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ABSTRACT

Engineering design operates through hierarchical abstraction from system speci-
fications to component implementations, requiring visual understanding coupled
with mathematical reasoning at each level. While Multi-modal Large Language
Models (MLLMs) excel at natural image tasks, their ability to extract mathe-
matical models from technical diagrams remains unexplored. We present Cir-
cuitSense, a comprehensive benchmark evaluating circuit understanding across
this hierarchy through 8,006+ problems spanning component-level schematics to
system-level block diagrams. Our benchmark uniquely examines the complete en-
gineering workflow: Perception, Analysis, and Design, with a particular emphasis
on the critical but underexplored capability of deriving symbolic equations from
visual inputs. We introduce a hierarchical synthetic generation pipeline consisting
of a grid-based schematic generator and a block diagram generator with auto-
derived symbolic equation labels. Comprehensive evaluation of six state-of-the-
art MLLMs, including both closed-source and open-source models, reveals fun-
damental limitations in visual-to-mathematical reasoning. Closed-source models
achieve over 85% accuracy on perception tasks involving component recognition
and topology identification, yet their performance on symbolic derivation and an-
alytical reasoning falls below 19%, exposing a critical gap between visual parsing
and symbolic reasoning. Models with stronger symbolic reasoning capabilities
consistently achieve higher design task accuracy, confirming the fundamental role
of mathematical understanding in circuit synthesis and establishing symbolic rea-
soning as the key metric for engineering competence. Our synthetic pipeline code
is available at URL

1 INTRODUCTION

Mathematical modeling forms the foundation of all engineering disciplines. Mechanical engineers
derive equations of motion to predict system dynamics (Shabana, 2005); optical engineers com-
pute ray transfer matrices to design lens systems (Saleh & Teich, 2007). It is a general practice for
electronic engineers to translate circuit schematics into symbolic transfer functions to analytically
examine the different aspects of the circuit performance (e.g., noise, stability, sensitivity, etc.). For
example, a phase-locked loop (PLL) with insufficient phase margin will oscillate, destroying func-
tionality of the entire integrated electronic system, yet this catastrophic failure can only be predicted
through mathematical analysis of the feedback network’s poles and zeros (Hanumolu et al., 2004).
Across these domains, the ability to translate visual representations such as circuit schematics, op-
tical layouts, or system diagrams into precise mathematical formulations determines engineering
success. This visual-to-mathematical reasoning represents a fundamental capability that no current
AI system can replicate. However, unlike geometry or physics problems that operate in a single
representational space, engineering uniquely requires this mathematical translation across multiple
levels of hierarchy, from components to subsystems to complete architectures.

While Multi-modal Large Language Models (MLLMs) excel at visual perception tasks, they exhibit
a critical limitation: the inability to derive symbolic equation from visual representations (Liu et al.,
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2025; Lu et al., 2021; Pan et al., 2025). This failure is not merely technical but fundamental: equation
derivation distinguishes true engineering comprehension from pattern matching. Existing visual
circuit benchmarks (Skelic et al., 2025; Shi et al., 2025) focus primarily on recognition-based tasks
like identifying component types, answering basic multiple-choice questions, or performing shallow
numerical calculations. The core capability that defines circuit understanding remains untested: the
ability to extract mathematical relationships from visual circuit topology that is consistent across
multiple system hierarchies.

We focus on analog circuits as a particularly rich domain for evaluating visual-to-mathematical
capabilities. The analog design process progresses through multiple stages: topology creation (de-
termining device types and interconnections) (Lai et al., 2025; Chang et al., 2024; Dong et al., 2023),
device sizing (optimizing physical dimensions for performance) (Wang et al., 2020; Lyu et al., 2017;
Cao et al., 2024), and layout design (Xu et al., 2019; Kunal et al., 2019; Crossley et al., 2013) (rep-
resenting circuit as geometric shapes and physical layers for fabrication), with each stage building
upon the previous. The design process in analog circuits suffers from long cycles where catastrophic
failures like instability, oscillation, and excessive noise often remain hidden until final verification
stages. The key to accelerating analog design lies in early mathematical analysis.

This preventive approach relies on translating visual schematics into mathematical models. For ex-
ample, for low frequency circuit design such as operational amplifier (Op-Amp), engineers derive
equations to predict frequency response (Kamath et al., 1974), input and output referred noise (Hill-
brand & Russer, 2003), ensure stability margins, and optimize performance trade-off. For radio
frequency circuits such as low noise amplifiers and power amplifiers, people derive the circuit’s in-
put and output impedance to ensure impedance matching and optimal power transfer (Wang et al.,
2010; Nguyen et al., 2004). Yet no existing benchmark evaluates whether AI systems possess this
circuit understanding and symbolic reasoning capability. Without examining the symbolic derivation
process, we cannot assess whether models truly understand circuits or merely memorize visual pat-
terns, and consequently, whether they can genuinely assist human designers in accelerating design
cycles and catching critical failures before costly fabrication. This gap prevents us from determin-
ing if MLLMs are ready to serve as engineering tools or remain sophisticated but superficial pattern
matchers.

System
Level

Block Level RLC

Transistors

Figure 1: Multi-level hierarchy of
Phase Lock Loop Design.

Moreover, circuit design inherently operates across multiple
levels of abstraction, requiring engineers to seamlessly navi-
gate between system architecture and component implementa-
tion. Engineers typically begin with high-level block diagrams
to architect complex systems such as analog-to-digital convert-
ers (ADCs), phase-locked loops (PLLs), or multi-stage opera-
tional amplifiers. They then systematically decompose these
architectural blocks into component-level schematics, imple-
menting each functional block using transistors, op-amps, and
passive elements. Figure 1 illustrates this hierarchical decom-
position through a PLL example, showing how system-level
blocks translate into transistor-level implementations. Ap-
pendix A.3 provides detailed analysis questions for both this
PLL and a two-stage op-amp, demonstrating the multi-level
reasoning required for comprehensive circuit understanding.
Despite the critical importance of this hierarchical reason-
ing capability, no existing benchmark evaluates the ability to
bridge between block diagrams and circuit schematics.

To fill this gap, we propose CircuitSense, the first benchmark that systematically evaluates circuit
understanding through hierarchical mathematical reasoning. CircuitSense comprises 8,006 prob-
lems organized across six hierarchy levels from resistor networks to system-level block diagrams
with open-ended and multiple-choice formats, testing three task categories that mirror the engi-
neering workflow: Perception, Analysis, and Design. Our benchmark combines 2,986 carefully
curated problems from authoritative textbooks and documents with 5,020 synthetically generated
circuits, uniquely emphasizing symbolic derivation. We introduce a hierarchical synthetic gener-
ation pipeline consisting of a circuit schematic generator with guaranteed symbolic ground-truth
equations, and a block diagram generator with symbolic transfer function ground-truth. This dual
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Analysis Design

Schematic-level design Block-level design

Hierarchical design

Open-end design
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Circuit function classification

Noise & Jitter

Power & Energy

Frequency Response

Transient Response

Design a feedback CMOS op-amp with 1×/10×/100×
gains, unity-gain stable (PM≥60°) into 10 kΩ∥50–250
pF, meeting A0≥100 dB, GBW≥5 MHz, noise≤3 µVrms
(0.1–10 kHz).
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Figure 2: Benchmark overview. CircuitSense evaluates circuit systems understanding across six hi-
erarchy levels (resistor networks to system block diagrams), three task category (Perception, Analy-
sis with equation derivation, and Design), using both curated problems and synthetically generated
circuits systems with ground-truth symbolic equations.

approach ensures both component-level depth and system-level breadth while preventing dataset
contamination.

