
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALABLE THOMPSON SAMPLING VIA ENSEMBLE++

Anonymous authors
Paper under double-blind review

ABSTRACT

Thompson Sampling is a principled uncertainty-driven method for active explo-
ration, but its real-world adoption is impeded by the high computational over-
head of posterior maintenance in large-scale or non-conjugate settings. Ensemble-
based approaches offer partial remedies, but often require a large ensemble size.
This paper proposes the Ensemble++, a scalable agent that sidesteps these limita-
tions by a shared-factor ensemble update architecture and a random linear combi-
nation scheme. We theoretically justify that in linear bandits, Ensemble++ agent
only needs an ensemble size of Θ(d log T) to achieve regret guarantees compa-
rable to exact Thompson Sampling. Further, to handle nonlinear rewards and
complex environments. we introduce a neural extension that replaces fixed fea-
tures with a learnable representation, preserving the same underlying objective via
gradient-based updates. Empirical results confirm that Ensemble++ agent excel
in both sample efficiency and computational scalability across linear and nonlin-
ear environments, including GPT-based contextual bandits for automated content
moderation – a safety-critical foundation model online decision-making task.

1 INTRODUCTION

Balancing exploration and exploitation is a core challenge in sequential decision-making problems,
with applications ranging from online recommendation systems, automated content moderation
to robotics, personalized healthcare and computer-using agent. A prominent Bayesian solution is
Thompson Sampling (TS) (Thompson, 1933; Russo et al., 2018), which maintains a posterior – the
uncertainty estimates – over unknown parameters (or reward functions). At each step, it samples a
model hypothesis from this posterior and selects the action appearing optimal under that hypothe-
sis, elegantly balancing exploration of uncertain actions and exploitation of seemingly high-reward
ones. Despite its elegant theory and strong empirical performance in simpler (conjugate) bandit
scenarios, TS encounters serious scalability hurdles in modern settings with high-dimensional or
non-conjugate (e.g., neural) models. Maintaining exact posterior samples can be computationally
prohibitive, often requiring iterative approximation methods (Laplace, MCMC, or variational infer-
ence) that become expensive as the time horizon T grows. These methods may also yield biased
uncertainty estimates, undermining TS’s exploration.
Ensemble-Based Approximate Sampling. A widely adopted alternative to full Bayesian updates
is ensemble sampling, which keeps M model replicas in parallel and randomly picks one each
round to act, thus approximating Thompson Sampling’s “draw from the posterior” step (Osband
& Van Roy, 2015; Osband et al., 2016; 2019). However, the only existing theoretical result that
matches TS’s optimal regret in linear bandits requiresM = O(T · |X |) (Qin et al., 2022) where X is
the action space. This large-M requirement may be infeasible in high-dimensional or long-horizon
tasks. Moreover, many ensembles demand either repeated retraining or large architectural overhead,
raising practical concerns in real-time or resource-constrained environments. Recent methods like
Ensemble+ (Osband et al., 2018; 2019) and EpiNet (Osband et al., 2023a;b) refine ensemble-based
exploration in deep networks by adding randomized prior functions or “epistemic indices.” They typ-
ically rely on fairly large ensembles or architectural overhead, and offer no rigorous understanding.
This highlights the gap between empirical feasibility and theoretical understanding.

1.1 KEY CONTRIBUTIONS

In this paper, we propose Ensemble++ agent for scalable approximate Thompson Sampling that
obviates the need for large ensemble sizes or costly per-step retraining:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Linear Ensemble++ Sampling. It incrementally updates a single shared ensemble matrix factor
to capture posterior-like uncertainty and approximate TS via random linear combinations of the
ensembles. We show that, in d-dimensional linear bandits, Ensemble++ with ensemble size M =
O(d log T) suffices to match the regret order of exact TS in various decision set settings. It
dramatically improves prior analysis (Qin et al., 2022), which requires M = O(T · |X |).

• Neural Extension. We extend these ideas by incorporating neural networks, replacing fixed lin-
ear features with a learnable neural feature extractor while keeping the same incremental-update
principle. This yields a flexible approach for complex, high-dimensional reward functions.

• Empirical Validation. Through comprehensive experiments on synthetic and real-world
benchmarks–including large-scale neural tasks involving GPTs–we demonstrate that Ensemble++
achieves superior regret-vs-computation trade-offs compared to leading baselines such as Ensem-
ble+ and EpiNet; and validate the theoretical results of linear Ensemble++ sampling.

This work both closes a longstanding theoretical gap in linear ensemble sampling and provides a
flexible framework for deeper models. We describe linear Ensemble++ sampling and neural exten-
sion in Section 3, provide full theoretical analysis of our linear scheme in Appendix D, and present
empirical evaluations in Appendix B, building on the foundational concepts in Section 2.

2 BACKGROUND AND RELATED WORK

2.1 MOTIVATION: CONTENT MODERATION IN REAL-TIME

Modern social-media platforms handle a vast volume of user-generated content every second, cre-
ating a critical need for automated moderation (Gorwa et al., 2020; Roberts, 2019). Historically,
human reviewers manually inspected each post to detect policy violations. However, as platforms
like Facebook (Meta, 2024), Twitter (Corp., 2024), and Reddit (Reddit, 2024) expanded to hundreds
of millions of users, fully manual moderation became infeasible. Consequently, AI-driven moder-
ation systems emerged, often leveraging foundation models (Weng et al., 2023) (large pretrained
language or vision models) for real-time filtering.

Despite robust performance on the distributions seen during training, these large models often face
high uncertainty in novel or rare content: emergent slang, subtle or borderline hate speech, or
newly formed harassment styles (Markov et al., 2023). A purely deterministic policy (e.g., the
model’s single best guess) can err severely by
• over-blocking benign content (harmful to user experience), or
• under-blocking hateful material (a safety hazard).
Hence, human feedback remains indispensable for correcting the system, especially on ambiguous
or boundary cases. The key dilemma is when to rely on human (which yields better learning but
increases workload) versus auto-removing content (which saves labor but risks higher error).

Context(t)

Data

Auto
Remove

Human
Review Label(t)

AI Moderation System

Figure 1: Real-time decision-making pipeline for content moderation. At each time t, the AI mod-
eration system receives a post xt, decides to auto-remove or request human review, then obtains
feedback (if reviewed) to update its policy. This setup inherently involves uncertainty about border-
line or novel content.
Human-AI Collaboration. Figure 1 depicts a human-in-the-loop moderation pipeline:
1. A new post xt arrives.
2. The AI system either auto-removes it or requests a human review.
3. If reviewed, a moderator provides a corrective label yt (e.g., “hate” or “benign”), and the AI

system updates its internal policy.
4. Over time, decisions become more accurate, reducing human intervention.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Balancing exploitation (avoiding unnecessary reviews) and exploration (gathering feedback on un-
certain content) is central to improving moderation quality while minimizing reviewer workload.
This tension aligns well with a contextual bandit formulation.
Contextual Bandit Formulation We model moderation as a contextual bandit problem (Wang
et al., 2005; Langford & Zhang, 2007):
• Context xt: the textual (or multimedia) representation of the post at time t.
• Action set At = {auto-remove, human-review}.
• Reward rt ∈ R: quantifying correctness vs. cost. For example:

– +1 for correctly publishing benign content,

– −0.5 for inadvertently publishing hateful or disallowed content,

– +0.5 for blocking any post (safer fallback, but potentially suboptimal if content was benign).
At each step, the agent chooses an action based on the context {x1, . . . , xt−1} and partial knowl-
edge gained so far. Crucially, the agent must explore suspicious or uncertain contexts (requesting
reviews) to learn from human labels, while exploiting confident predictions (auto-removing) to con-
serve human effort.

This exploration-exploitation trade-off, typical of contextual bandits, poses a significant challenge
for large-scale moderation pipelines. As we show next, foundation models alone are not sufficient
to address this adaptivity, motivating the need for an ensemble-based approach like Ensemble++.

2.2 CHALLENGES OF FOUNDATION MODELS IN ONLINE DECISION-MAKING

Large foundation models (e.g. GPT series) have shown remarkable generalist capability but lack
intrinsic uncertainty modeling and adaptive exploration (Krishnamurthy et al., 2024). Indeed,
even top-tier LLMs can fail in multi-armed bandit or contextual-bandit scenarios if not provided with
explicit “memory” or “sampling” mechanisms (Krishnamurthy et al., 2024). Hence, foundation
models alone often struggle in large-scale, real-time moderation because:
• Uncertainty Estimation. Large models do not, by default, provide robust estimates of how

uncertain they are on out-of-distribution content. As a result, they can incur high misclassification
rates for novel forms of hate speech, rapidly changing memes, or new harassment tactics.

• Incremental Adaptation at Scale. The moderation stream is both continuous and high-volume.
We need an approach that updates quickly (in near-constant or modest cost per step) to keep pace
with new data, while preserving strong overall performance.

In short, to address rare or emerging forms of hateful content, a model must actively explore
uncertain contexts and incorporate human corrections with minimal overhead.

2.3 THOMPSON SAMPLING AND THE SCALABILITY DILEMMA

Thompson Sampling (TS) addresses the exploration-exploitation dilemma but its implementation
with complex models such as foundation models can become prohibitively expensive in practice.
Principled exploration with Thompson Sampling. A popular Bayesian approach to sequential
decision-making is Thompson Sampling Thompson (1933); Russo et al. (2018). Given a posterior
distribution over an unknown reward function f∗ (or unknown parameters θ∗), Thompson Sampling
operates as follows at each time t:
1. Sample a hypothesis θt from the current posterior,
2. Select the action Xt = argmaxx∈Xt fθt(x) under that hypothesis,
3. Observe the reward Yt,
4. Update the posterior distribution given (Xt, Yt).
By sampling from its posterior, TS naturally balances exploration of uncertain regions with exploita-
tion of apparently high-reward arms.
The scalability dilemma. When environment model belongs to a conjugate family (e.g., lin-
ear–Gaussian), posterior updates remain analytically tractable. However, in high-dimensional or
non-conjugate cases (e.g., quadratic functions or neural nets),
• Exact Bayesian updates become expansive or even intractable (Russo et al., 2018),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Approximate methods (Laplace, MCMC, variational inference) can introduce large computational
overheads and/or biased uncertainty estimates MacKay (1992); Welling & Teh (2011); Blei et al.
(2017); Xu et al. (2022).

This tension—retaining Thompson Sampling’s conceptual appeal versus keeping per-step overhead
manageable—motivates scalable approaches to maintaining approximate posteriors in large-scale,
complex environments.

2.4 LOCAL PERTURBATION AND ENSEMBLE METHODS

Local perturbation. An elegant technique for linear–Gaussian bandits is local perturbation Pa-
pandreou & Yuille (2010), which updates a “perturbed” parameter inO(d2) per step to emulate pos-
terior samples. Concretely, suppose rewards follow Ys = X⊤

s θ∗ +ω∗
s , ω∗

s ∼ N (0, 1), and θ∗ ∼
N (µ0,Σ0). After t observations, naively sampling fromN (µt,Σt) would costO(d3) due to matrix
factorizations. Instead, local perturbation incrementally maintains: Ãt = Σt

(
Σ−1

t−1Ãt−1+Xt Zt

)
,

where Ã0 ∼ N (0,Σ0) and Zs ∼ N (0, 1). If {Xs} were fixed (i.e. non-adaptive), Ãt | {Xs}s≤t ∼
N (0,Σt), so µt + Ãt reproduces the exact posterior draw. Crucially, each update costs only O(d2).
See details in Appendix A.4.
Sequential dependency pitfall. However, once actions are chosen adaptively, the chosen actions
{Xt} depend on prior parameters {Ãs}s<t due to the interplay between sequential action selection
based on recursively updated models. This sequential dependency causes the conditional distribution
Ãt | {Xs}s≤t to no longer match N (0,Σt) due to the break down of independence assumptions,
leading to biased draws (details in Appendix A.5).

One potential workaround is to resample fresh random perturbations {Zs}s≤t and re-fit from scratch
each step (e.g., storing all historical data) to restore independence, but this is computationally and
memory expensive in practice (Osband et al., 2019; Kveton et al., 2020a) and defeats the purpose
of a cheap incremental method. This challenge motivates ensemble-based approaches, hoping to
mitigate sequential dependency without full resampling.
Ensemble sampling. A popular approximate-sampling strategy is ensemble sampling (Osband
& Van Roy, 2015; Osband et al., 2016; Lu & Van Roy, 2017), which maintains M models, each
evolving through independent local perturbations. Each round, one model is selected uniformly
at random to choose the action, mimicking the posterior-draw step of TS. Empirically, moderate
ensemble sizes (e.g., M = 20 ∼ 100) often perform well. However, from a theoretical standpoint,
Qin et al. (2022) show the only known approach that matches exact TS’s

√
T -type regret in linear

bandits demands M = O(T · |X |). Although this does not necessarily mean large M is always
needed, it leaves a major gap in the existing theory: can we achieve TS regret with a smaller M in
linear or high-dimensional settings?
Neural ensembles. Ensemble sampling extends readily to neural function approximators by train-
ing each member on perturbed or bootstrapped data. Methods like Ensemble+ (Osband et al., 2018;
2019) and EpiNet (Osband et al., 2023a) refine how uncertainty is injected into deep networks—e.g.,
through random prior functions or “epistemic indices” concatenations. Despite feasibility in prac-
tice, these approaches often maintain large ensembles or architectural overhead, and lack of theoret-
ical understanding. See Appendix A for a more comprehensive review.
Need for a scalable approach. In summary, existing incremental-sampling schemes either (i)
become biased under adaptive data (local perturbation), or (ii) require large ensembles and extra
architectural components. In neural or high-dimensional contexts, these costs can be prohibitive.
Our method, Ensemble++, addresses these issues.

3 ENSEMBLE++ AGENT FOR SCALABLE THOMPSON SAMPLING

We now introduce Ensemble++ agent, a unified and scalable approach to approximate Thomp-
son Sampling in both linear and nonlinear bandit environments. The key technical novelty is to
maintain a shared ensemble factor incrementally, thereby approximating posterior covariance (in
the linear case) or capturing epistemic uncertainty (in the neural case) without requiring a large
ensemble size or repeated retraining from scratch. We begin with Linear Ensemble++ Sampling

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(Section 3.1), describing its incremental matrix-factor updates and explaining how it approximates
Thompson Sampling with only M ≈ d log T ensemble directions. We then extend these ideas to
general Ensemble++ (Section 3.3), using the same symmetrized regression principle (Section 3.2)
but replacing linear features with a trainable neural representation.

3.1 LINEAR ENSEMBLE++ SAMPLING

Consider a linear contextual bandit where each action Xt ∈ Rd and reward

Yt = ⟨θ∗, Xt⟩+ ϵt, ϵt ∼ N (0, 1).

Let (µt,Σt) be the usual ridge-regression posterior updates:

Σ−1
t = Σ−1

t−1 +XtX
⊤
t , µt = Σt

(
Σ−1

t−1µt−1 +XtYt

)
. (1)

Naively sampling from N (µt,Σt) each step requires O(d3) matrix factorizations. Linear Ensem-
ble++ Sampling avoids this by maintaining an ensemble matrix At ∈ Rd×M that approximates
Σ

1/2
t incrementally:

Initialization. Construct A0=
1√
M

[
Ã0,1, . . . , Ã0,M

]
with each Ã0,m ∼ N (0,Σ0).

Per-step procedure (t = 1, . . . , T):

1. Action selection: Sample a “reference” vector ζt ∈ RM from Pζ (e.g., Gaussian). Form

θt(ζt) = µt−1 + At−1 ζt, (2)

via a random linear combination of the matrix columns, then choose Xt =
argmaxx∈Xt⟨x, θt(ζt)⟩.

2. Observe reward Yt, sample a “perturbation” vector zt ∈ RM from Pz, and update µt via Equa-
tion (1) and:

At = Σt

(
Σ−1

t−1At−1 +Xt z
⊤
t

)
, (3)

Approximate Posterior Sampling. With M = Õ(d log T), our analysis (see Appendix D) shows
that 1

2 Σt ≼ At A
⊤
t ≼ 3

2 Σt, ∀ 1 ≤ t ≤ T,with high probability. Hence, for ζ ∼ N (0, IM), the
random vector µt+Atζ serves as an approximate sample fromN (µt,Σt), enabling near-Thompson
Sampling performance while only storing M ≈ d log T ensemble directions.
Advantages (Linear Setting).
• Small Ensemble Size: M ≃ d log T suffices, far less than naive M = Ω(|X |T) from prior ensem-

ble sampling analysis (Qin et al., 2022) that matches regret order of TS. Each step in Ensemble++
costs O(d2M).

• Near-optimal Regret: We prove that Linear Ensemble++ Sampling matches the regret order of
exact TS (Appendix D).

We emphasize that Pζ and Pz can be chosen from distributions like Gaussian, uniform-on-sphere,
coordinate or cube, each with different performance (Appendices B and D).

3.2 A SYMMETRIZED RIDGE-REGRESSION VIEW

An alternative perspective derives Ensemble++ from a single ridge-regression objective. First, note:

• The base parameter µt solves the usual ridge regression objective minb
∑t

s=1

[
Ys − ⟨b,Xs⟩

]2
+

λ∥b∥2.
• Each column in At can be seen as a perturbed ridge solution that includes random offsets zs,m

for each data.

Combining them yields a single objective for all parameters:

min
b,{θm}

t∑
s=1

(
Ys − ⟨b, Xs⟩

)2
+

M∑
m=1

(
zs,m − ⟨θm, Xs⟩

)2
+ λ

(
∥b∥2 +

M∑
m=1

∥θm∥2
)
. (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The closed-form solution (b∗t , {θ∗t,m}) coincides with the incremental updates in ?? and Equation (3)
when we identify

µt = b∗t , At,m = θ∗t,m + θ̃0,m, (5)

assuming µ0 = 0, Σ0 = 1
λI and θ̃0,m = 1√

M
Ã0,m.

Symmetrized Loss. Finally, from an random linear combination view (c.f. Equation (2)) and
Equation (5), define the ensemble prediction function

f linearθ (x, ζ) =
〈
x, b +

M∑
m=1

ζm
(
θm + θ̃0,m

)〉
, (6)

and let D = {(Xs, Ys, zs)}ts=1 with zs = (zs,1, . . . , zs,M). A symmetrized objective L(θ;D, f)
includes both (+zs,m) and (−zs,m) for each data point:

M∑
m=1

∑
s∈D

∑
β∈{±1}

(
Ys + βzs,m − f

(
Xs, βem

))2
+ λ∥θ∥2. (7)

Minimizing Equation (7) recovers the same solution as Equation (4) since the symmetrized slack
variable β cancels out the cross-term. This “two-sided” perturbation perspective extends naturally
to Ensemble++, as shown next.

