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Abstract

Reinforcement learning (RL) algorithms have been very successful at tackling
complex control problems, such as AlphaGo or fusion control. However, current
research mainly emphasizes solution quality, often achieved by using large models
trained on large amounts of data, and does not account for the financial, environ-
mental, and societal costs associated with developing and deploying such models.
Modern neural networks are often overparameterized and a significant number of
parameters can be pruned without meaningful loss in performance, resulting in
more efficient use of the model’s capacity. We present a methodology for identify-
ing sparse sub-networks within a larger network in reinforcement learning (RL).
We call such sub-networks neural pathways. We show empirically that even very
small learned sub-networks, using less than 5% of the large network’s parameters,
can provide very good quality solutions. We also demonstrate the training of
multiple pathways within the same networks in a multi-task setup, where each
pathway tackles a separate task. We evaluate empirically our approach on several
continuous control tasks, in both online and offline settings.

1 Introduction

Scaling large neural-network models [4, 73, 33, 9, 12, 76, 64] has led to state of the art in machine
learning benchmarks. While the utility of these large models in a variety of applications makes
them compelling for widespread use, it also requires very expensive training with a large carbon
footprint [78, 71, 87, 20, 88, 79, 87]. While the human brain serves as an inspiration for deep learning
techniques, the current deep learning architectures do not exhibit the same level of energy efficiency.
The brain continuously learns new skills without catastrophic forgetting due to its plasticity [100,
13, 69, 66], i.e., its ability to continually strengthen more frequently used synaptic connections and
eliminate synaptic connections that are rarely used, a phenomenon called synaptic pruning [15]. This
way, the brain generates neural pathways to efficiently transmit information and are used to complete
different tasks [68, 60, 32, 26].
In the past, several studies have explored to mimic this behaviour by training sub-networks of a neural
network for each task [91, 45, 8, 44]. This approach consists of reserving specific subsets of weights
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Figure 1: For any given task, our proposed method activates a specific part of the neural network.

for each task. We refer to these sub-networks as neural pathways. These studies operate in supervised
and continual learning scenarios therefore their applicability to multi-task RL remains unexplored.
Moreover, these pathways can be quite large, often comprising 30% or more of the total network
parameters [44], making them inefficient. Pruning literature [18, 15, 24, 5, 56, 92, 57] has focused
on identifying highly sparse sub-networks. However, these approaches are generally designed for
single-task scenarios, as they specifically target and prune weights that are not utilized within the
chosen sub-network. In RL, finding performant sub-networks is more challenging due to the data
distribution shift during online training [27]. Our findings indicate that recent methods employing
dynamic sparse training and gradient-based topology evolution to prune networks for reinforcement
learning [27, 82] are ineffective at high sparsity levels (95%).
In this paper, we study the feasibility of training neural pathways for multi-task RL, where each
task is tackled by a different pathway of the same underlying network. For offline RL, we show
that configuring the pathway in a single shot using existing parameter importance criteria [1] is
sufficient and outperforms standard multi-task training. To address distribution shifts for online RL,
we introduce data adaptive pathway discovery (DAPD), which employs an initial warm-up phase
for pathway discovery, in which the pathway is progressively reconfigured during policy training,
and then kept frozen for the final stages of training. Our proposed method not only surpasses the
performance of competitive dynamic sparse training baselines but also Dense networks in single and
multi-task continuous control tasks.
In contrast to existing multi-task training methods in RL focusing on gradient manipulation [97, 80,
14, 7, 72], architecture modifications [93] and task similarities [96, 16, 77], we show that discovering
task pathways is simple, effective and allows for energy savings. We manage to discover pathways
that utilize only a small fraction (5%) of the neural network parameter. Given the high-sparsity level,
the resulting policy requires low floating point operations (FLOPs) by potentially leveraging sparse
matrix multiplication (SpMM) [54, 53, 55] to increase energy efficiency, reduce carbon footprint and
potentially be deployed on low-resource devices (i.e., embedded systems, edge devices, etc.).
We highlight our contributions as follows:

• We showcase how to train multiple neural pathways for multi-task RL where the objective is
to improve energy efficiency and reduce the carbon footprint associated with both offline
and online RL training.

• We introduce Data Adaptive Pathway Discovery (DAPD), which leverages network sensi-
tivity to adjust pathways in response to the data distribution shifts encountered in online
RL. This capability enables us to identify pathways at high levels of sparsity and surpass
competitive sparse training baselines [27, 82].

• We demonstrate superior sample efficiency and performance in both single and multi-task RL.
The sparsity in the model induces 20x increase in energy efficiency compared to alternative
approaches, achieved through FLOP count reduction and the utilization of Sparse Matrix
Multiplication (SpMM).
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2 Related Work

Sparse Networks Advances in finding sparse networks have proven that there exists sub-networks
which contain a small fraction of the parameters of the Dense deep neural network yet retain similar
performance [18, 15, 24, 5, 56, 92]. Building upon a three-decade-old saliency criterion used for
pruning trained models [48], a recent technique to prune models at initialization was proposed
by [38] and was swiftly followed by subsequent works [90, 10, 83] which can find sub-networks
at initialization and operate in supervised learning. In offline RL, pruned models at initialization
has been proven effective [3], but are limited to a static and pre-defined training dataset. Recent
studies on sparsity in RL methods suggest leveraging gradient-based topology evolution criteria,
as proposed in RiGL [27], to identify sparse networks. Rlx2 [82] shows that topology evolution
encounters challenges in maintaining stable value estimation in continuous control tasks. In response
to this limitation, RLx2 incorporates a multi-step temporal difference (TD) target [81] and a dynamic
capacity on replay buffer. These models exhibit high sensitivity to specific sparsity levels for
continuous control tasks, necessitating careful tuning for optimal performance.

Multi-task RL The motivation of many works in multi-task RL is that training a policy for more
than one task becomes difficult due to gradient interference, i.e., gradients for different tasks pointing
in very different directions [97, 41]. Recent work proposes several possible solutions, such as
constraining the conflicting gradient update [97, 80, 14, 7, 72], constraining data sharing among
irrelevant tasks [96, 16], modularize the neural network to reuse network components across tasks [67,
93] and learning the underlying context of relevant tasks [77]. Inspired by previous works on continual
learning [91, 45, 8, 44], we propose to tackle the multi-task RL scenario by assigning each task
to a specific sub-network of a shared deep network. We introduce a robust algorithm designed to
concurrently find the sub-networks and optimize the parameters of the shared network in the context
of RL.

Energy Efficient Deep Learning Recent works suggest [59, 31] carbon-emission can be reduced
by using sample efficient ML architecture, optimized hardware for ML (ex: TPU, GPU) or cloud
compute in location with clean energy. Many hardware startups [55] are developing AI-specific chips,
some of which claim to achieve a substantial increase in FLOPS/Watt gains from simply reconfiguring
hardware to do the same number of operations for less economic cost. For performance per power
efficiency, the FPGA-based accelerator [49] is 11.6 times better than GPU-based one. NVIDIA
[52] already shows almost 10x speed up using Block-SpMM using V100 GPU. [39] proposes a
high-performance sparse-matrix library for low-precision integers on Tensor cores and shows 2.37x
performance improvement on Nvidia-A100. There has been ongoing research on how to properly
estimate the carbon footprint [31, 59]. We focus on utilizing the sparse matrix multiplication (SpMM)
aware hardware and software to reduce the carbon footprint.

3 Neural Pathway Discovery for RL

In this work, we aim to show the feasibility of tackling both online and offline multi-task RL
by pathway discovery (PD), i.e. identifying and training different sub-networks of a same shared
network for each task. The sparsity of each sub-network allows for energy efficiency gains thus
reducing the carbon footprint associated with training and deployment.

