

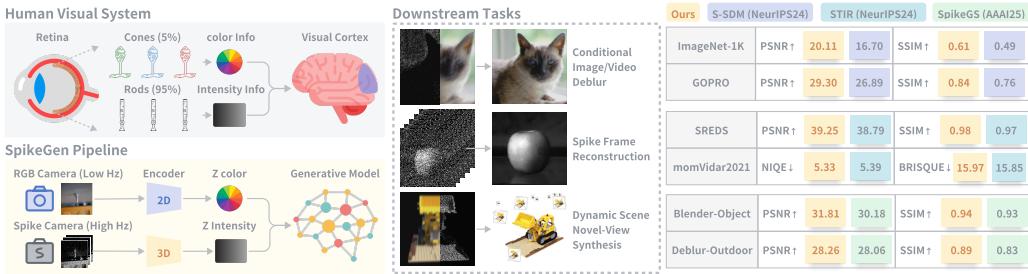
000 SPIKEGEN: DECOUPLED "RODS AND CONES" VISUAL 001 REPRESENTATION PROCESSING WITH LATENT GENER- 002ATIVE FRAMEWORK

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 The process through which humans perceive and learn visual representations in
014 dynamic environments is highly complex. From a structural perspective, the human
015 eye decouples the functions of cone and rod cells: cones are primarily responsible
016 for color perception, while rods are specialized in detecting motion, particularly
017 variations in light intensity. These two distinct modalities of visual information are
018 integrated and processed within the visual cortex, thereby enhancing the robustness
019 of the human visual system. Inspired by this biological mechanism, modern
020 hardware systems have evolved to include not only color-sensitive RGB cameras
021 but also motion-sensitive Dynamic Visual Systems, such as spike cameras. Building
022 upon these advancements, this study seeks to emulate the human visual system
023 by integrating decomposed multi-modal visual inputs with modern latent-space
024 generative frameworks. We named it *SpikeGen*. We evaluate its performance
025 across various spike-RGB tasks, including conditional image and video deblurring,
026 dense frame reconstruction from spike streams, and high-speed scene novel-view
027 synthesis. Supported by extensive experiments, we demonstrate that leveraging the
028 latent space manipulation capabilities of generative models enables an effective
029 synergistic enhancement of different visual modalities, addressing spatial sparsity
030 in spike inputs and temporal sparsity in RGB inputs.



041 Figure 1: Overview of the motivation, task setups and main quantitative results of SpikeGen.
042

045 1 INTRODUCTION

047 Human vision is not the best at any single metric — bees can be tetrachromats (Kevan et al., 2001)
048 and many flies see flicker at far higher rates than we do (Borst et al., 2010) — but it excels as
049 a balanced, tightly coupled system that fuses rich low-level cues from different modalities with
050 high-level semantics. This balance yields (i) broad color discrimination via trichromacy with fine
051 color resolution (Horiguchi et al., 2013), (ii) robust perception of moving targets with preserved
052 spatial detail through active eye movements and temporally tuned pathways (Conner, 1982), and (iii)
053 powerful inference mechanism that “fills in” missing information under extreme conditions (e.g., low
light, fast motion) (Chariker et al., 2016; 2018).

The quest to replicate such capabilities has driven innovations in both imaging hardware and computational models. In hardware, RGB cameras directly emulate the trichromatic properties of cone cells (Peterson, 2016), which are concentrated in the fovea to provide high spatial and color resolution but lack temporal sensitivity (Zhang et al., 2021a). Conversely, Dynamic Visual Systems (DVS) (Han et al., 2020) like spike cameras draw inspiration from rod cells — widely distributed outside the fovea — utilizing their continuous integration mechanism to achieve high temporal resolution for perceiving subtle light changes, albeit with trade-offs in color and spatial resolution (Marković et al., 2020). On the algorithmic front, Artificial Neural Networks (ANNs) have emerged as powerful tools for multimodal visual fusion. For instance, infrared imaging can detect heat sources in low-light but lacks color and texture details, while visible-light imaging provides high-resolution color information but falters in darkness. Fusion algorithms integrating these modalities have demonstrated significant utility in applications like nighttime security (Yuan et al., 2024).

Notably, the RGB and spike modalities are functionally decoupled. In the human visual system, the brain acts as a "model" that integrates information from both modalities while leveraging semantic knowledge to infer missing details. Inspired by this mechanism, our approach aims to develop a multimodal model that emulates key characteristics of the human visual system. **Reviewing current studies, when relying solely on the RGB modality, although achieving relative improvements over low - quality inputs, often results in inherent information loss that introduces ambiguities in the output (Chen et al., 2024; Chang et al., 2023; Chen et al., 2023a).** This phenomenon is known as the "sharpness trap" where overall contrast is enhanced without meaningful geometric recovery (i.e., preservation of fine structural features) (Jiang et al., 2021). Similarly, in tasks dominated by the spike modality — such as dense frame reconstruction — the outputs are typically grayscale and exhibit limited spatial resolution (e.g., 250×400). As a result, incorporating priors from complementary modalities can significantly improve performance. Prior work, such as the Self-supervised Spike-guided Deblurring Model (S-SDM) (Chen et al., 2024), has demonstrated that texture cues captured by spike cameras can guide models to prioritize structural accuracy over superficial sharpness. Furthermore, we argue that even blurry RGB frames may provide valuable guidance for dense frame reconstruction. Since individual frames in the raw spike stream are spatially sparse, insufficient spike activity leads to spatial uncertainty (Zhu et al., 2019; 2020; Zheng et al., 2023). In contrast, RGB frames preserve global spatial relationships among scene elements, thereby serving as a coarse yet effective constraint to mitigate such uncertainty. In conclusion, cross-modality processing exhibits greater potential, with recent successes extending to 3D vision tasks (e.g., multi-view spike stream for 3DGS (Guo et al., 2025; Dai et al., 2024)) further validating this trend.

Nevertheless, we observed a significant discrepancy between current approaches — such as S-SDM — and the human visual system. While existing methods rely on pixel-level self-supervised learning (SSL), the human visual system acquires information through latent representations without explicit pixel reconstruction. To bridge this gap, we propose ***SpikeGen***, a model featuring a latent generative architecture, for the following reasons: **(i)** Since the emergence of Latent Diffusion Models (LDM) (Rombach et al., 2022), operations in latent space have become an efficient paradigm for model training. In SpikeGen, we pre-train the spike encoder to align with the latent space of RGB Variational Autoencoder (VAE) (Kingma et al., 2013), achieving an 512x spatial-temporal downsampling. This substantially reduces computational overhead during training, particularly in terms of pixel-space loss computation, thereby enabling efficient pre-training on large-scale synthetic datasets (Deng et al., 2009). **(ii)** Pre-training in the latent space also improves adaptability to downstream tasks. Although pixel-level SSL methods such as Masked Autoencoders (MAE) (He et al., 2022) have proven effective, recent advances in DINO (Caron et al., 2021; Oquab et al., 2023) and Joint-Embedding Prediction Architectures (JEPA) (Assran et al., 2023; Drozdov et al., 2024) demonstrate superior generalization by operating in the embedding (i.e., latent) space. A key commonality among these approaches is their focus on capturing latent-level similarities rather than minimizing pixel-wise reconstruction errors, which helps mitigate issues such as the "sharpness trap." **(iii)** Most prior works are based on deterministic modeling frameworks (Chen et al., 2024; 2023a; Chang et al., 2023; Fan et al., 2024). In contrast, SpikeGen adopts a probabilistic framework by performing diffusion in the VAE latent space. This choice is motivated by that the scenarios we address inevitably involve information loss, whether due to blurring in RGB modalities or spatial sparsity in spike modalities. Diffusion models exhibit superior performance in similar cases, such as super-resolution (Moser et al., 2024; Gao et al., 2023) and denoising (Ho et al., 2020; Kawar et al., 2022), attributed to their enhanced recovery accuracy, particularly for detailed content like textures and artificial structures.

108 In summary, our key contributions are as follows:
 109

- 110 We systematically reviewed the merits of the human visual system, identifying the functionally
 111 decoupled nature of the human eye and cortical processing in latent space as
 112 fundamental to this advancement. Inspired by these biological mechanisms, we propose a
 113 novel processing pipeline compatible with dual RGB-spike modality, named *SpikeGen*.
- 114 To the best of our knowledge, our work represents a pioneering effort in leveraging a
 115 latent-based generative model for such tasks. The rationale stems from both **efficiency and**
 116 **effectiveness** considerations: latent-space operations enable an exceptional compression
 117 ratio (512-fold) during training while circumventing common issues with pixel-space loss,
 118 such as the "sharpness trap," which undermines the model's generalization capability.
- 119 We validate SpikeGen across multiple downstream tasks, including conditional image/video
 120 deblurring, dense frame reconstruction from spike streams, and high-speed scene novel-
 121 view synthesis. This comprehensive evaluation encompasses **all major tasks** in visual
 122 spike stream & RGB processing, thereby strongly supporting our hypothesis regarding the
 123 challenges inherent to these tasks and the corresponding methodological designs.

125 2 RELATED WORKS

127 **Visual Spike Stream Processing** Spike cameras are bio-inspired vision sensors that capture local
 128 intensity changes asynchronously, emitting spike streams. Compared to traditional frame-based
 129 cameras, they offer advantages such as high dynamic range (HDR), low power consumption, high
 130 temporal resolution, and inherent data compression, making them ideal for high-speed dynamics
 131 and challenging lighting conditions. Early research focused on texture recovery methods, like retina-
 132 inspired sampling by Zhu et al (Zhu et al., 2019). More recently, deep learning has dominated the
 133 transformation of spike data into dense images. Zhao et al. introduced Spk2ImgNet (Zhao et al., 2021)
 134 for reconstructing dynamic scenes from spike streams. Spiking Neural Networks (SNNs) (Zhang
 135 et al., 2023b) have also been applied for biologically plausible processing, with Zhao et al. developing
 136 SSIR (Zhao et al., 2023) architectures. Fan et al. proposed STIR (Fan et al., 2024) for spatio-temporal
 137 interactive learning to improve reconstruction efficiency. In image deblurring, Chen et al. developed
 138 SpkDeblurNet (Chen et al., 2023b) and S-SDM (Chen et al., 2024) to enhance motion deblurring
 139 using spike information. Spike cameras are also advancing 3D vision and scene perception, as shown
 140 by Dai et al (Dai et al., 2024) (SpikeNVS) and Guo et al. (Guo et al., 2025)(SpikeGS).