3.3 ENSEMBLE++ AGENT FOR NONLINEAR BANDITS

Real-world tasks frequently require nonlinear function approximators (e.g., neural networks) for
high-dimensional inputs or complex reward structures f∗. Ensemble++ retains the same “shared
ensemble factor” principle but replaces linear features with a learnable network.
Model Architecture. We generalize Equation (6) by letting h(x;w) be a neural feature extractor:

fθ(x, ζ) =
〈
h(x;w), b+

M∑
m=1

ζm (θm + θ̃0,m)
〉
,

where θ = (w, b, {θm}) are learnable parameters, and {θ̃0,m} are fixed random “prior” directions.
The only difference from Linear Ensemble++ Sampling is that we no longer have a closed-form
update for b, {θm}.
Symmetrized Loss and SGD. Define the same symmetrized objective L(θ;D, fθ) as in Equa-
tion (7), except that fθ is now a neural mapping. At time step t, we store (Xt, Yt, zt) in a FIFO
buffer D (capacity C), then run a fixed number G of SGD steps to update θ:

θ ← θ − η∇θL
(
θ;D, fθ

)
.

Algorithm 1 summarizes: by capping C and G, the agent ensures constant-time updates even as
t grows. Though we lack a formal regret proof for nonlinear rewards, empirical evidence (see
Appendix B) shows that Ensemble++ exhibit strong performance in practice, even for complex,
high-dimensional reward functions. See implementation details in Appendix C.

Algorithm 1 Ensemble++ Agent

Initialize θ = (w, b, {θm}), prior ensemble {θ0,m}
Initialize FIFO buffer D of capacity C
for t = 1 to T do

Sample ζt ∼ Pζ ; Xt = argmaxx∈Xt fθ(x, ζt).
Observe reward Yt; sample zt ∼ Pz

Add
(
Xt, Yt, zt

)
to buffer D (pop oldest if |D| > C)

Perform SGD w.r.t. L
(
θ;D, fθ

)
up to G steps

end for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 ENSEMBLE++ IN FOUNDATION MODEL ONLINE DECISION-MAKING

This section demonstrates how Ensemble++ can be integrated with large foundation models (e.g.
GPTs) to address real-time decision-making under uncertainty. We focus on the high-stakes domain
of content moderation on social media platforms, where rare or borderline hateful content arises
frequently. By fusing GPT-style feature extraction with Ensemble++, uncertainty-driven sampling
selectively allocates human review to ambiguous posts. This yields a scalable, adaptive pipeline that
reduces moderator workload while improving overall safety and accuracy.

4.1 GPT-ENSEMBLE++ FOR CONTENT MODERATION

We now introduce GPT-Ensemble++, adapting the Ensemble++ agent (cf. Section 3.3) to text-
based moderation scenarios with a foundation model backbone.
Feature Extractor. We define ϕ(x;w), mapping a post x into Rd using a GPT-2 (or Pythia14m)
backbone, with w either frozen or partially finetuned. This captures context and semantic cues.
Ensemble++ Decision Head. For each action a, we define a base parameter ba ∈ Rd and an
ensemble factor Aa ∈ Rd×M . At each time step, we sample a random index ζ ∼ Pζ ⊂ RM (e.g.
Gaussian). Then the action-value is:

fθ(x, ζ)[a] =
〈
ϕ(x;w), ba

〉
+
〈
sg[ϕ(x;w)], Aa ζ

〉
.

Hence, the agent picks argmaxa fθ(x, ζ)[a]. Drawing ζ each round fosters randomized (Thompson-
like) exploration around uncertain or borderline posts.
Incremental Updates. If the system chooses human-review for a post xt, we obtain a corrective
label yt (hate vs. free) which implies a reward rt. As describe in Algorithm 1, we then update
θ = {(ba,Aa), w} using the symmetrized objective with bounded gradient steps. This step yields
a fast, incremental refinement of the policy, allowing GPT-Ensemble++ to adapt quickly whenever
new borderline cases arise in production.

4.2 EXPERIMENTS: HATE-SPEECH DETECTION

Dataset and Setup. We employ a hate-speech dataset1 of about 135k posts, each assigned a con-
tinuous “hate” score. Thresholding at 0.5 yields “hate” vs. “free.” At round t, the agent sees xt
(text), chooses publish (At = 1) or block (At = 2), and receives:

+1 if publishes a free post,
−0.5 if publishes a hate post,
+0.5 if blocks any post.

We embed text with GPT-2 or Pythia14m in either frozen or partially finetuned mode, then feed into
Ensemble++ or baselines.
Comparative Baselines. We consider:
1. Greedy: A single LLM-based classifier with no ensemble factor, i.e. Aa = 0,
2. Ensemble+ (Osband et al., 2018): multiple ensemble heads jointly upated,
3. Ensemble++ (ours): separated ensemble updates plus partial or full LLM finetuning.

We also vary frozen vs. finetuned embeddings w for GPT-based models.

4.2.1 RESULTS AND ANALYSIS

Uncertainty-Aware Gains. Figure 2 shows that Ensemble++ significantly outperforms Greedy in
cumulative reward, clarifying borderline expressions faster and reducing error variance.
Frozen vs. Finetuned. In Figure 3, together with Ensemble++, full finetuning of GPT-based fea-
tures yields further gains compared to frozen embeddings. This suggests that active adaptation of
the LLM backbone is crucial for handling evolving content.
Reduced Human Overhead. Although not depicted, Ensemble++ quickly pinpoints which posts
are certain vs. borderline, leading to∼ 80% fewer “human-review” actions after 104 steps compared
to naive or deterministic triggers (e.g., Greedy).

1https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech

7

https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.00 0.02 0.04 0.06 0.08 0.10

Submitted Posts ×106

0.4

0.5

0.6

0.7

0.8

D
et

ec
ti

on
A

cc
u

ra
cy

Hate Speech Detection

Ensemble++

Ensemble+

Greedy

Figure 2: Detection accuracy over time in hateful vs. free moderation, averaged across random
seeds, as the number of submitted posts increases. Ensemble++ (blue) outperforms Greedy (purple)
and Ensemble+ (orange) with lower variance.

0.0 0.2 0.4 0.6 0.8 1.0

Time period ×106

0

50

100

150

200

250

C
u

m
u

la
ti

ve
R

eg
re

t

×103

Pythia14M Fine-tuned Pythia14M Frozen

(a) Pythia14m

0.00 0.02 0.04 0.06 0.08 0.10

Time period ×106

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
u

m
u

la
ti

ve
R

eg
re

t

×103

GPT-2 Fine-tuned GPT-2 Frozen

(b) GPT-2
Figure 3: Ablation in hateful-content moderation. (a,b) Fully finetuning yields stronger improve-
ments in uncertain areas than freezing GPT (Pythia14m) backbone.

We show Ensemble++ can be integrated with foundation models like GPT-2 for large-scale content
moderation—a domain rife with domain shifts, ambiguous inputs, and costly feedback and indicate:

• Uncertainty quantification: Ensemble++ better identifies borderline or novel forms of hate
speech, enabling more selective human intervention.

• Incremental adaptation: The ensemble updates per step boundedly, even with partial finetuning.
• Reduced moderator workload: By focusing reviews on genuinely uncertain posts, Ensemble++

drastically cuts human oversight needs.
These results highlight Ensemble++ as a powerful approach for real-time, uncertain tasks in indus-
trial settings where foundation models alone lack uncertainty-awareness for adaptive exploration.

5 CONCLUDING REMARKS

Thompson Sampling’s principled treatment of exploration has inspired extensive research into
Bayesian methods for sequential decision-making. Yet large-scale and non-conjugate contexts re-
mained a hurdle: exact posteriors are infeasible, and naive ensemble approximations often demand
huge ensemble sizes or high retraining cost.

We introduced Ensemble++, showing how to:

• maintain a single shared matrix At in the linear case with M = O(d log T),
• achieve incremental O(d2M)-time updates that approximate Σ

1/2
t despite adaptive data,

• unify base and ensemble parameters in a symmetrized regression objective that admits a closed-
form solution (linear) or an SGD solution (neural).

As a result, Linear Ensemble++ Sampling inherits Thompson-like
√
T regret without the previ-

ous M -vs-T scalability conflict. The neural extension simply replaces fixed feature mappings
with a trainable feature extractor under the same objective, enabling broad applicability in high-
dimensional problems. Experiments provide strong empirical performance, superior to alternative
ensemble methods, thanks to (i) a modest ensemble dimension; (ii) incremental, real-time updates.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

IMPACT STATEMENT

Ethics Statement: This research was conducted in compliance with all applicable ethical guide-
lines and institutional regulations. Since the study did not involve human participants, animals, or
sensitive data, no specific ethical approvals were required. All data used in this research were ob-
tained from publicly available sources, ensuring full transparency and reproducibility of the results.
Reproducibility Statement: Detailed settings for the experiments can be found in Appendices B
and H. We conduct the experiments on linear bandits using only CPUs, and the experiments on
nonlinear bandits using P40 GPUs, except for those involving GPT-2, which were conducted on
V100 GPUs.

For the baselines compared in the experiments, we reimplemented the following methods: Ensem-
ble+ following the repository https://github.com/google-deepmind/bsuite, EpiNet follow-
ing the repository https://github.com/google-deepmind/neural_testbed. Additionally,
we used the source code from the repository https://github.com/devzhk/LMCTS for LMCTS
to obtain the credited results.

To reproduce the results of our proposed Ensemble++ agent, please refer to our codebase at https:
//anonymous.4open.science/r/EnsemblePlus2-1E54.

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011a.

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Online least squares estimation with
self-normalized processes: An application to bandit problems. arXiv preprint arXiv:1102.2670,
2011b.

Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. Electronic Journal of
Statistics, 11(2), 2017.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In International conference on machine learning, pp. 127–135. PMLR, 2013.

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

X Corp. The x rules: Safety, privacy, authenticity, and more. https://help.twitter.com/en/
rules-and-policies/x-rules, 2024. Accessed: 2024-07-09.

Vikranth Dwaracherla, Xiuyuan Lu, Morteza Ibrahimi, Ian Osband, Zheng Wen, and Benjamin Van
Roy. Hypermodels for exploration. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=ryx6WgStPB.

Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using monte
carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):
10143–10162, 1994.

Geir Evensen. The ensemble kalman filter: Theoretical formulation and practical implementation.
Ocean dynamics, 53:343–367, 2003.

Robert Gorwa, Reuben Binns, and Christian Katzenbach. Algorithmic content moderation: Techni-
cal and political challenges in the automation of platform governance. Big Data & Society, 7(1):
2053951719897945, 2020.

T. H. Gronwall. The gamma function in the integral calculus. Annals of Mathematics, 20(2):35–124,
1918. ISSN 0003486X. URL http://www.jstor.org/stable/1967180.

9

https://github.com/google-deepmind/bsuite
https://github.com/google-deepmind/neural_testbed
https://github.com/devzhk/LMCTS
https://anonymous.4open.science/r/EnsemblePlus2-1E54
https://anonymous.4open.science/r/EnsemblePlus2-1E54
https://help.twitter.com/en/rules-and-policies/x-rules
https://help.twitter.com/en/rules-and-policies/x-rules
https://openreview.net/forum?id=ryx6WgStPB
http://www.jstor.org/stable/1967180

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Lawrence Hollom and Julien Portier. Tight lower bounds for anti-concentration of rademacher sums
and tomaszewski’s counterpart problem. arXiv preprint arXiv:2306.07811, 2023.

David Janz, Alexander Litvak, and Csaba Szepesvari. Ensemble sampling for linear bandits: small
ensembles suffice. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=SO7fnIFq0o.

Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Journal of the ACM
(JACM), 61(1):1–23, 2014.

Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context?, 2024.

Branislav Kveton, Csaba Szepesvári, Mohammad Ghavamzadeh, and Craig Boutilier. Perturbed-
history exploration in stochastic linear bandits. In Uncertainty in Artificial Intelligence, pp. 530–
540. PMLR, 2020a.

Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
Craig Boutilier. Randomized exploration in generalized linear bandits. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2066–2076. PMLR, 2020b.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. Advances in neural information processing systems, 20, 2007.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Yingru Li. Probability tools for sequential random projection, 2024a. URL https://arxiv.org/
abs/2402.14026.

Yingru Li. Simple, unified analysis of johnson-lindenstrauss with applications, 2024b. URL https:
//arxiv.org/abs/2402.10232.

Yingru Li and Zhi-Quan Luo. Prior-dependent analysis of posterior sampling reinforcement learning
with function approximation. In The 27th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2024.

Yingru Li, Jiawei Xu, Lei Han, and Zhi-Quan Luo. Q-Star Meets Scalable Posterior Sampling:
Bridging Theory and Practice via HyperAgent. In Forty-first International Conference on Ma-
chine Learning, Proceedings of Machine Learning Research, 2024. URL https://arxiv.org/
abs/2402.10228.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. Advances in neural information processing
systems, 30, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural compu-
tation, 4(3):448–472, 1992.

Todor Markov, Chong Zhang, Sandhini Agarwal, Florentine Eloundou Nekoul, Theodore Lee,
Steven Adler, Angela Jiang, and Lilian Weng. A holistic approach to undesired content detection
in the real world. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 15009–15018, 2023.

Meta. Facebook community standards. https://transparency.meta.com/policies/
community-standards/, 2024. Accessed: 2024-07-09.

Gergő Nemes. Error bounds and exponential improvements for the asymptotic expansions of the
gamma function and its reciprocal. Proceedings of the Royal Society of Edinburgh: Section A
Mathematics, 145(3):571–596, 2015. doi: 10.1017/S0308210513001558.

Ian Osband and Benjamin Van Roy. Bootstrapped thompson sampling and deep exploration. arXiv
preprint arXiv:1507.00300, 2015.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

10

https://openreview.net/forum?id=SO7fnIFq0o
https://arxiv.org/abs/2402.14026
https://arxiv.org/abs/2402.14026
https://arxiv.org/abs/2402.10232
https://arxiv.org/abs/2402.10232
https://arxiv.org/abs/2402.10228
https://arxiv.org/abs/2402.10228
https://transparency.meta.com/policies/community-standards/
https://transparency.meta.com/policies/community-standards/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019. URL http://
jmlr.org/papers/v20/18-339.html.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Xiuyuan Lu, Morteza
Ibrahimi, Dieterich Lawson, Botao Hao, Brendan O’Donoghue, and Benjamin Van Roy. The
neural testbed: Evaluating joint predictions. Advances in Neural Information Processing Systems,
35:12554–12565, 2022.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023a. URL https://openreview.net/forum?
id=dZqcC1qCmB.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural
networks. arXiv preprint arXiv:2302.09205, 2023b.

George Papandreou and Alan L Yuille. Gaussian sampling by local perturbations. Advances in
Neural Information Processing Systems, 23, 2010.

Chao Qin, Zheng Wen, Xiuyuan Lu, and Benjamin Van Roy. An analysis of ensemble sampling.
Advances in Neural Information Processing Systems, 35:21602–21614, 2022.

Reddit. Automoderator guide. https://www.reddit.com/r/reddit.com/wiki/
automoderator/, 2024. Accessed: 2024-07-09.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empir-
ical comparison of bayesian deep networks for thompson sampling. In International Conference
on Learning Representations, 2018.

Sarah T Roberts. Behind the screen. Yale University Press, 2019.

Donald B Rubin. The bayesian bootstrap. The annals of statistics, pp. 130–134, 1981.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
Operations Research, 66(1):230–252, 2018.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Maciej Skorski. Bernstein-type bounds for beta distribution. Modern Stochastics: Theory and
Applications, 10(2):211–228, 2023.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/
9781108627771.

Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. Bandit problems with side observations.
IEEE Transactions on Automatic Control, 50(3):338–355, 2005.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

Lilian Weng, Vik Goel, and Andrea Vallone. Using gpt-4 for content moderation. August 2023.
URL https://openai.com/index/using-gpt-4-for-content-moderation/. OpenAI.

11

http://jmlr.org/papers/v20/18-339.html
http://jmlr.org/papers/v20/18-339.html
https://openreview.net/forum?id=dZqcC1qCmB
https://openreview.net/forum?id=dZqcC1qCmB
https://www.reddit.com/r/reddit.com/wiki/automoderator/
https://www.reddit.com/r/reddit.com/wiki/automoderator/
https://openai.com/index/using-gpt-4-for-content-moderation/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anand-
kumar. Langevin monte carlo for contextual bandits. In International Conference on Machine
Learning, pp. 24830–24850. PMLR, 2022.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL DISCUSSIONS ON RELATED WORKS

This appendix provides further background and motivation for the techniques discussed in the main
text, focusing on Thompson Sampling and its limitations, local perturbation for Gaussian posteriors,
and ensemble-based methods. We also compare Ensemble++ with advanced neural architectures
such as Ensemble+ (Osband et al., 2018; 2019) and EpiNet (Osband et al., 2023b).

A.1 SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY

We consider a sequential decision-making problem over a discrete time horizon T . At each time
step t:

• The agent observes a decision set Xt ⊆ X , which may change over time (e.g., due to evolving
context or the appearance of new candidate actions).

• The agent selects an action Xt ∈ Xt, based on its past experience Ht =
{X1, X1, Y1, . . . ,Xt−1, Xt−1, Yt−1,Xt}.

• It then receives a noisy reward Yt = f∗(Xt) + ϵt, where f∗ is an unknown reward function and
ϵt is noise.

The agent’s cumulative regret measures how much reward is lost by not always picking the best
available action:

R(T) =

T∑
t=1

[
max
x∈Xt

f∗(x) − f∗(Xt)
]
. (8)

A key challenge is learning unknown reward function f∗ (exploration) while simultaneously select-
ing good actions from Xt (exploitation) in T time periods.

A.2 THOMPSON SAMPLING (TS)

Thompson Sampling is a Bayesian approach for balancing exploration and exploitation in bandit
or sequential decision-making problems (Thompson, 1933; Russo et al., 2018; Li & Luo, 2024).
It maintains a posterior distribution over unknown parameters (or functions) and selects actions by
sampling from this posterior.
Methodology. At each time step t, with historyHt, TS does:

1. Sample a model: Draw a parameter θt ∼ P (θ | Ht).
2. Select action: Xt = argmaxx∈Xt fθt(x), where fθ(·) represents the expected reward under

model θ.
3. Observe reward: Receive Yt.
4. Update posterior: Incorporate (Xt, Yt) into the posterior P (θ | Ht+1).

Because TS samples from a posterior that encodes the agent’s uncertainty, it naturally allocates
exploration to regions (actions) that are less well understood, while exploiting current knowledge of
high-reward actions.
Conjugate Settings. In special “conjugate” scenarios, posterior updates are tractable:

• Beta-Bernoulli Bandits: A Beta prior for each arm remains Beta after seeing Bernoulli rewards.
• Linear-Gaussian Bandits: With Gaussian priors and Gaussian noise, the posterior remains Gaus-

sian with updated mean and covariance.

Here, each TS update is fast. However, in high-dimensional or non-conjugate (e.g., neural network)
reward models, exact posterior inference becomes intractable.

A.3 CHALLENGES IN SCALING THOMPSON SAMPLING

While Thompson Sampling has strong theoretical properties (e.g., near-optimal regret in finite action
or linear bandit scenarios), it faces two main challenges when extended to large-scale or complex
environments:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Non-Conjugate Models. Many real-world applications (e.g., deep neural networks, highly struc-
tured rewards) do not admit closed-form updates. Direct posterior sampling then requires approxi-
mate Bayesian techniques that can be expensive or unreliable.