As illustrated in Figure 3, we evaluated CircuitSense over 6 state-of-the-art MLLMs and Gemini-2.5-
Pro Google DeepMind (2025) showed the best performance among all tasks. Our main contribution
and findings can be summarized as:

• First Multi-Level Visual-to-Analytical Benchmark: We introduce the first benchmark
that systematically evaluates understanding across engineering abstraction levels, from
system-level block diagrams to component-level schematics, testing how models connect
visual patterns at different scales to their mathematical representations.

• Hierarchical Synthetic Generation Pipeline: We developed two synthetic generation
pipeline producing samples with guaranteed ground-truth equations: (i) component-level
circuits with controlled complexity progression, and (ii) system-level block diagrams with
hierarchical feedback structures, enabling isolated evaluation of visual comprehension and
mathematical reasoning at each abstraction level.

• Extensive Multi-Scale Performance Analysis: Through systematic evaluation of six
state-of-the-art MLLMs and detailed analysis of derivation attempts, we demonstrate that
while closed-source models achieve over 85% accuracy on perception tasks, they fail catas-
trophically at symbolic analysis (below 19% accuracy), with specific bottlenecks identi-
fied including systematic output impedance misinterpretation and algebraic manipulation
errors. Our experiments confirm that models with stronger equation derivation capabili-
ties consistently achieve higher design task performance, establishing mathematical under-
standing as prerequisite for AI-assisted circuit synthesis.
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Table 1: Benchmark statistics.

Task Subcategory Count
Perception 806

Component Detection 200
Connection Identification 200
Function classification 406

Analysis 7043
Frequency Response 184
Transient Response 3811
Transfer Function Analysis 1736
Small Signal Analysis: 915
CMR & PSRR 54
Noise & Jitter Analysis 121
Power & Energy Analysis 222

Design 157
Schematic-level 63
Block-level 56
Hierarchical 38

Total 8,006

Noise & Jitter
Analysis

Function
Classification

Connection
Identification

Block-Level
Design

Small Signal
Analysis

CMR &
PSRR

Transient
Response

Transfer
Function
Analysis

Frequency
Response

Power & Energy
Analysis

Schematic-
Level Design

Hierarchical
Design

GPT-4o

Gemini-2.5-Pro

Claude-Sonnet-4

InternVL3

Qwen2.5-VL

GLM-4.5V

Component
Detection

Figure 3: Result of 6 representative MLLMs on
Perception, Analysis, and Design tasks.

2 CIRCUITSENSE

In this section we introduce CircuitSense, a comprehensive visual benchmark consisting of 8,006+
problems for evaluating visual circuit understanding across different task categories and abstraction
levels. CircuitSense evaluates visual circuit understanding through a hierarchical framework that
mirrors the complete engineering design process, from high-level system architecture to detailed
component implementation. As shown in Figure 2, the benchmark is organized along two primary
axes: task categories and hierarchy levels. The dataset spans three task categories: Perception (890),
Analysis (7043), and Design (157), with Analysis comprising the majority of problems as it directly
tests the critical capability of extracting mathematical models from visual circuits. Problems are
distributed across six hierarchical levels from basic resistor networks to system-level block diagrams,
enabling fine-grained assessment of where visual-to-mathematical translation fails.

2.1 DATA COLLECTION

We gather 2,986 curated problems for from authoritative sources to ensure broad topical coverage
across CMOS analog, RLC network analysis, and system-level circuit design. For Analysis task, our
collection drew from two primary categories: (1) canonical textbooks widely adopted in undergrad-
uate and graduate curricula including Gray; Razavi; Allen & Holberg; Bruun; Rahmani-Andebili;
Salam & Rahman; (2) university course repositories, including University of Toronto ECE331 (Ana-
log Electronics), Georgia Tech ECE6412 (Analog Integrated Circuit Design), and Georgia Tech
ECE3050 (Analog Electronics). For Perception questions we used a subset of circuit images from
AnalogGenie (Gao et al., 2025) and our hierarchical synthetic generation pipeline. For Design task,
we collected data from canonical analog circuit design textbooks such as Gray; Razavi; Allen &
Holberg; Bruun, along with representative problem sets curated from university courses and design
problems from ZeroSim (Yang et al., 2025). More detailes are provided in Appendix A.4.

However, curated problems suffer from potential dataset contamination and rarely test equation
derivation systematically. To ensure unbiased evaluation, we developed a hierarchical synthetic
generation pipeline producing novel circuits with guaranteed ground-truth equations across different
hierarchy levels, detailed in Section 2.2.

2.2 HIERARCHICAL SYNTHETIC GENERATION PIPELINE

Circuit Schematic Generator Our schematic generator extends the MAPS framework (Zhu et al.,
2025a) for Linear Pure Resistive Circuits (LPRC) to support the full spectrum of analog components.
We construct circuit on an m × n grid where dimensions are sampled from a Discrete Probability
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Distribution to ensure topological diversity. Component selection follows a hierarchical probability
distribution that differs between inner and outer edges. We support 18 component types organized
by complexity: passive elements (R, L, C), sources (voltage, current), controlled sources (VCVS,
VCCS, CCVS, CCCS), and active devices (ideal op-amps). We treat the ideal op-amps as template
subcircuits (input resistor, feedback network, and high-gain VCVS) and randomly place the whole
template in the grid.

The generator enforces electrical validity through multiple constraints: eliminating floating nodes,
ensuring at least degree-2 connectivity for all nodes, and maintaining exactly one voltage source per
circuit to guarantee a well-defined reference. The grid topology is translated into SPICE-compatible
netlists through systematic node labeling and component enumeration. Circuit validation occurs at
three levels: topological verification ensures no shorted components and proper control relation-
ships, SPICE simulation confirms DC operating points and AC responses, and symbolic analysis
through Lcapy (Hayes, 2022) extracts ground-truth transfer functions H(s) = Vout(s)/Vin(s) and
nodal equations via Modified Nodal Analysis. To manage computational complexity, we imple-
ment adaptive timeouts based on circuit complexity scores, bypassing symbolic analysis for circuits
exceeding practical computation limits.

