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Abstract

In this paper, we try to solve the mobile robot exploration problem in a 2D indoor
office environment by deep reinforcement learning. Finally, we find that PPO with
Convolutional Neural Network (CNN) and Dense layers converges well in our
problem. The video link of our current work is here.

1 Introduction

Mapping and exploration of a priori unknown environment is a crucial capability for mobile robot
autonomy. Recent years, information-theoretic exploration methods have been developed to reason
about the information gain when robot takes particular action during exploration. In this course
project, we intend to guide robot autonomous exploration by reinforcement learning. Leveraging
the advantages of the reinforcement learning, we expect that the complex mutual information
entropy computation can be bypassed and the mobile robot can explore a whole indoor environment
autonomously and fast without collision.

1.1 Related Work

Recent years, a lot of frontier-based mobile robot exploration strategies have been proposed. Tang
et al.[1] propose a exploration strategy based on the wavefront algorithm which is used to find the
closest frontier point in short time. The mobile robot moves to the frontier point along the path
planned by the wavefront algorithm, once the next frontier point is determined. Bai et al. [2] utilize
previous trained deep neural networks to predict the optimal or near optimal informative sensing
action. The intensive ray casting required to compute mutual information can be avoided by their
method. However, in supervised learning, the heavy data labelling work is inevitable and the states
not covered by the training data may be not recognized by the robot. Thus, researchers introduce
reinforcement learning into the robot exploration tasks.

Since the traditional RL techniques suffer from the curse of dimensionality due to large state space or
large action space and the mobile robot exploration problems always have large state space, the DRL
is widely used in mobile robot exploration problem. In [3], Niroui et al. combine deep reinforcement
learning with the traditional frontier-based exploration approach and the experiments show that
their method can effectively determine the appropriate frontier locations. In [4], method based on
the Deep Q-Network framework takes only the raw depth image as input to estimate the Q values
corresponding to all actions. Zhang et al. [5] design a DRL network which uses raw sensory data
from the robot’s onboard sensors to determine a series of primitive navigation actions for the robot
to execute. Botteghi et al. [6] also propose a DRL based method for robot navigation, which learn
continuous velocity commands from raw sensory data.

The learning-based methods endow the robot with the cognitive ability. Among them, the supervised
learning improves this ability via the labelled data, while the reinforcement learning improves by the
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Figure 1: The figures from left to right are examples of full map, global map and local map
respectively.

Figure 2: DRL framework

feedback from the environment. Inspired by aforementioned methods, we would like to solve the
mobile robot autonomous exploration problem by DRL methods. The rest of this report is organized
as follows. Section 2 formulate the mobile robot autonomous exploration problem. In section 3, we
describe the experiment setup in detail and discuss the current progress.

2 Problem Formulation

In order to focus more on the implementation of DRL algorithm, we use a well build environment
called HouseExpo [7] which will be introduced detailedly in section 3. As Figure 1 shows, the
full map is one of the indoor environment and the white lines in the figure represent walls of the
environment. Uncertain area and free space are indicated in black and gray, respectively. At the
middle of Figure 1, the global map shows a partial explored map of the full map. Local map in Figure
1 is the observation of the environment and its center is decided by the agent, i.e. the position and
direction of the agent is fixed in the local map. The size of the local map is also fixed which is 64×64
pixels. As the exploration process goes on, the gray area will become larger and larger. We assume
that the mobile robot is mounted with a range sensor and the gray area means it has been measured
by the range sensor. The exploration process continues until the gray area accounts for more than
95% of the full map.

The framework of the model-free DRL can be summarised as Figure 2. In our problem, the observation
is the local map and the actions are turn left, turn right, and go forward. The reason for taking the local
map as the observation is that the indoor environments may have different scales but they have similar
local features. Thus, we hope that the robot can take actions according to the local map patterns.
For the definition of the reward, if the robot collides with obstacles, the reward is -1. Otherwise, to
encourage the robot to explore unknown area, the reward is the weighted sum of observation reward
ro and action reward ra. The observation reward is related to the newly discovered area and action
reward is related to the forward action. Referring to [7], the reward function is defined as

rt =

{
−1.0, if a collision happens at t,
αoro + αara, if no collision happens at t.

(1)
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Figure 3: The learning curves of deep reinforcement learning methods at training stage

where αo = 0.9 and αa = 0.1.

3 Experiment Setup and Result

Li et al. [7] develops a lightweight and efficient simulation platform PseudoSLAM to accelerate the
data generation process, thereby speeding up the training process. The dataset HouseExpo [7] is also
built, which is a large-scale 2D floor plan dataset consisting of a large mount of human-designed
2D house blueprints, ranging from single-room studios to multi-room houses. PseudoSLAM is a
simulator with OpenAI Gym-compatible [8] interface which simulates SLAM and the navigation
process in an unknown 2D environment. It reads the data from HouseExpo, creates the corresponding
2D environment and generates a mobile robot to carry on navigation and exploration tasks in the
indoor environment. The parameters of the simulator are specified in the configuration file, including
the number and size of obstacles, robot linear movement and angular movement in each step, sensor
configuration and map resolution, and state sizes. We can change these parameters for different
applications.