141 **Latent Generation Models** Generative modelling has made significant progress, enabling high-
 142 fidelity image synthesis and other complex data modalities. Diffusion models, pioneered by Denoising
 143 Diffusion Probabilistic Models (DDPMs) Ho et al. (2020), achieve state-of-the-art results by pro-
 144 gressively denoising signals from Gaussian noise. To address slow sampling speeds, Song et al. Song
 145 et al. (2020) introduced Denoising Diffusion Implicit Models (DDIMs), which offer faster generation
 146 with comparable quality. Latent Diffusion Models (LDMs) Rombach et al. (2022) operate in a learned
 147 latent space, reducing computational demands. SDXL Podell et al. (2023) further improved LDMs
 148 for high-resolution image generation. Auto-regressive models also benefit from latent representa-
 149 tions; MaskGIT Chang et al. (2022) uses transformers for masked generative image modelling with
 150 discrete latent codes. Recent research Li et al. (2024) explores autoregressive generation directly
 151 from continuous features, eliminating the need for quantization.

152 **Self-Supervised Learning** Self-Supervised Learning (SSL) has long been a prominent research
 153 topic. The success of MAE (He et al., 2022) and SimMIM (Xie et al., 2022) demonstrated the
 154 effectiveness of Masked Image Modeling (MIM) in pixel space, prompting recent SSL approaches to
 155 investigate MIM in latent space as a more efficient and effective alternative. Image Joint-Embedding
 156 Prediction Architectures (i-JEPA) (Assran et al., 2023) represent a representative effort in this
 157 direction. Concurrently, DINO (Caron et al., 2021) explored the potential of contrastive learning (CL)
 158 in latent space by aligning semantically consistent representations of the same image under different
 159 augmentations. iBot (Zhou et al., 2021) integrated the strengths of latent space modeling, MIM, and
 160 CL into a unified framework, inspiring subsequent works such as DINOv2 (Oquab et al., 2023) and
 161 DINOv3 (Siméoni et al., 2025), which have scaled up latent space SSL to the billion-parameter level
 in terms of both data volume and model capacity.

162 3 METHODS
163164 3.1 PRELIMINARY
165166 **Visual Spike Stream** The imaging principle of spike cameras diverges from both the exposure-
167 based mechanism of conventional RGB cameras and the differential approach of event cameras.
168 A spike camera operates by integrating incoming light intensity until an accumulator reaches a
169 predefined activation threshold, denoted as V_{th} . Upon reaching this threshold, a spike is emitted, and
170 any surplus intensity I beyond the threshold is retained for the next integration cycle. If I_t represents
171 the light intensity input at time step t , the value stored in the accumulator, A_t evolves according to:
172

173
$$A_t = (A_{t-1} + I_t) \bmod V_{th} \quad (1)$$

174 A spike for a pixel p at coordinates (i, j) occurs when the accumulated value plus the current input
175 signal meets or exceeds the threshold V_{th} . This determines the binary spike value, indicating whether
176 the brightness level was sufficient during the sampling interval. The formal definition is:
177

178
$$p_{i,j,t} = \begin{cases} 1, & \text{if } A_{t-1} + I_t \geq V_{th} \\ 0, & \text{otherwise} \end{cases} \quad (2)$$

179

180 Reconstructing dense frames from these spike streams traditionally employs methods like Texture
181 From Interval (TFI) or Texture From Playback (TFP) (Zhu et al., 2019). TFI excels at capturing
182 texture contours. In contrast, TFP reconstructs textures across varied dynamic ranges by adaptively
183 modifying the time window size based on contrast levels. Let $d_{i,j,t}$ be the temporal latency, i.e.,
184 the time elapsed since the last spike at pixel (i, j) before time t . Let w denote the size of the time
185 window and $N_{i,j,w}$ be the total number of spikes accumulated for pixel (i, j) within that window.
186 The expressions for TFI and TFP reconstructed texture P^t at time t are:
187

188
$$\text{TFI: } P_{TFI}^t = \frac{V_{th}}{d_{i,j,t}}, \quad \text{TFP: } P_{TFP}^t = \frac{N_{i,j,w}}{w} * C \quad (3)$$

189

190 where C is a constant scaling factor for TFP.
191192 **Latent Space Operation** Latent Diffusion Models (LDMs) (Rombach et al., 2022) are a type of
193 latent space generative model designed for high-resolution image synthesis while being computa-
194 tionally efficient. Instead of operating directly in the high-dimensional pixel space like traditional
195 Diffusion Models, LDMs apply the diffusion process within the lower-dimensional latent space
196 learned by a powerful pre-trained autoencoder (e.g., VAE (Kingma et al., 2013)). This autoencoder
197 consists of an encoder $\mathcal{E}(\cdot)$ that compresses the image x into a latent representation $z = \mathcal{E}(x)$ and
198 a decoder $\mathcal{D}(\cdot)$ that reconstructs the image from the latent space $\tilde{x} = \mathcal{D}(z)$ (Rombach et al., 2022).
199 The diffusion model ϵ_θ is then trained solely within this latent space to denoise representations z_t at
200 various noise levels t . This separation allows the computationally expensive training and sampling of
201 the diffusion process to occur in a much more manageable space, focusing on semantic information
202 rather than imperceptible pixel details.
203The training objective for the Latent Diffusion Model is given by:
204

205
$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} [\|\epsilon - \epsilon_\theta(z_t, t)\|_2^2]$$

206 Here, ϵ is the noise sampled from a normal distribution, z_t is the noisy latent representation at timestep
207 t , and $\epsilon_\theta(z_t, t)$ is the neural network predicting the noise added to z_t .
208

3.2 SPIKEGEN: CONFIGURABLE DUAL MODALITY PRE-TRAIN

210 SpikeGen is developed by leveraging recent advancements in latent generation models. Specifically,
211 we constructed a modified version of the Masked Auto-Regressive Model (MAR) (Li et al., 2024)
212 to better suit our tasks. Similar to MAR, we encode RGB visual information via a Variational
213 Autoencoder (VAE) (Kingma et al., 2013) and generate the conditioning input using a standard
214 Vision Transformer (ViT) (Dosovitskiy et al., 2020) backbone. Subsequently, the conditioning input
215 is processed through a compact Multi-Layer Perceptron (MLP), conducting a per-token diffusion
process (Song et al., 2020) for decoding the latent representation (see Figure 2).
216

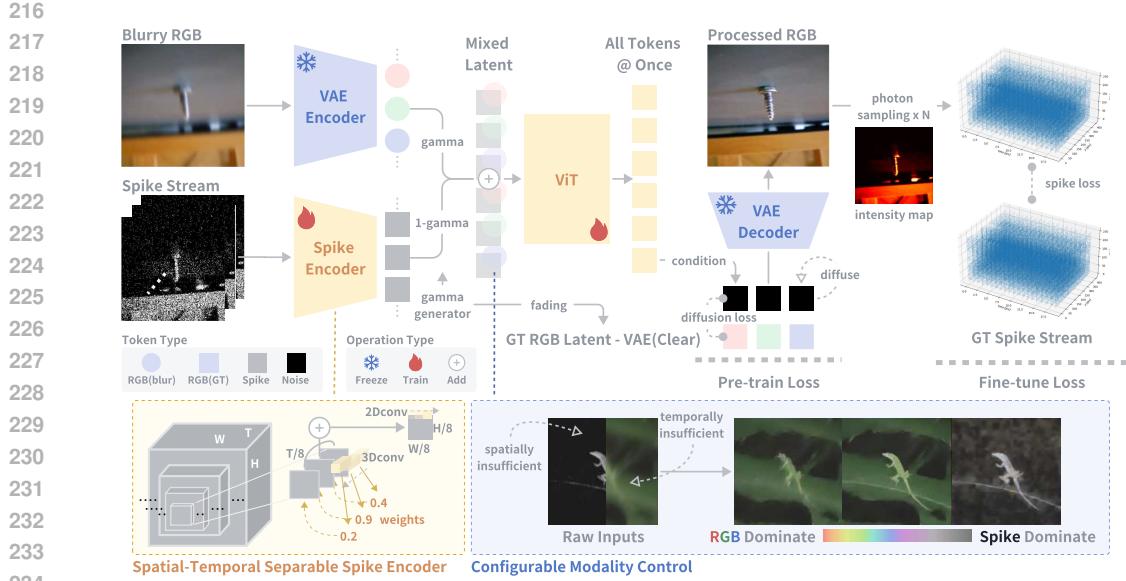


Figure 2: The Overall Pipeline of SpikeGen. SpikeGen adopts a standard pre-training (self-supervised) and fine-tuning (task-dependent) pipeline. Specifically, visual information from two modalities is encoded, followed by the addition of the two latent representations. In this process, γ serves as a parameter to control the effective weight and is randomly sampled from the interval $[0, 1]$. Notice that during the pre-training phase, the diffusion loss is computed using the pre-extracted latent representation of the clear RGB image obtained via a Variational Autoencoder (VAE) (Kingma et al., 2013). The spike stream loss during the fine-tuning phase is calculated based on the given ground truth and the synthetic spike stream generated from the predicted RGB output.

Diffusion with Decomposed Latent Condition From a broader view, unlike the Masked Image Modelling (MIM) (He et al., 2022) strategies employed in MAR, we consider that both blurry RGB inputs (temporally insufficient) and spike inputs (spatially insufficient) represent forms of degradation. Consequently, the ViT in SpikeGen receives complete tokens from two encoders and generates conditions for the per-token diffusion. Since we do not need to predict new tokens from void, we have further streamlined the auto-regressive process of MAR into generating all tokens simultaneously. This enhances the efficiency during both training and inference (see Appendix Figure 6). We also found that this design did not affect the overall performance (see Appendix Table 7)

Spatial-Temporal Separable Spike latent Besides the Variational Autoencoder (VAE) utilized for encoding blurry RGB information, we developed a Spatial-Temporal Separable Spike (S3) Encoder. The S3 Encoder first applies a series of 3D convolutional blocks to transform the input spike stream from dimensions $[B, 1, T, H, W]$ to $[B, C_{out}, T/8, H/8, W/8]$ ($C_{out} = 512$). These blocks progressively reduce the spatio-temporal resolution while increasing the channel depth, akin to the hierarchical structure employed in the UNet encoder. Following the temporal fusion stage, where the $[B, C_{out}, T/8, H/8, W/8]$ features are processed to fuse information along the temporal dimension explicitly, we generate temporal attention weights for the features using two consecutive $1 \times 1 \times 1$ 3D convolutions. These attention weights are then multiplied element-wise with the features. The resulting weighted features are subsequently summed along the temporal dimension, collapsing it and producing a feature map of shape $[B, C_{out}, H/8, W/8]$. To further refine these spatially-resolved but temporally-fused features, a 2D convolution is applied, followed by a LayerNorm operation and a final LeakyReLU activation. When temporal fusion is active, the ultimate output of the S3 Encoder is a feature map of shape $[B, C_{out}, H/8, W/8]$ (see Figure 2 and Appendix Table 5).