3.1 Background

Reinforcement Learning We consider learning in a Markov Decision Process (MDP) defined by
the tuple (S,A, P,R) with states s ∈ S, actions a ∈ A, transition dynamics P (s′|s, a), and reward
function R(s, a). At time step t, the state, action, and reward are denoted as st, at, and rt = R(st, at),
respectively. An episode is a trajectory τ = (s0, a0, r0, s1, a1, r1, ..., sT , aT , rT ), accumulating an
episodic return RT =

∑T
t=0 rt. For continuous control tasks, we use an infinite horizon, T = ∞,

aiming to maximize the expected discounted return E[
∑∞
t=0 γ

trt]. Here, γ represents the discount
factor set at 0.99. In a multitask setup, we have N tasks with respective reward functions {Rn}Nn=1
and optimal policies {π∗n(a|s)}Nn=1. No assumptions are made about transition dynamics.
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Neural Pathways Denote by f(x, θ) a neural network with initial parameters θ0 ∼ Θθ. We define
a binary mask m ∈ {0, 1}|θ| which defines whether a connection in f should be masked or not.
Applying the mask on the parameters of f creates a neural pathway, i.e. a sparse sub-network θ ⊙m,
which parameterizes the resulting function f(x, θ ⊙m), where ⊙ denotes element-wise product [91].
Given a dataset of task examples D, the learning problem consists of learning both the mask m
and parameters θ. In this paper, we operate in a multi-task setting and learn a pathway for each
task. Therefore, we will usually have a collection of masks {mn} and resulting pathways {θ ⊙mn},
indexed by the task n. Note that all the pathways are defined with respect to the same base parameters
θ, i.e. tasks compete for capacity under the same base network f . This introduces optimization
challenges, especially in online RL, that we address with our method in the next section.

3.2 Data Adaptive Pathway Discovery (DAPD)

In online RL, an agent interacts with an environment, whether simulated or real-world, to gather
training samples using its behaviour policy. As the policy improves, there exists a significant shift not
only in the quality but also in the distribution of the collected training samples. To address such shifts
in distribution, we introduce Data Adaptive Pathway Discovery (DAPD), which consistently adapts
the sub-network as the policy advances, accommodating changes in data distribution throughout the
training process. Our algorithm to find neural pathways for online RL relies on the following crucial
design aspects. We will first outline the parameter selection criteria proposed in [38], followed by
how we incorporate the criteria into the development of our online RL algorithm.

Selection Criterion Following previous work [1], we infer the task specific mask using a criterion
S, which measures the importance of every parameter in the neural network for a given task:

m = Tk
(
S(θ;D)

)
, (1)

where D is the dataset containing training samples for the current task, Tk is defined as the "Top-k"
operator, that sets top-k parameters to 1 and the rest to 0, thus controlling the percentage of total
network parameters considered active.
We use a gradient-based saliency criterion that identifies important connections by using a sensitivity
measure, defined as the influence of each weight on the loss function [38, 48]. Formally, the effect of
weight θq on the loss is:

S(θq) = lim
ϵ→0

∣∣∣∣L(θ0)− L(θ0 + ϵδq)

ϵ

∣∣∣∣ = ∣∣∣∣θq ∂L∂θq
∣∣∣∣ , (2)

where δq is a vector whose q-th element equals θq and all other elements are 0. This scoring metric
has been used in [38] to prune models at initialization by setting the parameters with scores lower
than a certain threshold to 0. Here, we use this scoring metric to not only rank important parameters
at initialization, but also update them to adapt to the changing data distribution.

Adaptive Masking In online RL, an agent interacts with the environment and collects the corre-
sponding training dataset D for a given task. Therefore, the task dataset D depends on the current
policy. We leverage the most recent episodic data collected by the agent. At the jth training step, we
calculate a score Sj based on the most recently gathered training samples:

Sj(θq, D
t−L:t) =

∣∣∣∣θq ∂L(θ0;Dt−L:t)

∂θq

∣∣∣∣ , (3)

where Dt−L:t is the most recent {(s, a, s′, r)}Ll=0 tuples added to the replay buffer and L is the
number of timesteps of an episode of finite length. We found that scoring parameters only on the
basis on the most recent samples collected by the updated policy is crucial. This translates into the
assumption that as our policy improves, the quality of recently collected samples gets better. We
found that it is harmful to include prior historical data for mask inference, especially in the initial
stage of online training, where the agent takes random actions to explore the environment.
To prevent abrupt mask changes and ensure training stability, we propose averaging the last K scores
and we can express the K-length moving average as 1

K

∑K−1
k=0 Sj−k. Thus, to update the mask we

use the following objective:

m = Tk
( 1

K

K−1∑
k=0

Sj−k(θq, D
t−L:t)

)
. (4)
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Warm-up and Freeze We found it important to have an initial warm-up phase during training,
where we periodically adjust the mask using Eq. (4) until we attain a reasonable episodic return
threshold, TH, which is a hyper-parameter of the algorithm often used in foundational and applied
RL research studies [46, 74, 81, 36]. After the warm-up phase is completed, we freeze the mask for
the remaining training process to allow further training of the parameters in the pathway. Because of
the potential presence of many lottery sub-networks [18], we found that freezing the mask after a
warm-up phase avoids continued oscillation among different sub-networks, which reduces variation
in end performance across runs. During the warm-up phase, we perform a periodic update of m. As
the mask updates, the solution space for optimizing the sub-network changes accordingly. Therefore,
it is important that the mask update frequency is slower than the frequency of the parameter updates.
This ensures that the optimization process remains aligned with the evolving sub-network solution
space resulting from changes in the mask. Thus, while we perform per-step updates of sub-network
parameters, we only update the mask at the end of each episode.

Algorithm 1 Multi-task SAC with DAPD (SAC-DAPD)
Init: π(θ),Q(ϕ)
Param: Moving AverageK, Warm-up Threshold TH
▷ Episodic Return nth task,Rn

T =
∑T

t=0 r
n
t ;

▷ Replay buffers nth task,Dn;
▷Mask for nth tasks,mn = {mθ

n,m
ϕ
n}.

▷ warm-up-phase = [True, . . . , True]
#Training loop:
for Training steps do

while episode not done do
# Collect Data:
for Each Task do
▷ at ∼ πθ(at|st), st+1 ∼ Tn(st+1|st, at)
▷ Dn ← Dn ∪ {st, at, r(st, at), st+1}

end for
# Update Network using SAC:
▷ Update πθ ( {mθ

1 ,mθ
2 .. mθ

n}, {D1,D2 .. Dn})
▷ UpdateQϕ ( {mϕ

1 ,mϕ
2 .. mϕ

n}, {D1,D2 .. Dn})
end while
# Periodically Update Masks:
for Each Task do
▷ If warm-up-phase[n]:

Updatemn using Eq (4)
▷ IfRn

T ≥ TH : warm-up-phase[n] = False
end for

end for

Online Algorithm We use Soft
Actor-Critic (SAC) [29] as our on-
line algorithm. SAC defines an actor-
network π(θ) and a critic network
Q(ϕ), each having its own objective
function (discussed in Appendix B.1).
For every task n, we learn two sep-
arate masks mθ

n, mϕ
n, each mask-

ing their corresponding base parame-
ters, i.e. each task n has two pathways
θ⊙mθ

n, ϕ⊙mϕ
n. We use the warm-up

and freeze strategy: the masks are up-
dated during a warm-up phase using
only the most recent transitions col-
lected from the dataset: once we reach
a threshold of performance we stop
updating the pathways and keep them
fixed. During this phase of warm-
up training, we simultaneously update
the masks and the base parameters θ
and ϕ. We use Eq. (4) to update the
masks. We present the pseudo-code
of this procedure in Alg. 1.

3.3 Pathways for Offline RL

Much like supervised training, offline RL operates with a fixed training dataset for each task.
Consequently, adaptive pathway updates are unnecessary, and we can identify the top 5% most
crucial weights for each task using Eq. (1). For all experiments, including baseline comparisons, we
adhere to a parallel training procedure. We initiate parallel training processes [51, 46, 89], assigning
one for each task and implementing asynchronous global parameter updates in a Hogwild [51] style.
Convergence of the global parameter in such a method is established in the context of RL [46, 89].
Refer to Algorithm 2 for the pseudocode outlining the integration of our offline PD algorithm.

4 Experiments

We demonstrate the efficacy of our proposed method in learning policy for online RL tasks using only
5% of the parameters in the continuous control domain without sacrificing performance compared to
the Dense counterpart. Additionally, we conduct comparisons with various baselines, evaluating the
reliability of performance across different network sparsity levels. Furthermore, we investigate the
use of additional parameter space to enable multitasking through multiple pathways in a multitask
benchmark, concurrently presenting a more energy-efficient alternative. Environment details and
snapshots are provided in Appendix C.4 and further experimental results in Appendix D.
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Table 1: Performance comparison of DAPD with various baselines at 95% sparsity in single-task experiments
using MuJoCo continuous control. We compare the average episodic return over the last 10 evaluations over 5
seeds after 1 million training steps.

