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Abstract

We give an (ε, δ)-differentially private algorithm for the multi-armed bandit
(MAB) problem in the shuffle model with a distribution-dependent regret of

O

((∑
a∈[k]:∆a>0

log T
∆a

)
+

k
√

log 1
δ log T

ε

)
, and a distribution-independent regret

of O
(√

kT log T +
k
√

log 1
δ log T

ε

)
, where T is the number of rounds, ∆a is the

suboptimality gap of the arm a, and k is the total number of arms. Our upper bound
almost matches the regret of the best known algorithms for the centralized model,
and significantly outperforms the best known algorithm in the local model.

1 Introduction

The multi-armed bandit (MAB) problem is a classical sequential decision-making problem in which
an agent tries to maximize a cumulative stochastic reward [27, 23] under uncertainty. This problem,
which is applicable to various areas such as recommender systems, online advertising and clinical
trials, embodies the well known exploration-exploitation trade-off between learning the environment
and acting optimally based on our current knowledge about the environment.

More formally, in the MAB problem at each time t = 1, . . . , T an agent chooses an arm i from the
set [k] = {1, . . . , k} of k arms, and obtains an iid reward rt drawn from the unknown distribution Ri
over {0, 1} with expectation µi = E [Ri]. Let a∗ = arg maxa µa be an arm with the largest expected
reward, and denote this reward by µ∗ = µa∗ . Let the (suboptimality) gap of an arm a to be the gap
between its expected reward and that of a∗, i.e., ∆a = µ∗ − µa. The agent’s goal is to maximize
the total expected reward, or rather to minimize the expected regret R(T ) = T · µ∗ − E

[∑T
i=1 r

t
]

defined to be the expected gap between the algorithm and the optimal algorithm that knows the
distributions Ri.

In this work we address the privacy in such a setting. As a motivating example, consider an
advertisement system in which the server presents to each user an advertisement a ∈ [k]. The
user then decides whether to click on the advertisement or not. This click decision depends on
different private characteristic of the user. The user then reports to the server whether it clicked on the
advertisement (in which case its reward is r = 1) or not (r = 0). From this example, it is clear that r
is private information of the user, and using traditional algorithms for the MAB problem incautiously
might leak user-private data.

In order to mathematically alleviate privacy concerns, Dwork et al. [11] defined the notion of
differential privacy (DP), which requires that the output of the computation has a limited dependency
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Table 1: Best-known MAB regret upper and lower bounds for various DP models.

Privacy model Best-known regret upper and lower bounds6

Centralized (ε, 0)-DP Θ

((∑
a∈[k]:∆a>0

log T
∆a

)
+ k log T

ε

)
[24, 25]

Centralized (ε, δ)-DP O

((∑
a∈[k]:∆a>0

log T
∆a

)
+ k

ε

)
[28]

Local (ε, 0)-DP Θ
(

1
ε2

∑
a∈[k]:∆a>0

log T
∆a

)
[22]7

Shuffle (ε, δ)-DP (ours) O

((∑
a∈[k]:∆a>0

log T
∆a

)
+

k
√

log 1
δ log T

ε

)

on any single user’s data. Formally, a mechanism (ε, δ)-DP if for any pair of neighboring inputs
(differing by a single user’s data), the probability that the mechanism outputs a value in any set B
is not different by more than a multiplicative factor of eε and an additive factor of δ. Differential
privacy has been extensively studied under many different sub-models of privacy. On one end of the
spectrum lies the centralized model of differential privacy, where the users trust the server with their
data, and the liability to protect user privacy lies on the server, who must make sure that any data
published externally (e.g., aggregated statistics) respects the privacy constraints. On the other end of
the spectrum lies the (strictly stronger) local model of differentialy privacy (LDP), where the user
privatizes its own data prior to sending it to the server.5

Differentially private versions of the MAB problem have been considered in various previous works,
where the private information are users’ rewards (two neighboring inputs differ by the reward value
of a single user), and the algorithm’s output is the subsequent arm(s) it selects. Table 1 summarizes
the best known distribution-dependent regret bounds for the various privacy models, together with
our new result in the shuffle model which we soon define formally.

With real-world algorithms gradually moving away from the centralized model of privacy, the
immediate question is “can we design a private algorithm for MAB with privacy guarantees which are
similar to local DP, but with similar regret to centralized DP (without a multiplicative 1/ε2 factor)?”.