A.3.1 APPROXIMATE BAYESIAN INFERENCE

Motivation. To preserve the essence of TS (sampling from a distribution over plausible models),
various approximate inference methods aim to produce posterior-like samples at each step. However,
many of these approaches suffer from high computational overhead.
Prominent Approximate Methods.

• Laplace Approximation (MacKay, 1992): Approximates the posterior around its mode with a
Gaussian. Scales poorly if the parameter dimension is large.

• Variational Inference (VI) (Blei et al., 2017): Uses a parametric distribution and minimizes a KL
divergence. Can handle larger dimensions than Laplace but introduces biases based on the chosen
family.

• MCMC Methods (Welling & Teh, 2011): Iteratively generate samples from the true posterior.
Accurate but often expensive in high dimensions or real-time tasks.

• Langevin Monte Carlo (LMC) (Xu et al., 2022): A gradient-based MCMC approach adding
noise to gradient steps. Its iterative nature can be costly in long horizons. More precisely, the
per-step computation complexity grows linearly with the size of the history interaction data set.

Key Limitations.

• Biased Uncertainty: Approximate posteriors may misestimate uncertainty, harming TS’s explo-
ration.

• Iterative Overheads: Repeated passes over the entire history per step become impractical as T
grows large.

• Scalability: Quadratic/cubic scaling in model dimension is prohibitive for large networks.

Thus, while approximate methods broaden TS’s applicability, their computational or memory costs
remain problematic in large-scale, non-conjugate settings.

A.4 GAUSSIAN SAMPLING VIA LOCAL PERTURBATION

An alternative for linear–Gaussian environments is local perturbation (Papandreou & Yuille,
2010), which incrementally updates posterior samples in O(d2) per step—avoiding O(d3) matrix
factorizations.
Idea. Suppose θ∗ ∼ N (µ0,Σ0) and observations

Ys = X⊤
s θ∗ + ω∗

s , ω∗
s ∼ N (0, 1).

Then the posterior after t observations is N (µt,Σt). Rather than factor Σt at each step, local per-
turbation maintains

Ãt = Σt

(
Σ−1

0 Ã0 +

t∑
s=1

Xs Zs

)
,

with Ã0 ∼ N (0,Σ0) and Zs ∼ N (0, 1). Under a fixed (non-adaptive) design {Xs}, Ãt ∼
N (0,Σt), hence

θ̃t = µt + Ãt is an exact draw from N (µt,Σt).

Both µt and Ãt update incrementally in O(d2).

A.4.1 DISTRIBUTION MATCHING PROOF OUTLINE

For completeness, we briefly sketch why local perturbation yields an exact posterior draw in the
non-adaptive case.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Let Dt = {(Xs, Ys)}ts=1. Then:

E[Ãt | Dt] = 0, Cov(Ãt | Dt) = Σt,

implying µt + Ãt ∼ N (µt,Σt). The key steps:
Mean argument. For each s, Zs ∼ N(0, 1) is independent of Dt, so E[Zs|Dt] = 0. Similarly,
Ã0 ∼ N(0,Σ0) is independent of Dt and E[Ã0 | Dt] = 0. Hence,

E[Ãt | Dt] = Σt

(
Σ−1

0 E[Ã0 | Dt] +

t∑
s=1

Xs E[Zs | Dt]
)
= 0.

Covariance argument. Because Zs ∼ N(0, 1) i.i.d. and Ã0 ∼ N(0,Σ0),

Cov[Ãt | Dt] = Σt

(
Σ−1

0 Cov[Ã0 | Dt] Σ
−1
0 +

t∑
s=1

XsX
⊤
s E[Z2

s]
)
Σt

= Σt

(
Σ−1

0 Σ0 Σ
−1
0 +

t∑
s=1

XsX
⊤
s

)
Σt

= Σt

(
Σ−1

t

)
Σt = Σt.

Thus Ãt ∼ N (0,Σt) conditionally on Dt. Therefore, θ̃t := µt + Ãt has mean µt and covariance
Σt and matches exactly N (µt,Σt).

A.5 RECURSIVE RANDOMIZED LEAST SQUARES (RRLS)

Motivation. Motivated by bounded per-step computation requirement, one could attempt to up-
date the parameter vector θt in an incremental, recursive manner:

θt = Σt

(
Σ−1

t−1θt−1 +Xt

(
Yt + Zt

))
, (9)

where Zt ∼ N (0, 1) is a fresh random perturbation at each time t. This yields the Recursive RLS
(RRLS) algorithm:

Algorithm 2 Recursive Randomized Least Squares (RRLS)

1: Initialize θ0 ∼ N (µ0,Σ0)
2: for t = 1 to T do
3: Xt = argmaxx∈Xt⟨θt−1, x⟩
4: Observe Yt
5: Sample Zt ∼ N (0, 1)
6: Update θt via equation 9
7: end for

Sequential Dependency However, RRLS introduces sequential dependency because the action
Xt chosen at time t depends on the previous parameter estimate θt−1, which itself depends on all
past perturbations Zs and past actions Xs for s < t. Due to this sequential dependency, the condi-
tional expectation and covariance of θt no longer match those of the posterior distribution θ∗ | Dt.
This is because when conditioning on Dt, the perturbations Z1, . . . , Zt are no longer independent
and identically distributed (i.i.d.) as Normal random variables. This results in biased estimates
and ineffective exploration, giving linear regret in some scenarios. This sequential dependency is
illustrated in Figure 4.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

θ0

X1

Z1

X2

Z2

X3

Z3

. . .

. . .

Xt

Zt

Xt+1

Time t = 1 Time t = 2 Time t = 3 Time t Time t+ 1

Figure 4: Sequential dependence due to the interplay between recursive updates and sequential
decision-making. Z1, . . . , Zt are no longer independent and identically distributed (i.i.d.) when
conditioned on the data Xt+1.

One potential workaround is to resample fresh random perturbations {Zs}s≤t and re-fit from scratch
each step (e.g., storing all historical data) to restore independence, but this is computationally and
memory expensive in practice (Osband et al., 2019; Kveton et al., 2020a) and defeats the purpose of
a cheap incremental method.

The next subsection describes an approach—ensemble sampling—that mitigates sequential depen-
dency via multiple parallel parameter vectors, each incrementally updated.

A.6 ENSEMBLE SAMPLING (ES)

Principle. Ensemble Sampling (Osband & Van Roy, 2015; Osband et al., 2016; Lu & Van Roy,
2017) keeps M independent parameter vectors (or models). At time t, it uniformly picks one model
mt to decide Xt and then updates all M models in a incremental, recursive manner. Intuitively, if
these M vectors approximate M draws from the posterior, the overall policy resembles Thompson
Sampling.
Algorithm Outline.

• Initialization: θ0,m ∼ N (µ0,Σ0) for m = 1, . . . ,M .

• Action Selection:

mt ∼ Uniform{1, . . . ,M}, Xt = argmax
x∈Xt

⟨θt−1,mt
, x⟩.

• Model Updates: Each θt,m is updated in an RRLS-like manner, but with fresh noise Zt,m.

This balances memory usage (M ≪ T) against sequential dependency.

Table 1: Comparison of methods for addressing sequential dependency.

Method Computation per Step Memory Usage Sequential Dependency
RLS (M = T) O(T) High None
ES (M ≪ T) O(M) Moderate Reduced
RRLS (M = 1) O(1) Low High

Empirical Trade-offs. - If M = T , and each model is selected exactly once at time t (i.e., mt =
t), the Ensemble Sampling method becomes equivalent to original randomized least squares (RLS)
with perturbations resampling and model retraining at each time step. This approach eliminates
sequential dependency entirely but requires huge computation and memory overhead. - If M = 1, it
degenerates to RRLS with minimal memory but strong sequential dependency. Hence, by choosing
M ≪ T , one often obtains good practical performance (Fig. 5). This suggest, empirically, ES with
moderate M can achieve performance comparable to TS while only paying a factor of M overhead
in memory and a moderate per-step cost.
Theoretical Limitations Qin et al. (2022) provide a rigorous regret analysis for linear ensemble
sampling that could match the regret order of exact Thompson sampling but require M = O(|X |T)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Time Period

0

1

2

3

4

5

6

7

8

A
cc

um
ul

at
ed

R
eg

re
t

×103 Linear Bandit

Recursive RLS (M=1)
Ensemble Sampling (M=4)
Ensemble Sampling (M=16)
Thompson Sampling (M=T)

Figure 5: Ensemble Sampling (ES) with moderate M achieves near-TS performance. Setup: |X | =
10,000 and dimension d = 50.

to maintain
√
T scaling in Bayesian regret, a major barrier in practical large-scale problems. This

suggests naively we might need an ensemble size that scales linearly with T or |X |—infeasible for
large action sets and long horizons tasks, contradicting with the empirical findings of a moderate
size of ensembles.

Remark 1. Qin et al. (2022) consider a d-dimensional linear bandit problem with an action set X .
When the true parameter follows a standard normal distribution θ∗ ∼ N (0, Id), the Bayesian regret
is bounded by:

BR(T) ≤ C
√
dT log |X |+ CT

√
|X | log(MT)

M
(d ∧ log |X |)

where C > 0 is a universal constant. This bound has two significant limitations:

1. To achieve the desired
√
T scaling in Bayesian regret (ignoring constant and logarithmic

factors), the ensemble sizeM must grow linearly with the time horizon T . This requirement
undermines the computational efficiency that ensemble sampling aims to achieve.

2. To maintain a logarithmic dependence on |X | in the bound, the ensemble sizeM must scale
linearly with the number of actions |X |.

These limitations become particularly problematic when dealing with compact action spaces. For
instance, consider a bandit problem where X = Bd

2 (the d-dimensional unit ball). To achieve a
small discretization error, we need approximately 2d−1 discrete actions. Consequently, following
Qin et al.’s bound, the required ensemble size M would grow exponentially with dimension d.

Ensemble Sampling Beyond Linear Models For a general function class F , Ensemble Sampling
can be extended to approximate the posterior distribution of the optimal function f∗ ∈ F , e.g.
Bootstrapped Ensemble (Osband et al., 2016) and Ensemble+ (Osband et al., 2018; 2019). The
agent maintains M models, each representing a hypothesis about f∗ based on historical data. At
each time step t, the agent samples a model mt uniformly from {1, 2, . . . ,M} and selects an action:
Xt = argmaxx∈Xt

fθt,mt
(x), where fθt,mt

(x) is the prediction of ensemble member mt for action
x. After observing the reward Yt, each ensemble member m updates its parameters θt+1,m by
performing stochastic gradient descent on the loss (Equation (10)) starting from the previous iterate
θt,m:

Lm(θ;D) =

t∑
s=1

(Ys + Zs,m − fθ(As))
2
+Ψ(θ) (10)

whereD = Ht and Zs,m are independent random perturbations added to encourage diversity among
ensemble members, and Ψ(θt+1,m) is a regularization term. This perturbed training procedure en-
sures that each ensemble member captures different aspects of the uncertainty in f∗, representing

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

different plausible hypotheses consistent with the history. The random perturbations Zs,m are inde-
pendent across time index s and model index m. Once realized, Zs,m are fixed throughout the rest
of the training, enabling incremental updates for real-time adaptation. This is a key computational
feature compared to methods like Randomized Least Squares (RLS) or Perturbed History Explo-
ration (PHE). In RLS and PHE, fresh independent perturbations for all historical data are introduced
at each time t, and the model requires full retraining from scratch to ensure diverse exploration of
different plausible hypotheses. Yet, it is important to note that the theoretical analysis of Ensemble
Sampling beyond linear models remains an open research question.

A.7 CONCLUDING REMARKS AND FORWARD OUTLOOK

Local perturbation methods (RLS, RRLS) and ensemble-based approximations collectively aim to
solve large-scale or non-conjugate posterior sampling in an online manner. Yet:

• Recursive RLS (RRLS) is cheap to update but suffers from sequential dependency bias, often
giving linear regret in adaptive settings.

• Ensemble Sampling lessens sequential dependency empirically with moderate size of ensembles.
How, current theory suggest ensemble sampling may require M ∝ T or |X | in worst-case analy-
ses, which is computationally or memory-intensive. Moreover, maintainingM independent neural
network ensembles is also computationally prohibitive for large models, even with moderate size
M = 10 100.

We propose Ensemble++, which addresses these drawbacks by maintaining a single shared fac-
tor for covariance approximation, with incremental updates in O(d2M) and a rigorous proof that
M ≈ d log T suffices to achieve near-optimal regret that matches exact Thompson sampling. Before
concluding, we briefly compare with broader ensemble-based research, including Ensemble+ (Os-
band et al., 2018; 2019) and EpiNet (Osband et al., 2023a).
Future directions. Future directions of this work focus on providing theoretical understanding
for the neural extension, integrating more advanced representation learning, and expanding these
techniques to full reinforcement learning settings with large state-action spaces. By addressing
the interplay between Bayesian exploration and scalable computation, Ensemble++ agent opens
the door for more effective online decision-making in real-world systems with foundation models.
Additional research directions include extending Ensemble++ to handle multimedia content (e.g.,
images, videos) for more comprehensive moderation, investigating its adaptability to adversarial
attacks or adversarial examples in moderation tasks, and integrating it with scalable human-in-the-
loop systems to further reduce human moderation costs.

A.8 ENSEMBLE METHODS IN BROADER CONTEXT

History of Ensemble Approaches. Ensemble methods date back to the Ensemble Kalman Fil-
ter (Evensen, 1994; 2003) or Bayesian bootstrap (Rubin, 1981). In modern literature, Bootstrapped
Ensemble (Osband & Van Roy, 2015; Lu & Van Roy, 2017) introduced multiple models updated
with random perturbations or “bootstrap” samples of data. Ensemble+ (Osband et al., 2018; 2019)
introduced the randomized prior ensembles to enhance the exploration efficiency.
Hypernetworks and EpiNet. Some architectures, like Hypermodels (Dwaracherla et al., 2020)
or Epistemic Neural Networks (EpiNet) (Osband et al., 2023a), treat the ensemble index or random
seed as additional network inputs, effectively learning a mapping from random “epistemic index” to
parameter space. Although conceptually appealing, they typically lack any rigorous understanding
and proven regret bounds and may suffer from large parameter counts, as we discuss next.

A.8.1 DETAILED COMPARISON WITH EPINET AND ENSEMBLE+

EpiNet Overview. EpiNet is designed to estimate epistemic uncertainty in neural networks by
injecting an “epistemic index” z ∈ RM into an MLP layer. Its final output is a combination of:

• A base prediction µζ(x) on the raw input x,
• An epinet MLP σL

η ([x, x̃, z]) that processes the concatenation of raw input x, the hidden repre-
sentation x̃ ∈ RD of x and the random index z,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• A fixed prior σP (x, z), typically a collection of M small MLPs with raw input x as the input,
each producing a per-class offset and combined with random z as the output.

Hence, the final model is

fEpiNet(x, z) = µζ(x) + σL
η

(
[x, x̃, z]

)
+ σP (x, z).

This architecture can learn uncertainty-aware predictions but often suffers from a large parameter
footprint (due to multiple MLPs) and lacks any proven regret guarantees in bandit settings. Addi-
tionally, because both the epinet MLP and the fixed prior must take the raw input x, it is challenging
to apply EpiNet to more complex networks such as Transformers. Therefore, we do not compare
EpiNet in the Hate Speech Detection task.
Ensemble+ Overview. Ensemble+ extends ensemble sampling to deep neural networks using a
randomized prior approach (Osband et al., 2018; 2019). Concretely:

• A shared feature extractor processes inputs x into some hidden representation x̃. There are M
heads {θm}, each a simple linear layer that predicts the reward from x̃.

• Additionally, a fixed prior network is maintained as a separate feature extractor: x 7→ x̂. Also,
there are M unique random prior heads that fixed after random initialized, each predicting the
additive prior reward from x̂

This design helps capture model uncertainty by mixing learned features with a distinct randomized
prior in each ensemble head. However, as with EpiNet, Ensemble+ can become large in parameter
count (due to separate prior modules) and currently lacks theoretical regret bounds in deep or high-
dimensional bandits.
Parameter Counts. We compare the number of parameters of each method. Assuming the number
of parameters of the hidden feature extractor isH , we analyze how many additional parameters each
method allocates beyond a single hidden feature extractor network.

• EpiNet:
– The epinet MLP has hidden layers that receive [x, x̃, z] ∈ Rd+D+M as input and output RM×C

(for C classes or outputs). Following Osband et al. (2023b;a), we use 2-layer MLPs with 15
units and bias to construct this epinet MLP. Therefore, we count the parameters of this part as:

(d+D +M + 1)× 15 + (15 + 1)× 15 + (15 + 1)× (M + C)

= 15(d+D +M + 1) + 16× 15 + 16× (M + C)

= 15d+ 15D + 31M + 15 + 240 + 16C

= 15d+ 15D + 31M + 255 + 16C.

– The fixed prior σP is composed ofM small MLPs, each adding parameters. Following Osband
et al. (2023b;a), we use 2-layer MLPs with 5 units and bias to construct this prior network. It
takes the raw input x ∈ Rd and each MLP outputs RC . Therefore, we count the parameters of
this part as:

M×
(
(d+1)×5+(5+1)×5+(5+1)×C

)
=M×

(
5(d+1)+30+6C

)
=M×(5d+5+30+6C) =M×(5d+35+6C).

– Together, EpiNet can have a large overhead as M small prior MLPs or the epinet’s hidden size
grow. We can calculate the total parameters as:

H + 15d+ 15D + 31M + 255 + 16C +M × (5d+ 35 + 6C).

• Ensemble+:
– M linear heads, each taking the hidden representation x̃ ∈ RD as input, produce the main

ensemble predictions RC , and each head has the same random prior network. Therefore, we
count the parameters of this part as:

2×M × ((D + 1)× C) = 2MDC + 2MC.

– A separate feature extractor for the M linear prior network heads to form the prior offset.
Therefore, we count the parameters of this part as H .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

– This leads to approximately 2M last-layer transforms (main + prior), plus the potential dupli-
cation of feature extractors. We can calculate the total parameters as:

2H + 2×M × ((D + 1)× C) = 2H + 2MDC + 2MC.

• Ensemble++:

– There are M linear heads without bias for the main ensemble for uncertainty estimation, each
mapping RD → RC and equipped with the same prior networks. Therefore, we calculate the
parameters of this part as:

2×M ×D × C.
– One more base linear head with bias to estimate the mean. The parameters of this part are
(D + 1)× C.

– In total, this results in (2M + 1) linear layers of dimension RD → RC , but each is relatively
lightweight. We can calculate the total parameters as:

H + 2×M ×D × C + (D + 1)× C = H + (2M + 1)DC + C.

Computational Efficiency.

• EpiNet: Concatenates [x, x̃, z] of dimension (d + D + M), driving up the input size for the
epinet MLP. The fixed prior σP also has multiple small MLPs. Training/inference cost grows
significantly with M .

• Ensemble+: Combines a main network and a separate prior network, each with M linear heads.
While each head is relatively cheap, maintaining two feature extractors can be more expensive
than Ensemble++’s single shared representation.