Environment SAC-Dense RiGL Rlx2 SAC-DAPD

HalfCheetah-v2 8568.1 ± 1043.56 4043.95 ± 467.88 2333.31 ± 1241.16 9028.02 ± 276.31
Walker2d-v2 2972.49 ± 1691.47 260.3 ± 31.16 518.45 ± 205.16 3846.3 ± 459.82
Hopper-v2 3228.5 ± 301.88 174.89 ± 8.12 198.29 ± 10.39 3359.88 ±46.57
Ant-v2 3538.22 ± 654.76 954.2 ± 14.4 963.68 ± 6.96 3916.65 ± 502.82

(a) Learning curve comparison. (b) Performance under different sparsity. (c) Ablation study of DAPD.

Figure 2: Performance comparison of DAPD with baseline on HalfCheetah-v2. (a) At 95% sparsity, we
show the learning curve of different algorithms. (b) Under varying sparsity levels we compare the average
episodic return evaluated end of 1 million training steps. (c) Ablation study of DAPD.

4.1 Scenario 1: Online Single-Task RL

We conduct our experiment using Soft-Actor-Critic (SAC) [29] on MuJoCo continuous control tasks.
We use DAPD to identify a pathway comprising only 5% (or 95% sparse) of the total parameters of
the actor and critic network of the SAC algorithm.

Baseline Comparison We compare the performance of DAPD with other pruning algorithms
adapted for online RL, specifically RiGL [27] and Rlx2 [82], as well as with the performance of a
SAC-Dense network, in which 100% of the parameter space is trained. A comparative performance
analysis involving HalfCheetah-v2, Walker2d-v2, Hopper-v2, and Ant-v2 is presented in Table
1. In Figure 2 (a), we compare the learning curve of DAPD with SAC-Dense and with a pruning
method on SAC exhibiting 95% sparsity on HalfCheetah-v2. We also evaluate SNIP [38] applied
at initialization using Eq. (1). All the baselines are trained for the same number of steps, i.e. for
DAPD the warm-up phase is included within the total training steps, with no additional training
compared to the baselines. The poor performance of SNIP highlights the importance of our proposed
adaptive update in an RL context.
First, we emphasize that DAPD outperforms the dense network both at the end of training, for
multiple levels of sparsity, as well as during training, even with an extreme level of 95% sparsity. (Fig.
2a). A recent study [50] has highlighted the fact that dense networks exhibit primacy bias, essentially
overfitting data observed early in the training. Our approach has two effects: the sparsity acts as a
regularizer while training the sub-network adaptively reconfigures the parameters during the early
stages of training, therefore mitigating primacy bias. RiGL and Rlx2 have specific sparsity levels for
each environment at which they perform well, as shown in the Appendix (Figure 12) and in Fig 2b,
but they are ineffective at a 95% sparsity level. Additional evidence regarding the learning curve and
comparative analysis at various sparsity levels on Walker2d-v2, Hopper-v2, Ant-v2 is provided in
Appendix ( see Figure 13 and 14).

Impact of Warm-Up We hypothesize that due to the distribution shift in online training, single-
shot pathway discovery techniques fail to maintain satisfactory performance. Hence, the impact
of warm-up, via the periodic reconfiguration of the pathway, should be essential. To validate this
hypothesis, we train SAC without warm-up: we collect random trajectories, initialize a mask using
Eq (1) and train the resulting sparse SAC network for 1 million steps. We report the results in Fig. 2
(c), (orange), as the mean (5 seeds) performance evaluated every 5000 steps. Secondly, we show
that the stopping the update of the mask during training is crucial for obtaining reliable performance.
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Figure 3: Sample efficiency comparison of SAC-sparse (95%) network
using DAPD with the SAC-Dense counterpart. We provide a quantile plot
of mean episodic return over the 10 evaluations over 5 seeds at different
training steps.

Figure 4: Evolution of the layer-
wise sparsity of the policy network
over training steps.

Table 2: We compare the success rate of SAC-DAPD on MetaWorld 10 (MT10). We also show the reduced
parameter complexity, FLOP and hence the energy consumption of SAC-DAPD compared to other baseline
methods.

Experiments SAC-DAPD SAC-Dense PCGrad SM SAC+ME CARE

MT10 tasks 77 ± 1.3 49.0 ± 7.3 72.0 ± 2.2 73 ± 4.3 74 ± 4.3 84 ± 5.1
Parameter Counts 17k 340k 340k 135k 344k 486k
FLOPs 16.9k 339K 339K 78K 363K 368K
Energy Consumption, Jules k 20k 20k 20k 21.02k 21.25k

DAPD w/o freeze results in frequent switching among different sub-networks throughout the training
process. This is evident in Figure 2, where DAPD w/o freeze (blue) exhibits high variance in the
performance. In contrast, DAPD (pink) with a fixed warm-up phase (halted at episodic return,
TH=8000), demonstrates low variance in episodic return and surpasses the performance of the
SAC-Dense model. In Appendix D.1, we provide empirical evidence demonstrating the existence of
numerous lottery subnetworks and validate that freezing any of these subnetworks can yield equally
good performance. Further insights are provided in Appendix (Table 5), where we explore the impact
of the warm-up period’s duration and the rolling moving average on the scoring function in DAPD
performance.

Evolution of Sparsity We observe the evolution of layer-wise sparsity in Figure 4. Following
evolution topology-based pruning, both RiGL and RlX2 initiate with a random mask. While they
iteratively prune and grow connections within each layer, they maintain a fixed sparsity percentage
per layer. This constraint leads to higher sparsity in the input layer compared to the output layer
(Layer-1 and 3 in Figure 4, potentially overlooking critical features at the input layer. In contrast,
DAPD examines the importance of weights across the entire network, granting us the flexibility to
focus on weights throughout the network, providing a higher degree of freedom. While our initial
observation reveals a sparser input layer compared to the output layer, this balance shifts as training
progresses. In this specific experiment, we continuously re-calibrate the mask during training. Our
findings indicate that while the sparsity adapts, it fluctuates within a certain range, reinforcing our
rationale for maintaining a fixed-length warm-up phase.

Sample Efficiency To investigate the sample efficiency of DAPD, we conducted experiments with
varying numbers of training steps, comparing the performance with the SAC-Dense model in MuJoCo
tasks. In Figure 3 we find DAPD to consistently surpass the performance of the SAC-Dense model,
proving DAPD to be more sample efficient. This highlights its potential for more efficient resource
utilization compared to its Dense counterpart. Additional experimental results are provided in Figure
15 in Appendix.

4.2 Scenario 2: Online Multi-Task RL

We compare the performance of our proposed method against various baselines on the MetaWorld
[98] MT10 benchmark. The agent gets a binary score based on success in reaching an expected goal
state. In Table 2, we evaluate the mean success rate over 10 tasks. Results include mean and standard
deviation over 10 seeds.

7



Baseline Comparison We compare our method to vanilla SAC (SAC-Dense), SM [93] which
requires a modified network architectures to route through modular networks, PCGrad [97], which
requires a complex gradient update procedure, and CARE [77], which uses pre-trained language
model to encode meta-data and retrieve contextual information about the tasks. Despite its simplicity,
we observe a significant performance enhancement with DAPD compared to Dense, from 49% to a
remarkable success rate of 77%. This improvement is particularly impressive considering that DAPD
uses the same learning objective and gradient update rules as the Dense model while operating with
an extremely sparse network, utilizing only 5% of the model weights for any task.

Figure 5: Energy consumption profile of algorithms on
MetaWorld benchmark. We normalize the performance
and energy consumption to highlight the trade-off for
performance gain.

Energy Consumption We estimate energy
consumption based on FLOP counts [23] and
create a normalized (on a scale of 1) energy
consumption profile alongside performance in
Figure 5. A reduction in FLOP counts, leads
to decreased computations and lower energy
costs, resulting in a proportional relationship
between FLOP count and energy cost in Joules
i.e. FLOPs ∝ Joules. This allows us to illus-
trate the trade-off in energy consumption during
inference on Dense networks for marginal gain.
Compared to other baseline methods, our pro-
posed DAPD can potentially save 20x energy
usage while achieving competitive performance.
We would like to point out that the only base-
line that exceeds our performance is CARE [77]
which requires a pre-trained language model and assumes task dependency.

We discover that a warm-up phase of 10k steps, constituting 0.5% of the total training steps, proves
effective in configuring the pathway. This approach avoids gradient interference encountered due
to multitask training and prevents catastrophic failures in the learning process. Further details are
provided in Appendix D.2. We consider choosing the neural pathways for each task independently
from one another and yet we find considerable pathway overlap. Further discussed in Appendix D.4.
Since this is the first work that proposes the neural pathways in a multitask RL setting, there is a
range of open questions that need to be explored. Limitations of our method and possible avenues of
future work are discussed in the Appendix E.