Block Diagram Generator The block diagram pipeline constructs control systems through a two-
phase approach that ensures both structural validity and mathematical consistency. We begin by
constructing a main signal path consisting of n ∈ [τb, τe] components, selected from a library of
standard transfer functions, placed sequentially along a fixed horizontal axis. Components include
transfer function blocks and summing junctions (with randomly assigned sign conventions for each
input port), selected with probability [a:b], enabling both positive/negative feedback and feedfor-
ward configurations. System complexity increases through systematic addiction of feedback and
feedforward paths, with nfb ∈ [0, τfb] feedback loops and nff ∈ [0, τff ] feedforward paths, with
the algorithm preventing duplicate connections through set-based tracking. Each auxiliary path has
probability pblock = 0.5 of containing an intermediate block, generating diverse architectures from
simple unity feedback to complex multi-loop systems found in industrial applications such as ADCs
and PLLs.

We compute the overall system transfer function using Mason’s gain formula (Mason, 1953), which
systematically handles multiple feedback loops and forward paths. The algorithm identifies: all for-
ward path Pk from input to output, all loops Li in the system, and non-touching loop combinations.
The system determinant ∆ = 1 − ΣLi + ΣLi.Lj − ΣLi.Lj .Lk + . . . is computed symbolically,
wehere the sum includes all combinations of non-touching loops. The overall transfer function be-
comes H(s) = ΣPk.∆k

∆ , where ∆k is the determinant excluding loops that touch forward path Pk.
This approach correctly handles complex topologies inclusing nested loops.

This hierarchical approach to synthetic generation ensures comprehensive coverage from low-level
component interactions to high-level system behavior, providing the multi-scale evaluation neces-
sary for assessing true circuit understanding.

2.3 BENCHMARK STATISTICS

CircuitSense comprises 8,006 problems organized across three primary task categories that mirror
the engineering workflow: Perception (890 problems), Analysis (7,043 problems), and Design (157
problems). As shown in Table 1, the Analysis task dominates our benchmark, reflecting the cen-
tral importance of mathematical reasoning in circuit understanding. Within Analysis, we balance
2,023 curated problems with 5,020 synthetically generated circuits to ensure both educational valid-
ity and protection against dataset contamination. The distribution across subcategories reflects our
emphasis on equation derivation capabilities: Transient Response (3,811 problems) and Transfer
Function Analysis (1,736 problems) are significantly larger categories because our synthetic gen-
eration pipeline primarily produces circuits for testing these fundamental mathematical skills. The
remaining subcategories provide comprehensive coverage of circuit analysis: Small Signal Analysis
(915) tests linearization and AC modeling, while Power & Energy Analysis (222), Frequency Re-
sponse (184), Noise & Jitter Analysis (121), and CMR & PSRR (54) evaluate specialized analytical
skills.

Perception tasks comprise three subcategories: Component Detection (200 problems) tests whether
models can accurately count and identify circuit elements, Connection Identification (200 prob-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

lems) evaluates netlist conversion capabilities to verify structural understanding of circuit topology,
and Function Classification (406 problems) assesses whether models can infer circuit purpose from
visual inspection alone. Together, these tasks establish whether models possess the visual compre-
hension necessary for subsequent mathematical analysis. Design tasks progress through increasing
levels of hierarchy: from schematic-level (63) and block-level design (56) to hierarchical design
(38) that requires coordinating multiple abstraction levels.

Problems are organized across six complexity levels that capture the natural progression of cir-
cuit design: Level 0 (Resistive Networks, 1,777 samples) for DC analysis, Level 1 (RLC Circuits,
3,147 samples) for frequency-domain reasoning, Level 2 (Small Signal, 537 samples) with con-
trolled sources, Level 3 (Transistor, 795 samples) for device-level analysis, Level 4 (Block, 559
samples) for operational amplifier abstraction, and Level 5 (System Diagrams, 228 samples) for
system-level transfer functions. This hierarchical structure enables precise identification of where
visual-to-mathematical translation fails as complexity increases. Detailed level-specific statistics
and problem distributions are provided in Appendix Table 9.

3 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate different closed-source and open-
source MLLMs on CircuitSense across task categories and hierarchy levels. We test six state-of-
the-art models: Gemini-2.0-Pro (Google DeepMind, 2025), Claude-4-Sonnet (Anthropic, 2025),
GPT-4o, InternVL-3-78B (Zhu et al., 2025b), Qwen2.5-VL-72B-Instruct (Bai et al., 2025), and
GLM-4.5V (Team et al., 2025).

3.1 EVALUATION FRAMEWORK

We employ two evaluation strategies depending on problem format. For multiple-choice questions,
we use exact answer matching after standardized formatting. To enable multiple-choice evaluation
on originally open-ended problems, we use Gemini-2.5-Flash to generate three plausible distractor
choices plus “None of the above” to avoid forcing random selection. For open-ended questions
requiring numerical or short-form answers, we employ LLM-as-a-judge evaluation where Gemini-
2.5-Flash compares model responses against ground truth, accounting for equivalent representations
and unit conversions, determining correctness based on mathematical equivalence rather than exact
string matching. For design tasks that require simulations, we simulate them by Ngspice (ngspice
Development Team, 2024) with Skywater 130nm PDK (SkyWater Technology Foundry, 2020).

Evaluating symbolic mathematical expressions presents unique challenges since a single equation
can be represented in numerous algebraically equivalent forms. For instance, H(s) = 1/(RCs+1)
is mathematically identical to H(s) = (1/RC)/(s+ 1/RC). To address this, we implement a rig-
orous symbolic comparison pipeline using SymPy (Meurer et al., 2017) that performs: (1) parsing
both predicted and ground-truth equations into symbolic expression trees, (2) algebraic simplifica-
tion, (3) verification through symbolic subtraction, and (4) numerical validation by evaluating both
expressions at 100 random complex frequency points when symbolic comparison is computation-
ally intractable. This multi-pronged approach ensures robust evaluation even when models produce
correct but differently formatted equations.

3.2 MAIN RESULTS

Perception Task We evaluated models on three perception subtasks: Component Detection, Con-
nection Identification, and Function Classification. As Table 2 shows, closed-source models demon-
strate strong visual understanding with over 86% accuracy, confirming that perception is not the
bottleneck for these systems. GPT-4o and Gemini-2.5-Pro achieve near-perfect performance (94-
100%), while Claude-Sonnet-4 maintains solid accuracy above 85%. In contrast, open-source mod-
els struggle significantly with basic circuit structure recognition. For instance, GLM-4.5V achieves
only 26% on Function Classification and 78% on Connection Identification, suggesting fundamental
limitations in visual processing capabilities that precede any mathematical reasoning challenges.