To address the inevitable gap between the local and centralized models, which is in fact common
in the literature of differential privacy, the alternative shuffle model [6, 9, 13] explores the space in
between the local and centralized models by introducing a trusted shuffler that receives user messages
and permutes them (i.e., disassociates a message from its sender) before they are delivered to the
server. For privacy analysis, we assume that the shuffle is perfectly secure, i.e., its output contains no
information about which user generated each of the messages. This is traditionally achieved by the
shuffler stripping implicit metadata from the messages (e.g., timestamps, routing information), and
frequently forwarding this data to remove time and order information. The shuffle model ensures that
sufficiently many reports are collected in each round so that any one report can hide in a shuffled
batch. In order to apply the shuffle model to the MAB problem in the context of advertisements,
we divide the algorithm into batches, where before each batch we decide on the fly its size m, and
then present the m next users the same advertisement a, and finally apply a private shuffle model
mechanism to their rewards to communicate reward aggregate information to the server.8

A constantly growing body of work presents new and improved mechanisms in the shuffle model
for basic statistical tasks [16, 13, 12, 2], such as private binary summation, in which the server must
privately approximate the sum of a collection of values x1, ..., xm ∈ {0, 1} held by the m users in

5Formally, in the non-interactive setting, a mechanism is (ε, δ)-LDP if for any two user inputs, the probability
that the privatizer sends the server a value in any set B is not different by more than a multiplicative factor of eε

and an additive factor of δ.
6The corresponding distribution-independent regret bounds usually simply replace the

∑
a∈[k]:∆a>0

log T
∆a

term with
√
kT log T .

7This lower bound can be extended from (ε, 0)-LDP to (ε, δ)-LDP using arguments from Bun et al. [7] and
Cheu et al. [9] since we focus on single-round (non-interactive) mechanisms in which the user can only send
information to another party once.

8We remark that a given user does not know in advance the size of the batch in which it participates, since
this size depends on the algorithm’s run.
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the shuffle. For private binary summation, the optimal achievable errors in the central, local and
shuffle model are Θ̃(1/ε) [11], Θ̃(

√
m/ε) [5, 8] and Θ̃(1/ε) [9] respectively, where the Θ̃(·) hides

poly-logarithmic terms. Similar errors hold for the private summation problem which approximates
the sum of real values in [0, 1].

1.1 Our contributions

To the best of our knowledge, our work is the first to consider the MAB problem under the shuffle
model of differential privacy. In order to support the online nature of the MAB problem, we consider
a variant of the shuffle model. As opposed to the classical shuffle model, in which the shuffle size is
unbounded and the mechanism runs only once, we continuously run shuffle mechanisms for many
disjoint batches of users who can only afford a single round of communication.9

We consider the paradigm where the server controls the different users who are cooperative and
communicate only with the server. We give a rigorous definition of shuffle differential privacy (SDP)
for the multi-armed bandit problem (assuming binary rewards), and give and prove the first two such
algorithms. Our algorithms Shuffle Differentially Private Arm Elimination (SDP-AE) and Variable
Batch Shuffle Differentially Private Arm Elimination (VB-SDP-AE) are both based on the well-known
arm elimination (AE) algorithm, using consecutive batches of users and together with an SDP private
binary summation mechanism.

We show that the simpler but weaker SDP-AE achieves a distribution-dependent re-

gret of O

((∑
a∈[k]:∆a>0

log T
∆a

)
+

k log 1
δ

ε2

)
, and a distribution-independent regret of

O
(√

kT log T +
k log 1

δ

ε2

)
.10

We then describe VB-SDP-AE, a generalization of SDP-AE to exponentially growing batch sizes,

and prove it has a distribution-dependent regret of O
((∑

a∈[k]:∆a>0
log T
∆a

)
+

k
√

log 1
δ log T

ε

)
, and

a distribution-independent regret of O
(√

kT log T +
k
√

log 1
δ log T

ε

)
.

Note that, compared to the local model (Ren et al [22]), the regret of both SDP-AE and VB-SDP-AE
is improved, by having the dependency on 1/ε be additive rather than multiplicative. In addition,
VB-SDP-AE almost matches the regret of the best known algorithms for the centralized model,

that is the distribution-dependent regret of O
((∑

a∈[k]:∆a>0
log T
∆a

)
+ k

ε

)
of Tossou and Dimi-

trakakis [28].

1.2 Related work

The differentially private MAB problem has been considered in many previous works [19, 17, 21].
Shi and Shen [26] and Dubey and Pentland [10] studied MAB and linear bandits respectively in
the federated setting. Zheng et al. [29] studied contextual bandits with LDP. Batched MAB with a
predetermined number of batches was studied in [14, 15].

For the private summation problem, Cheu et al. [9] gave unbiased (ε, δ)-SDP mechanisms over binary
inputs and real inputs in [0, 1], with error roughly

√
log(1/δ)/ε and log(1/δ)/ε, respectively. In

several works of Balle et al. [2, 3, 1], they gave a biased (ε, δ)-SDP mechanism for real inputs in [0, 1]
with similar error and a constant number of messages, and a single-message (ε, δ)-SDP mechanism
with optimal error.

9Beimel et al. [4] showed that every centralized-DP mechanism can be emulated in the shuffle model in two
(communication-intensive) rounds of communication, however these results are not applicable to our setting
since we assume that each online user participates only in one shuffle and then disappears.