4.3 Scenario 3: Offline Multi-Task RL

For our offline experiments, we train SAC to collect the training dataset ( see Appendix C.2). We use
BCQ [22] and IQL [37] for our offline experiments. We compare the performance of PD with two
Dense baseline methods: (a) a multi-task variant (MT) that uses a single Dense network for multiple
tasks, and (b) a multi-head multi-task variant (MHMT) that employs independent heads for each task,
both utilizing the Dense network. It is crucial to emphasize that, similar to MT and MHMT, we refrain
from imposing any additional multitask learning objectives, facilitating a fair baseline comparison.
Instead, our approach provides the network with the advantage of training separate parameters for
each task. We evaluate performance and energy efficiency in the MetaWorld benchmark. We further
examine robustness in comparison to Dense baselines under mixed data distribution and sample
complexity on HalfCheetah-Multitask. Supplementary experiments, including comparisons with
single-task experts on additional sets of tasks, are presented in Appendix D.3.

MetaWorld Benchmark The success rate (mean and standard deviation over 10 seeds) is reported
in Table 3. Whereas baselines with Dense networks suffer from high variance in performance, with
BCQ+PD, we get a perfect score on all MetaWorld tasks. A success rate of 100 indicates BCQ
reaches the goal for all the tasks all the time. Moreover, if our model uses K Joules of energy, based
on the FLOP relationship, we show how costly other baselines are in terms of energy consumption.
We also provide a detailed breakdown of individual task performance Appendix (Table 9), where we
compare Conservative data sharing (CDS) [96], an offline-multitask learning algorithm that utilizes
task similarity.
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Table 3: Performance comparison in MetaWorld offline. We compare the final success rate (mean and std over
10 seeds) of pathways discovery (PD) on MT10 tasks with Offline-MT and Offline-MHMT baselines on offline
RL algorithms. We also show the reduced parameter complexity (x times) of PD compared to other baseline
method

Experiment Offline PD Offline MT Offline MHMT

BCQ IQL BCQ IQL BCQ IQL

MT-10 tasks 100 ± 0.0 97.3 ± 7.17 81.5 ± 24.15 79.1 ± 26.81 95.9 ± 10.44 96.5 ± 7.10
Parameter Counts 67k 54k 1.34M 1.01M 1.38M 1.12M
FLOPs 29.4K 53.6k 589K 1073K 629k 1128k
Energy Consumption, Joules k k 20k 20k 21.25k 21.02k

(a) (b)

Figure 6: (a) We compare the sample complexity analysis of
BCQ+PD with BCQ-MT (Multitask) and BCQ-MHMT (Multi-
head Multitask) baselines on HalfCheetah multitask. (b) Per-
formance (Normalized Score) plot of BCQ on HalfCheetah
multitask trained with PD with baselines on mixed data distribu-
tion.

Performance Under Mixed Data Dis-
tribution To further validate the relia-
bility of our method, we conduct a sam-
ple complexity analysis [2] across vary-
ing reduced training sample sizes. The
interquartile plot of normalized scores
in Figure 6(a) consistently demon-
strates an improvement when BCQ is
trained with PD.

Performance Under Sample Complex-
ity Even within the Offline setting, it
is anticipated that there may be a distri-
bution shift in the static training dataset.
Therefore, the resilience of offline algo-
rithms is assessed under a mixed data
distribution [22, 21, 28]. In Figure
6(b), we demonstrate that PD exhibits
enhanced performance even when con-
fronted with a mixed dataset. Additional details regarding data collection and the experimental setup
are provided in the Appendix D.3.2.

5 Conclusion

We propose to train task-specific neural pathways for reinforcement learning (RL) within a single
deep neural network. We presented the Data Adaptive Pathway Discovery (DAPD), which builds on
the pruning literature [18, 38, 90, 15] to identify individual pathways. The DAPD method overcomes
limitations in sparse network discovery using connection sensitivity under dynamic data distributions.
Our methodology showcases superior sample efficiency and excels in both single and multitask
training instances over dense networks, while using 95% fewer parameters on high-dimensional
continuous controls, without the need for complex objective functions or gradient manipulation.
Beyond performance gains, our work has the potential to significantly enhance energy efficiency
in neural networks. Through reduced FLOP counts and leveraging Sparse Matrix Multiplication
(SpMM), our approach can be 20x more energy efficient than alternative strategies.
This work opens up research into the possibility of a single neural network being trained for multiple
purposes in RL (i.e. learning different features, multiple value functions etc.) while providing
better efficiency in utilizing the parameter space of neural networks. While our method can be
integrated into other selective data-sharing and gradient update methods, further research is required
in this direction. Expanding the scope of experiments would provide valuable insights for future
investigations.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We support our claims made in the abstract and introduction through empirical
justification in continuous control experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the introduction, we specify that our proposed method is tailored for
Reinforcement Learning and offers benefits contingent upon the effective utilization of
Sparse Matrix Multiplication.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: We support our hypothesis through empirical evidence.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide code to reproduce the result of our proposed method DAPD for
single-task online RL and provide details along with hyper-parameters for all our experiments
in the Appendix.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] ,
Justification: We provide code to reproduce the result of our proposed method DAPD
for single-task online RL. We are unable to share offline training datasets due to space
constraints for supporting materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental details in our paper and hyperparameters in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct each experiment with multiple seeds and provide the return and
standard deviation, along with a 95% confidence interval, following a standard practice in
RL literature.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We conducted experiments using various GPUs available at the time, which
may have influenced the runtime; therefore, we did not provide specific details. The absence
of specific details does not compromise the reproducibility of our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper is conducted, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The aim is to reduce carbon footprint to enhance the computational and energy
efficiency associated with RL models training and inference, thereby fostering a positive
social impact.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited and credited the owner of the assets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code along with instructions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix

A Additional Related Works

For MetaWorld online experiments, we compare the algorithms reported in the benchmark [77].
[77] focuses on the importance of contextual information and proposes Contextual Attention-based
Representation (CARE), using a pre-trained language model [43] to encode meta-data and retrieve
contextual information about the task. The contextual information added with the environment
observation is used to train SAC with Mixture of encoders (SAC+ME). As seen in Table 2, the
success of CARE largely depends on metadata which is not always available in all multitask settings.
Soft-modularization (SM) proposes effective sharing and reusing network components across tasks.
As reported in [77], the performance of SM [93] varies largely when evaluated over 10 different
sub-tasks. We also include Projecting Conflicting Gradient (PCGrad, [97]), which focuses on tackling
gradient interference. If gradients for different tasks point away from one another, PCGrad alters the
gradient direction to mitigate this interference.
There is a range of techniques to find such sparse-network through an iterative update during training
[18, 15, 24, 5, 56, 92]. Building upon a three-decade-old saliency criterion used for pruning trained
models [48], a recent technique to prune models at initialization was proposed by [38] and was swiftly
followed by newer works [90, 10, 83] which can find sub-networks at initialization. There are recent
works in both offline [3] and online RL [27, 82] that discovers sparse network for RL agent.

B Additional Theoretical Background

B.1 Offline and Online Theory

[22] highlight the fact that, since value estimation is trained with a fixed dataset, it provides an
erroneous estimation when the policy takes an action which is out of distribution from the dataset on
which the value function is trained. To overcome extrapolation error, BCQ proposes batch-constrained
learning, where agents are trained to maximize reward while minimizing the mismatch between the
state-action visitation of the policy and the state-action pairs contained in the batch. For a given
state, BCQ uses a generative model Gw, e.g. a Variational Auto-encoder [34], to generate n actions
with high similarity to the batch dataset, and then it selects the action for which it gets the highest
value: π(s) = argmaxAi

Qϕ(s, ai), where Ai ∼ {Gw(s)}ni=1. Gw is trained to minimize the KL
divergence with the actions sampled from batch dataset [35]. The action-value function or Q-function,
Qϕ learned through minimizing TD-error is J(Qϕ) = E{s,a,s′}∼D,a′∼πθ

[(r(s, a) + γQ̂ϕ(s
′, a′))−

Qϕ(s, a)
2]. In our experiments, we also consider a variation of BCQ (denoted as BCQ-v2) in which

we sample actions only using a VAE (π(s) = Gw(s)).
Since Offline RL faces a distribution shift in its value estimation due to the different distribution
of the policy and expert sample, Implicit Q-learning (IQL) [37] proposes to avoid estimating the
value for policy distribution. Instead, it trains the action-value function Qϕ using a SARSA-style
update, thus enabling multi-step dynamic programming updates. IQL uses expectile regression to
predict an upper expectile of TD target that approximates the maximum of r(s, a) + γ[Q̂ϕ(s