Random Modality Dropout To enable a configurable modality control after pre-training, we randomly assign the addition ratio of RGB latent (extracted by VAE encoder) and the spike latent (extracted by S3 encoder). The random ratio is denoted as γ , which is sampled from a Gaussian distribution with a mean of $\mu = 0.5$ and a variance of $\sigma^2 = 1$, subsequently truncated to the interval

[0, 1]. This can be formally expressed as $\gamma \sim \mathcal{N}_{[0,1]}(\mu = 0.5, \sigma^2 = 1)$. The mixed latent, z_{mixed} , can then be calculated by the formula $z_{mixed} = (1 - \gamma)z_{RGB} + \gamma z_{spike}$. We intend to simplify the mixing strategy to enable better downstream usage. However, this indicates we cannot directly use the latent extracted from the clear RGB images as learning objectives. Instead, we colour fade the clear RGB images based on the γ value (higher fade intensity with increasing γ). Let I_{clear} represent the original clear RGB image and I_{gray} be its corresponding grayscale version. The fade formula to obtain the faded image I_{faded} is as $I_{faded} = (1 - \gamma) \cdot I_{clear} + \gamma \cdot I_{gray}$. This ensures that when $\gamma \rightarrow 1$ (spike latent becomes dominant), I_{faded} tends towards I_{gray} , and when $\gamma \rightarrow 0$ (RGB latent is dominant), I_{faded} remains close to I_{clear} . This enables, when spike latent becomes the main content (γ is high), the model to focus more on texture reconstruction over precise colour prediction, as the learning objective I_{faded} will have reduced colour information (see Figure 2).

3.3 SPIKEGEN: TASK ADAPTATION

During pre-training, our loss is computed solely as the diffusion loss between the clear RGB latent and the latent predicted by SpikeGen. This significantly reduces computational costs when training on large-scale datasets. However, this latent alignment can underperform during fine-tuning, particularly with limited data, as it may not sufficiently guide the model to capture fine-grained details. For instance, the outdoor dataset (Ma et al., 2022) for 3D scene reconstruction contains merely 34 images per scene. A common strategy to mitigate this is to introduce pixel-space similarity measures during the fine-tuning phase; for example, models like SDXL (Podell et al., 2023) incorporate both MSE and perceptual losses calculated in the RGB pixel space. However, as downstream tasks for SpikeGen could lack clear RGB ground truth, we propose a spike-alignment strategy instead (see Figure 2). Specifically, the latent generated by SpikeGen is decoded back into the pixel space, yielding a predicted image I_{pred} . Based on the intensity of I_{pred} , we then generate a corresponding probability map P_{pred} . This process starts with min-max normalization and the I_{norm} image is convolved with a Gaussian kernel K_G (parameterized by σ_s) to produce a smoothed version I_{smooth} . Finally, I_{smooth} undergoes gamma correction, $P_{pred} = (I_{smooth})^{\gamma_c}$, with a small amount of uniform random noise is added. Predicted spike stream can then be generated by sampling P_{pred} . The spike-alignment loss is computed by comparing the ground truth spike stream with the predicted spike stream.

4 EXPERIMENTS

We conducted comprehensive comparisons with more than 20 state-of-the-art baselines across 3 major visual spike & RGB processing tasks (conditional image/video deblurring, dense frame reconstruction from spike streams, and high-speed scene novel-view synthesis) to demonstrate the effectiveness and versatility of SpikeGen. We color-coded the performance in Table 1, 2, 3 with **Red (1st)**, **Blue (2nd)**. All the experiments follow the data usage and evaluation strategies used in S-SDM (Chen et al., 2024), STIR (Fan et al., 2024), and SpikeGS (Guo et al., 2025). See Appendix A for more details.

4.1 PRE-TRAINING

We performed pre-training on the complete training set of ImageNet (Deng et al., 2009) utilizing 8 A800 GPUs. We carefully tuned the hyperparameters to optimize the generation of synthetic data. Given the substantial volume of available data, we adopted a more aggressive blurring configuration and a sparser spike stream to enhance the learning challenge for the model. Specifically, we applied a 40×40 blurring kernel and random sampled 8 from 64 generated spike frames per image. Through extensive pre-training, we anticipate that SpikeGen will exhibit robust generalization capabilities and successfully achieve the configurable modality conditioning discussed in Section 3.2. In Figure 3, we illustrate the generalization performance of SpikeGen on the ImageNet test set. Overall, even when RGB images are significantly blurred and spike information is relatively sparse, SpikeGen can effectively reconstruct artificial geometric shapes of objects (column 1, right) and natural fine structures (column 2, right). Furthermore, by controlling the injection of modalities, we showcased single-modal generalization capability (rows 3 and 4, left). When dual modalities collaborate, the model leverages their complementary strengths to achieve optimal results (row 5, left). We provided more visualization in Appendix C.2.

Figure 3: **Conditional Image Deblurring on Synthetic RGB-Spike Data.** For all our experiments, the input visual spike streams for SpikeGen are in binary format (0/1) without colour information. Here, for better visualization, row 2 (from top) of the left panel demonstrates the cut-out result of the RGB channels using 3 spike frames (results in row 4 used 8 frames as input). We also magnified a few results with highlighted detail for better comparison of the structural correctness (right panel).

Table 1: **Quantitative Results of Conditional Video Deblur Task.** The column colour reflects different thresholds when generating spike frames (code and value from S-SDM (Chen et al., 2024)). Higher thresholds produce spike frames with higher sparsity.

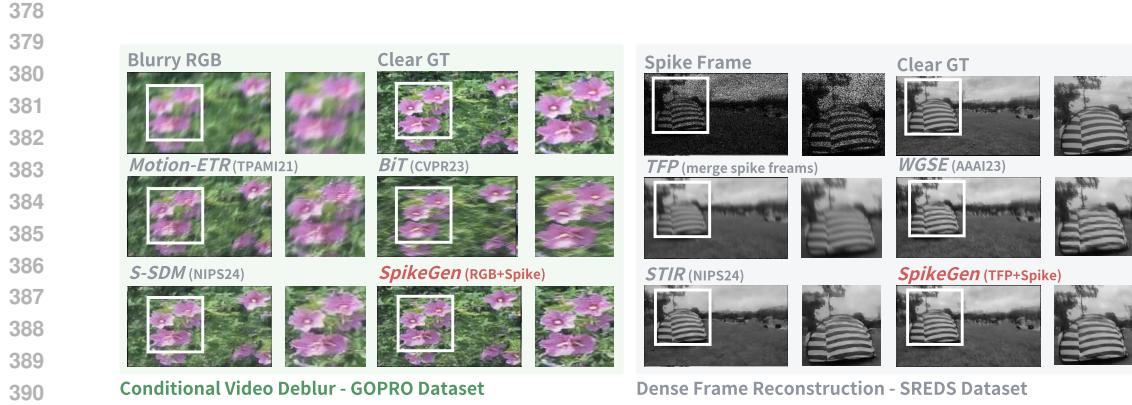
Dataset: <i>GOPRO</i> (Nah et al., 2017)							
Methods	Dual Modality	$V_{th} = 1$		$V_{th} = 2$		$V_{th} = 4$	
		PSNR \uparrow	SSIM \uparrow	PSNR \uparrow	SSIM \uparrow	PSNR \uparrow	SSIM \uparrow
<i>LEVS</i> (CVPR18) (Jin et al., 2018)	✗	21.16	0.60	21.16	0.60	21.16	0.60
<i>Motion-ETR</i> (TPAMI21) (Zhang et al., 2021b)	✗	21.96	0.61	21.96	0.61	21.96	0.61
<i>BiT</i> (CVPR23) (Zhong et al., 2023)	✗	23.64	0.70	23.64	0.70	23.64	0.70
<i>TRMD</i> (TMM24) (Chen & Yu, 2024)	✓	27.32	0.78	21.20	0.60	18.57	0.52
<i>RED</i> (ICCV21) (Xu et al., 2021)	✓	24.46	0.74	23.18	0.67	21.94	0.61
<i>REFID</i> (CVPR23) (Sun et al., 2023)	✓	28.12	0.82	15.29	0.34	13.62	0.27
<i>SpkDeblurNet</i> (NIPS23) (Chen et al., 2023b)	✓	28.31	0.83	14.41	0.30	11.62	0.20
<i>S-SDM</i> (NIPS24) (Chen et al., 2024)	✓	26.89	0.76	26.37	0.74	25.43	0.70
<i>SpikeGen</i> (RGB&Spike)	✓	29.30	0.84	28.78	0.82	28.07	0.81

Furthermore, in terms of efficiency, we aim to evaluate whether the latent generation backbone selection in SpikeGen, combined with a non-autoregressive design (see Section 3.2), can reduce computational overhead. As shown in Table 7, our approach achieves a significant reduction in processing time without compromising performance.

4.2 FINE-TUNING GENERALIZATION

Given the extensive range of downstream experiments we have conducted, this section presents only the most concise and comparative results. For additional details, please refer to Appendix C.

Conditional Image/Video Deblurring We adhered to the same experimental setups as described in S-SDM (Chen et al., 2024) for this task. S-SDM generated paired blurry RGB-spike stream data based on the GOPRO dataset (Nah et al., 2017). Each blurry RGB input was converted by the SpikingSim simulator (Zhao et al., 2022) into an average of 98 spike frames (we use 8) with a spike threshold $V_{th} = 1$ during training and $V_{th} = 1/2/4$ during validation. As shown in the quantitative results presented in Table 1, SpikeGen significantly outperformed all baselines across all V_{th} configurations. Specifically, the relative improvement in PSNR increased from approximately 1 to approximately 3 as the spike guidance became sparser (higher V_{th}). We attribute this phenomenon to two primary



392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Mutual Guidance with Dual Modality Inputs. The top panel presents the results obtained from both RGB-based deblurring methods and spike-RGB-based approaches. SpikeGen demonstrated superior performance compared to all competitors in terms of visual fidelity. The bottom panel illustrates the outcomes of various methods when only a limited number of spike frames (here, 16 frames) are available. SpikeGen addresses spatial ambiguity caused by spike sparsity by leveraging the merged result of spike frames (i.e., TFP) as a pseudo-dense modality.