• Ensemble++: Each ensemble head is just a RD → RC linear map, combined additively with a
base head. Training/inference overhead remains modest, as backprop only flows through linear
heads plus one shared feature extractor. The stop-gradient trick can further reduce overhead.

Practical Implications. Empirical studies (Li et al., 2024) show that EpiNet’s parameter overhead
often slows training and can degrade exploration. Likewise, Ensemble+ can be parameter-heavy if
the prior network is large or if M grows. By contrast, Ensemble++ uses a single shared representa-
tion with relatively simple linear heads (for both ensemble and prior), yielding a smaller parameter
footprint and faster training. Crucially, Ensemble++ also provides a theoretical foundation guar-
anteeing near-optimal linear-bandit regret with M = Õ(d log T), whereas EpiNet and Ensemble+
currently lack proven regret bounds.
Conclusion. In summary, EpiNet and Ensemble+ push ensemble-based methods toward richer
neural function approximation but face large parameter counts and no a priori theoretical guarantees.
Ensemble++ uses lightweight linear heads on top of a shared feature extractor—much more efficient
in large-scale or real-time settings—and does come with rigorous regret analyses for the linear bandit
case. Extending those theoretical insights to deep bandits is an ongoing research direction, but
empirical results (§B) show strong performance of Ensemble++ relative to EpiNet and Ensemble+.

B EXPERIMENTS

In this section, we investigate the efficiency and scalability of Ensemble++ in varying contextual
bandit as introduced in Appendix A.1. To fully support the theoretical insights, we first consider
linear bandit environments.

B.1 EMPIRICAL STUDY ON LINEAR ENSEMBLE++ SAMPLING

We construct the Finite-action Linear Bandit environment guided by prior research (Russo &
Van Roy, 2018). In this task, we construct the finite decision set X by uniformly sampling from
the range [−1/

√
5, 1/
√
5]d where d is the ambient dimension of the linear reward function per-

turbed by an additive Gaussian noise term. We provide a detailed implementation of this task in
Appendix H.1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 250 500 750 1000
Time Period

0

1

2

3

C
u

m
u

la
te

d
R

eg
re

t

×103 Finite-action Linear Bandit

ES (M=4)

ES (M=8)

ES (M=16)

TS

0 250 500 750 1000
Time Period

0

1

2

3 ×103 Finite-action Linear Bandit

ES++ (M=4)

ES++ (M=8)

ES++ (M=16)

TS

Figure 6: Comparison results in Finite-action Linear Bandit with d = 50 and |X | = 10, 000. We
use ES to refer to Linear Ensemble Sampling, ES++ to refer to Linear Ensemble++ Sampling, and
TS to refer to Thompson Sampling for clarity.

Advantage over Ensemble Sampling. We consider a special case of Linear Ensemble++ Sam-
pling with a coordinate reference distribution, which essentially performs uniform sampling among
symmetrized ensemble members, similar to vanilla Linear Ensemble Sampling (Lu & Van Roy,
2017). We compare the regret of Linear Ensemble++ Sampling with Linear Ensemble Sampling
across varying ensemble sizes M in Figure 6. For a fair comparison, we use the same spherical per-
turbation distribution in both methods. The results suggest that Linear Ensemble++ Sampling with a
Gaussian reference distribution significantly outperforms Linear Ensemble Sampling across varying
ensemble sizes M . Notably, Linear Ensemble++ Sampling can nearly match the performance of TS
with M = 8, saving 2× computation cost compared to Linear Ensemble Sampling.

10 20 30 40 50 60 70
Ambient Dimension d

4

8

12

16

20

24

M
in

im
u

m
M

to
A

p
p

ro
xi

m
at

e
T

S

R2 = 0.98

Finite-action Linear Bandit |X |=1000

10 20 30 40 50 60 70
Ambient Dimension d

4

8

12

16

20

24

R2 = 0.93

Finite-action Linear Bandit |X |=10000

Figure 7: Minimum ensemble size M required to match TS.

Optimal Ensemble Size Scaling. To justify our theoretical prediction of M = O(d log T), we
investigate the minimal ensemble size M required to match the performance of TS. We compute
the minimal M using criterion: M = min

{
M : |Regret(Ensemble++(M),T)−Regret(TS,T)|

T ≤ 0.02
}

and
evaluate Linear Ensemble++ Sampling across varying decision set sizes |X | and ambient dimensions
d. As shown in Figure 7, the minimal M exhibits a linear relationship with d and nearly remains
unaffected by |X |.

B.2 ENMSEBLE++ FOR NONLINEAR BANDITS

To evaluate Ensemble++ (c.f. Algorithm 1), we consider several nonlinear contextual bandit envi-
ronments: (1) Quadratic Bandit: Adapted from Zhou et al. (2020), the reward function is expressed
as f(x) = 10−2(x⊤ΘΘ⊤x). Here, x ∈ Rd represents the action feature, while Θ ∈ Rd×d is a
matrix filled with random variables from N (0, 1). (2) Neural Bandit: This is a binary classification
problem adapted from Osband et al. (2022; 2023a). We use 2-layer MLPs with 50 units and ReLU
activations to build the neural network with two logit outputs. The Bernoulli reward r ∈ {0, 1}
is sampled according to the probabilities obtained from applying softmax to the logits. (3) UCI
Shuttle: Following prior works Riquelme et al. (2018); Kveton et al. (2020b), we build contextual
bandits with N -class classification using the UCI Shuttle dataset Asuncion et al. (2007). (4) Online

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Hate Speech Detection: We leverage a language dataset2 to build this task. The agent must decide
whether to publish or block content. Blocking any content yields a reward of 0.5. Publishing “free”
content earns a reward of 1, while publishing “hate” content incurs a penalty of -0.5.

A detailed description of these nonlinear bandits is provided in Appendix H.2. For all algorithms, we
apply 2-layer MLPs with 64 units as the hidden network backbone in the first three tasks, and GPT-23

in the last one. Detailed implementation for each algorithms can be found in Appendix A.8.1.

0 20 40 60 80 100

Time Period ×103

0.0

2.5

5.0

7.5

10.0

12.5
C

u
m

u
la

ti
ve

R
eg

re
t

×103 Quadratic Bandit

0 20 40 60 80 100

Time Period ×103

0

1

2

3

C
u

m
u

la
ti

ve
R

eg
re

t

×103 Neural Bandit

0 2 4 6 8 10

Time Period ×103

0.00

0.25

0.50

0.75

1.00

1.25

C
u

m
u

la
ti

ve
R

eg
re

t

×103 UCI Shuttle

0 20 40 60 80 100

Time Period ×103

0.4

0.5

0.6

0.7

0.8

D
et

ec
ti

on
A

cc
u

ra
cy

Hate Speech Detection

Greedy EpiNet Ensemble+ Ensemble++

Figure 8: Comparison results across various nonlinear bandits.
Comparison Results. We consider Ensemble+ (Osband et al., 2018) and EpiNet (Osband et al.,
2023a) as baselines and include Greedy to demonstrate the exploration requirements of each task.
The comparison results in Figure 8 demonstrate that Ensemble++ consistently achieves sublinear
regret and higher accuracy. Notably, in the Quadratic Bandit, Ensemble++ achieves fast conver-
gence while other baselines still exhibit linear regret. In the Hate Speech Detection task, Ensem-
ble++ outperforms Ensemble+ by 5%, underscoring its scalability in dealing with more complex
networks, such as Transformers. Additionally, the framework of the Hate Speech Detection task
can be extended to a wide range of applications, from recommendation systems to online content
moderation, as discussed in Section 4, demonstrating the promising utility of Ensemble++ in real-
world applications. Due to the implementation details of EpiNet discussed in the Appendix A.8.1,
we are unable to apply it to the Hate Speech Detection task. Furthermore, we compare Ensemble++
to LMCTS (Xu et al., 2022), on extensive nonlinear bandits in Appendix H.2, where Ensemble++
consistently achieves sublinear, smaller regret with bounded and lower per-step computation costs.

500 1000 1500 2000 2500 3000

Action Size

2

4

6

C
u

m
u

la
te

d
R

eg
re

t

×103 Quadratic Bandit

M = 8 M = 32 M = 128

(a)

5000 10000 50000 100000
Buffer Size

0

2

4

6

C
u

m
u

la
ti

ve
R

eg
re

t

×103 Quadratic Bandit

(b)

Figure 9: Ablation results on Quadratic Bandit: (a) Evaluation of the scalability of Ensemble++
with varying decision set sizes. (b) Performance of Ensemble++ under varying buffer sizes.

2https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
3https://huggingface.co/openai-community/gpt2

22

https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/openai-community/gpt2

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Regret v.s. Computation Trade-off. We have demonstrated that Ensemble++ can achieve sub-
linear regret with moderate computation cost in the Quadratic Bandit, as shown in ??. In this ex-
periment, we use the number of network parameters to measure computation cost and evaluate all
methods in in the Quadratic Bandit with feature dimension d = 100 and candidate decision set size
|X | = 1000. Additional comparison results in the Neural Bandit, as shown in Figure 17, also sup-
port the same finding: across a range of ensemble sizes M , Ensemble++ outperforms baselines such
as EpiNet and Ensemble+ in the regret–compute frontier, reaffirming that random linear combina-
tions plus a shared base are quite cost-effective. A detailed discussion on the relationship between
ensemble size and the network parameter size of Ensemble++ and other baselines is provided in Ap-
pendix A.8.1.
Ablation Studies on Scaling and Storage Requirement. We have demonstrated that the regret
performance of Linear Ensemble++ Sampling is not affected by the decision set sizes in linear ban-
dits. We extend this analysis to nonlinear bandits. As shown in Figure 9(a), Ensemble++ achieves
similar performance under varying candidate decision set sizes. This finding further confirms our
theoretical insights in Appendix D. We also observe that larger ensemble sizes M bring additional
benefits, consistent with findings in linear bandits. Additionally, as introduced in Section 3.3, En-
semble++ does not require storing the entire history of data for training. To examine this, we com-
pare different buffer sizes over a fixed period of 100,000 time steps. As shown in Figure 9(b), using
a smaller buffer size results in only a slight performance drop. Nevertheless, Ensemble++ achieves
comparable performance even with a buffer size smaller than the total time period. Furthermore, We
provide guidance on choosing the distribution of index in Appendix H.2.

C ENSEMBLE++ ALGORITHM DETAILS

Here we provide detailed derivations and design choices for the Ensemble++ algorithm. Let x ∈ X
denote the input, and h(x;w) be the shared feature extractor parameterized by w. The extracted
features are denoted by

x̃ = h(x;w).

The base network ψ(x̃; b), parameterized by b, estimates the mean prediction based on the shared
features. The ensemble components {ψ(sg(x̃); θm)}Mm=1, parameterized by θm, capture the uncer-
tainty in the prediction. The stop-gradient operator sg(·) prevents gradients from flowing through
x̃ when computing gradients with respect to θm, effectively decoupling the ensemble components
from the shared layers. The prior ensemble components {ψ(x̃; θ0,m)}Mm=1 are fixed throughout the
learning process, incentivizing diverse exploration with prior variations in the initial stage where
the data region is under-explored. Put all together, θ = {w, b, θ1, . . . , θM , θ0,1, . . . , θ0,M} are the
model parameters. By default, we choose ψ as a linear function:

ψ(x̃; θ) = ⟨x̃, θ⟩.

the Ensemble++ model predicts via random linear combinations of the base network and ensemble
components, with the prior ensemble components fixed throughout the learning process. The model
is defined as:

f++
θ (x, ζt) = ψ(x̃; b) + ψ(sg(x̃);

M∑
m=1

ζt,mθm) + sg(ψ(x̃;

M∑
m=1

ζt,mθ0,m)), (11)

where ζt = (ζt,1, . . . , ζt,M)⊤ is a random vector sampled from an index distribution Pζ .
Loss Function Derivation Starting from the loss function L(θ;D) with symmetric auxiliary vari-
ables:

1

2M

M∑
m=1

N∑
s=1

∑
β∈{1,−1}

(Ys + βzs,m − ψ(x̃s; b)− βψ(sg(x̃s); θm)− β sg(ψ(x̃s; θ0,m)))
2
+Φ(θ).

(12)

Expanding the square and summing over β:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

∑
β∈{1,−1}

(Ys + βzs,m − ψ(x̃s; b)− βψ(sg(x̃s); θm)− β sg(ψ(x̃s; θ0,m)))
2

=
∑

β∈{1,−1}

((Ys − ψ(x̃s; b)) + β(zs,m − sg(ψ(x̃s; θ0,m))− ψ(sg(x̃s); θm)))
2

=2
(
(Ys − ψ(x̃s; b))2 + (zs,m − sg(ψ(x̃s; θ0,m))− ψ(sg(x̃s); θm))2

)
,

since the cross terms cancel out due to summing over β ∈ {1,−1}. This leads to the simplified loss
function L(θ;D):

1

M

M∑
m=1

N∑
s=1

[
1

2
(Ys − ψ(x̃s; b))2 +

1

2
(zs,m − sg(ψ(x̃s; θ0,m))− ψ(sg(x̃s); θm))

2

]
+Φ(θ). (13)

Gradient Computations The gradients with respect to the shared parameters (w, b) are derived
solely from the base network loss:

∇wL(θ;D) =

N∑
s=1

(ψ(x̃s; b)− Ys)∇x̃s
ψ(x̃s; b)∇wh(As;w), (14)

∇bL(θ;D) =

N∑
s=1

(ψ(x̃s; b)− Ys)∇bψ(x̃s; b). (15)

The gradients with respect to the ensemble parameters θm are independent of the base network:

∇θmL(θ;D) =

N∑
s=1

(ψ(sg(x̃s); θm)− Zs,m)∇θmψ(sg(x̃s); θm). (16)

Note that due to the stop-gradient operator sg(·), the ensemble components do not contribute to the
gradients of shared parameters.
Classification Loss Function For classification tasks, we use the cross-entropy loss function in-
stead of the squared loss function in Equation (12):

L(θ;D) =
1

2M

M∑
m=1

N∑
s=1

∑
β∈{1,−1}

CE
(
f++(Xs, βem), [Ys, 1− Ys]

)
+Φ(θ) (17)

where CE(X,Y) = −∑j Yj(Xj − log
∑

i expXi) is the cross-entropy loss function, and [Ys, 1−
Ys] is the one-hot encoding of the label Ys.

C.1 DESIGN OF REFERENCE DISTRIBUTIONS

The choice of index distribution Pζ significantly impacts the exploration behavior of Ensemble++.
We consider five distribution designs, each offering unique properties for different aspects of the
algorithm:

1. Gaussian Distribution (ζt ∼ N (0, IM)):
• Promotes diversity through natural covariance sampling
• Provides strong theoretical guarantees

2. Sphere Distribution (ζt ∼
√
M · U(SM−1)):

• Maintains perfect isotropy through rotational invariance
• Ensures uniform exploration in all directions
• Controls exploration magnitude with fixed norm

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

3. Cube Distribution (ζt ∼ U({1,−1}M)):

• Offers discrete exploration with binary choices
• Provides strong anti-concentration properties
• Computationally efficient for implementation

4. Coordinate Distribution (ζt ∼ U(
√
M{±e1, . . . ,±eM})):

• Enables axis-aligned exploration
• Minimizes interference between dimensions
• Particularly useful for feature selection

5. Sparse Distribution (s-sparse random vectors):

• Suitable for high-dimensional problems
• Adjustable sparsity level for different settings

For sampling algorithms and the detailed theoretical analysis of the properties of these distributions
(isotropy, concentration, and anticoncentration), see Appendix G.

D THEORETICAL ANALYSIS

In this section, we provide a detailed theoretical analysis of Linear Ensemble++ Sampling in the lin-
ear contextual bandit setting (c.f. ??). We show that, with an ensemble sizeM = O(d log T), Linear
Ensemble++ Sampling achieves a near-optimal regret bound matching linear Thompson Sampling,
while only incurring O(d3 log T) computation per step. This closes a longstanding gap in scalable
ensemble-based exploration.

W.L.O.G., we impose the following mild assumption.

Assumption 1. The random noise εt satisfies

E [exp{s εt} | Ht, Xt] ≤ exp
(

s2

2

)
, ∀ s ∈ R,

whereHt is the history up to time t. In addition, all actions satisfy ∥x∥2 ≤ 1 for x ∈ X .

D.1 KEY LEMMA: COVARIANCE TRACKING UNDER SEQUENTIAL DEPENDENCE

A critical step in analyzing Linear Ensemble++ Sampling is to ensure that its incremental updates
accurately track the true posterior covariance Σt. Specifically, recall the Ensemble++ update for the
matrix At, which aims to approximate Σ

1/2
t even when actions Xt are chosen adaptively based on

prior {As}s<t. The following lemma establishes that, provided M is on the order of d log T , we
obtain high-probability bounds ensuring AtA

⊤
t remains an approximation to Σt.

Lemma 1 (Covariance Tracking under Sequential Dependence). Let {zt}Tt=1 be unit-norm
√

1/M -
sub-Gaussian vectors in RM , adapted to a filtration {Ft}. Define At via the recursive update equa-
tion 3 in Linear Ensemble++, and let Σt be the exact ridge posterior covariance. Suppose

M ≥ 320
(
d log

(
2+ 96

smin

√
s2max+T

δ

)
+ log

(
1 + T

s2min

))
≃ d

(
log 1

δ + log T
)
, (18)

where s2min = inf∥a∥=1 a
⊤Σ−1

0 a and s2max = sup∥a∥=1 a
⊤Σ−1

0 a. Then with probability at least
1− δ,

∀ t ≤ T : 1
2 Σt ≼ At A

⊤
t ≼ 3

2 Σt.

Significance. Lemma 1 ensures that the Ensemble++ “covariance factor” AtA
⊤
t tracks the true

posterior Σt to within constant factors, uniformly for all t ≤ T . Thus, the variance estimates used
by Ensemble++ remain trustworthy at each decision point, despite the sequential dependencies in
how actions are chosen.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Technical Innovation. The primary challenge is dealing with the sequential dependencies among
adaptively chosen actions Xt and the high-dimensional random vectors zt. Our proof uses:
• A variance-aware discretization scheme that avoids super-linear growth in the required ensemble

size M . Naive discretizations can require M = Ω(d T 2 log T). Our approach cuts down the
dimension requirement to Õ(d log T), keeping computation manageable.

• A reduction to Sequential Johnson–Lindenstrauss (JL) arguments Li (2024a), which handle time-
varying, high-dimensional data under adaptivity.

Proof Sketch. Rewriting the update rule Σ−1
t At = Σ−1

t−1At−1 + Xt z
⊤
t , we analyze one-

dimensional projections a⊤At by leveraging the sequential JL lemma on discritized directions a.
1. Simpler case: when Xt is a standard basis vector, Σt is diagonal, simplifying the updates; the
proof then boils down to bounding the diagonal entries via a direct sequential JL approach. 2. Gen-
eral feature vectors: we still focus on a⊤At for unit vectors a, and show concentration around
a⊤Σ−1

t a. Combining this with a covering argument (discretizing the unit sphere with a covariance-
aware weighted norm) and a union bound yields the matrix inequalities. Formal details are deferred
to Appendix E.