′, a′)].
IQL uses a separate value function by fitting upper expectile Vψ using the objective function:
J(Vψ) = Es,a∼D[Lτ2(Q̂ϕ(s

′, a′) − Vψ(s))], where Lτ2 is asymmetric least squares. This value is
used to update Q function using: J(Qϕ) = Es,a,s′,a′∼D[(r(s, a) + γV̂ψ(s

′) − Qϕ(s, a))
2]. The

corresponding policy is extracted using advantage-weighted behavior cloning, which also avoids
querying out-of-sample actions (πθ) = Es,a,s′,a′∼D[(Qϕ(s, a)− Vψ(s)) log πθ(a|s)].
We consider no prior knowledge about the task in the online RL setting. An RL agent is expected
to interact with a simulated environment and leverage the collected experience to learn the task by
maximizing a hand-designed reward function. Neural pathways can be integrated into any online
RL algorithm and trained for divergent multitask objectives. To demonstrate the effectiveness of our
method in the online setting, we use Soft-Actor-Critic (SAC) [29] algorithm in our experiment. SAC
optimizes entropy-regularized policy objectives to drive an agent to a more exploratory behaviour
while optimizing its policy. Entropy is used to encourage policy to do more exploratory behaviour and
ensure that it does not collapse into repeatedly selecting a particular action. The entropy regularized
objective function is as follows:J(θ) =

∑T
t=0 Est∼dπ,at∼πθ

[r(st, at) + αH(πθ(.|s))], here α is
temperature parameter, which controls the entropy, H parameter, hence the stochasticity of the
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policy. It determines the relative importance of the entropy term against the reward. The conventional
objective for policy gradient is recovered when α → 0. SAC learns a Q-function using an entropy-
regularized objective called a soft Q-function. The soft Q-function parameters are trained to minimize
the following objective:J(ϕ) = E(s,a)∼D[(Qϕ(st, at)−r(st, at)+γEs∼ρπ,a∼πθ

[Qϕ′(st+1, at+1)−
α log πθ(at+1|st+1)])

2].

C Additional Implementation Details

C.1 Libraries

We run our algorithm in PyTorch-1.9.0 [58] and use following libraries: Soft-Actor-Critic (SAC) [95],
Implicit Q-learning (IQL) [86], Single-shot pruning (SNIP) [1], official BCQ [22], RiGL and Rlx2 [82]
implementation. In our MetaWorld experiments, we utilized the commit with the following commit-id:
https://github.com/rlworkgroup/metaworld/commit/af8417bfc82a3e249b4b02156518d775f29eb289,
maintaining consistency with the setup employed for benchmarking as detailed in [77].

C.2 Offline data collection

We use the Halfcheetah control environments proposed in [85] and train Soft-Actor-Critic (SAC)
[29] online for 1 million time steps and collect 1k expert trajectories.
For Quadrupod tasks we utilize the environment and trained agents from [75] and collected 1000
trajectories for each task. During data collection we find it important to use stochastic policy to add
data diversity, otherwise, every trajectory follows the exact consecutive states, actions and rewards
sequence due to the deterministic nature of the environment transition function.
We train SAC [29] on MetaWorld [98] environments for 3 million steps with a training batch size of
1024 samples. Similar to [77] we truncate the episode for 150 steps. We collected 1k trajectories for
each environment, where we take sample action of the normal distribution rather than the mean to
have diversity in the training sample. Since we are not learning a goal-conditioned algorithm, we
need to keep this goal for the experiment.

C.3 Hyper-parameter

In table 4 we present the network hyper-parameters of different algorithms that are used in this work.
In online MetaWorld experiments, we deviate from the standard procedure and instead adopt the SAC
multitask hyperparameters suggested in the benchmark [77] for fair comparison. Specifically, we
employ neural networks with three layers, each containing 400 hidden units, and utilize a mini-batch
size of 128.

Table 4: Hyperparameter of the network architecture used to train and evaluate offline and online RL experiments.
Hyper-parameter BCQ IQL SAC

hyper-parameter Optimizer Adam Adam Adam
Critic learning rate 1e-3 1e-3 1e-3
Actor learning rate 1e-3 1e-3 1e-3
Mini-batch size 256 256 256
Discount factor 0.99 0.99 0.99
Target update rate 5e-3 5e-3 5e-3
Policy update frequency 2 2 2

Architecture Critic hidden dim [400, 300] [1024, 1024] [256, 256]
Critic activation function ReLU ReLU ReLU
Actor hidden dim [400,300] [1024, 1024] [256, 256]
Actor activation function ReLU ReLU ReLU
VAE hidden dim [750, 750] – –
Value hidden dim – [1024, 1024] –

C.4 Simulated environments

Multitask HalfCheetah: We train HalfCheetah for five different kinds of task [17, 63] where
it needs to (i) run forward, (ii) run backward, (iii) jump, (iv) jump while running forward and (v)
jump while running backward. It is important to note that the gait movements of these tasks are very
diverge.
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(a) run forward (b) run backward

(c) forward jump (d) backward jump

(e) jump

Figure 7: Snapshot of trained policy for Halfcheetah multitasks.

Constrained Velocity HalfCheetah: We consider another variation of the HalfCheetah environ-
ment where tasks are rather similar and need to go forward where we constrain the velocity of the
HalfCheetah to six different target values from 0.5 to max speed 3.0 [17, 63].

(a) velocity 0.5 (b) velocity 1.0

(c) velocity 2.0 (d) velocity 3.0

Figure 8: Snapshot of trained policy for Halfcheetah under four different constrained velocity.

Multitask Quadrupod: Multitask Quadrupod consists of (i) run forward, (ii) run backward, (iii)
hopturn: hop and turn to left followed by turning back to the initial position and (iv) sidestep: take a
step left and take a step to the right to the initial position. This simulated environment is commonly
used in simulation to real-world transfer experiments [40, 61, 94].

(a) pace forward (b) pace backward

(c) hopturn (d) sidesteps

Figure 9: Snapshot of trained policy for Quadrupod multitasks.
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MetaWorld: [98] is a set of robotic manipulation tasks for benchmarking multitask-learning and
meta-learning. In this paper, we consider the MT10 benchmark from MetaWorld, where we have
10 diverse tasks, evaluated with the mean success rate over 10 tasks. At each trial, the agent gets a
binary score based agent’s success in reaching an expected goal state.

Figure 10: Snapshot of MetaWorld MT10 tasks.

C.5 Performance evaluation

Each task in a multitask experiment is trained with an equal number of gradient updates. We evaluate
performance every 5000 gradient updates, with each evaluation reporting the average episodic return
and standard deviation, along with a 95% confidence interval, calculated over 10 episodes. Our
results are reported over multiple seeds of the simulator and the network initialization.

For normalized performance comparison in offline RL, we normalize the episodic return using
standard proposed metric from [21]: Normalized score =

( score - random score
expert score - random score ∗ 100

)
. We plot the

mean normalized score of multiple seeds with 100% confidence interval for all our experiments.

For MetaWorld (both offline and online) we evaluate the percentage of success following the Meta-
World benchmark [77].

For the Gym environment, we conduct experiments for seeds 0-4 (if not stated otherwise). We run all
MetaWorld experiments for seed 10 seeds (0-9) and report the percentage of success after evaluating
100 episodes.

Algorithm 2 Multitask Offline Training
# Find the Task Specific Weight Masks:

▷ m1,m2 .. mN = FindPathways
(
D1, D2, ...DN

)
; using Eq.(1).

#Initialize a model for each task and consider asynchronous gradient update:
▷ Initialize local-model, global-model

#Training loop:
for Training steps (n Tasks in parallel) do

#sync-weight
▷ local-model = mask

(
global-model

)
# L(θ ∗mn); mask the nth task-specific weights

▷ Sample (s, a, s′) ∼ Dn

▷ local-model.loss()
▷ local-model.backward() #∇θ⊙mnJ(Dn) ; compute gradient of masked weights
▷ sync-gradient

(
local-model, global-model

)
▷ global-model.optimizer.step()

end for

#Evaluation loop:
▷ local-model = mask

(
global-model

)
# sync-weight

▷ Evaluate( local-model)
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D Additional Results

D.1 Online RL Expeirments

Figure 11: After the warm-up phase, we sample three
sub-networks (highlighted in yellow, pink, and green).
These sub-networks exhibit a certain percentage of
change in the parameter space from the prior sub-
network (blue). We illustrate the overall percentage
change using the Venn diagram. The similarity in
the learning curves supports the existence of multiple
equally effective lottery sub-networks.