Table 2: Quantitative Results of Dense Frame Reconstruction Task. The row color indicates the method type, with red denoting training-free methods, yellow representing event-based methods, and blue corresponding to spike-based methods.

Methods	Dataset: SREDS (Zhao et al., 2023)					Dataset: momVidar2021 (Zhu et al., 2020)	
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NIQE \downarrow	BRISQUE \downarrow	NIQE \downarrow	BRISQUE \downarrow
TFP (ICME19) (Zhu et al., 2019)	25.35	0.69	0.26	5.97	43.07	9.34	45.20
TFI (ICME19) (Zhu et al., 2019)	18.50	0.64	0.26	4.52	44.93	10.10	58.31
TFSTP (CVPR21) (Zheng et al., 2021)	20.68	0.62	0.28	5.35	51.70	10.92	64.57
ET-Net (ICCV21) (Weng et al., 2021)	34.57	0.94	0.05	3.40	17.16	6.51	17.39
HyperE2VID (TIP24) (Ercan et al., 2024)	36.37	0.95	0.05	3.13	16.77	6.306	17.02
SSIR (TCSVT23) (Zhao et al., 2023)	32.61	0.92	0.05	3.47	15.66	5.75	25.34
Spk2ImgNet (CVPR21) (Zhao et al., 2021)	36.13	0.95	0.03	3.08	15.35	5.66	16.52
WGSE (AAAI23) (Zhang et al., 2023a)	37.44	0.96	0.02	3.03	15.56	5.62	16.15
STIR (NIPS24) (Fan et al., 2024)	38.79	0.97	0.02	2.92	14.84	5.39	15.85
SpikeGen (TFP&Spike)	39.25	0.98	0.01	2.83	14.99	5.33	15.97

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
18

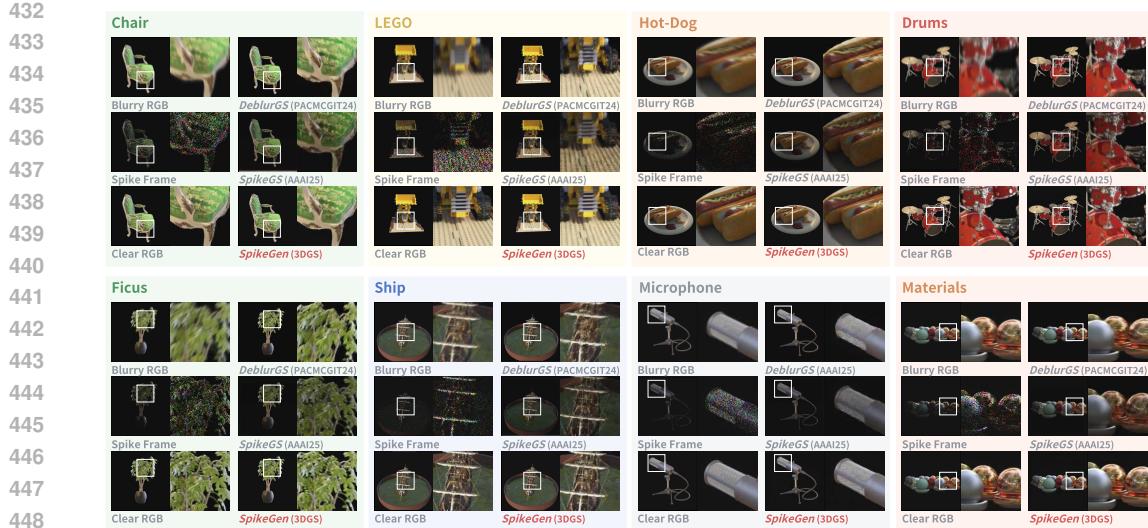


Figure 5: Qualitative Results of Novel View Synthesis Task.

Dense Frame Reconstruction As elaborated in Section 1, we posit that the spatial relationships embedded within dense RGB data, even when blurred, can address the sparsity inherent in spike streams. Consequently, validating this hypothesis on the dense frame reconstruction task holds merit. Following the experimental setups outlined in STIR (Fan et al., 2024), we utilized data from REDS (Xu et al., 2021) to synthesize a spike-based dataset (SREDS). Specifically, SREDS converts each RGB frame in REDS into 64 corresponding spike frames (we use 16) and further crops them into patches of size 96×96 , resulting in a total of 21,840 patches. Additionally, the model was evaluated on the real-world dataset momVidReal2021 (Zhu et al., 2020). As demonstrated in Table 2 and Figure 4, SpikeGen exhibits superior performance, both in referenced metrics (PSNR, SSIM, and LPIPS (Zhang et al., 2018)) and no-reference metrics (NIQE (Mittal et al., 2012b) and BRISQUE (Mittal et al., 2012a)). A pivotal factor contributing to these results is the integration of Texture from Playback (TFP) (Zhu et al., 2019) as a pseudo grayscale image. TFP aggregates all spike frames within a fixed temporal window, akin to simulating shutter timing in conventional RGB cameras for spike streams. This approach enhances spatial richness at the expense of temporal resolution, thereby introducing blur. SpikeGen mitigates this limitation by reprocessing the raw spike streams to achieve high-quality reconstructions (see Appendix C.4 for ablation studies without TFP priors).

High-speed Scene Novel-View Synthesis Finally, we evaluated SpikeGen’s performance on the recently emerging task of high-speed scene novel-view synthesis. Our experimental setups were based on SpikeGS (Guo et al., 2025), which transformed the synthetic Blender datasets introduced in NeRF (Mildenhall et al., 2021) (for object-centric scenes) and DeblurNeRF (Ma et al., 2022) (for outdoor scenarios) into dual-modality pairs. As illustrated in Figure 5, while DeblurGS (Chen & Liu, 2024) demonstrates overall sharpness, it exhibits blurry details due to its reliance solely on the RGB modality. SpikeGS successfully recovers finer details; however, its optimization prioritizes texture repair using the binary spike stream at the expense of accurate color saturation matching to the ground truth RGB. In contrast, SpikeGen achieves an excellent qualitative balance and further validates its adaptability through quantitative results (see Table 3). Notably, despite being a two-stage method, SpikeGen outperforms other approaches, as evidenced by extra experiments comparing various two-stage methods (see Appendix C.5).

4.3 CONCLUSION

We propose **SpikeGen**, the first latent generative framework specifically designed for decoupled visual representation processing. We successfully pre-trained the model on more than one million images and demonstrated its broad applicability across diverse tasks, covering all major domains of joint spike stream and RGB visual processing. We believe this can serve as a foundation for advancing

486 latent generative modeling in neuromorphic vision, closely mirroring the human capacity to integrate
 487 perception and imagination for multimodal visual processing in dynamic environments.
 488

489 **5 ETHICS STATEMENT**

490
 491 This paper presents work whose goal is to advance the field of Machine Learning. There are many
 492 potential societal consequences of our work, none which we feel must be specifically highlighted
 493 here.
 494

495 **6 REPRODUCIBILITY STATEMENT**

496 To ensure the reproducibility of the computational experiments, we have provided the code in the
 497 supplementary materials. Anonymous README file is also included. Detailed information regarding
 498 the selected baselines, data usage, and codebases is presented in the Appendix.
 499

500 **REFERENCES**

501 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
 502 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
 503 predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 504 *Pattern Recognition*, pp. 15619–15629, 2023.

505 Alexander Borst, Juergen Haag, and Dierk F Reiff. Fly motion vision. *Annual review of neuroscience*,
 506 33(1):49–70, 2010.

507 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 508 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
 509 *IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

510 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
 511 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 512 *recognition*, pp. 11315–11325, 2022.

513 Yakun Chang, Chu Zhou, Yuchen Hong, Liwen Hu, Chao Xu, Tiejun Huang, and Boxin Shi. 1000
 514 fps hdr video with a spike-rgb hybrid camera. In *Proceedings of the IEEE/CVF Conference on*
 515 *Computer Vision and Pattern Recognition*, pp. 22180–22190, 2023.

516 Logan Chariker, Robert Shapley, and Lai-Sang Young. Orientation selectivity from very sparse
 517 lgn inputs in a comprehensive model of macaque v1 cortex. *Journal of Neuroscience*, 36(49):
 518 12368–12384, 2016.

519 Logan Chariker, Robert Shapley, and Lai-Sang Young. Rhythm and synchrony in a cortical network
 520 model. *Journal of Neuroscience*, 38(40):8621–8634, 2018.

521 Kang Chen and Lei Yu. Motion deblur by learning residual from events. *IEEE Transactions on*
 522 *Multimedia*, 26:6632–6647, 2024.

523 Kang Chen, Shiyuan Chen, Jiyuan Zhang, Baoyue Zhang, Yajing Zheng, Tiejun Huang, and Zhaofei Yu.
 524 Spikereveal: Unlocking temporal sequences from real blurry inputs with spike streams. *Advances*
 525 *in Neural Information Processing Systems*, 37:62673–62696, 2024.

526 Shiyan Chen, Jiyuan Zhang, Yajing Zheng, Tiejun Huang, and Zhaofei Yu. Enhancing motion
 527 deblurring in high-speed scenes with spike streams. *Advances in Neural Information Processing*
 528 *Systems*, 36:70279–70292, 2023a.

529 Shiyan Chen, Jiyuan Zhang, Yajing Zheng, Tiejun Huang, and Zhaofei Yu. Enhancing motion
 530 deblurring in high-speed scenes with spike streams. *Advances in Neural Information Processing*
 531 *Systems*, 36:70279–70292, 2023b.

532 Wenbo Chen and Ligang Liu. Deblur-gs: 3d gaussian splatting from camera motion blurred images.
 533 *Proceedings of the ACM on Computer Graphics and Interactive Techniques*, 7(1):1–15, 2024.

540 JD Conner. The temporal properties of rod vision. *The Journal of Physiology*, 332(1):139–155, 1982.
 541

542 Gaole Dai, Zhenyu Wang, Qinwen Xu, Ming Lu, Wen Chen, Boxin Shi, Shanghang Zhang, and
 543 Tiejun Huang. Spikenvs: Enhancing novel view synthesis from blurry images via spike camera.
 544 *arXiv preprint arXiv:2404.06710*, 2024.