Analysis We examined performance of models across Analysis subcategories. Table 4 reveals that
Gemini-2.5-Pro dominates across all categories (13-90%), followed by GPT-4o and Claude-Sonnet-
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Table 2: Perception task results

Model Component
Detec.(%)

Connection
Ident.(%)

Function
Class.(%)

GPT-4o 100 94 95
Gemini-2.5-Pro 100 100 95
Claude-Sonnet-4 100 88 86
InternVL3-72B 95 76 12
Qwen2.5-VL 95 68 20
GLM-4.5V 100 78 26

Table 3: Design task results

Model Schematic-
level(%)

Block-
level(%)

Hierarchical-
Design(%)

GPT-4o 10.52 36.36 18.92
Gemini-2.5-Pro 36.38 67.27 51.35
Claude-Sonnet-4 17.54 51.83 29.83
InternVL3-72B 7.01 52.73 29.73
Qwen2.5-VL 8.76 30.91 18.92
GLM-4.5V 15.79 50.91 32.35

Table 4: Accuracies of different models on Analysis subcategories.

Model Frequency
Response

Transient
Response

Transfer
Function
Analysis

Small
Signal

Analysis

CMR &
PSRR

Noise &
Jitter

Analysis

Power &
Energy

Analysis
GPT-4O 52 6 16 43 37 50 42
Gemini-2.5-Pro 83 13 38 74 77 90 87
Claude-Sonnet-4 64 9 23 66 64 73 67
InternVL3-78B 15 3 8 18 12 17 20
Qwen2.5-VL-72B-Instruct 40 6 14 31 18 37 38
GLM-4.5V 26 4 14 20 9 26 20

4 (6-73%), while open-source models struggle significantly (below 40%). Furtheremore, models
achieve higher accuracy on traditionally complex tasks like Noise & Jitter Analysis (up to 90%)
and Power & Energy Analysis (up to 87%) compared to fundamental tasks like Transient Response
(3-13%) and Transfer Function Analysis (8-38%). This counterintuitive result occurs because our
synthetic problems are concentrated in these two fundamental subcategories, exposing the criti-
cal gap between memorized textbook solutions and genuine mathematical understanding. When
models cannot rely on pattern matching from training data and must derive equations from novel
circuits, their performance collapses dramatically. Section 4 separates synthetic and curated results
to demonstrate how this weakness manifests when models cannot rely on memorized patterns.

Design Task Table 3 reveals a clear hierarchical pattern in design capabilities across all models.
Models demonstrate significantly stronger performance at block-level design (30.91-67.27%) com-
pared to schematic-level design (7.01-36.38%), with hierarchical design falling between these ex-
tremes. This pattern indicates that models can more readily manipulate abstract functional blocks
than translate specifications into detailed component-level implementations. Notably, Gemini-2.5-
Pro, which demonstrated superior symbolic equation derivation capabilities in the Analysis tasks,
also dominates the Design tasks with 36.38% schematic-level, 67.27% block-level, and 51.35% hi-
erarchical design accuracy. This correlation between symbolic reasoning and design performance
suggests that equation derivation capability serves as a fundamental prerequisite for circuit synthesis.

4 DISCUSSION

4.1 CURATED VS. SYNTHETIC PERFORMANCE

While overall Analysis task performance provided initial insights, the aggregate 7,043-problem eval-
uation masks critical patterns that emerge only through systematic decomposition. We conducted
three complementary evaluations six-level hierarchy. First, we tested 2,023 curated textbook prob-
lems in multiple-choice format, where models could leverage answer elimination strategies. Second,
we evaluated the same problems in open-ended format, removing the scaffolding of provided op-
tions. Third, we assessed 5,020 synthetic circuits requiring direct equation derivation without any
answer choices.

The three evaluation formats reveal systematic degradation in mathematical reasoning capability. As
shown in Table 5, in multiple-choice format, Gemini-2.5-Pro achieves 80.71% on curated problems
and maintains 70.32% in open-ended evaluation. This 10-point drop suggests some analytical abil-
ity beyond elimination. However, other models collapse catastrophically without answer options,

7
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Table 5: Results of curated problems for Analysis task with multiple choice and open-ended format.

Model Level 0 Level 1 Level 2 Level 3 Level 4 Overall
(Resistor) (RLC) (Small Signal) (Transistor) (Block) Accuracy

Multiple Choice Format (%)

GPT-4o 39.80 49.58 32.88 48.80 39.58 45.07
Claude-Sonnet-4 66.72 71.22 61.64 72.01 66.67 69.67
Gemini-2.5-Pro 74.04 87.39 78.08 81.72 89.58 80.71
InternVL3-78B 23.16 20.59 13.70 13.11 14.58 18.06
Qwen2.5-VL-72b-instruct 29.53 41.60 30.14 35.94 29.17 34.90
GLM-4.5V 24.63 29.20 9.59 17.28 31.25 22.42

Open-ended format (%)

GPT-4o 29.59 29.83 19.18 13.96 17.81 22.84
Claude-Sonnet-4 35.56 50.21 12.33 27.04 33.33 34.76
Gemini-2.5-Pro 76.98 84.87 73.97 55.85 72.92 70.32
InternVL3-78B 20.79 19.54 6.85 14.47 10.42 17.26
Qwen2.5-VL-72B-Instruct 28.73 31.30 16.44 13.71 22.92 22.85
GLM-4.5V 34.44 39.71 13.70 19.50 25.00 28.83

Table 6: Performance comparison on our hierarchical synthetic problems with symbolic equation
ground truth.

Model Level 0 Level 1 Level 2 Level 4 Level 5 Overall
(Resistor) (RLC) (Small Signal) (Block) (System)

GPT-4o 1.50 3.33 5.80 7.33 9.65 4.98
Claude-Sonnet-4 2.83 5.16 5.80 11.64 7.89 6.29
Gemini-2.5-Pro 3.49 11.67 38.00 12.33 35.96 19.06
InternVL3-78B 1.50 3.67 6.68 3.72 0.44 3.50
Qwen2.5-VL-72B-Instruct 0.83 4.17 6.03 6.64 10.09 4.96
GLM-4.5V 0.33 7.33 4.00 4.50 5.70 4.09

falling below 35% and exposing heavy reliance on pattern matching. Table 6 shows that on synthetic
circuits requiring equation derivation, it catastrophically fails at 19.06%, a 61-percentage-point drop
from multiple-choice performance. Other models show even steeper degradation: Claude-Sonnet-4
falls from 69.67% (multiple-choice) to 34.76% (open-ended) to just 6.29% (synthetic), while open-
source models barely exceed 4% on synthetic problems. This systematic collapse confirms that
models rely on answer elimination and pattern matching rather than mathematical reasoning.

Analysis across hierarchy levels reveals that models develop specialized capabilities rather than uni-
form understanding. On curated problems (Table 5), different models excel at different abstraction
levels. Gemini-2.5-Pro peaks at Level 4 (Block-level with ideal op-amps, 89.58%), while Claude-
Sonnet-4 achieves highest performance at Level 3 (Transistor circuits, 72.01%). This specializa-
tion pattern persists in synthetic evaluation (Table 6) but with revealing differences: Gemini-2.5-Pro
achieves its best synthetic performance at Level 2 (Small Signal, 38.00%) and Level 5 (System-level
block diagrams, 35.96%), while Claude-Sonnet-4 peaks at Level 4 (Block-level, 11.64%).