PseudoSLAM can achieve competitive mapping result as SLAM with much less time cost. In the
PseudoSLAM simulation platform, occupancy grid maps are utilized as observation instead of the
typical observation from sensory data. The occupancy grid map is an output form of the SLAM
process which can avoid the discrepancy problem between simulation and real world experiment. The
grip map consists of three states, i.e. free space, obstacles, and uncertain areas, which are represented
by different pixel values. Actions in PseudoSLAM are discrete. As mentioned in the section 2, the
action space consists of three directional movements, i.e. forward, left rotation and right rotation.
The pose of mobile robot is updated according to its action, and a sector St centered at the position
of the robot with a radius of the sensor range and angle of the filed of view is cropped to hide the
areas behind obstacles or walls. The newly explored area ro is merged to the global map built at time
step t− 1, which is the sum of previous explored area.

PseudoSLAM abstracts away low-level sensor data processing so that we can focus on performing
high-level strategic policy based on the built maps. Using the OpenAI Gym-compatible interface
provided by the simulator, we can easily integrate the-state-of-the-art reinforcement learning methods.

For the task of autonomous exploration, we let the robot explore the whole given map which is free
of obstacles. The robot should accomplish the goal to explore the whole area of indoor environments
with different layouts. This problem is formulated as Markov decision-making process. We train the
policy utilizing some deep reinforcement learning methods, such as Proximal Policy Optimization
(PPO) [9] and DQN [10], in a set of indoor environments and then test the learned policies in these
environments.

The learned policies focus on reasoning about the topology of the environment. We train the robot
to use spacial knowledge [8] to explore unknown area in indoor environments. One OpenAI Gym-
compatible environment of robot exploration has been implemented [7]. To train a model using
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Figure 4: CNN-LSTM architecture

OpenAI baselines, we first add the environment in Gym to the register file. As Convolutional Neural
Networks are widely used in computer vision domain, we use CNNs to estimate the action function
and critic function in PPO and value function in DQN, respectively. PPO and DQN baselines are
employed to train the neural network. In the training process, the robot observes a local rectangular
map around it which contains walls. If the mobile robot reaches the maximum steps or the explored
area occupies more than 95% area of the whole given global map, the robot will stop moving. The
reward and the explored area are calculated.

We compare the reward generated from PPO and DQN. The learning curves are depicted in Figure 3.
we can find that the PPO outperforms DQN. we also test the learned policy on the previously sampled
maps.

4 Analysis and Current Work

In the experiment, we find that PPO can converge after many episodes, but DQN can not. PPO and
DQN are both off-policy method. They first collect data into the memory using current policy and
then update the policy or value functions. The differences are that PPO is critic-actor based which
approximate both policy and value function, while DQN is value based which approximate only value
function and then derive policy according to value function. In DQN, the agent always tries to find an
optimal action, but it is hard to tell which is the best action and current best action can not guarantee
the best trajectory. Thus, proximal is better in our problem. That is the intuitive why DQN is hard
to converge. In figure 3, two methods use the same CNN structure as [10]. The input to the CNN
consists of 4 × 64 × 64 image produced by the environment. The first convolutional layer has 32
filters of 8 × 8 with stride 4 and applies Rectified Linear Unit (ReLU). The second convolutional
layer have 64 filters of 4× 4 with stride 2 and also applies Rectified Linear Unit (ReLU). The third
convolutional layer has 64 filters of 3× 3 with stride 1 followed by a rectified. The last hidden layer
is fully-connected and consists of 512 rectifier units.

Considering that the states of the exploration process are related in time, we add a Long Short Term
Memory (LSTM) with 128 units to the CNN model to capture the temporal features. The CNN-LSTM
[11] [12] architecture uses CNN layers for feature extraction on input frames combined with LSTMs
to support sequence prediction, which is applicable to our problem. For clearance, we draw the
CNN-LSTM architecture in Figure 4. Because of the bad performance of DQN in our configuration,
we use PPO to train our model. Our environment takes local map generated by laser ranger as
observations, which can be considered as continuous states, whereas actions space is discrete (i.e.
turn left, turn right and go forward). In PPO, the policy network outputs the logit of each action
and the critic network outputs the critic value of current state. Then, the softmax of action logit
values is compute, which is used to construct a categorical distribution. The action is sampled from
the categorical distribution. The log probability of current action is also computed according to the
categorical distribution. We also apply the clipping strategy in PPO in case that the probability ratio
is too large.
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