545 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 546 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 547 pp. 248–255. Ieee, 2009.

548

549 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 550 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 551 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 552 *arXiv:2010.11929*, 2020.

553 Katrina Drozdov, Ravid Shwartz-Ziv, and Yann LeCun. Video representation learning with joint-
 554 embedding predictive architectures. *arXiv preprint arXiv:2412.10925*, 2024.

555

556 Burak Ercan, Onur Eker, Canberk Saglam, Aykut Erdem, and Erkut Erdem. Hypere2vid: Improving
 557 event-based video reconstruction via hypernetworks. *IEEE Transactions on Image Processing*,
 558 2024.

559

560 Bin Fan, Jiaoyang Yin, Yuchao Dai, Chao Xu, Tiejun Huang, and Boxin Shi. Spatio-temporal
 561 interactive learning for efficient image reconstruction of spiking cameras. *Advances in Neural*
 562 *Information Processing Systems*, 37:21401–21427, 2024.

563

564 Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu,
 565 Xiantong Zhen, and Baochang Zhang. Implicit diffusion models for continuous super-resolution.
 566 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 567 10021–10030, 2023.

568

569 Yijia Guo, Yuanxi Bai, Liwen Hu, Mianzhi Liu, Ziyi Guo, Lei Ma, and Tiejun Huang. Spike-
 570 nerf: Neural radiance field based on spike camera. In *2024 IEEE International Conference on*
Multimedia and Expo (ICME), pp. 1–6. IEEE, 2024.

571

572 Yijia Guo, Liwen Hu, Yuanxi Bai, Jiawei Yao, Lei Ma, and Tiejun Huang. Spikegs: Reconstruct 3d
 573 scene captured by a fast-moving bio-inspired camera. In *Proceedings of the AAAI Conference on*
Artificial Intelligence, volume 39, pp. 3293–3301, 2025.

574

575 Jin Han, Chu Zhou, Peiqi Duan, Yehui Tang, Chang Xu, Chao Xu, Tiejun Huang, and Boxin Shi.
 576 Neuromorphic camera guided high dynamic range imaging. In *Proceedings of the IEEE/CVF*
Conference on Computer Vision and Pattern Recognition, pp. 1730–1739, 2020.

577

578 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 579 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 580 *vision and pattern recognition*, pp. 16000–16009, 2022.

581

582 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
neural information processing systems, 33:6840–6851, 2020.

583

584 Hiroshi Horiguchi, Jonathan Winawer, Robert F Dougherty, and Brian A Wandell. Human trichromacy
 585 revisited. *Proceedings of the National Academy of Sciences*, 110(3):E260–E269, 2013.

586

587 Junjun Jiang, Chenyang Wang, Xianming Liu, and Jiayi Ma. Deep learning-based face super-
 588 resolution: A survey. *ACM Computing Surveys (CSUR)*, 55(1):1–36, 2021.

589

590 Meiguang Jin, Givi Meishvili, and Paolo Favaro. Learning to extract a video sequence from a single
 591 motion-blurred image. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 592 *Recognition*, pp. 6334–6342, 2018.

593 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 594 models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.

594 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
 595 for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

596

597 Peter G Kevan, Lars Chittka, and Adrian G Dyer. Limits to the salience of ultraviolet: lessons from
 598 colour vision in bees and birds. *Journal of Experimental Biology*, 204(14):2571–2580, 2001.

599 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

600

601 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 602 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 603 56424–56445, 2024.

604 Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue Wang, and Pedro V Sander. Deblur-
 605 nerf: Neural radiance fields from blurry images. In *Proceedings of the IEEE/CVF conference on*
 606 *computer vision and pattern recognition*, pp. 12861–12870, 2022.

607

608 Danijela Marković, Alice Mizrahi, Damien Querlioz, and Julie Grollier. Physics for neuromorphic
 609 computing. *Nature Reviews Physics*, 2(9):499–510, 2020.

610 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 611 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 612 *of the ACM*, 65(1):99–106, 2021.

613

614 Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality as-
 615 sessment in the spatial domain. *IEEE Transactions on image processing*, 21(12):4695–4708,
 616 2012a.

617 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 618 analyzer. *IEEE Signal processing letters*, 20(3):209–212, 2012b.

619 Brian B Moser, Arundhati S Shanbhag, Federico Raue, Stanislav Frolov, Sebastian Palacio, and
 620 Andreas Dengel. Diffusion models, image super-resolution, and everything: A survey. *IEEE*
 621 *Transactions on Neural Networks and Learning Systems*, 2024.

622

623 Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
 624 for dynamic scene deblurring. In *Proceedings of the IEEE conference on computer vision and*
 625 *pattern recognition*, pp. 3883–3891, 2017.

626 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 627 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 628 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

629

630 Liyuan Pan, Cedric Scheerlinck, Xin Yu, Richard Hartley, Miaomiao Liu, and Yuchao Dai. Bringing
 631 a blurry frame alive at high frame-rate with an event camera. In *Proceedings of the IEEE/CVF*
 632 *conference on computer vision and pattern recognition*, pp. 6820–6829, 2019.

633 Bryan Peterson. *Understanding exposure: how to shoot great photographs with any camera*. AmPhoto
 634 books, 2016.

635

636 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 637 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 638 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

639

640 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 641 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 642 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

643

644 Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. Xvfi: extreme video frame interpolation. In
 645 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 14489–14498,
 2021.

646

647 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 648 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv*
 649 *preprint arXiv:2508.10104*, 2025.

648 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 649 *preprint arXiv:2010.02502*, 2020.
 650

651 Lei Sun, Christos Sakaridis, Jingyun Liang, Peng Sun, Jiezhang Cao, Kai Zhang, Qi Jiang, Kaiwei
 652 Wang, and Luc Van Gool. Event-based frame interpolation with ad-hoc deblurring. In *Proceedings*
 653 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18043–18052,
 654 2023.

655 Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. Event-based video reconstruction using transformer.
 656 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2563–2572,
 657 2021.

658 Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
 659 Simmim: A simple framework for masked image modeling. In *Proceedings of the IEEE/CVF*
 660 *conference on computer vision and pattern recognition*, pp. 9653–9663, 2022.

661 Fang Xu, Lei Yu, Bishan Wang, Wen Yang, Gui-Song Xia, Xu Jia, Zhendong Qiao, and Jianzhuang
 662 Liu. Motion deblurring with real events. In *Proceedings of the IEEE/CVF International Conference*
 663 *on Computer Vision*, pp. 2583–2592, 2021.

664 Maoxun Yuan, Xiaorong Shi, Nan Wang, Yinyan Wang, and Xingxing Wei. Improving rgb-infrared
 665 object detection with cascade alignment-guided transformer. *Information Fusion*, 105:102246,
 666 2024.

667 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
 668 Yang, and Ling Shao. Multi-stage progressive image restoration. In *Proceedings of the IEEE/CVF*
 669 *conference on computer vision and pattern recognition*, pp. 14821–14831, 2021.

670 Jiyuan Zhang, Shanshan Jia, Zhaofei Yu, and Tiejun Huang. Learning temporal-ordered representation
 671 for spike streams based on discrete wavelet transforms. In *Proceedings of the AAAI Conference on*
 672 *Artificial Intelligence*, volume 37, pp. 137–147, 2023a.

673 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 674 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

675 Youjian Zhang, Chaoyue Wang, Stephen J Maybank, and Dacheng Tao. Exposure trajectory recovery
 676 from motion blur. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):
 677 7490–7504, 2021a.

678 Youjian Zhang, Chaoyue Wang, Stephen J Maybank, and Dacheng Tao. Exposure trajectory recovery
 679 from motion blur. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):
 680 7490–7504, 2021b.

681 Yuan Zhang, Jian Cao, Jue Chen, Wenyu Sun, and Yuan Wang. Razor snn: efficient spiking neural
 682 network with temporal embeddings. In *International Conference on Artificial Neural Networks*,
 683 pp. 411–422. Springer, 2023b.

684 Jing Zhao, Ruiqin Xiong, Hangfan Liu, Jian Zhang, and Tiejun Huang. Spk2imgnet: Learning
 685 to reconstruct dynamic scene from continuous spike stream. In *Proceedings of the IEEE/CVF*
 686 *Conference on Computer Vision and Pattern Recognition*, pp. 11996–12005, 2021.

687 Junwei Zhao, Shiliang Zhang, Lei Ma, Zhaofei Yu, and Tiejun Huang. Spikingsim: A bio-inspired
 688 spiking simulator. In *2022 IEEE International Symposium on Circuits and Systems (ISCAS)*, pp.
 689 3003–3007. IEEE, 2022.

690 Rui Zhao, Ruiqin Xiong, Jian Zhang, Zhaofei Yu, Shuyuan Zhu, Lei Ma, and Tiejun Huang. Spike
 691 camera image reconstruction using deep spiking neural networks. *IEEE Transactions on Circuits*
 692 *and Systems for Video Technology*, 34(6):5207–5212, 2023.

693 Yajing Zheng, Lingxiao Zheng, Zhaofei Yu, Boxin Shi, Yonghong Tian, and Tiejun Huang. High-
 694 speed image reconstruction through short-term plasticity for spiking cameras. In *Proceedings of*
 695 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6358–6367, 2021.

702 Yajing Zheng, Lingxiao Zheng, Zhaofei Yu, Tiejun Huang, and Song Wang. Capture the moment:
703 High-speed imaging with spiking cameras through short-term plasticity. *IEEE Transactions on*
704 *Pattern Analysis and Machine Intelligence*, 45(7):8127–8142, 2023.

705 Zhihang Zhong, Mingdeng Cao, Xiang Ji, Yinqiang Zheng, and Imari Sato. Blur interpolation
706 transformer for real-world motion from blur. In *Proceedings of the IEEE/CVF Conference on*
707 *Computer Vision and Pattern Recognition*, pp. 5713–5723, 2023.

708 Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
709 Image bert pre-training with online tokenizer. *arXiv preprint arXiv:2111.07832*, 2021.

710 Lin Zhu, Siwei Dong, Tiejun Huang, and Yonghong Tian. A retina-inspired sampling method for
711 visual texture reconstruction. In *2019 IEEE International Conference on Multimedia and Expo*
712 (*ICME*), pp. 1432–1437. IEEE, 2019.