4.2 FAILURE POINT ANALYSIS

To understand why models fail at equation derivation despite recognizing circuit components, we
analyzed 100 transfer function derivation attempts by Gemini-2.5-Pro, decomposing the process
into six sequential subtasks. As shown in Table 7, while 55% of attempts correctly computed total
impedance, only 8% succeeded at output impedance derivation which is seemingly a simpler task.
This 47% drop represents the primary bottleneck in the entire pipeline. The subsequent partial
recovery to 39% in impedance ratio formation and 55% in final transfer function suggests the model
sometimes reaches correct answers through different reasoning paths compare to human. The higher
final accuracy compared to Table 4 reflects our selection of the first 100 questions, which proved
easier than the full transfer function analysis subset. Additional system-level failure analysis is
provided in Appendix A.1
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Table 7: Performance Analysis on Gemini-2.5-Pro across transfer function derivation subtasks.

Subtask Description Acc. (%)

Component Identification Identify all components 97
Impedance Assignment Convert components to s-domain impedance 95
Total Impedance Calculation Compute equivalent input impedance 81
Output Impedance Derivation Calculate the impedance at the output node 8
Impedance Ratio Formation Apply voltage divider principle correctly 39
Transfer Function Simplification Simplify to canonical form 55

5 RELATED WORKS

Visual Reasoning in Multi-modal Language Models Recent advances in Multi-modal Large
Language Models (MLLMs) (Bai et al., 2025; Zhu et al., 2025b; Google DeepMind, 2025) have
demonstrated remarkable progress in integrating visual and linguistic information, achieving strong
performance on tasks like visual question answering. To evaluate these capabilities, several bench-
marks have emerged focusing on visual mathematical reasoning. Most visual math benchmarks (Lu
et al., 2024; Wang et al., 2025) evaluates mathematical reasoning in visual contexts but primarily
tests knowledge-centric problems that can often be solved through pattern recognition rather than
true mathematical understanding. Scientific diagram benchmarks including ScienceQA (Lu et al.,
2022), and SeePhy (Kun Xiang*, 2025) extend evaluation to domain-specific content, testing un-
derstanding of physics phenomena. However, these benchmarks evaluate whether models can select
correct answers or perform numerical calculations, but do not assess the fundamental capability of
translating visual representations into formal symbolic mathematical expressions.

Visual Circuit Understanding Benchmarks Existing circuit-focused benchmarks severely un-
derestimate the complexity of circuit analysis by focusing on shallow tasks within single abstraction
levels. MMMU (Yue et al., 2024) includes engineering problems from college textbooks with lim-
ited circuit questions in its Tech & Engineering subset, yet these remain restricted to conceptual
multiple-choice questions without equation derivation. CIRCUIT (Skelic et al., 2025) present 510
analog circuit questions which are shallow and limited to RCL circuits. AMSbench (Shi et al., 2025)
provides analog and mixed-signal circuit problems but focuses on multiple-choice questions testing
conceptual understanding rather than mathematical formulation. CircuitSense addresses this gap
by systematically evaluating visual comprehension and mathematical reasoning across the complete
hierarchy from resistor networks through transistor circuits to system-level block diagrams

6 CONCLUSION

We introduce CircuitSense, a comprehensive benchmark of 8,006 problems for evaluating visual-to-
mathematical reasoning in circuit understanding which combines curated questions with synthetic
problems focused on symbolic equation derivation. Our hierarchical synthetic generation pipeline
produces novel circuits across six levels with guaranteed ground-truth symbolic equations, enabling
rigorous evaluation. Our extensive evaluation on perception, analysis, and design tasks shows that
models demonstrate adequate perception (85%+ for closed-source) but fail catastrophically at math-
ematical symbolic modeling (below 19%). This mathematical weakness directly undermines their
design capabilities.

7 LIMITATION AND FUTURE WORKS

While CircuitSense advances circuit understanding evaluation, several limitations present opportu-
nities for expansion. Our synthetic pipeline currently focuses on transfer function derivation and
nodal analysis, missing other analysis types like noise analysis or frequency response. We plan
to extend our symbolic generation pipeline to all subcategories. Computational constraints limit
synthetic circuits to 12-15 components since symbolic equation derivation becomes prohibitively
expensive beyond this scale, restricting our ability to test understanding of larger circuits.
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8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive resources and documenta-
tion. The complete CircuitSense dataset is included in the supplementary materials. Our hierarchi-
cal synthetic generation pipeline code for creating additional circuits with guaranteed ground-truth
equations is available at URL. The exact model versions and inference parameters for all six eval-
uated MLLMs are specified in Appendix A.5. Furthermore, the llm-as-a-judge prompt template is
also provided in Appendix A.8 fro evaluation process.
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A APPENDIX

A.1 BLOCK DIAGRAM TRANSFER FUNCTION ANALYSIS

Symbolic vs. Abstract Representations To understand how models handle system-level abstrac-
tion, we analyzed their performance on block diagram transfer function derivation under three condi-
tions: high-level representations using simplified block labels (“G1” or “H1”), exact representations
with complete transfer functions “10/(s + 5)”. This comparison reveals whether models struggle
with topological understanding of feedback systems or with the algebraic manipulation required for
symbolic computation.

Table 8: System level analysis

Models Exact High-level

GPT-4o 9.65 1.75
Claude-Sonnet-4 7.89 28.51
Gemini-2.5-Pro 35.96 39.04
InternVL3-78B 0.44 1.75
Qwen2.5-VL-72B 10.09 9.65
GLM-4.5V 5.70 17.98

Table 8 demonstrates that algebraic complexity, not
topological reasoning, fundamentally limits model per-
formance. All models show significant accuracy degra-
dation when moving from high-level to exact represen-
tations: Gemini-2.0-Pro drops from 38.18% to 35.96%,
while Claude-Sonnet-3.5 exhibits a more dramatic de-
cline from 28.51% to 7.89%. This consistent pattern re-
veals that models can successfully apply Mason’s gain
formula to abstract symbols but fail when manipulating
complex rational functions with multiple terms. The performance gap indicates that current MLLMs
possess adequate understanding of feedback topology and control theory principles but lack the
symbolic mathematics capabilities essential for engineering analysis, suggesting that improvements
should focus on enhancing algebraic reasoning rather than visual comprehension.
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Table 9: Analysis: Detailed Statistics by Level

Abstraction Levels Curated Data Synthetic Data
Level 0 (Resistor) 631 1,146
Level 1 (RLC) 476 2,671
Level 2 (Small Signal) 73 464
Level 3 (Transistor) 795 -
Level 4 (Block) 48 511
Level 5 (System) - 228

Total 2,023 5,020

A.2 HIERARCHY STATISTICS

We classified each question according to its component complexity, from Level 0 (resistor-only
networks) to Level 5 (system-level block diagrams). Table 9 presents the distribution across abstrac-
tion levels for both curated and synthetic datasets within the Analysis task category. The curated
data concentrates at the extremes—Level 0 (631) and Level 3 (795)—reflecting textbook emphasis
on foundational concepts and transistor-level design. Notably, we have no curated Level 5 prob-
lems and no synthetic Level 3 problems, as system-level textbook problems rarely require equation
derivation while transistor circuits resist symbolic generation due to their nonlinear device models.