D.2 REGRET BOUND FOR LINEAR ENSEMBLE++ SAMPLING

Building on Lemma 1, we now show that Linear Ensemble++ Sampling attains near-optimal regret
comparable to linear Thompson Sampling. Let Pζ be the reference distribution used in sampling ζt
for action selection.
Theorem 1 (Distribution-dependent Regret). Suppose Assumption 1 holds, and let Σ0 be the prior
covariance. If Lemma 1 applies (i.e., M satisfies equation 18), then Linear Ensemble++ Samplin-
gachieves the following regret bound with probability at least 1− δ:

Regret(T) ≤ ρ(Pζ)

p(Pζ)
β

√
T d log

(
1 +

T

λ d

)
,

where β =
√
λ ∥θ∗∥2 +

√
2 log

(
1
δ

)
, and ρ(Pζ), p(Pζ) are distribution-dependent constants de-

scribed below. See Appendix F for full proof details.

Reference Distribution. A crucial design element in Ensemble++ is the choice of sampling dis-
tribution Pζ .
Example 1 (Reference Distribution Choices). We can sample ζt ∼ Pζ from, e.g., Gaussian distri-
bution N (0, IM), Sphere distribution

√
M · U(SM−1), Cube distribution U({±1}M), Coordinate

distribution U
(
{±e1, . . . , ±eM}

)
or Sparse distributions (s-sparse random vectors). Each design

has different isotropy and anti-concentration properties that affect ρ(Pζ) and p(Pζ); see Table 2 for
examples and Appendix G for formal definitions.
Table 2: Representative values of ρ(Pζ) and p(Pζ) for typical distributions. The ratio ρ(Pζ)

p(Pζ)
appears

in Theorem 1 and influences the final regret constant. Notation: ρ1 = O
(√

M log(M/δ)
)
, ρ2 =

O(
√
M), and ρ3 = O

(√
log(|X |/δ)

)
.

Pζ N (0, IM)
√
M · U(SM−1) U({±1}M) U({±ei}) Sparse

ρ(Pζ) ρ1 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ρ2

p(Pζ)
1

4
√
eπ

1
2 − e1/12√

2π
7
32

1
2M N/A

Discussion of Reference Distributions. Continuous-support distributions (e.g., Gaussian or uni-
form on the sphere) often yield a more favorable ratio ρ(Pζ)/p(Pζ) than discrete distributions (e.g.,
uniform on cube or coordinate vectors). Consequently, continuous Pζ provides tighter regret con-
stants and improved exploration efficiency. Furthermore, for finite action sets, an additional log |X |
factor may appear in ρ3, but this still remains within a Õ(

√
T log |X |) regret scaling, matching the

best known linear TS bounds.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D.3 COMPARISONS AND IMPLICATIONS

Table 3 places Ensemble++ in the context of related algorithms and analyses. Notably, it is the first
approximate-TS method to achieve:

• Scalable per-step updates of Θ(d3 log T), rather than depending on T or |X |,
• Near-optimal regret matching linear TS across all decision set setups (finite set or compact set,

time-invariant or time-varying).

This addresses the longstanding computational–statistical trade-off in ensemble-based exploration,
surpassing prior methods such as LMCTS Xu et al. (2022), which require O(d2T) cost per step, or
earlier ensemble sampling analyses that need M ∝ T Qin et al. (2022).
Table 3: Regret upper bounds for representative algorithms in linear bandits under different action-
set setups. For references: (1) Qin et al. (2022) covers Bayesian regret in time-invariant finite actions;
(2) Janz et al. (2024) assumes time-invariant or continuous sets; (3) Abeille & Lazaric (2017) and
Agrawal & Goyal (2013) analyze linear Thompson Sampling (TS); Our method, Ensemble++, is the
first approximate TS algorithm to handle all four setups with O(d3 log T) per-step complexity.

Inv. & Compact Var. & Compact Inv. & Finite Var. & Finite

linear TS O(d3/2
√
T log T) O(d3/2

√
T log T) O(d

√
T log |X | log T) O(d

√
T log |X | log T)

Qin et al. (2022) N/A N/A O
(√

dT log |X | log |X |T
d

)
N/A

Janz et al. (2024) O
(
(d log T)5/2

√
T
)

O
(
(d log T)5/2

√
T
)

N/A N/A
Ensemble++ O

(
d3/2
√
T (log T)3/2

)
O
(
d3/2
√
T (log T)3/2

)
O
(
d
√
T log |X | log T

)
O
(
d
√
T log |X | log T

)
Remark 2 (Efficiency). Linear Ensemble++ Sampling provides an exponential improvement in the
T -dependence of computational cost relative to prior works Qin et al. (2022); Xu et al. (2022) that
require O(T) or O(d2T) per-step overhead to achieve near-TS regret. It also refines concurrent
ensemble sampling bounds Janz et al. (2024), improving by O(d(log T)2) in regret. These gains
realize a more practical method for large-scale or long-horizon tasks. For Frequentist analysis, we
choose an inflated version of linear Ensemble++ sampling, detailed in Appendix F.

Remark 3 (Flexibility). Unlike prior analyses specialized to compact action sets (e.g., Abeille &
Lazaric (2017); Xu et al. (2022); Janz et al. (2024)) or finite action sets only (e.g., Qin et al. (2022)),
our results apply seamlessly to both scenarios and remain valid when Xt is time-varying or remains
fixed over t. This broad applicability underscores the generality of Ensemble++ as a scalable
approximation to Thompson sampling in linear bandits.

Overall, these results confirm that Linear Ensemble++ Sampling matches the exploration quality of
TS without incurring large ensemble sizes or per-step costs.

E TECHNICAL DETAILS FOR LEMMA 1

Proof Sketch Notice the recursive update rule Equation (3) can be rewritten as

Σ−1
t At = Σ−1

t−1At−1 +Xtz
⊤
t . (19)

We first consider a simpler setting where the feature vectorsXt are from the standard basis, reducing
the problem to a multi-armed bandit setting. In this case, Σt is a diagonal matrix, and Equation (19)
reduces to Equation (20) in example 2 where σi

t is the i-th diagonal element of Σt. Then the proof
goal of Lemma 1 share the exact same goal (c.f. Equation (21)) in example 2, where the sequential
Johnson-Lindenstrauss theorem (introduced later in Theorem 2) can be applied to show that the
incremental uncertainty estimates remain accurate even with sequential dependence.
Example 2 (Approximate Posterior in a Multi-Armed Bandit). Consider a multi-armed bandit with
K independent arms, each having an unknown mean reward θ∗i . A Gaussian prior is placed on each
arm’s mean θ∗i ∼ N (µi

0, σ
2
0). At time t, the algorithm pulls an arm Xt. The posterior variance

(σi
t)

2 of arm i is updated as
1

(σi
t)

2
=

1

(σi
t−1)

2
+ 1{Xt=ei},

and (σi
t)

2 is left unchanged for unchosen arms.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Ensemble++ produces posterior samples relies on storing a high-dimensional factor mi
t ∈ RM

approximating (σi
t)

2 through its square norm ∥mi
t∥2. We draw ζ ∼ N (0, IM) and form µi

t+⟨mi
t, ζ⟩

as an approximate posterior sample. To maintain mi
t efficiently, an incremental update is used

(reduced from Equation (19)):
1

(σi
t)

2
mi

t =
1

(σi
t−1)

2
mi

t−1 + 1{Xt=ei} zt, (20)

where zt are fresh random vectors at each step. For initialization, set mi
0 = σ0 z

i
0 so that ∥mi

0∥2 =
σ2
0 .

Note that Xt depends on all past data and thus on z0, . . . , zt−1. Denoting xt := 1{Xt=ei}, we
see that each xt is adaptive to {zs}s<t and zt is the fresh perturbation at each step. Rewriting
Equation (20) for a fixed arm i:

1

(σi
t)

2
mi

t =

t∑
s=0

xs zs, while
1

(σi
t)

2
=

t∑
s=0

x2s.

Hence, we want: ∥∥ t∑
s=0

xszs
∥∥2 ≈ t∑

s=0

x2s uniformly over t ∈ {0, . . . , T}. (21)

Standard JL arguments break under such sequential dependence between xt and {zs}s<t, motivat-
ing our sequential-JL theorem, as described later in Theorem 2.

For the general case where Xt are arbitrary bounded feature vectors, we still leverage the matrix
recursion structure in Equation (19) but investigate its projection onto a single direction a:

a⊤Σ−1
t At = a⊤Σ−1

t−1At−1 + a⊤Xtz
⊤
t ,

a form proven to be concentrated around a⊤Σ−1
t a using the sequential Johnson-Lindenstrauss the-

orem. The proof then proceeds by carefully selecting representative directions to discretize the unit
sphere and applying a union bound to extend the concentration results to the entire continuous space
Sd−1. Immediately, we can convert the guarantee about {a⊤Σ−1

t AtA
⊤
t Σ

−1
t a, a ∈ SM−1} to the

desired result about {a⊤AtA
⊤
t a,∀a ∈ SM−1}.

In the later subsection, we rigorously formalize each of these steps.

E.1 FUNDAMENTAL PROBABILITY TOOLS: SEQUENTIAL JOHNSON-LINDENSTRAUSS

First, we state the preliminary tools of sequential Johnson-Lindenstrauss (JL) for completeness,
which is adapted form (Li, 2024a). This tool was used to prove incremental posterior approximation
argument of HyperAgent in tabular RL setup (Li et al., 2024). As the tool in (Li, 2024a) works only
for the scalar process, we need additional technical innovations to deal with high-dimensional vector
process. Thus, we make a novel utilization of this tool in the linear function approximation setting
for the first time, by a non-trivial discretization argument in Appendix E.3.

We define some important concept that would be useful in the analysis. Let (Ω,F ,F = (Ft)t∈N,P)
be a complete filtered probability space. We first consider the measurable properties within the
filtered probability space.
Definition 1 (Adapted process). For an index set I of the form {t ∈ N : t ≥ t0} for some t0 ∈ N,
we say a stochastic process (Xt)t∈I is adapted to the filtration (Ft)t∈I if eachXt is Ft-measurable.
Definition 2 ((Conditionally) σ-sub-Gaussian). A random variable X ∈ R is σ-sub-Gaussian if

E[exp(λX)] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

Let (Xt)t≥1 ⊂ R be a stochastic process adapted to filtration (Ft)t≥1. Let σ = (σt)t≥0 be a
stochastic process adapted to filtration (Ft)t≥0. We say the process is (Xt)t≥1 is conditionally
σ-sub-Gaussian if

E[exp(λXt) | Ft−1] ≤ exp

(
λ2σ2

t−1

2

)
, a.s. ∀λ ∈ R.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Specifically for the index t + 1, we can say Xt+1 is (Ft-conditionally) σt-sub-Gaussian. If σt is a
constant σ for all t ≥ 0, then we just say (conditionally) σ-sub-Gaussian.

For a random vector X ∈ RM or vector process (Xt)t≥1 ⊂ RM in high-dimension, we say it is σ-
sub-Gaussian is for every fixed v ∈ SM−1 if the random variable ⟨v,X⟩ , or the scalarized process
(⟨v,Xt⟩)t≥1 is σ-sub-Gaussian.
Definition 3 (Almost sure unit-norm). We say a random variable X is almost sure unit-norm if
∥X∥2 = 1 almost surely.
Remark 4. When talking about the perturbation distribution Pz, we scale all specific distribution

discussed in Appendix G by
√

1
M . Then the spherical distribution U(SM−1) and uniform over scaled

cube U(1√
M
{1,−1}M) satisfy the sub-Gaussian condition in Definition 2 with parameter σ = 1√

M
and also satisfy the unit-norm condition in Definition 3 according to the discussion in Appendix G.

Now, we are ready to state the important tool that is fundamental to our analysis.
Theorem 2 (Sequential Johnson–Lindenstrauss (Li, 2024a)). Fix ε ∈ (0, 1), and let {Ft}t≥0 be a
filtration. Consider random vectors {zt}t≥0 ⊂ RM adapted to {Ft}t≥0, satisfying:

• z0 is F0-measurable, E[∥z0∥2] = 1, and
∣∣∥z0∥2 − 1

∣∣ ≤ ε/2 almost surely.

• For t ≥ 1, the process {zt}t≥1 is conditionally
√
c0/M -sub-Gaussian and each ∥zt∥ = 1

almost surely.

Let {xt}t≥1 ⊂ R be adapted to {Ft−1}t≥1 and satisfy x2t ≤ cx a.s. For a fixed x0 ∈ R \ {0}, if

M ≥ 16 c0 (1 + ε)

ε2

(
log
(
1
δ

)
+ log

(
1 + cx T

x2
0

))
,

then with probability at least 1− δ,

∀ t = 0, . . . , T : (1− ε)
t∑

i=0

x2i ≤
∥∥∥ t∑
i=0

xi zi

∥∥∥2 ≤ (1 + ε)

t∑
i=0

x2i .

E.2 REDUCE LEMMA 1 TO SEQUENTIAL JOHNSON-LINDENSTRAUSS (THEOREM 2)

Without loss of generality, let us consider the compact set Sd−1 define the feature space of all
actions. First, we define a fine-grained good event for desired approximation error ε ∈ (0, 1):
the approximate posterior variance a⊤AtA

⊤
t a is ε-close to the true posterior variance a⊤Σta for

direction a at time t ∈ T := {0, 1, . . . , T}, i.e.,

Gt(a, ε) =
{
|a⊤AtA

⊤
t a− a⊤Σta| ≤ εa⊤Σta

}
, (22)

and corresponding joint event over the set Sd−1,

Gt(ε) =
⋂

a∈Sd−1

Gt(a, ε). (23)

The good event at time priod t defined in Lemma 1 is indeed Gt(1/2).
A reduction. To fully utilize the probability tool for Sequential Johnson-Lindenstrauss in The-
orem 2, we make use of the following reduction from vector process to scalar process. For a
fixed a ∈ Sd−1, we let s(a) = a⊤Σ

−1/2
0 Z0, s(a)

2 = a⊤Σ−1
0 a. Further define short notation

z0 := s(a)⊤/s(a) and x0 := s(a). and xt = a⊤Xt for all t ∈ [T], then we can relate the incremen-
tal update in Equation (20)

a⊤Σ−1
t At = a⊤Σ

−1/2
0 Z0︸ ︷︷ ︸

s(a)=z⊤
0 x0

+

t∑
i=1

a⊤(Xi)︸ ︷︷ ︸
xi

z⊤i , a⊤Σ−1
t a = a⊤Σ−1

0 a︸ ︷︷ ︸
x2
0

+

t∑
i=1

a⊤(Xi)(Xi)
⊤a︸ ︷︷ ︸

x2
i

to the scalar sequence (xt)t≥0 and the vector sequence (zt)t≥0 that would be applied in Theorem 2.

Recall that Ht the σ-algebra generated from history (X1, X1, Y1, . . . ,Xt−1, Xt−1, Yt−1,Xt). De-
note Z1 = σ(Z0) and Zt = σ(Z0, z1, . . . , zt−1) for t ≥ 2. We observe the following statistical
relationship, which is further demonstrated in Figure 10

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• zt ⊥⊥ (Ht, Xt,Zt), Xt is dependent onHt,Zt,
• At−1 ∈ σ(Ht,Zt),
• µt−1,Σt−1 ∈ Ht.

For all t ≥ N, let us define the sigma-algebra Ft = σ(Ht+1,Zt+1, Xt+1). We can verify Fk ⊆ Fl

for all k ≤ l. Thus F = (Ft)t∈N is a filtration. Now, we could verify (zt)t≥0 is adapted to (Ft)t≥0

and (xt)t≥1 is adapted to (Ft)t≥0, satisfying the conditions in Theorem 2.

Z0

X1

z1

X2

z2

X3

z3

. . .

. . .

Xt

zt

Xt+1

Time t = 1 Time t = 2 Time t = 3 Time t Time t+ 1

Figure 10: Sequential Dependence Structure.

E.2.1 PRIOR APPROXIMATION

First, we state a standard covering argument on sphere.

Lemma 2 (Covering number of a sphere). There exists a set Cι ⊂ Sd−1 with |Cι| ≤ (1+ 2/ι)d such
that for all x ∈ Sd−1 there exists a y ∈ Cι with ∥x− y∥2 ≤ ι.
Lemma 3 (Computing spectral norm on a covering set). Let A be a symmetric d × d matrix, and
let Cι be the an ι-covering of Sd−1 for some ι ∈ (0, 1). Then,

∥A∥ = sup
x∈Sd−1

|x⊤Ax| ≤ (1− 2ι)−1 sup
x∈Cι

|x⊤Ax|.

For compact set Sd−1 = {x ∈ Rd : ∥x∥ = 1}, by standard covering argument in Lemma 3 and the
distributional Johnson-Lindenstrauss lemma (Li, 2024b), when

M ≥M1(ε, δ) := 256ε−2(d log 9 + log(2/δ)), (24)

the initial good event for prior approximation G0(ε/2) holds with probability at least 1− δ.

Next, we are going to show that, under the event G0(ε/2), the initial condition on |∥z0∥2 − 1| ≤
(ε/2) in Theorem 2 is satisfied. That is, under the event G0(ε/2)

(1− ε/2)a⊤Σ0a ≤ ∥a⊤Σ1/2
0 Z0∥2 ≤ (1 + ε/2)a⊤Σ0a, ∀a ∈ Sd−1

⇔ ∥Z0Z
⊤
0 − I∥ ≤ ε/2

⇔ (1− ε/2)a⊤Σ−1
0 a ≤ ∥a⊤Σ−1/2

0 Z0∥2 ≤ (1 + ε/2)a⊤Σ−1
0 a, ∀a ∈ Sd−1. (25)

Recall the short notation s(a) = a⊤Σ
−1/2
0 Z0 and s(a)2 = a⊤Σ−1

0 a, we have z0 = s(a)⊤/s(a)
satisfying |∥z0∥2 − 1| ≤ (ε/2) according to Equation (25).

E.2.2 POSTERIOR APPROXIMATION

Notice that x20 = a⊤Σ0a ≥ infa∈Sd−1 a⊤Σ−1
0 a = s2min. By the assumption of the bounded

feature in assumption 1, we can examine that x2t = (a⊤Xt)
2 ≤ 1 for t ≥ 1. That is, the sequence

(a⊤Xt)t≥1 is 1-square-bounded for any a ∈ Sd−1.

We could also check that (zt)t≥1 is 1/
√
M -sub-Gaussian and with unit-norm when the perturbation

distribution Pz is Cube U({1,−1}M) or Sphere U(SM−1).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Under the prior approximation event G0(ε/2), we apply Theorem 2 to show that for any fixed a ∈
Sd−1,

∀t ∈ T , Et(a, ε) :=
{
|a⊤Σ−1

t AtA
⊤
t Σ

−1
t a− a⊤Σ−1

t a| ≤ εa⊤Σ−1
t a

}
(26)

holds with probability at least 1− δ when

M ≥ 16(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

T

s2min

))
. (27)

E.3 DISCRETIZATION FOR POSTERIOR APPROXIMATION

We need discretization (covering) argument to relate the result in Equation (26) to the desired good
event defined in Equation (23)

Gt(ε) =
{
∥Σ−1/2

t AtA
⊤
t Σ

−1/2
t − I∥ ≤ ε

}
.