713 Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, and Yonghong Tian. Retina-like visual image
714 reconstruction via spiking neural model. In *Proceedings of the IEEE/CVF Conference on Computer*
715 *Vision and Pattern Recognition*, pp. 1438–1446, 2020.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A EXPERIMENT SETUPS**
757758 **A.1 BASELINES**
759760 **Conditional Video Deblurring**
761

- 762 Jin et al. (Jin et al., 2018) proposed LEVS, which tackled the extraction of a video sequence
763 from a single motion-blurred image by proposing a deep learning scheme that sequentially
764 reconstructs pairs of frames using loss functions invariant to their temporal order.
- 765 Zhang et al. (Zhang et al., 2021b) proposed MotionETR, focusing on recovering dense,
766 potentially non-linear exposure trajectories from a motion-blurred image by proposing a
767 novel motion offset estimation framework to model pixel-wise displacements over time.
- 768 Zhong et al. (Zhong et al., 2023) addressed real-world motion recovery from blur (joint
769 deblurring and interpolation) by introducing a Blur Interpolation Transformer (BiT) that
770 utilizes multi-scale residual Swin Transformer blocks and temporal supervision strategies.
- 771 Sun et al. (Sun et al., 2023) worked on event-based video frame interpolation with the
772 capability of ad-hoc deblurring for both sharp and blurry input frames, using a bidirectional
773 recurrent network (REFID) that adaptively fuses image and event information.
- 774 Xu et al. (Xu et al., 2021) tackled motion deblurring using real-world event data through a
775 self-supervised learning framework (RED-Net) that leverages event-predicted optical flow
776 for blur and photometric consistency constraints.
- 777 Chen and Yu (Chen & Yu, 2024) addressed event-based motion deblurring by proposing a
778 Two-stage Residual-based Motion Deblurring (TRMD) framework, which first estimates an
779 intensity residual sequence from events and then uses it to reconstruct sharp frames from the
780 blurry image.
- 781 Chen et al. (Chen et al., 2023b) aimed at enhancing motion deblurring in high-speed scenes
782 by proposing SpkDeblurNet, a model that leverages spike streams as auxiliary cues and
783 employs content-aware motion magnitude attention and transposed cross-attention fusion
784 for RGB-spike data integration.
- 785 Chen et al. (Chen et al., 2024) (SpikeReveal) focused on unlocking temporal sequences
786 of sharp images from real blurry inputs assisted by spike streams, using a self-supervised
787 spike-guided deblurring model (S-SDM) that explores theoretical relationships between the
788 modalities.

790 **Dense Frame Reconstruction**
791

- 792 Zhu et al. (Zhu et al., 2019) addressed visual texture reconstruction from spike streams by
793 proposing a retina-inspired sampling method (TFP and TFI) and associated spike stream
794 decoding techniques.
- 795 Zheng et al. (Zheng et al., 2021) tackled high-speed image reconstruction from spiking
796 cameras by introducing novel models (TFSTP and TFMDSTP) based on the short-term
797 plasticity (STP) mechanism of the brain.
- 798 Zhang et al. (Zhang et al., 2023a) focused on learning effective temporal-ordered representa-
799 tions for spike streams by proposing a Wavelet-Guided Spike Enhancing (WGSE) paradigm
800 that utilizes discrete wavelet transforms.
- 801 Zhao et al. (Zhao et al., 2021) developed Spk2ImgNet, a spike-to-image neural network,
802 to learn the reconstruction of dynamic scenes from continuous spike streams generated by
803 spiking cameras.
- 804 Zhao et al. (Zhao et al., 2023) proposed SSIR to addressed spike camera image reconstruction
805 by employing deep Spiking Neural Networks (SNNs), aiming for comparable performance
806 to state-of-the-art methods but with lower computational costs.
- 807 Fan et al. (Fan et al., 2024) tackled efficient image reconstruction for spiking cameras by
808 proposing a spatio-temporal interactive reconstruction network (STIR) that jointly performs
809 inter-frame feature alignment and intra-frame feature filtering in a coarse-to-fine manner.

- 810 Ercan et al. Ercan et al. (2024) aimed to improve event-based video reconstruction by
811 proposing HyperE2VID, a dynamic neural network architecture that uses hypernetworks to
812 generate per-pixel adaptive filters guided by a context fusion module.
- 813 • Weng et al. Weng et al. (2021) addressed event-based video reconstruction by proposing ET-
814 Net, a hybrid CNN-Transformer framework designed to leverage both fine local information
815 from CNNs and global context from Transformers.

817 Novel-View Synthesis

- 819 Kerbl et al. Kerbl et al. (2023) introduced 3D Gaussian Splatting for real-time, high-quality
820 radiance field rendering by representing scenes as a collection of 3D Gaussians optimized
821 from sparse points and rasterized efficiently.
- 822 • Ma et al. Ma et al. (2022) addressed the reconstruction of Neural Radiance Fields (NeRFs)
823 from blurry images by proposing Deblur-NeRF, which simulates the blurring process using
824 a deformable sparse kernel module within an analysis-by-synthesis framework.
- 825 • Chen and Liu Chen & Liu (2024) tackled 3D scene reconstruction using Gaussian Splat-
826 tting from camera motion-blurred images (Deblur-GS) by jointly optimizing 3D Gaussian
827 parameters and the camera’s motion trajectory during exposure time.
- 828 • Guo et al. Guo et al. (2024) proposed Spike-NeRF, the first Neural Radiance Field based
829 method for 3D reconstruction and novel view synthesis of high-speed scenes using continu-
830 ous spike streams from a moving spike camera, incorporating spike masks and a specialized
831 loss function.
- 832 • Guo et al. Guo et al. (2025) developed SpikeGS to reconstruct 3D scenes from Bayer-pattern
833 spike streams captured by a fast-moving bio-inspired camera by integrating spike data into
834 the 3D Gaussian Splatting pipeline using accumulation rasterization and interval supervi-
835 sion.

836 A.2 DATASETS

838 **Pre-Training** We utilize the complete training set from ImageNet (Deng et al., 2009) to synthesize
839 spike-RGB pairs. ImageNet comprises 1,000 categories, with each category containing approximately
840 1,000 RGB images, resulting in a total of roughly 1 million images. For each clear RGB image, we
841 transform it into a blurred image and an 8-frame spike stream. The RGB blur kernel is configured as
842 40×40 , and the coverage rate of the spike stream is set to 0.1. The Dataset and Dataloader code are
843 provided in the supplementary materials.

845 **Conditional Video Deblurring** To facilitate a quantitative analysis of our spike-assisted motion
846 deblurring performance, we constructed a synthetic dataset leveraging the commonly adopted GO-
847 PRO (Nah et al., 2017) dataset. The process commenced with the application of the XVFI (Sim
848 et al., 2021) interpolation algorithm, which served to augment the video data by generating seven
849 additional intermediate frames between every pair of successive sharp images. For the creation of
850 spike streams that faithfully mimic real-world sensor data, the interpolated video sequences were
851 first spatially downscaled to a 320×180 resolution, followed by simulation using a dedicated spike
852 simulator (Zhao et al., 2022). To replicate the effects of real-world motion blur, each blurry input
853 frame was then synthesized through the averaging of 97 consecutive frames from these upsampled
854 video sequences.

855 **Dense Frame Reconstruction** Following STIR (Fan et al., 2024), the SREDS dataset, a recently
856 introduced collection that was synthesized from the established REDS (Xu et al., 2021) dataset. This
857 dataset is organized into 240 distinct scenes for training and 30 separate scenes for testing. Each
858 scene consists of 24 sequential frames, with every frame being accompanied by a corresponding
859 spike stream ($N=20$) that is centrally aligned to it. The spatial resolution for this data is 1280×720
860 pixels. In preparation for training, we crop each scene into non-overlapping patches of 96×96 pixels,
861 which yields a total of 21,840 patches. To evaluate our model’s effectiveness, we employ real-world
862 captured data. This validation set includes the “momVidReal2021” (Zhu et al., 2020) publicly
863 accessible dataset, which has a resolution of 400×250 and features significant object and camera
864 motion at high speeds (this dataset has also been previously employed in other studies).

Novel-View Synthesis We use the same dataset used in SpikeGS (Guo et al., 2025). It first contains the Blender dataset presented by NeRF (Mildenhall et al., 2021), this dataset comprises path-traced images of eight objects characterized by intricate geometry and realistic non-Lambertian materials. For six of these objects, viewpoints were sampled across the upper hemisphere, while the other two were rendered from viewpoints covering a full sphere. For every scene in this dataset, 100 views are rendered to serve as input and 200 views for testing purposes, all at an 800×800 pixel resolution. The second one is the Blender dataset presented by DeblurNeRF (Ma et al., 2022). This dataset synthesized five distinct scenes, with multi-view cameras manually positioned to simulate realistic data capture conditions. To create images with camera motion blur, it first introduced random perturbations to the camera poses and then performed linear interpolation between the original and perturbed poses for each view; images rendered from these interpolated poses were subsequently blended in linear RGB space to form the final blurry images.

A.3 METRICS

Several metrics are commonly used to evaluate the quality of images, differing in whether they require a reference (Full-Reference, FR) or operate without one (No-Reference, NR).

Peak Signal-to-Noise Ratio (PSNR) is an FR metric that measures image fidelity based on the Mean Squared Error (MSE) between a reference image I and a processed image K , both of size $m \times n$. A higher PSNR generally indicates better reconstruction quality. It is defined as:

$$MSE = \frac{1}{m \cdot n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i, j) - K(i, j)]^2 \quad (4)$$

$$PSNR = 10 \cdot \log_{10} \left(\frac{MAX_I^2}{MSE} \right) \quad (5)$$

where MAX_I is the maximum possible pixel value of the image (e.g., 255 for 8-bit images).

Structural Similarity Index Measure (SSIM) is another FR metric designed to better align with human perception of image quality by considering changes in structural information, luminance, and contrast. For two image windows x and y , SSIM is calculated as:

$$SSIM(x, y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)} \quad (6)$$

where μ_x, μ_y are the local means, σ_x^2, σ_y^2 are the local variances, σ_{xy} is the local covariance, and c_1, c_2 are small constants to stabilize the division. The overall SSIM is typically the average of local SSIM values. Higher SSIM values (closer to 1) indicate greater similarity.