A.3 DETAILED HIERARCHICAL EXAMPLES

-

Level 2

Level 3

Level 4

H(s)1 H(s)2

Cc

Figure 4: Step-by-step analysis of
Two-stage Op-Amp

We present two concrete examples of design questions that re-
quire answers derived from multiple levels of analysis. These
examples show the application of symbolic equation derivation
across different hierarchy in engineering design process which
motivated us to collect CircuitSense.

A.3.1 TWO-STAGE OP-AMP

Figure 4 illustrates how Levels 4 through 2 can be applied to
analyze a two-stage Op-Amp’s Gain transfer function, with
each level yielding concrete analytical outputs . At the block
level (Level 4), the amplifier is identified as two cascaded gain
stages with a compensation capacitor, leading to the high-level
transfer expression as shown below:

Vout(s)

Vin(s)
≈ H(s)1 ·H(s)2 ·NCc(s) (1)

Where H(s)1,2 is the transfer function of corresponding
stage.NCc(s) is the Zero factor introduced by feedback capacitor. Next, at the transistor level (Level
3), the actual circuit topology is considered: the differential input pair with current-mirror load feed-
ing into a common-source second stage. At this level, At this level, key device parameters of stage
1 and stage 2, such as the transconductance (gm) and output resistance (ro), can be derived:

gm1,2 =
∂ID
∂VGS

(2)

ro1,2 ≈ 1

λID
(3)

Where, ID is the drain current; VGS is the gate-to-source voltage; λ is the channel-length modulation
parameter. Once the key parameters and transistor structure are clear, it can be abstracted into a
small-signal equivalent (Level 2), each MOSFET is replaced by its hybrid-π model, reducing the
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circuit to dependent sources, ro, and parasitic capacitance. After involving the pole and zero effects,
the final transfer function can then be written explicitly as:

Vout(s)

Vin(s)
≈ H(s)1 ·H(s)2 ·NCc(s) ≈ gm1ro1(

1 + s
ωp1

) · gm2ro2(
1− s

ωz

) ·
(
1 + s

ωp2

)
(4)

This flow connects qualitative structure identification to quantitative expressions, ensuring that the
final analysis yields a concrete transfer function.

A.3.2 PHASE-LOCKED LOOP

Another example of hierarchical analysis is loop gain transfer function of a PLL system. As men-
tioned in the introduction section, Figure 1 illustrates the hierarch of the PLL, where we focus on the
Frequency & Phase Detector (PFD) and the Low-Pass Filter (LPF). At Level 5 (system level), the
PLL is partitioned into its main functional blocks: PFD, LPF, Voltage-Controlled Oscillator (VCO),
and Frequency Divider, and the loop gain in the phase domain can be expressed as:

L(s) = Kϕ · Z(s) ·Kvco ·
1

sN
(5)

Moving to Level 4, the PFD is recognized as consisting of two flip-flops, one AND gate, and a
charge pump. It acts like a phase-to-current gain:

Kϕ =
Icp
2π

·∆ϕ(t) =
Icp
2π

· (θref(t)− θfb(t)) (6)

Where, ∆ϕ(t) = θθref(t)−θfb(t) is the phase error, and θref.fb represents reference and feedback phase;
To obtain the exact charge pump current Icp, we zoom into the level-3 transistor schematic of the
charge pump within the PFD. At this level, Icp can be explicitly derived from the transistor equations
as:

Icp ≈ 1
2 µnCox

WNMOS

LNMOS
V 2
ov,NMOS (7)

The same hierarchical analysis framework can be applied to the VCO and the Frequency Divider
transfer function analysis. The LPF is modeled as a simple level 1 RLC network,

Z(s) =
1

sC
(8)

This hierarchical flow results a complete and quantitative framework for analyzing PLL close loop
gain.

A.4 DATA COLLECTION DETAILS

Aside from the sources we mentioned in Section 2 we also have collected data from communities
and online platforms dedicated to circuit design (Learn Electronics India; AIC Design; All About
Circuits; Embedded Wala; Chegg Inc.). Each problem underwent verification by graduate students
with circuit design knowledge.

To standardize the representation of problems across these diverse sources, we developed an offline
Flask-based tool, Circuit Benchmark Sample Creator (CBSC), that provides a structured interface
for manual data entry and organization. Using CBSC, we separately inserted problem components
including circuit diagrams, difficulty levels, source information, questions, answers, and step-by-
step derivations. Once the content was entered and submitted, the tool automatically generated
a well-structured folder system to store and index the problems. This workflow ensured that all
benchmark entries maintained consistent formatting and organization while preserving the integrity
of the original materials.

We structure the benchmark by considering a folder for each question consisting of
q# question.txt which have the text part of the question, q# image.png which is the im-
age, q# ta.txt which save the ground-truth, q# mc.txt which holds the multiple choice if the
question requres, q# a.txt which contains the correct choice. The question folder also includes
q# der.txt which is the step-by-step solution and q# category.txt which is the subcate-
gories for Analysis task.
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A.5 EXPERIMENT MODELS DETAILS

All experiments were conducted using the following model versions and parameters:

• GPT-4o: gpt-4o-2024-08-06 (snapshot date: August 6, 2024)
• Gemini-2.5-Pro: gemini-2.5-pro-preview-0605 (preview version: June 5, 2025)
• Claude-Sonnet-4: claude-4-sonnet
• InternVL3-78B: Official release version 3.0
• Qwen2.5-VL-72B-Instruct: Instruction-tuned version 2.5
• GLM-4.5V: Vision-enabled version 4.5

Inference Parameters:

• Temperature: 0.1 (for all models to ensure consistency and reproducibility)
• Maximum tokens: 4096
• Top-p: 0.95 (where applicable)
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A.6 SYNTHETIC EXAMPLES

Synthetic Example Q1: Nodal Equation

Question: Derive the nodal equation for node 2 in the s-domain. Express the equation using only
the circuit elements and their values as labeled in the diagram. Make sure the final answer is just
the symbolic equation Vn2(s) = ..., where the right side contains only the labeled components
and sources from the circuit diagram.