Standard discretization produces unacceptable results. Utilizing standard discretization for
computing spectral norm in Lemma 3, let ι = 1/4, we can show that⋂

a∈C1/4

Et(a, ε/2T) ⊆ Gt(ε).

This is due to,

∥Σ−1/2
t AtA

⊤
t Σ

−1/2
t − I∥ = sup

x∈Sd−1

|x⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t)x|
x⊤Σ−1

t x

≤ 2

λmin(Σ
−1
t)

sup
a∈C1/4

|a⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t)a|

≤ 2ε′
supa∈C1/4

a⊤Σ−1
t a

λmin(Σ
−1
t)

≤ 2ε′ · κ(Σ−1
t) ≤ 2Tε′.

Then by union bound over C1/4, plugging in ε/2T to Equation (27), we require M ≥ Õ(dT 2 log T)
to let

⋂
a∈C1/4

Et(a, ε/2T) hold with probability at least 1 − δ. This result is not acceptable as the
per-step computation complexity is growing unbounded polynimally with the interaction steps T . In
the next section, we provide a non-trivial discretization to resolve this analytical problem.
Variance-aware discretization. The key contribution here is that we choose a variance weighted
norm to measure discretization error. This variance-awareness, together with specific choice on a
O(1/

√
T)-discretization error and a constant approximation error ε, eventually arrives atO(d log T)

log covering number and M = Õ(d log T) in Lemma 1.

Let St = Σ−1
t At = X⊤

t Zt and Γt = Σ
1/2
t St = Σ

−1/2
t At. Notice that, from Equation (26), the

event holds with probability at least 1− δ′

∀t ∈ T , Et(a, ε
′) =

{ |a⊤StS
⊤
t a− a⊤Σ−1

t a|
a⊤Σ−1

t a
≤ ε′

}
when

M ≥ 16(1 + ε′)

(ε′)2

(
log

(
1

δ′

)
+ log

(
1 +

T

s2min

))
.

Let Cι ⊂ Sd−1 be the ι-covering set in Lemma 2 and the event
⋂

a∈Cι
Et(a, ε

′) holds. Let x ∈ Sd−1

and y ∈ Cι such that ∥x− y∥ ≤ ι. Define short notation u = Σ
−1/2
t x, v = Σ

−1/2
t y.

|x⊤StS
⊤
t x− x⊤Σ−1

t x|
x⊤Σ−1

t x
− |y

⊤StS
⊤
t y − y⊤Σ−1

t y|
y⊤Σ−1

t y

=
|u⊤ΓtΓ

⊤
t u− u⊤u|
u⊤u

− |v
⊤ΓtΓ

⊤
t v − v⊤v|
v⊤v

=
|∥Γtu∥2 − ∥u∥2|

∥u∥2 − |∥Γtv∥2 − ∥v∥2|
∥v∥2

≤
∣∣∣∣∥Γtu∥2
∥u∥2 −

∥Γtv∥2
∥v∥2

∣∣∣∣ = ∣∣∣∣∥Γtu∥2 − ∥Γtv∥2
∥u∥2

∣∣∣∣︸ ︷︷ ︸
(I)

+ ∥Γtv∥2
∣∣∣∣ 1

∥u∥2 −
1

∥v∥2
∣∣∣∣︸ ︷︷ ︸

(II)

.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

We bound (I) and (II) separately. W.L.O.G, assume ∥u∥ ≥ ∥v∥. Recall s2max ≥ a⊤Σ−1
0 a ≥ s2min

for all a ∈ Sd−1. Since ∥u∥ = x⊤Σ−1
t x = x⊤(Σ−1

0 +
∑t

s=1XsX
⊤
s)x, we have s2min ≤ ∥u∥ ≤

s2max + t. For (I), we have

(I) ≤ (∥Γtu∥ − ∥Γtv∥)(∥Γtu∥+ ∥Γtv∥)
∥u∥2 ≤ ∥Γt(u− v)∥

smin

(∥Γtu∥
∥u∥ +

∥Γtv∥
∥v∥

)
≤ ∥Γt∥∥u− v∥

smin
(2∥Γt∥) ≤

2∥Γt∥2∥Σ−1/2
t ∥ι

smin
≤ 2∥Γt∥2ι

√
s2max + t

smin
.

For (II), we have

(II) ≤ ∥Γtv∥2
∥v∥2

∥u∥2 − ∥v∥2
∥u∥2 ≤ ∥Γt∥2

∥u∥2 − ∥v∥2
∥u∥2 ≤ ∥Γt∥2

(∥u∥ − ∥v∥)(∥u∥+ ∥v∥)
∥u∥2

≤ 2∥Γt∥2∥u− v∥
smin

≤ 2∥Γt∥2∥Σ−1/2
t ∥ι

smin
≤ 2∥Γt∥2ι

√
s2max + t

smin
.

Then, putting (I) and (II) together, by the variance-aware discretization argument, we have the
spectral norm

∥Σ−1/2
t AtA

⊤
t Σ

−1/2
t − I∥ = sup

x∈Sd−1

|x⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t)x|
x⊤Σ−1

t x

≤ 4∥Γt∥2ι
√
s2max + t

smin
+ sup

y∈Cι

|y⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t)y|
y⊤Σ−1

t y

≤ 4∥Γt∥2ι
√
s2max + t

smin
+ ε′. (28)

Let
ι =

αsmin

4
√
s2max + T

,

where α to be determined. Equivalent formulation of the norm is ∥Γt∥2 = λmax(ΓtΓ
⊤
t) and

∥Σ−1/2
t AtA

⊤
t Σ

−1/2
t − I∥ = max{λmax(ΓtΓ

⊤
t)− 1, 1− λmin(ΓtΓ

⊤
t)}.

Thus, we derive from Equation (28),

λmax(ΓtΓ
⊤
t) ≤

1 + ε′

1− α , λmin(ΓtΓ
⊤
t) ≥ 1− ε′ − αλmax(ΓtΓ

⊤
t) ≥ 1− ε′ − α(1 + ε′)

1− α .

Claim 1. If 1+ε′

1−α = 1 + ε and ε′ + α(1+ε′)
1−α = ε, then

1− ε ≤ λmin(ΓtΓ
⊤
t) ≤ λmax(ΓtΓ

⊤
t) ≤ 1 + ε.

Let ε = 1/2, then (ε′, α) = (1/4, 1/6) suffices for the Claim 1. That is to say the following
configuration for discretization error ι suffices,

ι =
smin

24
√
s2max + T

.

The covering number is |Cι| ≤ (1 + 2/ι)d ≤ (1 + (48/smin)
√
s2max + T)d. By union bound and

define δ′ = δ/(1 + (48/smin)
√
s2max + T)d, we have

P

(⋂
t∈T
Gt(1/2) | G0(1/4)

)
≥ 1− δ,

when

M ≥M2(δ) :=
16(5/4)

(1/4)2

(
d log

(
1 + (48/smin)

√
s2max + T

δ

)
+ log

(
1 +

T

s2min

))
.

Here the constant is 320.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Put things together. When M ≥M3 := max{M1(1/2, δ/2),M2(δ/2)}, we have

P

(⋂
t∈T
Gt(1/2)

)
= P

(⋂
t∈T
Gt(1/2) | G0(1/4)

)
P (G0(1/4)) ≥ (1− δ/2)2 ≥ 1− δ.

With some calculations, we derive

M1(1/2, δ/2) = 1024(d log 9 + log(4/δ)),

and

M2(δ/2) = 320

(
d log

(
2 + (96/smin)

√
s2max + T

δ

)
+ log

(
1 +

T

s2min

))
.

Since the total time periods T is the dominant growing term, there exist a constant T0 such that
M3 =M2(δ/2) when T > T0.

F TECHNICAL DETAILS IN REGRET ANALYSIS

F.1 GENERAL REGRET BOUND

We start by providing a general analytical framework for agent, potentially randomized, operating
in the generic bandit environments. Let us introduce a few necessary definitions to facilitate the
understanding and analysis. The confidence bound is used for uncertainty estimation over the ture
function f∗ given the historyHt.

Definition 4 (Confidence bounds). Confidence bounds are a sequence of real-valued Ht-
measurable functions Lt(·) and Ut(·) for t ∈ [T] such that, w.p. at least 1 − δ, the joint event
E = ∩t∈[T]Et holds, where Et := {f∗(a) ∈ [Lt(a),Ut(a)] ,∀x ∈ Xt}.

The agent may not perform well unless it is well-behaved, defined by reasonableness and optimism.
Intuitively, an agent that explores too much or too little will incur a high regret. Reasonableness and
optimism are the mechanisms for controlling these potential flaws respectively.

Definition 5 (Reasonableness). Given confidence bounds Lt(·) and Ut(·) for t ∈ [T], an (random-
ized) agent is called reasonable if it produces a sequence of functions (f̃t(·), t ∈ [T]) such that w.p.
at least 1− δ, the joint event Ẽ = ∩t∈[T]Ẽt holds, where Ẽt := {f̃t(a) ∈ [Lt(a),Ut(a)] ,∀x ∈ Xt}.

In short, reasonableness ensures that the chosen action according to f̃t is close to the best action
which ensures agent does not explore actions unnecessarily. The following optimism guarantees the
agent sufficient explores.

Definition 6 (p-optimism). Let p be a sequence of positive real number (pt, t ∈ [T]). We say an
(randomized) agent is p-optimistic when it produces a sequence of functions (f̃t(·), t ∈ [T]) such
that for all t ∈ [T], f̃t(·) is pt-optimistic, i.e., P(maxx∈Xt

f̃t(a) ≥ maxx∈Xt
f∗(a) | Ht) ≥ pt.

The generic agent satisfying the conditions on reasonableness and optimism has desired behavior.

Building upon the definitions of Reasonableness and Optimism, we establish a general regret bound
applicable to any agent satisfying these conditions.

Theorem 3 (General Regret Bound). Given confidence bounds as defined in Definition 4, and as-
suming the agent is both reasonable and p-optimistic, the cumulative regret over T time steps satis-
fies

R(T) ≤
T∑

t=1

1

pt
E [Ut(Xt)− Lt(Xt) | Ht] +

T∑
t=1

(Ut(Xt)− Lt(Xt)) , (29)

with probability at least 1− δ.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Interpretation The regret bound in equation 29 decomposes into two main components:

1. Exploration-Exploitation Trade-off: The first term scales with 1
pt

and the expected width
of the confidence bounds. A higher pt (i.e., greater optimism) reduces this component,
promoting exploration.

2. Confidence Bound Widths: The second term aggregates the widths of the confidence
intervals across all time steps, reflecting the uncertainty inherent in the agent’s estimates.

For the regret to be sublinear in T , it is essential that the confidence bounds Ut(a) − Lt(a) shrink
appropriately as t increases, ensuring that both terms grow slower than linearly with T .

Proof. Let Xt = maxx∈Xt
f̃t(a) and A∗

t = maxx∈Xt
f∗(a). Let Bt = maxx∈At

Lt(a), which is
Ht-measurable. Conditioned on the event E ∩ Ẽ , both f∗(X∗

t) ≥ Bt and f̃t(Xt) ≥ Bt hold. By
p-optimism and the fact (f∗(X∗

t)−Bt) isHt-measurable and positive,

pt ≤ P(ft(Xt)−Bt ≥ f∗(X∗
t)−Bt | Ht)

(∗)
≤ E[ft(Xt)−Bt | Ht]/(f

∗(X∗
t)−Bt),

where (∗) is due to Markov inequality. Rearranging and using the additional factBt ≥ Lt(Xt) yield

f∗(X∗
t)− f̃t(Xt) ≤ f∗(X∗

t)−Bt ≤
1

pt
E[ft(Xt)−Bt | Ht] ≤

1

pt
E[Ut(Xt)− Lt(Xt) | Ht].

(30)

By the reasonableness, f̃t(Xt) ≤ Ut(Xt). Then, from the definition of confidence bounds

f̃t(Xt)− f∗(Xt) ≤ Ut(Xt)− Lt(Xt) (31)

Putting Equations (30) and (31) together and then summing over the time index t yields the general
regret upper bound.

F.2 PROOF OF THEOREM 1 FOR LINEAR CONTEXTUAL BANDITS

To make the proof easy to access, we restate the core results and a few notations that is needed for
the proof of the propositions.

Pζ Gaussian N(0, IM) Sphere
√
MU(SM−1) Cube U({1,−1}M) Coord U({±ei}i∈[M]) Sparse

ρ(Pζ) ρ1 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ρ2

p(Pζ)
1

4
√
eπ

1
2 − e1/12√

2π
7/32 1

2M N/A

Table 4: (Restate of Table Table 2) The coefficient ρ(Pζ) and p(Pζ) related to reasonableness and
optimism condition.

Adapting the results from (Abbasi-Yadkori et al., 2011b; Abeille & Lazaric, 2017), let βt =
√
λ +√

2 log(1/δ) + log det(Σ−1
t−1/λ

d). Under assumption 1, we define the confidence bound as

Lt(·) = (−1) ∨ (⟨µt−1, ϕ(·)⟩ − βt∥ϕ(·)∥Σt−1), Ut(·) = 1 ∧ (⟨µt−1, ϕ(·)⟩+ βt∥ϕ(·)∥Σt−1)

For the purpose of analysis within various reference distribution, we define a slightly inflated confi-
dence bounds as

Lt(·;Pζ) = (⟨µt−1, ϕ(·)⟩ − βtρ(Pζ)∥ϕ(·)∥Σt−1) ∨ (−1),
Ut(·;Pζ) = (⟨µt−1, ϕ(·)⟩+ βtρ(Pζ)∥ϕ(·)∥Σt−1) ∧ 1.

ρ(Pζ) is defined via ρ1 = O(
√
M log(M/δ)), ρ2 = O(

√
M), and ρ3 = O(

√
log(|X |/δ)) and

Table 2. An immediate observation is that [Lt(·), Ut(·)] ⊂ [Lt(·;Pζ), Ut(·;Pζ)]. Thus, Lt(·;Pζ)
and Ut(·;Pζ)] are also confidence bounds. We consider the the following functional form for En-
semble++ under linear setup: for time t,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

f̃t(a) := fθt(a, ζt) = ⟨ϕ(a), βtAt−1ζt + µt−1⟩, ∀x ∈ X , (32)

where the parameters include θt = (At, µt).

The condition on the propositions and theorem for regret analysis is when Equation (18) is satisfied,
that is when M = Θ(d log T), the Lemma 1 implies that with high probability, the good events
G =

⋂T
t=0 Gt hold jointly, where

Gt :=
{
1

2
x⊤Σtx ≤ x⊤AtA

⊤
t x ≤

3

2
x⊤Σtx, ∀x ∈ Rd

}
.

In the following section, we discuss the proof conditioned on the joint event G and also the confi-
dence event that f∗(a) ∈ [Lt(a), Ut(a)] for all t ∈ [T] and x ∈ X .

F.2.1 PROOF OF PROPOSITION 1

Notice that from Equation (32), we derive

|f̃t(a)− ⟨µt−1, ϕ(a)⟩| = |⟨ϕ(a), βtAt−1ζt⟩|

= βt

√
ϕ(a)⊤At−1A⊤

t−1ϕ(a)

∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣
≤ (3/2)βt

√
ϕ(a)⊤Σt−1ϕ(a)

∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣ ,
where the last inequality is due to the good event G. For compact action set, we use Cauchy–Schwarz
inequality, ∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣ ≤ ∥ζt∥.
Using the concentration properties of Pζ in Appendix G to upper bound ∥ζt∥ yields part of the
results. For finite action set X , also taking the advantages of the concentration properties of several
reference distributions Pζ in Appendix G to bound the conditionally probability

P

(∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣ ≤
√

log
2|X |
δ
| Ht,Zt

)
≥ 1− δ,

as ξt is independent of the history Ht,Zt. Finally, the inflated coefficient ρ(Pζ) defined in Table 2
suffices to make f̃t(·) ∈ [Lt(·;Pζ), Ut(·;Pζ)] reasonable.
Proposition 1. Under linear setups in Equations (3) and (32), if Equation (18) is satisfied, linear
Ensemble++ is reasonable, i.e., ∀t ∈ [T], f̃t(·) = fθt(·, ζt) ∈ [Lt(·;Pζ), Ut(·;Pζ)] w.p. 1− δ.
Proposition 2. Under linear setups in Equations (3) and (32), if Equation (18) is satisfied, linear
Ensemble++ using reference distribution Pζ is p(Pζ)-optimistic.

F.2.2 PROOF OF PROPOSITION 2

Let Xt = maxx∈Xt
f̃t(a) and A∗

t = maxx∈Xt
f∗(a). Conditioned on G and confidence event,

f̃t(Xt)− f∗(A∗
t) ≥ f̃t(A∗

t)− f∗(A∗
t) ≥ f̃t(A∗

t)− U∗(A∗
t)

= ⟨ϕ(A∗
t), 2βtAt−1ζt⟩ − βt∥A∗

t ∥Σt−1

= 2βt

√
ϕ(A∗

t)
⊤At−1A⊤

t−1ϕ(A
∗
t)

〈
ϕ(A∗

t)
⊤At−1

∥ϕ(A∗
t)

⊤At−1∥
, ζt

〉
− βt∥ϕ(A∗

t)∥Σt−1

≥ βt∥ϕ(A∗
t)∥Σt−1

(〈
ϕ(A∗

t)
⊤At−1

∥ϕ(A∗
t)

⊤At−1∥
, ζt

〉
− 1

)
.

We consider the conditional probability,

P(f̃t(Xt) ≥ f∗(A∗
t) | Ht,Zt) ≥ P

(
βt∥ϕ(A∗

t)∥Σt−1

(〈
ϕ(A∗

t)
⊤At−1

∥ϕ(A∗
t)

⊤At−1∥
, ζt

〉
− 1

)
| Ht,Zt

)
= P(⟨v, ζt⟩ ≥ 1), (33)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

where v is a fixed unit vector in RM . The final probability bound in Equation (33) for each refer-
ence distribution Pζ is essentially the anti-concentration bounds. Please find the anti-concentration
results for each distribution in Appendix G, resulting in the Table 2.

Proof. The Theorem 1 follows directly from Propositions 1 and 2 and Theorem 3. Additionally, it
requires the Azuma’s inequality for the sum of bounded martingale difference: as Ut(·)−Lt(·) ≤ 2
is bounded, we have∑

t∈[T]

E[(Ut(Xt)− Lt(Xt)) | Ht]− (Ut(Xt)− Lt(Xt)) ≤ O(
√
T log(1/δ)),

with probability at least 1− δ.

Then, it suffices to bound the summation of width between upper and lower confidence bounds∑
t∈[T]

(Ut(Xt)− Lt(Xt)) ≤ ρ(Pζ)
∑
t∈[T]

2βt∥ϕ(Xt)∥Σt−1
,

which depends on a distribution-dependent coefficient ρ(Pζ). Under linear bandit setups in assump-
tion 1, we use the elliptical potential lemma (e.g. Lemma 19.4 in (Lattimore & Szepesvári, 2020)
and (Abbasi-Yadkori et al., 2011a)) to bound this summation.

