’Z(j ) + ng) c RB-xBe

On chip, compute S,L.(j) = Inask(Si(j), i,j) € RBrxBe,

On chip, compute Pi(J) = exp(S;; — L;) € RBr*Be,

On chip, compute dV; <~ dV; + (PZ-(J))TdOi € RBexd,
On chip, compute dPEj) =dO,V;T € RP-*PBe,

On chip, compute dSEj) = R(j) o (dPEj) — D;) € RBrxBe,
Load dQ, from HBM to SRAM, then on chip, update dQ; < dQ, + dSE])Kj € RBrxd
and write back to HBM.
Load d¢ from HBM to SRAM, then on chip, update de! «+ de¢f +dS l(] e RB-, and
write back to HBM.
T
On chip, compute dK; + dK; +dSY) Q; e RBxd,
. k ko T B,

On chip, compute dcj < dcj —dS;” 1€ R”-.

end for

Write dK;,dV;, def to HBM.

end for

Compute de = dc? + dc”.
Return dQ,dK,dV, dec.

In practice, we implement Forgetting Attention based on the Triton (OpenAl, 2021)) Flash Attention
implementation in Flag Attention (FlagOpen, 2023)).
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Figure 6: Per-token loss for the incremental-style ablation studies presented in Section {.3] All
models are roughly 360M parameters and are trained on roughly 7.5B tokens on LongCrawl64. The
vertical line indicates the training context length.
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Figure 7: Per-token loss for the perturbation-style ablation studies presented in Section 3] All
models are roughly 360M parameters and are trained on roughly 7.5B tokens on LongCrawl64. The
vertical line indicates the training context length.

E ADDITIONAL RESULTS

E.1 PER-TOKEN LOSS FOR THE ABLATION STUDIES

In Figure [6] and Figure [7] we show the per-token loss for the ablation studies presented in Table [3]
in Section Transformer (LLaMA) without RoPE performs extremely poorly and we show it
separately in Figure
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Figure 8: Removing RoPE from Transformer (LLaMA) results in poor performance. All models are
roughly 360M parameters and are trained on roughly 7.5B tokens on LongCrawl64. The vertical
line indicates the training context length.
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Figure 9: Incremental style ablation study for Transformer (Pro). All models are roughly 1256M
parameters and are trained on roughly 2.5B tokens on LongCrawl64. The vertical line indicates the
training context length.

E.2 TRANSFORMER (PRO) ABLATION

In Figure[9 we present a small-scale ablation study for Transformer (Pro) where we start from Trans-
former (LLaMA) and add one component at a time. Notably, we find that QK-norm is beneficial for
length extrapolation.

E.3 SHORT-CONTEXT TRAINING ON SLIMPAJAMA

To complement our main results in which we perform long-context training on LongCrawl64, we
have also run short-context training on the more commonly used SlimPajama dataset (Soboleva
et al. 2023). We follow the 340M-parameter/15B-token/2k-context-length setting in [Yang et al.
(2024). We also use the same hyperparameters and tokenizer as|Yang et al.| (2024). We train FoT
and Transformer with both the LLaMA and the Pro architecture. We also test Mamba-2, the strongest
recurrent sequence model in our main results.

We show the per-token loss of tested models in Figure[T0|and downstream task evaluation results in
Table[5] We use the same set of tasks as[Yang et al|(2024) so our results can be directly compared to
those of [Yang et al.|(2024)). As shown in the results, in this short-context training setting FoT does
not have an advantage over the Transformer in terms of language modeling loss within the training
context length. However, it still exhibits better length extrapolation and superior downstream task
performance.
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Figure 10: Results on SlimPajama with a training context length of 2048 tokens. All models have
roughly 340M non-embedding parameters and are trained on roughly 15B tokens on SlimPajama.
The vertical line indicates the training context length.