Corresponding Netlist:

R5 1 0 R5
R1 0 3 R1
R6 1 2 R6
V1 2 3 V1
R2 3 4 R2
R3 5 2 R3
R4 6 2 R4
R7 5 4 R7
R8 5 6 R8

Ground-truth:
V n2(s) = V 1 ∗ (R5 +R6)/(s ∗ (R1 +R5 +R6))

Claude-Sonnet-4:
V n2(s) = V 3 + V 1

Gemini-2.5-Pro:
V n2(s) = V 1 ∗ (R5 +R6)/(R1 +R5 +R6)

GPT-4o:

V2(s) =
V5(s)
R3 + V6(s)

R4 + V1(s)
R6 − V 1

R2
1
R3 + 1

R4 + 1
R6

InternVL3-78B:

V n2(s) = (V 5(s)/R3+V 6(s)/R4+V 1(s)/R6+V 3(s)/R8)/(1/R3+1/R4+1/R6+1/R8)

Qwen2.5-VL-72B-Instruct:

V n2(s) =
V n1(s)

R6 + V n3(s)
R2

1
R3 + 1

R4 + 1
R6 + 1

R2

GLM-4.5V:

Vn2(s) =

Vn1(s)
R6

+ Vn4(s)
R2

+ Vn5(s)
R3

+ Vn6(s)
R4

+ V1(s)
(

1
R1

+ 1
R2

)
1
R1

+ 1
R2

+ 1
R3

+ 1
R4

+ 1
R6
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Synthetic Example Q2: RLC Transfer Function

Question: Derive the nodal equation for node 3 in the s-domain. Express the equation using only
the circuit elements and their values as labeled in the diagram. Make sure the final answer is just
the symbolic equation Vn3(s) = ..., where the right side contains only the labeled components
and sources from the circuit diagram.

Netlist Extraction:

L1 1 4 L1
V1 1 0 step
R3 3 2 R3
R4 0 4 R4
C1 2 0 C1
R1 2 0 R1
L2 3 2 L2
R2 3 6 R2
R5 4 2 R5
R6 2 6 R6

Ground-turth: Vn3(s) = R1*R4*V1/(s*(C1*(R1*(L1*R4*s**2 + L1*R5*s**2 + R4*R5*s)) +
L1* (R1*s + R4*s + R5*s) + R4*(R1 + R5))
Claude-Sonnet-4:

V 3(s) = (V 6(s) ∗ s ∗L2 ∗R3+V 2(s) ∗R2 ∗ (R3+ s ∗L2))/(s ∗L2 ∗ (R2+R3)+R2 ∗R3)

Gemini-2.5-Pro:
V n3(s) = V 1(s)

GPT-4o:

V3(s) =

V6(s)
R2

+
(

1
sL2

+ 1
R3

)
V2(s)

1
R2

+ 1
sL2

+ 1
R3

InternVL3-78B:

V n3(s) = (V 6(s) ∗ (1/R2) + V 2(s) ∗ (1/R3 + 1/(s ∗ L2)))/(1/R2 + 1/R3 + 1/(s ∗ L2))

Qwen2.5-VL-72B-Instruct:

V n3(s) = (V n2(s)/R2 + V n1(s)/R3)/(1/R2 + 1/R3 + 1/(s ∗ L2))

GLM-4.5V:

Vn3(s) =
sL2R3Vn6 +R2(sL2 +R3)Vn2

sL2(R2 +R3) +R2R3
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Synthetic Example Q3: Small Signal (Dependent Sources)

Question: What is the transfer function from V1 to R1 in this circuit?

Netlist Extraction:

R1 1 2 R1
C1 1 0 C1
E1 3 2 1 2 x_1 0
V1 5 0 step
R2 3 5 R2

Ground-truth:

H(s) = ((R1 ∗ s/(R1 ∗ x1 −R1−R2))/(s− 1/(C1 ∗R1 ∗ x1 − C1 ∗R1− C1 ∗R2))) ∗ 1

Claude-Sonnet-4:

H(s) = (R1 ∗ s ∗ C1)/((1 + x1) ∗R1 ∗ s ∗ C1 + 1)

Gemini-2.5-Pro:

H(s) = (−s ∗R1 ∗ C1)/(1 + s ∗ C1 ∗ (R1 ∗ (1− x1) +R2))

GPT-4o:
H(s) =

sC1

sC1 +
x1

R1

InternVL3-78B:
H(s) = 1/(1 + s ∗ C1 ∗R1 ∗ (1− x1))

Qwen2.5-VL-78B-Instruct:

H(s) =

1
R2

+ V2

(
1
R1

− 1
R2

)
1
R1

− s ∗ C1 − x1

R2

GLM-4.5V:
H(s) =

sC1R1

sC1(R2 +R1(x1 − 1)) + 1
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Synthetic Example Q5: Ideal Op-amp

Question: Derive the nodal equation for node 3 in the s-domain. Express the equation using only
the circuit elements and their values as labeled in the diagram. Make sure the final answer is just
the symbolic equation Vn3(s) = ..., where the right side contains only the labeled components
and sources from the circuit diagram.

Netlist Extraction:

R4 1 2 R4
V1 1 0 step
L2 3 2 L2
C1 2 0 C1
R1 3 0 R1
R2 0 5 R2
L1 6 0 L1
R3 6 0 R3
Rint1 5 31 Rint1
Cint1 6 31 Cint1
Eint1 6 0 0 31 Ad 0

Ground-truth:

V n3(s) = R1 ∗ V 1/(s ∗ (C1 ∗ L2 ∗R4 ∗ s ∗ ∗2 + C1 ∗R1 ∗R4 ∗ s+ L2 ∗ s+R1 +R4))

Gemini-2.5-Pro:

V n3(s) = (R1 ∗ V n2(s) + s ∗ L2 ∗ V n7(s))/(R1 + s ∗ L2)

Claude-Sonnet-4:

V n3(s) = (V 2(s) ∗R1 ∗ s ∗ L2 + V 5(s) ∗R4 ∗R1)/(R1 ∗R4 + s ∗ L2 ∗ (R1 +R4))

GPT-4o:

V3(s) =

(
V0(s)

R1
+

V2(s)

sL2
+

V2(s)

R4

)(
1

R1
+

1

sL2
+

1

R4

)−1

Qwen2.5-VL-72B:

V n3(s) = V n2(s)/(1 +R1/(s ∗ L2) +R1/R3)

GLM4.5V:
Vn3(s) =

R1V1

(R1 +R4) + s(L2 + C1R4R1) + s2(C1R4L2)
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Synthetic Example Q6: Enhanced Control System

Question: What is the Transfer function of the provided block diagram?