Learned Perceptual Image Patch Similarity (LPIPS), proposed by Zhang et al. (Zhang et al., 2018), is an FR metric that aims to better reflect human perceptual judgments by comparing deep features extracted from images using pre-trained convolutional neural networks. The distance d between a reference image x_0 and a distorted image x is computed by summing the L2 distances of their feature activations \hat{y}^l, \hat{y}_0^l (normalized and channel-wise scaled by w_l) across different layers l of a network:

$$d(x, x_0) = \sum_l \frac{1}{H_l W_l} \sum_{h,w} \|w_l \odot (\hat{y}_{hw}^l - \hat{y}_{0hw}^l)\|_2^2 \quad (7)$$

Lower LPIPS scores indicate higher perceptual similarity.

Natural Image Quality Evaluator (NIQE), introduced by Mittal et al. (Mittal et al., 2012b), is an NR (blind) IQA metric. It operates by constructing a model based on natural scene statistics (NSS) extracted from a corpus of pristine natural images. The quality of a test image is then measured by the distance between the NSS features extracted from it and the pristine model. NIQE does not require training on human opinion scores of distorted images. Lower NIQE scores suggest better perceptual quality, closer to natural image statistics. The core idea involves fitting a multivariate Gaussian model to features derived from patches of natural images and then measuring the deviation of test image patch features from this model.

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), developed by Mittal et al. (Mittal et al., 2012a), is another NR IQA model that operates in the spatial domain. It quantifies the loss

918 of "naturalness" in an image by analyzing deviations in its locally normalized luminance coefficients
919 (specifically, Mean Subtracted Contrast Normalized - MSCN coefficients) from statistical models of
920 natural images. Features derived from the MSCN coefficient distributions are used to train a Support
921 Vector Regressor (SVR) to predict a subjective quality score. Lower BRISQUE scores generally
922 indicate better quality.

923

924 **A.4 CODE-BASES**

925

Pre-Training Our code is based on the implementation of MAR (Li et al., 2024).

927 Link:<https://github.com/LTH14/mar>

928

Conditional Video Deblurring Our code is based on the implementation of S-SDM (Chen et al.,
929 2024).

931

Link:<https://github.com/chenkang455/S-SDM>

932

Dense Frame Reconstruction Our code is based on the implementation of STIR (Fan et al., 2024).

934

Link:<https://github.com/GitCVfb/STIR>

935

Novel-View Synthesis Our code is based on the implementation of SpikeGS (Guo et al., 2025).

938

Link:<https://github.com/yijiaguo02/SpikeGS>

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 B TRAINING CONFIGURATIONS

974 All experiments were carried out on eight A800 GPUs, utilizing AdamW as the optimizer with
 975 a weight decay rate of 0.05. The training schedule was configured to include a warm-up phase
 976 (spanning 10% of the total epochs), during which the learning rate increased from 1e-8 to the target
 977 value, followed by a cosine decay to a minimum learning rate of 1e-6.

979 B.1 MODEL

981 All the results are conducted with the same model hyperparameters listed in Table 4

982 **Table 4: Hyperparameters for SpikeGen model**

984 Parameter	985 Value
986 <code>encoder_embed_dim</code>	987 768
988 <code>encoder_depth</code>	989 12
990 <code>encoder_num_heads</code>	991 12
992 <code>decoder_embed_dim</code>	993 768
994 <code>decoder_depth</code>	995 12
996 <code>decoder_num_heads</code>	997 12
998 <code>mlp_ratio</code>	999 4
999 <code>norm_layer</code>	1000 $\text{partial}(\text{nn.LayerNorm}, \text{eps}=10^{-6})$
1000 <code>max_position_embeddings</code>	1001 2048
1001 <code>RoPE base</code>	1002 10000

1003 **Table 5: Detailed Specifications of the S3 Encoder (Spatial-Temporal Separable Spike Encoder)**

1004 Module Category	1005 Subcomponent Name	1006 Function Description	1007 Key Parameters	1008 Input Shape	1009 Output Shape	
1010 Spatio-Temporal Feature Extraction Module	1011 Initial Feature Extraction Block	1012 Perform preliminary feature encoding on raw spike streams	1013 <code>Conv3d: 1→32 channels, 3x3x3 kernel, stride=1, padding=1; LeakyReLU(0.2); InstanceNorm3d</code>	1014 $[B, 1, T, H, W]$	1015 $[B, 32, T, H, W]$	
			1016 <code>Conv3d: 32→64 channels, 3x3x3 kernel, stride=2, padding=1; LeakyReLU(0.2); InstanceNorm3d</code>	1017 $[B, 32, T, H, W]$	1018 $[B, 64, T/2, H/2, W/2]$	
	1019 Downsampling Block 2		1020 <code>Conv3d: 64→128 channels, 3x3x3 kernel, stride=2, padding=1; LeakyReLU(0.2); InstanceNorm3d</code>	1021 $[B, 64, T/2, H/2, W/2]$	1022 $[B, 128, T/4, H/4, W/4]$	
			1023 <code>Conv3d: 128→256 channels, 3x3x3 kernel, stride=2, padding=1; LeakyReLU(0.2); InstanceNorm3d</code>	1024 $[B, 128, T/4, H/4, W/4]$	1025 $[B, 256, T/8, H/8, W/8]$	
1026 Temporal Fusion Module	1027 Downsampling Block 3		1028 <code>Conv3d: 256→512 channels, 1x1x1 kernel, stride=1; LeakyReLU(0.2)</code>	1029 $[B, 256, T/8, H/8, W/8]$	1030 $[B, 512, T/8, H/8, W/8]$	
			1031 <code>2-layer Conv3d: 512→512 channels, 1x1x1 kernel; LeakyReLU(0.2); Sigmoid activation</code>	1032 $[B, 512, T/8, H/8, W/8]$	1033 $[B, 512, T/8, H/8, W/8]$	
	1034 Channel Adjustment Conv		1035 <code>Element-wise multiplication (features × temporal weights)</code>	1036 $[B, 512, T/8, H/8, W/8]$	1037 $[B, 512, T/8, H/8, W/8]$	
			1038 <code>Summation along the T-axis (dim=2); Conv2d: 512→512 channels, 3x3 kernel, padding=1; LayerNorm; LeakyReLU(0.2)</code>	1039 $[B, 512, H/8, W/8]$	1040 $[B, 512, H/8, W/8]$	

1008 B.2 TRAINING

1011 We listed the hyperparameters for pre-training and fine-tuning in Table 6, covering the necessary
 1012 hyperparameters which is not explicitly outlined in our codebases.

1013 **Table 6: Training Hyperparameters**

1014 Parameter	1015 ImageNet	1016 GOPRO	1017 SREDS	1018 Blender
1019 Learning Rate	1.00×10^{-4}	1.00×10^{-4}	1.00×10^{-4}	1.00×10^{-5}
1020 Epoch	10	100	150	500
1021 Batch Size	64	32	64	32
1022 Image Resolution	256×256	768×384	96×96	800×800
1023 Spike Frame #	8	8	24	8

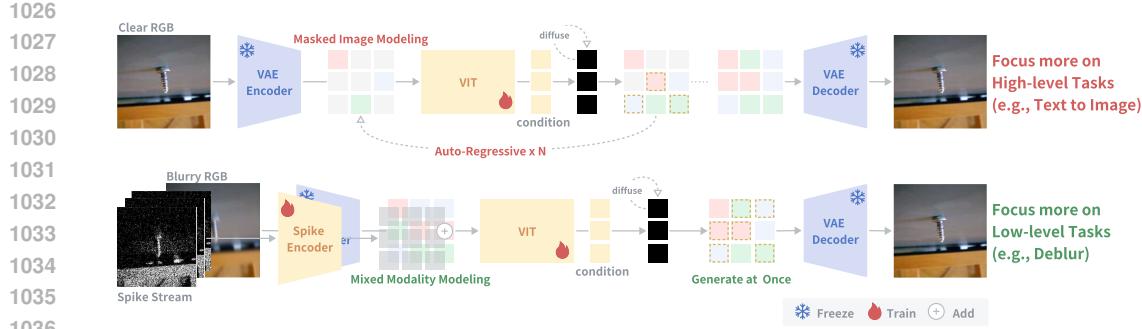


Figure 6: Modified SpikeGen Pipeline for Low-level Tasks

C ADDITIONAL RESULTS

C.1 EFFICIENT LATENT PROCESSING WITHOUT AUTO-REGRESSION

As outlined in Section 3, our model emphasizes the integration and restoration of existing visual tokens rather than generating new tokens from void. In light of this focus, and to further enhance computational efficiency, we eliminated the autoregressive component that was present in the original MAR framework. It is important to note that this architectural modification does not compromise the model’s performance, as demonstrated in Table 7.

Table 7: Efficiency Comparison: SpikeGen vs. Diffusion Baselines

Dataset: ImageNet Device: 1×NVIDIA A100 80G Resolution: 256×256				
Backbone	time/256 images	PSNR	SSIM	LPIPS
DIT-B (100 × ViT steps) × 256 tokens	2min19s	18.11	0.59	0.28
MAR-B (64 × ViT steps + 100 × MLP steps) × gradually to 256 tokens	1min32s	18.79	0.65	0.21
SpikeGen (1 × ViT steps + 100 × MLP steps) × 256 tokens	2.7s	19.08	0.62	0.19

C.2 GENERALIZATION ON IMAGENET

We present extra visualization results as an extended support for the discussion in Section 4.1.

C.3 CONDITIONAL VIDEO DEBLURRING

As the conclusion elaborated in detail in the main text, introducing the spike modality can greatly alleviate the ambiguity of deblurring images, thus avoiding falling into the "sharpness trap" of single RGB modality deblurring. In Figure 8, we demonstrate that this property can be successfully transferred to downstream tasks. We can observe that, regardless of the sparsity of the introduced spikes (controlled by V_{th}), the final deblurring results are superior to those relying on a single RGB modality. Moreover, as V_{th} decreases (indicating denser spike information), this improvement becomes more pronounced. From the visualization results, we can also see that although the overall texture is similar, introducing the spike modality can significantly enhance the restoration details.