Table 5: Evaluation results on LM-eval-harness for models trained on SlimPajama with a training
context length of 2048 tokens. All models have roughly 340M non-embedding parameters and are
trained on roughly 15B tokens on SlimPajama. “acc-n” means length-normalized accuracy. Bold
and underlined numbers indicate the best and the second best results, respectively. The results for
Transformers++ and DeltaNet are from [Yang et al.| (2024). Note that Transformer++ from |[Yang
et al.| (2024)) and Transformer (LLaMA) in our work have exactly the same architecture

ppld ppld acct accT acc-nT  acct acct acc-nT
Transformer++ (Yang et al.|[2024) ‘ 28.39  42.69 ‘ 31.00 63.30 3400 5040 @ 44.50 24.20 ‘ 41.23

Model ‘Wiki. LMB. ‘ LMB. PIQA Hella. Wino. ARC-e ARC-c‘ Avg

DeltaNet (Yang et al.|[2024) 28.24 37.37 | 32.10 64.80 3430 5220 45.80 23.20 | 42.07
FoT (Pro) 25.69 3198 | 3582 65.61 3639 51.07 45.79 25.09 | 43.29
Transformer (Pro) 2592 3193 | 35.01 65.02 36.09 50.51 @ 46.42 23.38 | 42.74
FoT (LLaMA) 27.86 4326 | 3256 64.80 3459 50.12  45.12 2338 | 41.76
Transformer (LLaMA) 2798 3525 | 3231 6371 3489 48.07 4533 2372 | 41.34
Mamba-2 2751 4132 | 2983 6594 3595 50.20 4545 23.72 | 41.85
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Figure 11: Comparison with 32B training tokens. (left) Per-token loss L(i) at different token po-
sition 4. (right) Validation perplexity P(l) over different validation context length /. All models
have 760M parameters and are trained on roughly 32B tokens. The vertical dashed line indicates
the training context length. The per-token loss is typically noisy, so we smooth the curve using a
moving average sliding window of 101 tokens. In this plot 1k = 1024.
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Figure 12: Needle-in-the-haystack analysis for different models trained with 32B tokens. The results
are scored on a scale of 1 (red) to 10 (green) by GPT-40. The vertical dashed line indicates the
training context length.

E.4 RESULTS WITH 32B TRAINING TOKENS

To verify that our results are consistent with longer training runs, we have trained FoT (LLamA) and
Transformer (LLaMA) with 32B tokens. We show the per-token loss, needle-retrieval experiment,
short-context downstream task results, and long-context task results in Figure [T1] Figure Ta-
ble[6] and Table [7]respectively. These results are consistent with those obtained with the 16B-token
training runs in the main text.

Table 6: Evaluation results on LM-eval-harness with 32B training tokens and 760M non-embedding-
parameter models. “acc-n” means length-normalized accuracy. Bold and underlined numbers indi-
cate the best and the second best results, respectively.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c COPA OBQA SciQA BoolQ | Avg
ppl) ppld acct accT  acc-nfT  accl accT acc-nT accT acc-nT accT accT T

FoT (LLaMA) 2946 2240 | 37.69 61.92 3391 5122 47.77 2372 65.00 2820 81.10 49.88 | 48.04

Transformer (LLaMA) | 29.57 2421 | 36.52 61.32 32.84 4838  46.21 2474  60.00 27.60 79.10 61.56 | 47.83
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Table 7: Evaluation results on LongBench with 32B training tokens and 760M non-embedding-
parameter models. Bold and underlined numbers indicate the best and the second best results, re-
spectively.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code
]
Model & ERRS & $@' & s & & 9 & S &
s $ > : S 3 o g S
ey AN & & & Y & &8 w&z
FoT (LLaMA) 1062 1217 20.96 6.53 1782 586 194 1163 874  d8.0 257 2158 59 1055
Transformer (LLaMA) 9.62 1252 19.65 .63 1853 431 1545 1085 15 435 199 2066 11.98 17.43
1.90
1.85 7.0
= 180 T6s
S z
8175 5
_ £6.0
&
1.70
55
1.65
1
0 8k 16k 24k 32k 40k 48k 56k 64k 0 8k 16k 24k 32k 40k 48k 56k 64k
Token index i Validation context length [
=== FoT (Pro) === FoT (LLaMA) Samba Mamba-2
Transformer (Pro) === Transformer (LLaMA) Transformer-SWA (LLaMA)

Figure 13: Additional comparison with Samba and Transformer-SWA. (left) Per-token loss L(i) at
different token position 7. (right) Validation perplexity P(l) over different validation context length
l. All models have 760M parameters and are trained on roughly 16B tokens. The vertical dashed
line indicates the training context length. The per-token loss is typically noisy, so we smooth the
curve using a moving average sliding window of 101 tokens. In this plot 1k = 1024.