Ground-truth:
C(s)

R(s)
=

( −10
(s2+2s+1) )

(1− 50
(s+2s+1).(s+2))

Claude-Sonnet-4:

C(s)/R(s) = 10(s+ 2)/[(s+ 1)(s+ 2)(s+ 3) + 50]

Gemini-2.5-Pro:

C(s)/R(s) = (10s2 + 40s+ 40)/(s5 + 8s4 + 24s3 + 84s2 + 223s+ 156)

GPT-4o:

C(s)/R(s) =
10(s+ 2)

s6 + 2s5 + s4 + 2s3 + s2 + 6s+ 54

InternVL3-78B:

C(s)/R(s) =
20(s+ 2)

(s2 + 2s+ 1)(s+ 3)(s+ 4) + 100s(s+ 2)/(s+ 6)

Qwen2.5-VL-72B:
C(s)

R(s)
=

10(s+ 2)

(s2 + 2s+ 1)(s+ 1)(s+ 3) + 50

GLM-4.5V:

C(s)/R(s) =
10(s+ 2)

(s+ 1)3(s+ 2)(s+ 3) + 50
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Design Example Q6: Simulation-needed Schematic-level question

Question: Design the sizing and biasing voltage of an Op-Amp in SKY130nm (VDD 1.8 V) as
shown in the provided circuit image.
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A.7 CURATED PROBLEMS

Question:

Example 1: schematic-level design

Source:

Level:

Text Answer:

This problem deals with the op amp shown in the provided circuit image. All 
device lengths are 1 𝜇𝑚, the slew rate is ±10 𝑉/𝜇𝑠, the 𝐺𝐵 is 10𝑀𝐻𝑧, the 
maximum output voltage is +2𝑉, the minimum output is −2𝑉, and the input 
common mode range is from −1𝑉 to +2𝑉. Design all 𝑊 value of all transistors in 
this op amp. Your design must meet or exceed the specifications. Ignore bulk 
effects in this problem. 

Image:

Level 2

ECE 6412-Spring 2003-HW8

𝑊1 = 𝑊2 = 36𝜇𝑚

𝑊15 = 4𝜇𝑚

𝑊3 = 𝑊4 = 𝑊6 = 𝑊7 = 24𝜇𝑚

𝑊8 = 𝑊9 = 𝑊10 = 𝑊11 = 121𝜇𝑚

𝑊12 = 𝑊13 = 𝑊5 = 1.4𝜇𝑚

𝑊14 = 16𝜇𝑚

Question:

Design a DPLL using the tri-state topology seen in the provided circuit image 
that generates a clock signal at a frequency of 100𝑀𝐻𝑧 from a 50 𝑀𝐻𝑧 square 
wave input. This application of the DPLL is called frequency synthesis.

Image:
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q4_image.png

Example 2: block-level design

Source:

Level:

Text Answer:

Level 2

CMOS Circuit Design, Layout, and Simulation 
P577
Example19.4

𝐶 = 10𝑝𝐹, 𝑅2 = 20𝑘Ω, 𝑅1 = 42.5𝑘Ω

Question:

Design a CMOS operational amplifier powered from a single 5𝑉 supply in 
which all MOSFET channel lengths are fixed at 𝐿 = 1𝜇𝑚 and every device 
operates in saturation; choose the width 𝑊 of every transistor so that the 
amplifier meets or exceeds the following specifications: slew rate = ±10𝑉/𝜇𝑠

maximum and minimum output voltage 𝑉𝑜𝑢𝑡 𝑚𝑎𝑥
= 4𝑉, 𝑉𝑜𝑢𝑡 𝑚𝑖𝑛

= 1𝑉, input 
common-mode range 𝑉𝐼𝐶 𝑚𝑖𝑛

= 1.5𝑉  to 𝑉𝐼𝐶 𝑚𝑎𝑥
= 4𝑉 . And unity-gain 

bandwidth(GB) =10 MHz; ignore bulk/body effects. Provide a summary table 
(round each to the nearest micron) listing the 𝑊 of every transistor.

Image: Level: Level 2

Source:
ECE 6412-Spring 
2005- HW07

Text Answer:

𝑊1 = 90𝜇𝑚, 
𝑊3 = 𝑊4 = 𝑊6 = 𝑊7 = 𝑊8 = 40𝜇𝑚, 
𝑊9 = 𝑊10 = 𝑊11 = 18𝜇𝑚, 
𝐼5 = 250𝜇𝐴

Example 3: hierarchical design

q769_image.png
In the circuit, R=2Ω , L=1mH, and C=0.4𝜇F. Find the resonant frequency.

Question:

Level: Level 0.5 Fundamentals of Electric Circuits
P674
Example 14.7

Source:
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q769_image.png

q769_image.png

Example 4: Level 0.5

𝜔0=50 𝑘𝑟𝑎𝑑/𝑠Image: Text Answer:

Question:

Example 5: Level 2

Source:

Level:

Text Answer:

For the emitter follower output stage shown below, find the value of 
efficiency when 𝑅𝐼 =

−𝑉𝐸𝐸−𝑉𝐵𝐸

𝐼𝑄
= 7.826KΩ and 𝑉𝐶𝐶 = −𝑉𝐸𝐸 =

2.5𝑉, 𝑉𝐶𝐸 = 0.2𝑉, 𝑉𝐵𝐸 = 0.7𝑉, 𝑅𝐿 = 10𝐾Ω 

Image: Level 2

ECE 6412-Spring 
2004-Homework02

23 %

3 7 5 ~ m V𝑣3 7 5 ~ 𝑚 𝑉q414_image.png

Use nodal analysis to determine voltages 𝑉2 in the circuit.Question:

Image:
Level: Level 1.5

Fundamentals of Electric Circuits
P118
Example3.27

Source:

Text Answer: 375 𝑚𝑉

Example 6: Level 1.5

q769_image.png

Question:

Image: Level:

Source:

Text Answer:

Level 1

Fundamentals of Electric Circuits
P674
Example 5.4

-6v

Example 7: Level 1

Determine 𝑣0 in the op amp circuit 
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A.8 PROMPT TEMPLATES

Prompt Template for Circuit Schematic Synthetic Pipeline

You are an expert electrical engineer specializing in circuit analysis. Analyze the circuit
diagram and solve for the requested symbolic expression.

Task: {Main Question}

Instructions: 1. Use EXACT component labels as shown in the circuit (e.g., R1, R2, C1,
C2, L1, not generic R, C, L) 2. For Laplace domain, use lowercase ’s’ as the complex
frequency variable 3. Use standard impedances: R for resistors, 1/(sC) for capacitors, sL
for inductors 4. For op-amps: Apply virtual short (V+ = V-) if in negative feedback, use Ad
for gain if specified

Response Format: You MUST structure your response exactly as follows:
<think>
[Show your reasoning and intermediate steps here] - Identify components and nodes - Inter-
mediate steps - Show equations - Show algebraic manipulation - Any simplification steps
</think>
<answer>
[Only the final symbolic equation here, e.g., H(s) = ..., Vn1(s) = ..., etc.]
</answer>
Make sure to use standard mathematical notation with for multiplication, / for division, and
f̂or powers.”

A.9 LLM USAGE

Large language models were used solely for grammar checking and minor text polishing during
manuscript preparation. No LLMs were involved in research ideation, experimental design, data
analysis, or substantive writing of the paper.
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