G SAMPLING, ISOTROPY, CONCENTRATION AND ANTI-CONCENTRATION

Definition 7 (Isotropic). A distribution P over RM is called isotropic if EX∼P [XiXj] = δij , i.e.,
EX∼P [XX

⊤] = I . Equivalently, P is isotropic if EX∼P [⟨X,x⟩2] = ∥x∥2, for all x ∈ RM .

Isotropy property (Definition 7) is used for update distribution and proving the Equation (3). The
sub-Gaussianness (Definition 2) in concentration property is used for perturbation distributions and
proving Lemma 1. The concentration and anti-concentration properties are used for reference dis-
tributions and discussion on the reasonableness condition (Proposition 1) and optimism condition
(Proposition 2).

Let us discuss each distribution case by case.

G.1 SPHERE Pζ = U(
√
MSM−1)

Algorithm 3 Symmetric Index Sampling for U(
√
MSM−1)

Input: Number of ensemble members M
1: Sample vector v: vi ∼ N(0, 1) for i = 1, . . . ,M

2: Construct index vector: ξ =
√
Mv/∥v∥

3: Return ξ

Isotropy. By the rotational invariance of sphere distribution, we know for any fixed orthogonal
matrix Q,

⟨ζ, x⟩ ∼ ⟨Qζ, x⟩ = ⟨ζ,Q⊤x⟩, ∀x ∈ Rd.

Then, for any fixed x, we select M orthogonal matrix Q1, . . . , QM to rotate x such that Q⊤
i x =

∥x∥ei where ei is the i-th coordinate vector. With this construction, for any fixed x,

ME[⟨ζ, x⟩2] = E[
M∑
i=1

⟨ζ, xi⟩2] = E[∥x∥2
M∑
i=1

ζ2i] =M∥x∥2

and hence E[⟨ζ, x⟩2] = ∥x∥2, which is the definition of isotropic random vector.

Concentration. By definition, ∥ζ∥ =
√
M . For a random variable ζ ∼ U(SM−1) and any fixed

v ∈ SM−1, the inner product follows the transformed Beta distribution

⟨ζ, v⟩ ∼ 2Beta(
M − 1

2
,
M − 1

2
)− 1.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Evidenced by (Skorski, 2023; Li, 2024a), Pζ = U(
√
MSM−1) is 1-sub-Gaussian. For finite action

set A, using the concentration of Beta random variables with union bound, we have

P

(
∀a ∈ A, ⟨ζ, ϕ(a)⟩ ≤ ∥ϕ(a)∥

√
log

2|A|
δ

)
≥ 1− δ,

Anti-concentration. Let’s start by rewriting the problem in terms of the incomplete Beta function:

Given:

X ∼ Beta
(
M − 1

2
,
M − 1

2

)
We want to find:

P (⟨ζ, v⟩ ≥ 1) = P
(
2X − 1 >

1√
M

)
= P

(
X >

1

2
+

1

2
√
M

)
.

Theorem 4. For all d ≥ 2, the random variable X ∼ Beta
(
d−1
2 , d−1

2

)
has the following anti-

concentration behavior

P
(
X >

1

2
+

1

2
√
d

)
≥ 1

2
− e1/12√

2π
.

Remark 5. We did not find any literature that can help derive such anti-concentration results for
Beta distribution.

Proof. Using the incomplete Beta function Ix(a, b), this probability can be expressed as:

P
(
X >

1

2
+

1

2
√
d

)
= 1− I(1

2+
1

2
√

d

)(d− 1

2
,
d− 1

2

)
To compute I(1

2+
1

2
√

d

) (d−1
2 , d−1

2

)
, we will use the following relationship for the regularized in-

complete Beta function Ix(a, b):

Ix(a, b) =
B(x; a, b)

B(a, b)

where B(x; a, b) is the incomplete Beta function and B(a, b) := B(1; a, b) is the complete Beta
function.

For a = b = d−1
2 , the complete Beta function is:

B

(
d− 1

2
,
d− 1

2

)
=

Γ
(
d−1
2

)
Γ
(
d−1
2

)
Γ(d− 1)

Using the property of the Gamma function:

Γ(n+ 1) = nΓ(n).

Let’s compute the incomplete Beta function for x = 1
2 + 1

2
√
d

and a = b = d−1
2 :

1. Calculate the incomplete Beta function B
(
x; d−1

2 , d−1
2

)
:

B

(
1

2
+

1

2
√
d
;
d− 1

2
,
d− 1

2

)
=

∫ 1
2+

1

2
√

d

0

t
d−3
2 (1− t) d−3

2 dt

As f(t) = t
d−3
2 (1− t) d−3

2 is symmetric at t = 1/2 in the interval [0, 1],

B

(
1

2
+

1

2
√
d
;
d− 1

2
,
d− 1

2

)
=

1

2
B

(
d− 1

2
,
d− 1

2

)
+

∫ 1
2+

1

2
√

d

1
2

t
d−3
2 (1− t) d−3

2 dt.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

2. Calculate the regularized incomplete Beta function Ix(a, b):

I(1
2+

1

2
√

d

)(d− 1

2
,
d− 1

2

)
=
B
(

1
2 + 1

2
√
d
; d−1

2 , d−1
2

)
B
(
d−1
2 , d−1

2

)
As the function f(t) = t

d−3
2 (1 − t) d−3

2 achieves the maximum at t = 1/2, we could upper bound
the incomplete Beta function by∫ 1

2+
1

2
√

d

1
2

t
d−3
2 (1− t) d−3

2 dt ≤
(
1

4

) d−3
2
(

1

2
√
d

)
=

(
1

2

)d−3(
1

2
√
d

)
. (34)

The complete Beta function can be expressed as

B

(
d− 1

2
,
d− 1

2

)
=

Γ
(
d−1
2

)
Γ
(
d−1
2

)
Γ(d− 1)

,

where Γ(·) is the Gamma function. We use the Stirling’s Approximation on Gamma function which
could provide strict lower bound(Nemes, 2015)

Γ(z) ≥
√
2πzz−

1
2 e−z,

and upper bound (Gronwall, 1918)

Γ(z) ≤
√
2πzz−

1
2 e−z+ 1

12z

for all z > 0. Immediately, the lower bound of the complete Beta function is

B

(
d− 1

2
,
d− 1

2

)
≥
√
2π((d− 1)/2)d−2e−(d−1)

(d− 1)d−
3
2 e−d+1+ 1

12(d−1)

=
√
2π

(
1

2

)d−2

(d− 1)−1/2e−
1

12(d−1) .

As e−
1

12(d−1) ≥ e−1/12 whenever d ≥ 2, we further lower bound

B

(
d− 1

2
,
d− 1

2

)
≥
√
2πe−1/12

(
1

2

)d−2
1√
d
. (35)

Finally, combining Equations (34) and (35) yields

I(1
2+

1

2
√

d

)(d− 1

2
,
d− 1

2

)
≤ 1

2
+

2e1/12(1
2
√
d
)

√
2π 1√

d

≤ 1

2
+
e1/12√
2π

,

and

P (X >
1

2
+

1

2
√
d
) ≥ 1

2
− e1/12√

2π
≈ 0.0668.

G.2 CUBE Pζ = U({1,−1}M)

Algorithm 4 Symmetric Index Sampling for U({−1, 1}M)

Input: Number of ensemble members M
1: Sample vector ξ: ξi ∼ U({−1, 1}) for i = 1, . . . ,M
2: Return ξ

Isotropy. Easy to verify by definition.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Concentration. By definition, ∥ξ∥ =
√
M. Also notice that we could sample the random vector ζ

by sample each entry independently from ζi ∼ U({1,−1}) for i ∈ [M]. Then, for any v ∈ SM−1,
by independence,

E[exp(λ⟨v, ζ⟩)] =
m∏
i=1

E[exp(λvizi)] ≤
m∏
i=1

exp(λ2v2i) = exp(λ2
∑
i

v2i).

The inequality is due to MGF of rademacher distribution (e.g. Example 2.3 in (Wainwright, 2019)).
Then we confirm that Pζ = U({1,−1}M) is 1-sub-Gaussian. For finite action set A, we have from
sub-Gaussian property

P

(
∀a ∈ A, ⟨ζ, ϕ(a)⟩ ≤ ∥ϕ(a)∥

√
log

2|A|
δ

)
≥ 1− δ.

Anti-concentration. Using the anti-concentration result from (Hollom & Portier, 2023), we have
for any fixed unit vector v in RM

P (⟨ζ, v⟩) ≥ 7/32 ≈ 0.21875.

G.3 GAUSSIAN Pζ = N(0, IM)

Algorithm 5 Symmetric Index Sampling for N(0, IM)

Input: Number of ensemble members M
1: Sample vector ξ: ξi ∼ N(0, 1) for i = 1, . . . ,M
2: Return ξ

Isotropy. Easy to verify by definition.

Concentration. The concentration property comes directly from the Chernoff bound for standard
Gaussian random variable together with union bound argument. For any α > 0, we have

P(∥ζ∥ ≤ α
√
M) ≥ P (∀1 ≤ i ≤M, |ζi| ≤ α) ≥ 1−MP (|ζi| ≥ α) .

Standard concentration inequality for Gaussian random variable gives, ∀α > 0,

P (|ζi| ≥ α) ≤ 2e−α2/2.

Plugging everything together with α =
√
2 log 2M

δ gives the desired result, which is

∥ζ∥ ≤
√
2M log

2M

δ
, w.p. 1− δ.

For the case of finite action set A,

P

(
∀a ∈ A, ⟨ζ, ϕ(a)⟩ ≤ ∥ϕ(a)∥

√
log

2|A|
δ

)
≥ 1− δ.

Anti-concentration. Here ⟨ζ, v⟩ ∼ N(0, 1) for for any fixed unit vector v in RM .

P (N(0, 1) ≥ 1) =
1

2
erfc

(
1√
2

)
≥ 1

4
√
eπ
≈ 0.0856

G.4 COORD Pζ = U(
√
M{±e1, . . . ,±eM})

Isotropy. Easy to verify by definition,

E[ζζ⊤] =
1

2M

M∑
i=1

2Meie
⊤
i = I. (36)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Algorithm 6 Symmetric Index Sampling for U(
√
M{±e1, . . . ,±eM})

Input: Number of ensemble members M
1: Sample index: i ∼ U({1, . . . ,M})
2: Sample sign: s ∼ U({−1, 1})
3: Construct index vector: ξ = s

√
Mei

4: Return ξ

Concentration. By definition, ∥ζ∥ =
√
M.

Anti-concentration.

P (⟨ζ, v⟩ ≥ 1) =
1

2M

∑
j∈[M]

(1vj≥ 1√
M

+ 1−vj≥ 1√
M
) =

1

2M

∑
j∈[M]

(1|vj |≥ 1√
M
) ≥ 1

2M
,

where the last inequality is due to a simple fact that for any fixed v ∈ RM with unit norm ∥v∥ = 1,
there always exists an entry j ∈ [M] with |vj | ≥ 1√

M
.

G.5 SPARSE DISTRIBUTION Pζ

Algorithm 7 Symmetric Index Sampling for s-sparse random vector

Input: Number of ensemble members M , sparsity s
1: Sample sign: ωi ∼ U({−1, 1}) for i = 1, . . . ,M
2: Construct a set S by randomly pick s elements from {1, . . . ,M} without replacement
3: Let ηi = 1 for i ∈ S and ηi′ = 0 for i′ ∈ {1, . . . ,M} \ S
4: Construct index vector ξ: ξi = ωi · ηi
5: Return ξ

Definition 8 (s-sparse distribution). The sparse vector is in the form ζ =
√

M
s η ⊙ ω where Pω :=

U({1,−1}M), and η is independently and uniformly sampled from all possible s-hot vectors, where
s-hot vectors is with exactly s non-zero entries with number 1. This construction is introduced by
(Kane & Nelson, 2014).

Isotropy. By definition,

E[ζjζk] =
M

s
E[ηjηk]E[ωjωk] =

M

s
δjkE[ωj] = δhk. (37)

Therefore, the sparse distribution in Definition 8 is indeed isotropic distribution.

Concentration. ∥ζ∥ =
√
M .

Anti-concentration. Not clear.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

H IN-DEPTH EMPIRICAL AND ABLATION STUDIES

In this section, we dive into the intricacies of each evaluation testbed. Through a comprehensive set
of empirical results, we’ll further illuminate the benefits afforded by Ensemble++. All experiments
are conducted on P40 GPUs to maintain processing standardization.

H.1 ADDITIONAL EXPERIMENTS ON LINEAR BANDIT

We begin by examining Linear Ensemble++ Sampling in linear bandits. In this section, we focus
on studying the impact of perturbation and reference distributions, and we provide detailed results
under varying numbers of ensembles M .
Environment Settings: We use the action feature set X to denote the set of features ϕ(a) : a ∈ A
induced by action set A and feature mapping ϕ(·). We build two linear bandit environments with
different action distribution as follow:

• Finite-action Linear Bandit: We construct the finite set X by uniformly sampling a set
of action features from the range [−1/

√
5, 1/
√
5]d where d is the ambient dimension of

the linear reward function. This environment builds upon prior research Russo & Van Roy
(2018). We vary the action size |X | over a set of {100, 1000, 10000}, and the ambient
dimension across {10, 50}.

• Compact-action Linear Bandit: Let the action feature set X = Sd−1 be the unit sphere.
In this environment, we vary the ambient dimension d over a set of {10, 50, 100}.

In both environments, the reward of each feature Xt ∈ Rd is computed as rt = X⊤
t θ + ϵ, where

θ ∼ N (0, 10I) is drawn from the multivariate Gaussian prior distribution, and ϵ ∼ N (0, 1) is an
independent additive Gaussian noise term. At every step t, only the reward from the chosen feature
Xt is discernible. To ensure robust results, each experiment is executed a total of 1000 time steps
and repeated 200 times.
Impact of Reference and Perturbation Distributions: We investigated all 25 combinations of
perturbation and reference distribution under different scales of the linear bandit environments and
numerous #ensembles M . As depicted in Figures 11 to 13, the outcomes across diverse prob-
lem scales corroborate each other. The use of a Gaussian reference distribution significantly
enhances performance when the M is relatively small, such as when M is 2 or 4. As the #en-
sembles M grows, all combinations show an analogous performance under varying problem scales.
However, it is worth noting that for extremely largeM , such as 512 or 1024, combinations involving
the Coordinate perturbation and Coordinate reference distribution significantly underperform com-
pared to other combinations. Given that Coordinate distributions are used in the Ensemble+, the
results prompt a compelling argument. Linear Ensemble++ Sampling equipped with a continuous
reference distribution presents a superior performance, suggesting its potential for surpassing tra-
ditional Linear Ensemble Sampling. These findings strongly support the superior advantage of our
index sampling method, validating our theoretical analysis.
Analysis of Computational Efficiency: We delve deeper into the effects of varying #en-
sembles M within Linear Ensemble++ Sampling. We assess its performance across differ-
ent combinations of perturbation and reference distributions using an assortment of M ∈
{4, 8, 16, 32, 64, 128, 256, 512, 1024}. The outcomes, visualized in Figures 14 and 15, are con-
sistent with the findings illustrated in Figures 11 to 13. We observe that for large M , the Coordinate
perturbation and Coordinate reference distributions degrade performance, indicating that the index
sampling method employed by Ensemble+ lacks efficiency. However, when Linear Ensemble++
Sampling utilizes Gaussian or Sphere reference distributions, it achieves satisfactory performance,
comparable to Thompson Sampling with small M .

Remark 6 (Limitation of Theorem 1.). Notice that Theorem 1 suggest that when M ≥
O(d log T), the regret bound of Linear Ensemble sampling would increase with factorM3/2,
which contradicts with our empirical evidence in Figures 11 to 15.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Remark 7 (Good prediction of Theorem 1.). Our empirical evidence in Figures 11 to 15
confirms the Theorem 1 in finite decision set setting for continuous-support reference distri-
butions: when M is larger then a threshold O(d log T), the regret has no dependence on
M .

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 2 M = 4 M = 8 M = 16 M = 32

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 64

Gaussian Sphere Coord Sparse Cube

Reference

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

200 400 600 800 1000

(a) d = 10 |X | = 100

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 2 M = 4 M = 8 M = 16 M = 32

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 64

Gaussian Sphere Coord Sparse Cube

Reference

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

200 400 600 800 1000

(b) d = 10 |X | = 1000

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 2 M = 4 M = 8 M = 16 M = 32

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 64

Gaussian Sphere Coord Sparse Cube

Reference

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

200 400 600 800 1000

(c) d = 10 |X | = 10000

Figure 11: Results on the combinations of perturbation and reference distribution in Finite-action
Linear Bandit under action dimension d = 10. A deeper color signifies lower accumulated regret and
hence superior performance. Gaussian reference distribution significantly enhances performance.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 2 M = 4 M = 8 M = 16 M = 32

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 64

Gaussian Sphere Coord Sparse Cube

Reference

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

1000 2000 3000 4000 5000

(a) d = 50 |X | = 100

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 2 M = 4 M = 8 M = 16 M = 32

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 64

Gaussian Sphere Coord Sparse Cube

Reference

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

1000 2000 3000 4000 5000

(b) d = 50 |X | = 1000

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 2 M = 4 M = 8 M = 16 M = 32

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 64

Gaussian Sphere Coord Sparse Cube

Reference

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

1000 2000 3000 4000 5000

(c) d = 50 |X | = 10000

Figure 12: Results on the combinations of perturbation and reference distribution in Finite-action
Linear Bandit under action dimension d = 50. A deeper color signifies lower accumulated regret and
hence superior performance. Gaussian reference distribution significantly enhances performance.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 8 M = 16 M = 32 M = 64

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

400 600 800 1000 1200 1400 1600

(a) d = 10

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 8 M = 16 M = 32 M = 64

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

3000 4000 5000 6000 7000 8000 9000 10000

(b) d = 50

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 8 M = 16 M = 32 M = 64

Gaussian Sphere Coord Sparse Cube

Reference

Cube

Sparse

Coord

Sphere

Gaussian

P
er

tu
rb

at
io

n

M = 128

Gaussian Sphere Coord Sparse Cube

Reference

M = 256

Gaussian Sphere Coord Sparse Cube

Reference

M = 512

Gaussian Sphere Coord Sparse Cube

Reference

M = 1024

6000 8000 10000 12000 14000 16000 18000

(c) d = 100

Figure 13: Results on the combinations of perturbation and reference distribution in Compact-action
Linear Bandit. A deeper color signifies lower accumulated regret and hence superior performance.
Gaussian reference distribution significantly enhances performance.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