E.5 COMPARISON WITH SLIDING WINDOW ATTENTION AND SAMBA

In this Section, we compare the standard Transformer and FoT with a sliding-window-attention-
based Transformer (Transformer-SWA). We also compare with Samba (Ren et al [2024), a hybrid
architecture combining sliding window attention and Mamba. Both Transformer-SWA and Samba
use a window size of 2048. We show the per-token loss, needle-retrieval experiment, short-context
downstream task results, and long-context task results in Figure[I3] Figure[T4] Table[8] and Table 9]
respectively. Though both Transformer-SWA and Samba perform well on short-context tasks, they
show early plateau in the per-token loss, which indicates that they struggle to utilize the long context.
Accordingly, they perform poorly in the needle-retrieval task.

Table 8: Evaluation results on LM-eval-harness including Samba and Transformer-SWA. All mod-
els have roughly 760M non-embedding parameters and are trained on roughly 16B tokens on
LongCrawl64. ”acc-n” means length-normalized accuracy. Bold and underlined numbers indicate
the best and the second best results, respectively.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c COPA OBQA SciQA BoolQ | Avg
ppll ppll acct acct  acc-nT  acct acct acc-nT acct acc-nT acct acct T
FoT (Pro) 2794 2131 | 39.03 61.81 3395 50.83 48.78 25.68 62.00 27.00 79.40 61.13 | 48.96
Transformer (Pro) 28.54 23.86 | 3742 60.83 33.89 5043 47.85 24.83 65.00 30.20 8140 54.16 | 48.60
FoT (LLaMA) 3249 2828 | 3555 5941 3223 5051 4697 2389  67.00 2720 7740 53.76 | 47.39
Transformer (LLaMA) 3251 3394 | 33.09 60.55 3089 51.14 44.32 24.23 61.00 27.80 7490 5291 | 46.08
Samba 3222 2628 | 3536 62.02 32.89 51.07 48.70 25.09 66.00 28.80 79.10  61.13 | 49.02

Transformer-SWA (LLaMA) | 34.13  33.61 | 33.15 59.79 32.03 4822  46.59 25.34 66.00 26.80 77.10  60.12 | 47.51
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Table 9: Evalution results on LongBench including Samba and Transformer-SWA. All models have
roughly 760M non-embedding parameters and are trained on roughly 16B tokens on LongCrawl164.
Bold and underlined numbers indicate the best and the second best results, respectively.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code
<
Model & < Nad o ¢ S & < \ S &
& & & & @& ¢ ¢ & & & &y
e SRR NS & S S NS <& < e
FoT (Pro) 10.03 1444  19.17 11.1 16.84 5.44 22.87 11.15 12.87  56.0 28.51 219 13.11 7.98
Transformer (Pro) 1023 1567  20.11 9.81 21.24 5.52 16.58 10.64 12.78 63.5 24.37 19.09 10.29 11.59
FoT (LLaMA) 8.15 13.09 1851 722 16.92 43 15.59 124 11.51 33.0 14.78 8.28 11.38 13.92
Transformer (LLaMA) 932 13.14 1627 6.96 14.89 517 14.86 10.9 12.28 50.0 15.49 10.58 1033 14.57
Samba 8.85 72 1577 8.94 16.78 3.11 8.35 10.23 11.84  30.0 17.62 44 118 11.79
Transformer-SWA (LLaMA) 789  11.07 1514 717 13.27 2.81 9.97 8.97 11.18  39.0 18.28 497  9.73 11.0
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Figure 14: Needle-in-the-haystack analysis for HGRN2, Samba, and Transformer with sliding win-
dow attention (SWA). The results are scored on a scale of 1 (red) to 10 (green) by GPT-40. The
vertical dashed line indicates the training context length.

E.6 ADDITIONAL NEEDLE-IN-THE-HAYSTACK RESULT

In Figure @ we show the results of the needle test for HGRN2, Samba, and Transformer-SWA
(LLaMA). Samba and Transformer-SWA use a sliding window of 2048 tokens.