Empirical Validation of Many Lottery Ticket
Sub-networks: Empirically, we have found
that, if we keep configuring the pathway
throughout the training, it never optimizes to a
fixed set of parameters. A certain % of the path-
way is always changing. Pruning literature hy-
pothesizes [18] existence of a set of lottery sub-
networks (where each subnetwork is expected to
perform the same as the dense network). There-
fore, we conjecture that in online RL, without
the stopping criteria, it ends up switching among
these sub-networks and that leads to high vari-
ance in performance
Here, we empirically want to show that after
the warm-up phase, we can find many lottery
sub-networks, when optimized separately can
converge to similar performance. In the on-
line setting, after the warm-up phase we stop
re-configuring pathways any further. How-
ever, there is no theoretical justification as to
whether or not we have converged to an optimal
pathway. Pruning literature hypothesizes that
many sub-networks can lead to equivalent per-
formance [18]. We back this up empirically in Figure 11. After the warm-up phase, we sample
three different trajectories and, using Eq. 4 obtain three subnetworks. By using different seed
values and sampling stochastic actions, we ensure the subnetworks are distinct. These sub-networks
exhibit a certain percentage of change but highly overlapping in the parameter space from the prior
sub- network. We highlight the overlap using the Venn diagram in the Figure 11. Training these
subnetworks separately yields similar performance. The similarity in the learning curves supports the
existence of multiple equally effective lottery sub-networks. Therefore, after the warm-up phase, it
is justified to use any of these sub-networks and use it for the remainder of the training. Otherwise,
as observed in the warm-up phase, we will see an occasional drop in performance due to a sudden
change in the sub-network parameter space.

Ablation on the baselines: As reported in [82], the gradient-based topology evolution methods
(RiGL [27] and Rlx2 [82]) depend on finding unique actor-critic sparsity ratio for different tasks
to reach the performance of the dense network. In this work, we evaluate all the methods at the
sparsity setting of 95%. We use the RiGL and Rlx2 implementations as reported in [82]. We rerun
the experiments on Ant-v2 control task to further assess the degree of dependency. In Fig 12, we
observe the performance for both methods drop drastically (orange curve) when we set the sparsity
of actor and critic network to 95%.

Figure 12: Learning curve of RiGL (left) and Rlx2 (right) under different sparsity levels. We compare the
performance of optimal sparsity level (actor 90% and critic 75% in green) presented in [82] with the performance
at 95% sparse network ((for both actor and critic in orange).
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Compare baseline performance: The comparative analysis, depicted in Figure 13, further solidifies
our assertion. This analysis is conducted at a sparsity level of 95% on the learning curves, comparing
SAC-dense performance with SAC-sparse (95%) trained using DAPD, RiGL, and Rlx2 across
continuous control tasks: HalfCheetah-v2, Walker2d-v2, Hopper-v2, and Ant-v2. The models
are trained for 1 million steps and evaluated every 5000 steps. Episodic return is averaged over 10
evaluations across seeds 0-4.

Figure 13: At 95% sparsity, we compare the performance of DAPD with baselines on MuJoCo control tasks.

Performance comparison across different sparsity levels: For further validation, we present the
final performance across various sparsity levels in Fig 14, where DAPA consistently prior superior
performance by a large margin and even exceeds the dense network in most of the experiments.

Figure 14: Performance comparison of DAPD with baselines across various network sparsity levels on MuJoCo
control tasks.

Sample Efficiency : Here we provide the complete results on the sample efficiency of DAPD
compared to the SAC-dense model in MuJoCo continuous control tasks.

Figure 15: Sample efficiency comparison of SAC-sparse (95%) network using DAPD with the SAC-dense
counterpart. We average episodic return over the 10 evaluations over 5 seeds at different training steps.

DAPD hyper-parameter tuning: We compare the performance of DAPD varying the warm-up
phase threshold (TH) and length of the moving average over the scoring function K in Table 5. In the
majority of cases, we observe performance surpassing that of the SAC-dense network. Moreover, with
the appropriate configuration of TH and K values, we achieve a marginal improvement, exceeding
the SAC-dense performance. However, we find in certain experiments, that the length of the moving
average over the scores can stabilize the performance and can be very effective. We further validate
a set of experiments on HalfCheetah-tasks [17, 63]. We showcase the importance of tuning the
parameter K in Table 6. Subsequently, we compare the performance with RiGL, Rlx2, as well as
with Tiny-SAC (a dense network with 32 hidden units). We normalize (on a scale of 100) the episodic
return with the single-task SAC-dense performance.

For MetaWorld, we utilize the success of reaching to goal state as the warm-up threshold TH and
use moving average K=1 for our experiments.
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Table 5: Performance comparison of DAPD conditioning the warmup phase, TH and the K-length moving
average over scores in Eq. (4). The evaluation is performed after 1 million training steps, and the mean and
standard deviation are computed based on 10 evaluations across seeds 0-4. We bold the performance where we
exceed the SAC-dense and highlight the best performance.

Environment Warmup Episodic Return Moving Average K SAC-dense

Threshold (TH) K=1 K=5 K=10

HalfCheetah-v2 TH=6k 8581.65± 1239.29 7762.61± 1409.99 8139.22± 373.86 8568.1± 1043.56
TH=7k 8767.34± 970.99 8528.14± 596.87 7695.5± 297.06
TH=8k 9028.02± 276.31 8661.59± 141.25 8365.33± 217.94

Walker2d-v2 TH=2k 3760.02± 79.99 3492.1± 450.99 2623.14± 1359.74 2972.49± 1691.47
TH=3k 3246.02± 158.14 3660.02± 406.87 1719.17± 1233.02
TH=3.5k 3810.9± 529.2 3846.3± 459.82 3564.79± 354.65

Hopper-v2 TH=2k 3359.88± 46.57 2844.01± 518.6 2269.41± 1293.42 3228.5± 301.88
TH=3k 3289.11± 315.19 2865.94± 874.77 3005.91± 488.89
TH=3.5k 3202.11± 330.27 2567.26± 818.61 2723.71± 619.53

Ant-v2 TH=2k 2698.21± 941.56 2845.63± 517.76 2442.02± 244.73 3538.22± 654.76
TH=3k 3576.48± 416.99 3916.65± 502.82 3297.23± 984.44
TH=3.5k 2232.0± 1054.63 3868.91± 786.66 3032.03± 749.78

Table 6: Performance ablation of DAPD on various HalfCheetah-tasks. We present the normalized performance
compared to SAC-dense network.

Environments DAPD

K=10 K=5 K=1 DAPD w/o freeze DAPD w/o warmp-up

Halfcheetah Forward 98.57± 0.81 98.88± 5.90 97.97± 0.6 71.33± 26.14 26.89± 10.34
Halfcheetah Backward 82.71± 6.86 87.53± 9.4 76.64± 12.60 89.91± 10.36 12.13± 3.8
Halfcheetah Jump 93.63± 6.87 66.60± 32.25 84.44± 12.60 14.10± 39.48 0.98± 3.2
Halfcheetah Foward Jump 98.54± 0.80 90.53± 12.9 89.62± 13.63 66.00± 46.80 25.54±8.5
Halfcheetah Backward Jump 88.85± 0.12 85.67± 3.9 65.55± 3.26 80.24± 9.5 11.89± 3.7

Overall 462.33± 15.49 429.16± 59.16 414.17± 42.75 293.38± 13.23 77.45± 29.70

Improvement 6x 5.5x 5.3x 3.8x -

Algorithmic Generalization: To assess the general applicability of our method across various RL
policies, we tested it on Proximal Policy Optimization (PPO) [70] for continuous control comparing
our method’s performance against a dense network in single-task settings. Our results in Fig 16
demonstrate that our approach enhances performance for on-policy actor-critic methods like PPO.
We provide the learning curve over 3 seeds below:

(a) (b)

Figure 16: To prove algorithmic generality, we compare the PPO
baseline performance with applying DAPD on (a) HalfCheetah-
v2 and (b) Ant-v2 tasks

Domain Generalization: To demon-
strate the generality of the approach and
to check performance in other domains,
we provide the performance of DAPD
in three pixel-based Atari environments.
We explored scenarios without any as-
sumption about the expected return and
explored the possibility of updating the
mask periodically. We conducted exper-
iments using the DQN [47], updating
the mask every L gradient steps. We
report the final performance in Table 7
after 10 million gradient steps, averag-
ing over 3 seeds, with the mask being
updated every L=1 million steps.