A
cc

u
m

u
la

te
d

R
eg

re
t

×103

Gaussian - Gaussian

Gaussian - Sphere

Gaussian - Coord

Gaussian - Cube

Gaussian - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

×103

Sparse - Gaussian

Sparse - Sphere

Sparse - Coord

Sparse - Cube

Sparse - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

×103

Coord - Gaussian

Coord - Sphere

Coord - Coord

Coord - Cube

Coord - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

×103

Sphere - Gaussian

Sphere - Sphere

Sphere - Coord

Sphere - Cube

Sphere - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

×103

Cube - Gaussian

Cube - Sphere

Cube - Coord

Cube - Cube

Cube - Sparse

TS

(a) d = 10 |X | = 100

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
m

u
la

te
d

R
eg

re
t

×103

Gaussian - Gaussian

Gaussian - Sphere

Gaussian - Coord

Gaussian - Cube

Gaussian - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

0.7
×103

Sparse - Gaussian

Sparse - Sphere

Sparse - Coord

Sparse - Cube

Sparse - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×103

Coord - Gaussian

Coord - Sphere

Coord - Coord

Coord - Cube

Coord - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×103

Sphere - Gaussian

Sphere - Sphere

Sphere - Coord

Sphere - Cube

Sphere - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

×103

Cube - Gaussian

Cube - Sphere

Cube - Coord

Cube - Cube

Cube - Sparse

TS

(b) d = 10 |X | = 1000

4 8 16 32 64 128 256 512 1024

M

0.2

0.3

0.4

0.5

0.6

A
cc

u
m

u
la

te
d

R
eg

re
t

×103

Gaussian - Gaussian

Gaussian - Sphere

Gaussian - Coord

Gaussian - Cube

Gaussian - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.2

0.3

0.4

0.5

0.6

×103

Sparse - Gaussian

Sparse - Sphere

Sparse - Coord

Sparse - Cube

Sparse - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

×103

Coord - Gaussian

Coord - Sphere

Coord - Coord

Coord - Cube

Coord - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

×103

Sphere - Gaussian

Sphere - Sphere

Sphere - Coord

Sphere - Cube

Sphere - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.1

0.2

0.3

0.4

0.5

0.6

×103

Cube - Gaussian

Cube - Sphere

Cube - Coord

Cube - Cube

Cube - Sparse

TS

(c) d = 10 |X | = 10000

4 8 16 32 64 128 256 512 1024

M

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
cc

u
m

u
la

te
d

R
eg

re
t

×103

Gaussian - Gaussian

Gaussian - Sphere

Gaussian - Coord

Gaussian - Cube

Gaussian - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.4

0.6

0.8

1.0

1.2

1.4

1.6

×103

Sparse - Gaussian

Sparse - Sphere

Sparse - Coord

Sparse - Cube

Sparse - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.4

0.6

0.8

1.0

1.2

1.4

1.6

×103

Coord - Gaussian

Coord - Sphere

Coord - Coord

Coord - Cube

Coord - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.4

0.6

0.8

1.0

1.2

1.4

1.6

×103

Sphere - Gaussian

Sphere - Sphere

Sphere - Coord

Sphere - Cube

Sphere - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.4

0.6

0.8

1.0

1.2

1.4

1.6

×103

Cube - Gaussian

Cube - Sphere

Cube - Coord

Cube - Cube

Cube - Sparse

TS

(d) d = 50 |X | = 100

4 8 16 32 64 128 256 512 1024

M

1.0

1.5

2.0

2.5

A
cc

u
m

u
la

te
d

R
eg

re
t

×103

Gaussian - Gaussian

Gaussian - Sphere

Gaussian - Coord

Gaussian - Cube

Gaussian - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.5

1.0

1.5

2.0

2.5

×103

Sparse - Gaussian

Sparse - Sphere

Sparse - Coord

Sparse - Cube

Sparse - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.5

1.0

1.5

2.0

2.5

×103

Coord - Gaussian

Coord - Sphere

Coord - Coord

Coord - Cube

Coord - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.5

1.0

1.5

2.0

2.5

×103

Sphere - Gaussian

Sphere - Sphere

Sphere - Coord

Sphere - Cube

Sphere - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.5

1.0

1.5

2.0

2.5

×103

Cube - Gaussian

Cube - Sphere

Cube - Coord

Cube - Cube

Cube - Sparse

TS

(e) d = 50 |X | = 1000

4 8 16 32 64 128 256 512 1024

M

1.0

1.5

2.0

2.5

3.0

A
cc

u
m

u
la

te
d

R
eg

re
t

×103

Gaussian - Gaussian

Gaussian - Sphere

Gaussian - Coord

Gaussian - Cube

Gaussian - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

1.0

1.5

2.0

2.5

3.0

×103

Sparse - Gaussian

Sparse - Sphere

Sparse - Coord

Sparse - Cube

Sparse - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

1.0

1.5

2.0

2.5

3.0

×103

Coord - Gaussian

Coord - Sphere

Coord - Coord

Coord - Cube

Coord - Sparse

TS

4 8 16 32 64 128 256 512 1024

M
0.5

1.0

1.5

2.0

2.5

3.0

×103

Sphere - Gaussian

Sphere - Sphere

Sphere - Coord

Sphere - Cube

Sphere - Sparse

TS

4 8 16 32 64 128 256 512 1024

M

0.5

1.0

1.5

2.0

2.5

3.0

×103

Cube - Gaussian

Cube - Sphere

Cube - Coord

Cube - Cube

Cube - Sparse

TS

(f) d = 50 |X | = 10000

Figure 14: Results on regret under various #ensembles M in Finite-action Linear Bandit. The label
A − B indicates that Ensemble++ uses A as the reference distribution and B as the perturbation
distribution. Ensemble++ with Gaussian or Sphere reference distribution could achieve comparable
performance with that of Thompson sampling under same M for different action spaces |X |.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

8 16 32 64 128 256 512 1024
M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

m
ul

at
ed

 R
eg

re
t

1e3
Gaussian - Gaussian
Gaussian - Sphere
Gaussian - Coord
Gaussian - Cube
Gaussian - Sparse
TS

8 16 32 64 128 256 512 1024
M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1 1e3
Sparse - Gaussian
Sparse - Sphere
Sparse - Coord
Sparse - Cube
Sparse - Sparse
TS

8 16 32 64 128 256 512 1024
M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
1e3

Coord - Gaussian
Coord - Sphere
Coord - Coord
Coord - Cube
Coord - Sparse
TS

8 16 32 64 128 256 512 1024
M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
1e3

Sphere - Gaussian
Sphere - Sphere
Sphere - Coord
Sphere - Cube
Sphere - Sparse
TS

8 16 32 64 128 256 512 1024
M

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
1e3

Cube - Gaussian
Cube - Sphere
Cube - Coord
Cube - Cube
Cube - Sparse
TS

(a) d = 10

8 16 32 64 128 256 512 1024
M

3

4

5

6

Ac
cu

m
ul

at
ed

 R
eg

re
t

1e3
Gaussian - Gaussian
Gaussian - Sphere
Gaussian - Coord
Gaussian - Cube
Gaussian - Sparse
TS

8 16 32 64 128 256 512 1024
M

2

3

4

5

6

7 1e3
Sparse - Gaussian
Sparse - Sphere
Sparse - Coord
Sparse - Cube
Sparse - Sparse
TS

8 16 32 64 128 256 512 1024
M

2

3

4

5

6

7 1e3
Coord - Gaussian
Coord - Sphere
Coord - Coord
Coord - Cube
Coord - Sparse
TS

8 16 32 64 128 256 512 1024
M

2

3

4

5

6

7
1e3

Sphere - Gaussian
Sphere - Sphere
Sphere - Coord
Sphere - Cube
Sphere - Sparse
TS

8 16 32 64 128 256 512 1024
M

2

3

4

5

6

7
1e3

Cube - Gaussian
Cube - Sphere
Cube - Coord
Cube - Cube
Cube - Sparse
TS

(b) d = 50

8 16 32 64 128 256 512 1024
M

5

6

7

8

9

10

11

12

13

Ac
cu

m
ul

at
ed

 R
eg

re
t

1e3
Gaussian - Gaussian
Gaussian - Sphere
Gaussian - Coord
Gaussian - Cube
Gaussian - Sparse
TS

8 16 32 64 128 256 512 1024
M

6

8

10

12

1e3
Sparse - Gaussian
Sparse - Sphere
Sparse - Coord
Sparse - Cube
Sparse - Sparse
TS

8 16 32 64 128 256 512 1024
M

6

8

10

12

1e3
Coord - Gaussian
Coord - Sphere
Coord - Coord
Coord - Cube
Coord - Sparse
TS

8 16 32 64 128 256 512 1024
M

4

6

8

10

12

1e3
Sphere - Gaussian
Sphere - Sphere
Sphere - Coord
Sphere - Cube
Sphere - Sparse
TS

8 16 32 64 128 256 512 1024
M

4

6

8

10

12

1e3
Cube - Gaussian
Cube - Sphere
Cube - Coord
Cube - Cube
Cube - Sparse
TS

(c) d = 100

Figure 15: Results on regret under various #ensembles M in Compact-action Linear Bandit. The
labelA−B indicates that Ensemble++ uses A as the reference distribution and B as the perturbation
distribution. Ensemble++ with Gaussian or Sphere reference distribution could achieve comparable
performance with that of Thompson sampling under small M .

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

H.2 ADDITIONAL EXPERIMENTS ON NONLINEAR BANDIT

We conduct more comprehensive comparison of Ensemble++ with several baselines that utilize
approximate posterior sampling across a wide range of nonlinear bandits.
Environments Settings: We formulate several nonlinear contextual bandit environments, with
rewards generated by nonlinear functions in each.

• Quadratic Bandit: Its reward generation mechanism is built on a quadratic function, ex-
pressed as f1(x) = 10−2(x⊤ΘΘ⊤x). Here, x ∈ Rd stands for the action, while Θ ∈ Rd×d

is a matrix filled with random variables originating from N (0, 1). This task is used as the
testbed in Zhou et al. (2020).

• Vector Quadratic Bandit: Its reward generation mechanism is built on a different
quadratic function, expressed as f2(x) = 10(x⊤θ)2. Here, a ∈ Rd stands for the action,
while θ ∈ Rd is a vector filled with random variables generated from a uniform distribution
over the unit ball. This task is utilized as the testbed in Zhou et al. (2020); Xu et al. (2022).

• Neural Bandit: This bandit employs a nonlinear neural network built on 2-layer MLPs
with 50 units and ReLU activations, producing two output logits. We apply the softmax
function with a temperature parameter p = 0.1 to the two output logits to obtain probabili-
ties. Subsequently, we use binomial sampling based on the second probability to generate
the reward. The temperature parameter p is used to control the signal-to-noise ratio. This
task is used as the testbed in Osband et al. (2022; 2023a).

• UCI Dataset: Following prior works (Riquelme et al., 2018; Kveton et al., 2020b), we
conduct contextual bandits with N -class classification using the UCI datasets (Asuncion
et al., 2007) Mushroom and Shuttle. Specifically, given a data feature x ∈ Rd in the
dataset, we construct context vectors forN arms, such as x(1) = (x, 0, · · · , 0), · · · , x(N) =
(0, 0, · · · , x) ∈ RNd. Only the arm x(j) where j matches the correct class of this data x
has a reward of 1, while all other arms have a reward of 0.

• Online Hate Speech Detection: The motivation, problem formulation and environment
setups of the automated content moderation task are detailed in Section 4.

In all tasks except the Neural Bandit, the original reward r is disrupted by additive Gaussian noise
ϵ drawn from N (0, 0.1). In the Neural Bandit, we use the temperature parameter p to introduce
noise into the reward. For the first three tasks, we set the action dimension d to 100 and generate a
total of 1000 candidated actions, randomly sampling 50 actions in each round. Each experiment is
repeated with 10 distinct random seeds to ensure robust results.
Comparison Results with Baselines: We set the Sphere reference distribution, Coordinate update
distribution, and Sphere perturbation distribution for Ensemble++ to compare with baselines. When
comparing with Ensemble+ (Osband et al., 2018) and EpiNet (Osband et al., 2023a), we use the
same hyperparameters, such as prior scale, learning rate, and batch size. Additionally, we employ
the same network backbone for feature extraction to ensure fairness. As shown in Figure 16(a) and
(b), Ensemble++ achieves sublinear regret and consistently outperforms these baselines across
all tasks, demonstrating superior data efficiency.

For comparison with LMCTS (Xu et al., 2022), we use its official implementation4 to ensure credi-
ble results. As illustrated in Figure 16(c), Ensemble++ consistently outperforms LMCTS. Notably,
LMCTS uses the entire buffer data to update the network per step, which incurs significant computa-
tional costs. In contrast, Ensemble++ achieves better performance with bounded computational
steps, requiring only a minibatch to update the network. These findings highlight the effective
exploration and computational efficiency of Ensemble++.
Additional Comparison on Trade-off between Regret and Computation: We have demon-
strated that Ensemble++ can achieve sublinear regret with moderate computational cost in the
Quadratic Bandit, as shown in ??. Here, we further investigate the frontier relationship between
regret and computation in the Neural Bandit. As shown in Figure 17, we observe similar findings:
Ensemble++ achieves minimal cumulative regret with the lowest computational cost. These results
substantiate the scalability and efficiency of Ensemble++ when combined with neural networks.

4https://github.com/devzhk/LMCTS

47

https://github.com/devzhk/LMCTS

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

Time Period ×103

0

2

4

6

8

10
C

u
m

u
la

ti
ve

R
eg

re
t

×103 Quadratic Bandit

0 20 40 60 80 100

Time Period ×103

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×103 Neural Bandit

0 2 4 6 8 10

Time Period ×103

0.00

0.05

0.10

0.15

0.20

0.25

0.30

×103 UCI Shuttle

0 2 4 6 8 10

Time Period ×103

0

2

4

6

8

10
×103 UCI Mushroom

Ensemble+ Ensemble++

(a) Comparison results with Ensemble+ (Osband et al., 2018)

0 20 40 60 80 100

Time Period ×103

0

2

4

6

8

C
u

m
u

la
ti

ve
R

eg
re

t

×103 Quadratic Bandit

0 20 40 60 80 100

Time Period ×103

0.0

0.5

1.0

1.5

2.0

×103 Neural Bandit

0 2 4 6 8 10

Time Period ×103

0.00

0.25

0.50

0.75

1.00

1.25

×103 UCI Shuttle

0 2 4 6 8 10

Time Period ×103

0.0

0.2

0.4

0.6

×103 UCI Mushroom

EpiNet Ensemble++

(b) Comparison results with EpiNet (Osband et al., 2023a)

0 2 4 6 8 10

Time Period ×103

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
R

eg
re

t

×103 Vector Quadratic Bandit

0 2 4 6 8 10

Time Period ×103

0.0

0.1

0.2

0.3

0.4

×103 UCI Shuttle

0 2 4 6 8 10

Time Period ×103

0.0

0.1

0.2

0.3

0.4

0.5

0.6
×103 UCI Mushroom

LMCTS Ensemble++

(c) Comparison results with LMCTS (Xu et al., 2022)

Figure 16: Results on different bandits with various baselines. Ensemble++ could achieve better
performance compared to other methods.

1.2×104 1.6×104 2.0×104 2.4×104

Parameters

2

3

C
u

m
u

la
te

d
R

eg
re

t

×103

EpiNet

Ensemble+

Ensemble++

(a)

2.0×104 4.0×104 6.0×104

Parameters

3

6

9

C
u

m
u

la
te

d
R

eg
re

t

×103

EpiNet

Ensemble+

Ensemble++

(b)

Figure 17: The regret-computation trade-off in (a) Neural Bandit and (b) Quadratic Bandit. Ensem-
ble++ beats the SOTA baselines, e.g. Ensemble+ and EpiNet.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Ablation Study on Quadratic Bandit: To further evaluate the impact of different design of dis-
tributions, we perform an ablation study on the Quadratic Bandit. When fixing the Sphere reference
distribution, we find that discrete update distributions such as Coordinate, Cube, and Sparse achieve
similar better performance, as shown in Figure 18(a). Conversely, when fixing the Coordinate update
distribution, continuous reference distributions like Sphere and Gaussian also yield comparable bet-
ter performance, as depicted in Figure 18(b). Regarding the perturbation distribution, our findings
indicate that it does not significantly influence performance when the neural network is involved
in Ensemble++. This is evidenced in Figure 18(c), where all different perturbation distributions
achieve similar performance.

Coord Cube Sparse Sphere Gaussian
0

2

4

6

8

C
u

m
u

la
ti

ve
R

eg
re

t

×103 Quadratic Bandit

(a) Results on update distribution.

Sphere Gaussian Coord Cube Sparse
0

2

4

6

C
u

m
u

la
ti

ve
R

eg
re

t

×103 Quadratic Bandit

(b) Results on reference distribu-
tion.

Sphere Gaussian Cube Coord Sparse
0

1

2

3

4

5

6

C
u

m
u

la
ti

ve
R

eg
re

t

×103 Quadratic Bandit

(c) Results on perturbation distri-
bution.

Figure 18: Ablation studies about different distributions on the Quadratic Bandit.

49

	Introduction
	Key Contributions

	Background and Related Work
	Motivation: Content Moderation in Real-Time
	Challenges of Foundation Models in Online Decision-Making
	Thompson Sampling and the Scalability Dilemma
	Local Perturbation and Ensemble Methods

	Ensemble++ Agent for Scalable Thompson Sampling
	Linear Ensemble++ Sampling
	A Symmetrized Ridge-Regression View
	Ensemble++ Agent for Nonlinear Bandits

	Ensemble++ in Foundation Model Online Decision-Making
	GPT-Ensemble++ for Content Moderation
	Experiments: Hate-Speech Detection
	Results and Analysis

	Concluding Remarks
	Additional Discussions on Related Works
	Sequential Decision Making under Uncertainty
	Thompson Sampling (TS)
	Challenges in Scaling Thompson Sampling
	Approximate Bayesian Inference

	Gaussian Sampling via Local Perturbation
	Distribution Matching Proof Outline

	Recursive Randomized Least Squares (RRLS)
	Ensemble Sampling (ES)
	Concluding Remarks and Forward Outlook
	Ensemble Methods in Broader Context
	Detailed Comparison with EpiNet and Ensemble+

	Experiments
	Empirical Study on Linear Ensemble++ Sampling
	Enmseble++ for Nonlinear Bandits

	Ensemble++ Algorithm Details
	Design of Reference Distributions

	Theoretical Analysis
	Key Lemma: Covariance Tracking under Sequential Dependence
	Regret Bound for Linear Ensemble++ Sampling
	Comparisons and Implications

	Technical Details for lem:incre-uncertainty
	Fundamental probability tools: Sequential Johnson-Lindenstrauss
	Reduce lem:incre-uncertainty to Sequential Johnson-Lindenstrauss (thm:seqjl-full)
	Prior approximation
	Posterior approximation

	Discretization for Posterior Approximation

	Technical Details in Regret Analysis
	General Regret Bound
	Proof of thm:regret-linear-Ensemble++ for linear contextual bandits
	Proof of prop:Ensemble++-reasonable
	Proof of prop:Ensemble++-optimism

	Sampling, Isotropy, Concentration and Anti-concentration
	Sphere P = U(MSM-1)
	Cube P = U({1, -1}M)
	Gaussian P = N(0, IM)
	Coord P = U(M{e1, …, eM })
	Sparse distribution P

	In-depth Empirical and Ablation Studies
	Additional Experiments on Linear Bandit
	Additional Experiments on Nonlinear Bandit