E.7 RESULTS WITH 125M-PARAMETER AND 360M-PARAMETER MODELS

In Figure [T3] and Figure [I6] we show the per-token loss for 125M-parameter models trained on
roughly 2.5B tokens and 360M-parameter models trained on roughly 7.5B tokens, respectively.
These results are consistent with the 760M-parameter/16B-token results in Figure 2}

E.8 EFFECT OF QK-NORM

In Figure [I7) we the results for FoT (LLaMA) + QK-norm and Transformer (LLaMA) + QK-norm.
We see that QK-norm is equally useful for both models. Interestingly, it improves the length extrap-
olation of Transformer (LLaMA). We conjecture that this is because QK-norm bounds the L2-norm
of the queries and keys and thus the model will be more robust to unusual activation values due to
extrapolation to unseen context lengths.
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Figure 15: Results with 125M-parameter models trained on roughly 2.5B tokens. (left) Per-token
loss L(7) at different token position 4. (right) Validation perplexity P(l) over different validation
context length [. The vertical dashed line indicates the training context length. The per-token loss is
typically noisy, so we smooth the curve using a moving average sliding window of 101 tokens. In
this plot 1% = 1024.
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Figure 16: Results with 360M-parameter models trained on roughly 7.5B tokens. (left) Per-token
loss L(i) at different token position 4. (right) Validation perplexity P(l) over different validation
context length [. The vertical dashed line indicates the training context length. The per-token loss is
typically noisy, so we smooth the curve using a moving average sliding window of 101 tokens. In
this plot 1k = 1024.
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Figure 17: Additional results with FoT (LLaMA) + QK-norm and Transformer (LLaMA) + QK-
norm. (left) Per-token loss L(4) at different token position 4. (right) Validation perplexity P(l) over
different validation context length /. All models have 760M parameters and are trained on roughly
16B tokens. The vertical dashed line indicates the training context length. The per-token loss is
typically noisy, so we smooth the curve using a moving average sliding window of 101 tokens. In
this plot 1k = 1024.
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Figure 18: Training curves of different models presented in Figure[2] These curves show the training
loss averaged every 512 x 229 tokens. All models have 760M parameters.

E.9 TRAINING CURVES

In Figure I8 we show the training curve for all models presented in Figure[2]
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Figure 19: Result stability across seeds with 360M-parameter FoT (LLaMA). All models are trained
on roughly 7.5B tokens. The vertical dashed line indicates the training context length. The per-token
loss is typically noisy, so we smooth the curve using a moving average sliding window of 101 tokens.
In this plot 1k = 1024.

E.10 STABILITY ACROSS RANDOM SEEDS

Although it is extremely challenging for us to run multiple seeds for all our results (running n seeds
is n times more expensive) due to limited computational resources, we have run three seeds for our
360M-parameter FoT (LLaMA) model to show that the variance across seeds is small. The results
are shown in Figure [I9] Note the per-token loss curves within the training context length largely
overlap. The variance beyond the training context length is larger, but remain qualitatively similar.
This is expected since there is no constraint for model behavior beyond the training context length
during training.

E.11 IMPACT OF PARAMETER INITIALIZATION

We find the baseline Transformer to be sensitive to parameter initialization. In particular, we find
the HuggingFace LLaMA initialization to perform significantly better than the a legacy initialization
in the Flash Linear Attention repository (Yang & Zhang, 2024) for the Transformey’| The former
uses a simple normal distribution initialization with a standard deviation 0.02 for linear layers while
the latter uses a combination of Xavier uniform (Glorot & Bengiol [2010), normal distribution, and
rescaling of MLP output projection layers based on the number of layers. The impact of initialization
for the Transformer and the Forgetting Transformer are shown in Figure 20|

E.12 ADDITIONAL VISUALIZATION OF FORGET GATE MATRIX

In Figure 21 we show the forget gate matrix F' from 16 heads distributed in 4 layers. Note that since
these matrices are large (16384 x 16384), if only near-diagonal entries are non-zero the visualization
will look almost all black.

bSee https://github.com/sustcsonglin/flash-linear—attention/tree/
0ce8ce336a8472346e5877b26151e982734c63bb for details
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Figure 20: Effect of different parameter initialization. All models are roughly 760M parameters and
are trained on roughly 16B tokens on LongCrawl64. The vertical line indicates the training context
length.
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Figure 21: Visualization of the forget gate weight
These results use FoT (LLaMA).

matrix F' from 16 heads in 4 different layers.
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