C.4 DENSE FRAME RECONSTRUCTION

We mentioned in the main text that using the results of TFP as pseudo-dense frames can significantly improve the performance of the model, and we further demonstrated this in Table 8. When relying solely on spike streams, the model has difficulty directly fusing spatially sparse binary spike streams. Especially when the number of spike frames is insufficient. However, simply increasing the number of spike frames means that the model needs to multiply the inference consumption. Therefore, using the results of TFP as pseudo-dense frames is a good balancing operation. When using 1/4 of the spike frames (we use 16 frames while STIR (Fan et al., 2024) uses 64 frames), we have improved

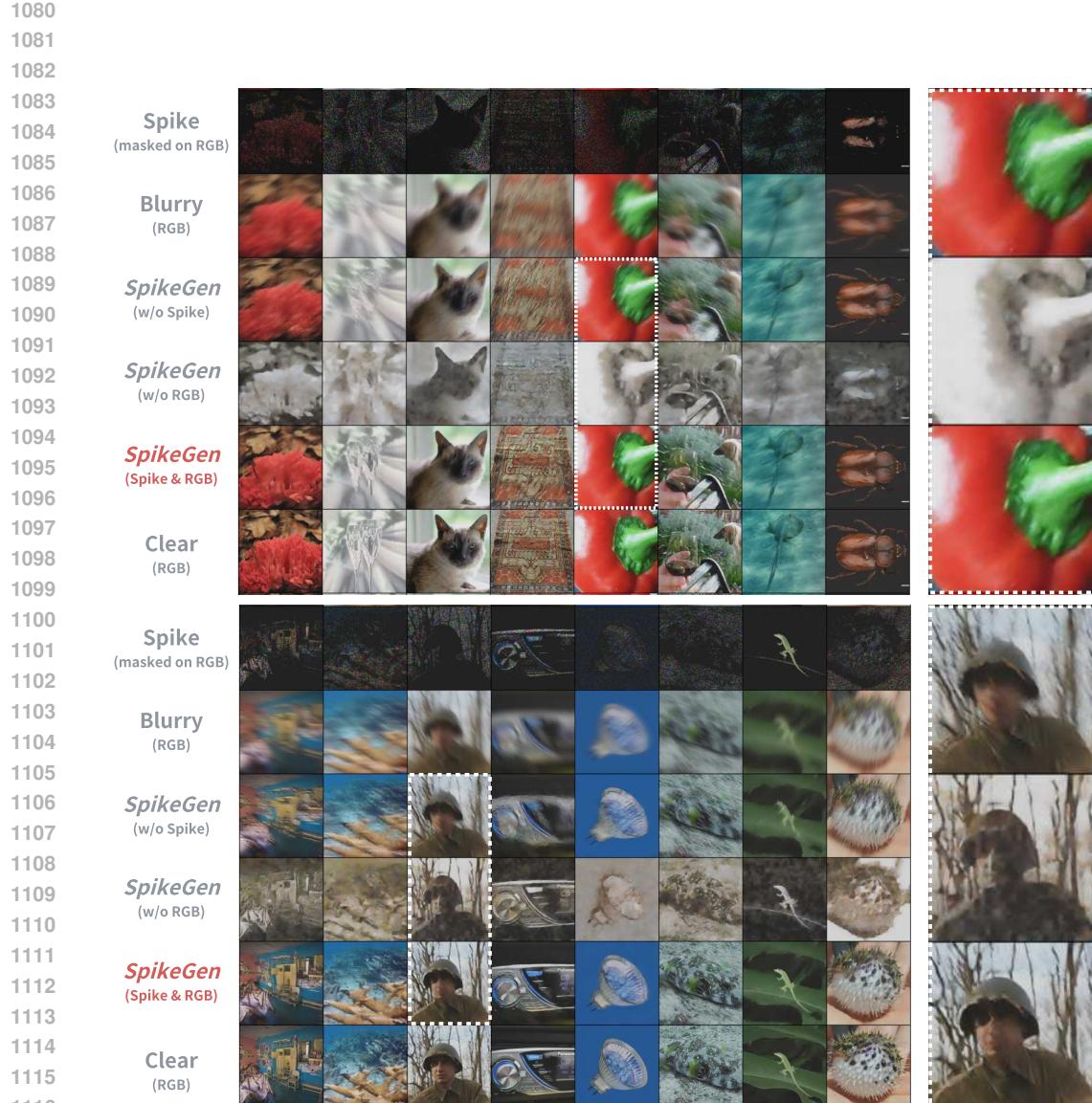


Figure 7: Extra Experiments: In-domain Generalization for Conditional Image Deblurring

Table 8: Ablation Study: Pseudo Dense Frame Control on SpikeGen

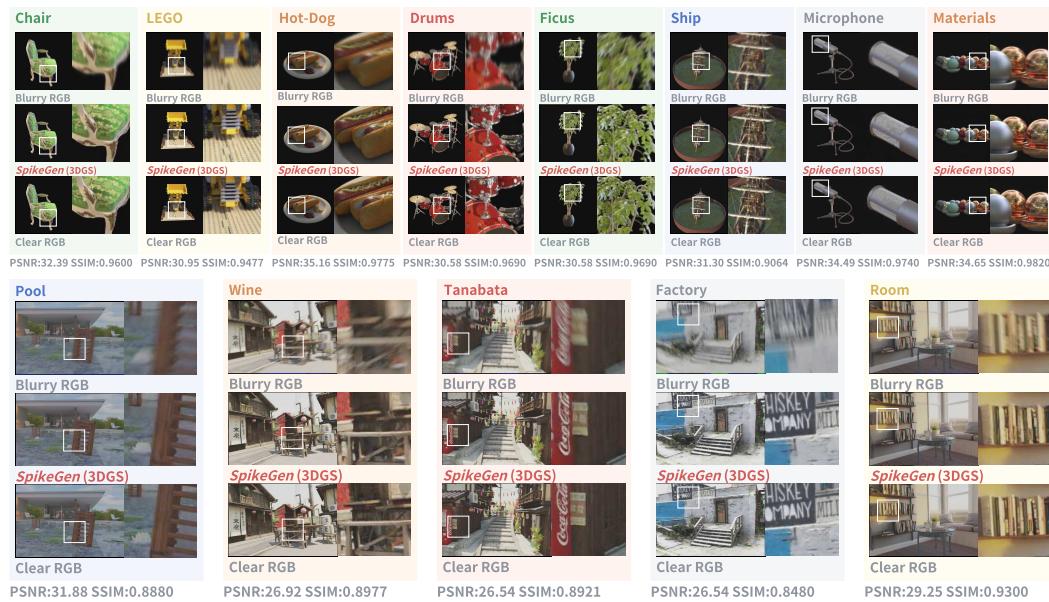
Methods	Dataset: SREDS (Synthetic) (Zhao et al., 2023)				Dataset: momVidar2021 (Real) (Zhu et al., 2020)		
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NIQE \downarrow	BRISQUE \downarrow	NIQE \downarrow	BRISQUE \downarrow
TFP (ICME19) (Zhu et al., 2019)	25.35	0.69	0.26	5.97	43.07	9.34	45.20
TFI (ICME19) (Zhu et al., 2019)	18.50	0.64	0.26	4.52	44.93	10.10	58.31
SpikeGen (Spike)	33.62	0.94	0.05	3.11	15.37	5.70	22.03
SpikeGen (TFI&Spike)	37.19	0.96	0.04	3.24	15.92	5.60	16.76
SpikeGen (TFP&Spike)	39.25	0.98	0.01	2.83	14.99	5.33	15.97

Figure 8: **Ablation Study: Modality Control on SpikeGen with GOPRO Dataset**

Figure 9: **Ablation Study: Stress Test under Limited Spike Information.**

1188
1189
1190 Table 9: **Extra Experiments: Comparison to Other Two-Stage Methods**
1191
1192

1193	1194	1195	1196	1197	1198	1199	Dataset: <i>Blender</i>											
							1190 Methods	1191 Dual Modality	1192 Objects (Mildenhall et al., 2021)			1193 Out-Door (Ma et al., 2022)			1194 Average			
									1195 PSNR \uparrow SSIM \uparrow	1196 LPIPS \downarrow	1197 PSNR \uparrow SSIM \uparrow	1198 LPIPS \downarrow	1199 PSNR \uparrow SSIM \uparrow LPIPS \downarrow					
3DGs (Clear) (Kerbl et al., 2023)							X		33.31	0.96	0.05	30.27	0.91	0.10	31.79	0.94	0.07	
3DGs (Blur) (Kerbl et al., 2023)							X		26.95	0.88	0.12	23.38	0.69	0.45	25.16	0.78	0.28	
MPR (3DGs) (CVPR21) (Zamir et al., 2021)							X		28.73	0.90	0.12	27.01	0.73	0.40	27.87	0.81	0.19	
TFI (3DGs) (CVPR21) (Zheng et al., 2021)							✓		29.97	0.92	0.11	26.96	0.82	0.25	29.92	0.84	0.14	
TFP (3DGs) (ICME19) (Zhu et al., 2019)							✓		30.11	0.92	0.09	27.51	0.76	0.36	29.14	0.80	0.22	
EDI (3DGs) (CVPR19) (Pan et al., 2019)							✓		29.45	0.92	0.11	27.88	0.79	0.32	29.73	0.84	0.12	
STIR (3DGs) (NeurIPS24) (Fan et al., 2024)							✓		29.01	0.92	0.12	28.01	0.83	0.20	29.45	0.87	0.16	
SpikeGen (3DGs)							✓		31.81	0.94	0.07	28.26	0.89	0.13	30.04	0.92	0.10	

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241 Figure 10: **Extra Experiments: Category Evaluation of SpikeGen on Blender Dataset**

the performance of SpikeGen to the state-of-the-art level, even though the focus of our work is not on single-modal tasks. To further verify our conclusion, we conducted a more extreme comparison. In Figure 9, we further reduced the number of spike frames to 8. In this case, STIR is unable to restore the spatial details of the object, while our method can still maintain a certain level of detail restoration, such as the texture of the floor tiles.

1229 C.5 NOVEL-VIEW SYNTHESIS

1230 We mentioned in the main text that our method is not an end-to-end model similar to SpikeGS Guo et al. (2025). However, we believe that this two-stage method also has potential advantages. For 1231 example, it can better leverage pre-trained priors and decouple the complexity of optimizing texture 1232 and perceptual fidelity. Therefore, we also compared the effects of using other spike processors for 1233 two-stage reconstruction. As shown in Table 9, although this two-stage method is feasible, it is not 1234 easy to achieve stable excellence. In the Object data, since the background (pure black) and objects 1235 are relatively simple, the other two-stage methods also perform well. However, in outdoor scenes, due 1236 to the complex background and tiny components, the performance of the other two-stage methods 1237 is greatly affected, while SpikeGen can still maintain a relatively stable performance. We further 1238 presented all the test contents on the two datasets and the specific metrics of our method in Figure 10. 1239

1242 **D THE USE OF LARGE LANGUAGE MODELS (LLMs)**
1243

1244 This paper solely employs Large Language Models to refine written content, encompassing grammar
1245 correction, tone adjustment, and formatting.
1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295