D.2 Online Multitask Training and Addressing Gradient Interference

Even though training pathways (each constituting 5% of the neural network) compartmentalize the
neural network parameter space, due to gradient interference, optimizing pathways while learning
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Table 7: Performance of DQN Algorithms on Various Environments

Environment DQN-dense (mean ± std) DQN DAPD (mean ± std)

DemonAttack-v4 17670.33 ± 2829.91 20803.33 ± 3273.07
BreakoutNoFrameskip-v4 346.66 ± 12.21 384.0 ± 15.80
PongNoFrameskip-v4 20.36 ± 0.58 19.09 ± 0.77

(a) Batch Mean Gradient Norm (b) Success Rate
Figure 17: When we try to configure pathways without warm-up phase (blue), (a) parameters of the harder tasks
do not change from the values at initialization due to small changes in gradients. This results in unsuccessful
task learning and can be seen in (b). We find an improvement in performance including warm-up phase (pink).

good policy for each task becomes tricky. Notably, significant parameter sharing among tasks makes
it difficult to entirely avoid such interference.
Our experiments with MetaWorld [98] revealed that DAPD rapidly optimizes pathways for easier
tasks, but for more challenging tasks, we observed only minimal changes in gradient updates. To
monitor parameter changes, we computed the gradient norm ||dwdL || of the pathway parameters of the
SAC-actor network for a batch of samples.
We observe an interesting correlation between the change in gradient norm in Fig 17(a) and the
performance in Fig 17(b). In Fig 17(a), initial experiments without warm-up phase (blue) showed
little to no change in gradient norm for task-specific parameters. Whereas deploying DAPD with
warm-up phase (pink) escapes the stagnation and contributes to an improvement in the success rate,
as illustrated in Fig 17(b). It is important to note that while a change in the gradient norm
is indicative of some updates occurring during training, it does not necessarily guarantee
improved performance. Comparing the blue and pink curves in 17(a), we can conclude that having
a warm-up phase, to configure pathway, is helping to diverge from random weight initialization,
which can be useful for overcoming local minima or exploring the solution space. A reflection of
improvement we see in the success rate in Fig 17(b).
For the MetaWorld experiment, we employ the warm-up phase for 10,000 gradient steps (constituting
0.05% of the training) to learn independent task-specific pathways. For each task network parameter
initialization is identical. At the end of this warm-up stage, we average the weights of overlapping
parameters and keep the pathways fixed for the remainder of the training. We conduct parallel online
data collection, and during training, we accumulate gradients of shared parameters.

D.3 Offline RL Experiments:

For the offline RL setup, when designing experiments, we focus on two criteria. First, how does
our method perform compared to the performance of single task experts and second, how does
our method perform when compared to a common baseline. When comparing to an expert, we
carefully select a range of multitask benchmarks ensuring that our method (1) is tested with a diverse
range tasks (Multitask HalfCheetah) (2) can yet be performed in a controlled tasks that are similar
(HalfCheetah Constrained Velocity) in nature and (3) can master skills that can easily be transferred
in real world applications (Multitask Quadrupod). To compare to common baseline algorithms, we
evaluate on the (4) MetaWorld Multi-Task benchmark.

Evaluation method: For evaluation, we compare with expert performance and normal-
ize the episodic return using standard offline evaluation metric [21], normalized score =( score - random score

expert score - random score ∗ 100
)
, where random score is generated by unrolling a randomly initial-

ized policy and averaged over 100 episodes. A score of 100 represents the average returns of a
domain-specific expert.
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We conduct offline MetaWorld experiments with 10 different seeds, employing 100,000 gradient
updates for each task. The evaluation of our trained agent is performed 100 times for each task,
providing a more accurate assessment of its performance across all tasks.

D.3.1 Performance Compared to Single-task Expert:

Each task in a multitask experiment is trained with an equal number of gradient updates. We compute
the average episodic return over 10 episodes of the trained agent. Our results in Table 8 are reported
over seeds 0-4 of the Gym simulator and the network initialization. We run the Halfcheetah
experiments for 1M and Quadrupod for 500k gradient updates. Our proposed method achieves
expert-like performance for most of the tasks in 3 sets of experiments.
Table 8: Individual task normalized score (performance compared to single task expert) HalfCheetah and
Quadrupod tasks.

Experiment Tasks PD

BCQ IQL

HalfCheetah Forward 99.68 ± 0.04 99.98 ± 0.04
multitask Backward 96.51 ± 0.19 98.68 ± 0.83

Jump 71.38 ± 9.46 74.99 ± 20.1
Forward-Jump 85.25 ± 0.54 87.35 ± 27.0
Backward-Jump 83.3 ± 1.46 87.34 ± 14.23

Overall 87.20 ± 2.34 89.67 ± 12.44

HalfCheetah Velocity 0.5 100.04 ± 0.03 99.1 ± 2.18
Constrained speed Velocity 1.0 100.07 ± 0.03 100.05 ± 0.04

Velocity 1.5 100.03 ± 0.05 99.99 ± 0.06
Velocity 2.0 100.07 ± 0.01 100.07 ± 0.04
Velocity 2.5 100.02 ± 0.04 100.04 ± 0.03
Velocity 3.0 99.96 ± .07 100.01 ± 0.03

Overall 100 ± 0.038 99.88 ± 0.40

Quadrupod Forward 116.19 ± 0.14 116.92 ± 0.51
multitask Backward 110.98 ± 1.21 112.93 ± 1.05

Hopturn 122.43 ± 0.47 123.33 ± 0.29
Sidestep 111.8 ± 0.96 113.69 ± 0.43

Overall 115.35 ± 0.70 116.71 ± 0.57

Performance curve of Halfcheetah Multitask Fig. 18 presents the performance of five different
Halfcheetah tasks: (1) run forward, (2) jump while run forward, (3) run backward, (4) jump while
run backward and just(5) jump. Snapshots of the different tasks are demonstrated in Fig. 7.
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Figure 18: Performance (Normalized Score) plot of BCQ and IQL on HalfCheetah multitask - (Forward,
Forward-Jump, Backward, Backward-Jump, Jump) trained with PD.
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Performance curve of Halfcheetah constraint goal velocity In Fig. 19 we present the perfor-
mance of six (6) constrained goal velocities for Halfcheetah running forward, where we vary the
constrained from 0.5 to max speed 3.0 with a constant increase of the speed. The tasks are trained for
500k gradient updates and evaluated every 5000 gradient updates. Snapshots of the different tasks
are demonstrated in Fig. 8.
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Figure 19: Performance (Normalized Score) plot of BCQ and IQL on HalfCheetah with constrained velocity
trained with PD.

Performance curve Multitask Quadruped Robot We use the Quadruped robot to perform four
(4) tasks: hopturn, pace forward, pace backward, sidestep. We use [75] as our expert to collect 500k
(1000 trajectory) expert data for each task. The environment has a deterministic transition function
and thus we take sample action from normal distribution instead of taking distribution mean to get a
diverse set of training datasets. The performance curve with PD for individual tasks in shown in Fig.
20. Snapshots of the different tasks are demonstrated in Fig. 9.
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Figure 20: Performance (Normalized Score) plot of BCQ and IQL on Quadrupod multitasks with PD.

D.3.2 Performance Compared to Multitask Baseline:

Performance on MetaWorld In Table 9 we report mean performance of individual MT10 envi-
ronments over 10 seeds each evaluated for 100 episodes. We also compare individual performance
with Conservative data sharing (CDS) [96], an offline-multitask learning algorithm that focuses on
training based on task similarity, also reports its MetaWorld experiments on 4 environments and
reported performance over 6 seeds with 95% confidence interval.

Offline Multitask Under Mixed Data Distribution Data distributional shift is a common problem
in offline RL since the data set is collected by some unknown policy and most of the offline methods
try to guarantee the best performance under such circumstances. But data distribution shift from a
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Table 9: Individual task performance (success-rate) comparison of MetaWorld.
MT10 PD

BCQ IQL CDS [96]

reach 100.0± 0.0 93.0± 22.14 -
push 100.0± 0.0 100.0± 0.0 -
pick-place 100.0± 0.0 95.0± 15.81 -
door-open 100.0± 0.0 100.0± 0.0 58.4± 9.3
drawer-open 100.0± 0.0 85.0± 33.75 57.9± 16.2
drawer-close 100.0± 0.0 100.0± 0.0 98.8± 0.7
button-press-topdown 100.0± 0.0 100.0± 0.0 -
peg-insert-side 100.0± 0.0 100.0± 0.0 -
window-open 100.0± 0.0 100.0± 0.0 -
window-close 100.0± 0.0 100.0± 0.0 -

door-close - - 57.2± 16.2

Overall 100± 0.0 97.3± 7.17 72.0± 26.2

mixture of policies does not affect discovering neural pathways in the offline setting as it does in
online RL.

In an offline setting, the data distribution is fixed and known prior (no further changes in data
distribution during the training) and thus we can discover the neural pathway beforehand at a single
shot using Eq (1). That is, in the Offline RL setting we already know the dataset we want to learn the
behaviour from. Hence, the saliency criterion we use can generate the appropriate pathway.

To support our claim, we run further experiments in offline RL multitask under different data
distribution shifts and compare the performance with the baseline as shown in Fig. 6. We use mixed
and imperfect datasets where (i) medium: dataset collected from suboptimal agent trained for 300k
gradient steps, (ii) medium-expert: mixing equal amounts of expert demonstrations and suboptimal
data and (iii) expert-replay: recording all the sample observed by the agent during training and
represents a dataset generating from a mixture of many distributions. To handle this mixture of
distribution we take a larger batch of sample (x10) to evaluate important parameters.

D.4 Overlapping neural pathways

In this work, we consider choosing the neural pathways for each task independently from one another.
We find a large % of the pathways overlap, reducing the number of trainable parameters. The pathway
configuration is dictated by three factors: (1) different learning objectives (i.e. offline, online), (2)
scoring function (i.e. equation 1, 4), and (3) training samples used to optimize the scoring function. In
Fig. 21(h) we see the % of active weights (5% of the actual network) in the policy that is shared with
other tasks for IQL multitask-offline training. The diagonal of these symmetric matrices represents
the number of unique weights that are optimized only for one task, and the columns represent the % of
weights each task shares with others. As we see in Fig. 21(h), for all tasks, the % of weights that are
optimized for just one task is very low. For push, only 5.5% of the active weights are uniquely trained
for the task. We also show similar matrices for other experiments in the Appendix (Fig. 21), where
we found the percentage of overlapping weights does not correlate with the task similarity. This
disproves a conventional class of thinking that the success of multitask in neural networks depends
on relevant data sharing [96, 16] or similar task training [77, 93]. Rather, neural networks are capable
of learning multiple tasks simultaneously as long as the neurons are wired properly.

In Figure 21 we demonstrate the percentage of active weights (5% of actual network) in policy
network that are shared with other tasks for different experiments and for different offline RL
algorithms. The diagonal of these symmetric matrices represents the number of unique weights that
are optimized only for one task. The columns represent the percentage of weights the task shares
with others.

It is important to note, in Figure 21, for all our experiments the percentage of weights that are
optimized for just one task is very low. For example, in Figure 21-a for the forward task, only 26%
of the active weights are uniquely trained for the task. We only activate/allow 5% of the original
network weights for one task after pruning. This means only 0.13% of the original network is trained
uniquely to make Halfcheetah run forward like an expert. Also, we do not find the percentage of
overlapping to correlate with the similarity of the tasks.
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Figure 21: Shows the percentage of trainable weights are being shared among different tasks. In a and b, we
compare shared weights among five Halfcheetah tasks: (1) forward (F), (2) backward(B), (3) jump(B), (4)
Forward while Jumping (FJ) (5) Backward Jumping (BJ). In c and d, we compare shared weights among six
Halfcheetah tasks where we increase forward velocity 0.5-3.0 . In e and f , we compare four Quadrupod
tasks. In g and h we show the shared weights among MetaWorld tasks.

Overlapping Pathways Lead to Fewer Parameters: For each task, we only use 5% of the total
weights of the actual network while maintaining expert-like performance for all tasks. For N tasks it
has an upper bound of N

20x parameters when all the pathways are unique, but we find the pathways
to overlap significantly (in Figure 21), further reducing the number of total weights. To understand
how PD compacts multiple experts into a single network, in Table 10, we look at the number of
policy parameters IQL requires compared to SAC with and without pruning on the individual MT10
tasks. In our experiments, the total number of network parameters for SAC and IQL are identical
with 1, 092, 608 parameters in the policy network. With MT10 the number increases 10×. Due to
the inherent shared structure of neural pathways, our method requires only 1.82% (averaged over
10 seeds) of the original network. To get equivalent utility we have to train ten SAC agents with
98.18% pruned networks, which is not possible using any existing pruning techniques without losing
performance [18, 38, 90, 84]. As seen in [90] at 98% reduction of the network weights pruning
techniques suffers from significant performance drop due to layer collapse. Even when we compare to
95% pruned SAC trained on 10 different individual tasks ((B) in table 10), we have 36.4% reduction
in actor parameters.

Table 10: Comparison of the number of parameters required in MetaWorld for different methods.
MT-10 trained as separate tasks MT-10 multitasks trained using PD

(A) w/o pruning (B) 95% pruned (C) 95% pruned

Parameter counts
(Policy/Actor Network) 11 Million (10,926,080) 546,304 198, 956± 7, 636 ( 1.82± 0.07% of A)

E Limitations and Future Work

Significance of sparsity in performance: We chose a 95% sparsity level for the parameters
because previous works in supervised learning [38] and offline RL [3] have demonstrated that using
the saliency criterion in Equation (1) [38] achieves reliable performance, comparable to that of dense
baseline models. We ran an experiment for 1 million steps with SAC on the HalfCheetah-Forward
[17] at three different sparsity levels to justify our choice. More sparsity leads to performance loss
(lower episodic return). Increasing the sparsity further can provide a more energy-efficient solution.
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Table 11: Performance comparison of SAC-DAPD under different sparsity levels.
Sparsity level used 99% 97.5% 95%

HalfCheetah-Forward -56.67 ± 44.91 1301.59 ± 424.91 8528.71 ± 664.85

Empirical Pathway Convergence: In the online setting, we use the warm-up phase to stop re-
configuring pathways any further. However, there is no theoretical justification as to whether or
not we have converged to an optimal pathway. Pruning methods hypothesize that there are many
sub-networks that can lead to equivalent performance [18]. The algorithms developed within pruning
methods mostly provide empirical guarantees through performance but none of them provide a
theoretical guarantee of superior performance. However, we would like to point out that having
heuristic scheduling as a stopping criterion is commonly used in the iterative pruning literature [65,
19]. We empirically found this simple stopping criterion to be effective throughout the experiments
discussed in the paper, which suggests the found pathway leads to stable performance.

Pathway Overlap and Task Relevancy: The pathway overlapping depends on various factors,
such as weight initialization, data collection, and policy improvement. As we see in Figure 21 there is
no clear relationship between the tasks and pathways overlap. Further research is required to interpret
the task relation.

FLOP and Energy Consumption Computing energy consumption for ML research has been
debatable. There has been ongoing research on how to properly estimate the carbon footprint [31,
59]. In this paper, we present the theoretical gain in energy efficiency. Using SpMM-aware hardware
[42, 99, 25, 6, 49, 55, 52, 54] and software [53, 39, 62], the reduction in FLOP counts decreases
the number of computations in SpMM. This reduction in computations consequently lowers energy
costs, resulting in a proportional relationship between FLOP count and energy cost in Joules i.e.
FLOPs ∝ Joules.

Real World Application: Learning multitask using multiple pathways is more favourable to “real-
world applications”. We support our claim by showing that PD requires the lowest FLOP counts
by 20x fold compared to offline (Table 3) and online (Table 2) baselines. A lower FLOP count
is proportional to faster inference. However, to completely exploit the benefits of sparse models,
adaptations are required in lower-level libraries that enable modern deep-learning frameworks. The
latest Nvidia GPUs [54] are focusing on taking advantage of sparsity in parameters. Further hardware
and software optimization in sparse training will allow RL agents to train faster and be used in low-
resource, large-data-driven real-time applications. We argue that we were inspired in our explanation
by the standards in the pruning literature. Hardware [30, 11] that leverages sparse weights will
be able to exploit pathways and thus be favourable to resource-constrained environments such as
edge devices like embedded systems, cellular phones or robotics, where deploying large models is a
challenge.
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