10In this paper, we assume that T is known apriori. Otherwise, we can apply standard doubling arguments to
get roughly the same results.
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2 Background and preliminaries

2.1 Shuffle-model privacy

In the well-studied setting of shuffle model privacy, there are m users, each with data xi ∈ X . Each
user applies some encoder E : X → Y ∗ to their data and sends the messages (yi,1, ..., yi,p) = E(xi)
to a shuffler S : Y ∗ → Y ∗. The shuffler then shuffles all the messages yi,j from all the users,
and outputs them in a uniformly random order to an analyzer A : Y ∗ → Z to estimate some
function f(x1, ..., xm). Thus, the mechanism M consists of the tuple (E,S,A). We say that such
a mechanism M is (ε, δ)-shuffle differentially private (or (ε, δ)-SDP for short) if the output of S is
(ε, δ)-differentially private, or more formally: A mechanism M = (E,S,A) is (ε, δ)-SDP if for any
pair of inputs {xi}mi=1 and {x′i}mi=1 which differ in at most one value, we have for all B ⊆ Y ∗:

P (S(∪mi=1E(xi)) ∈ B) ≤ eε · P (S(∪mi=1E(x′i)) ∈ B) + δ.

In the mechanism used in this paper, E outputs the user’s reward bit together with a set of random
bits, and A sums all these bits and debiases the result to get an unbiased estimate of the sum of the
users’ rewards.

2.2 Shuffle-model MAB

Algorithms which are private in the shuffle model typically apply the mechanism M once over a
set of m users. Here we study the MAB problem which is an online problem, often deployed in
real-world applications and with users which are end-devices such as cellphones with a possibly
limited or unreliable internet connection. Hence, to adapt the MAB problem to the shuffle model,
we batch sequences of consecutive users, and assume that each user can afford a single round of
communication, and is never selected more than once.

Model and objective The shuffle-model MAB setting involves repeating the following process until
the T ’th player pulls its arm:

1. The server selects a batch size m, a batch of m random fresh new users, and an m-user
single-round SDP mechanism M .11 It then picks an arm a ∈ [k] that all m users of the
batch pull. (For concreteness think that the server picks an ad a ∈ [k] and sends it to the a
random batch of m users.)

2. Each user i determines binary reward from pulling the arm a.12 (For concreteness think that
each user decides whether to click on the ad or not. This defines the reward related to user i,
which is ri = 1 if it clicks the ad and ri = 0 otherwise.)
Since our m users are random, these rewards are a sample of m independent rewards from
the distribution Ra associated with arm a.

3. The server computes M({ri}i∈batch) using the rewards ri.

The objective is to minimize the (pseudo) regret, which is the expected difference between the sum
of the rewards accumulated (over all the users) by the algorithm and the sum of the rewards of the
optimal algorithm that apriori knows an arm with the largest expected reward a∗. Let µa = E [Ra]
be the expected reward (or simply mean) of the arm a, let µ∗ denote the expected reward of a∗, let
∆a = µ∗ − µa be the (suboptimality) gap of the arm a which quantifies the gap between its expected
reward and that of a∗, and let Na be the random variable which counts the total number of times the
arm a was pulled during the run of the algorithm.

Formally, the (pseudo) regret of the algorithm for T ∈ N users is defined to be

R(T ) = T · µ∗ − E

 T∑
i=1

ri

 = E

∑
a∈[k]

Na∆a

 .
11Note that always selecting m = 1 reduces this setting to the Local model MAB.
12For simplicity, we assume that the rewards are binary. However, our algorithms and proofs naturally

extend to the real [0, 1] reward setting, by replacing our private binary summation mechanism (defined later, see
Appendix C) with a private summation mechanism for real numbers in [0, 1] with similar guarantees.
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Privacy Since the private data of each user is its reward, the appropriate adaptation of shuffle model
privacy for the multi-armed bandit problem is as follows. An algorithm for the multi-armed bandits
problem is (ε, δ)-shuffle differentially private (SDP) if for any batch of users, the shuffle mechanism
that we apply over them in step 3 is (ε, δ)-SDP with respect to the rewards of the users (as we recall,
the reward of a user – whether it clicked on an ad or not – depends on its private features). Formally,
for every batch we run a shuffle mechanism where the m users are the users of the current batch, and
the data xi of each user is its reward ri, and we require that each such mechanism is (ε, δ)-SDP.

2.3 Concentration bounds

We use the following standard definitions of Sub-Gaussian random variables and Hoeffding’s inequal-
ity.
Definition 1 (Sub-Gaussian random variable). A random variable X with mean µ is called sub-
Gaussian with variance σ2, i.e., X ∼ SG(σ2) if:

∀λ ∈ R, E
[
exp(λ(X − µ))

]
≤ eλ

2σ2/2.

An equivalent definition shows that if ∀t > 0,max
(
P (X − µ ≥ t), P (X − µ ≤ −t)

)
≤

exp
(
−t2
2σ2

)
, then X is sub-Gaussian with variance σ2 (up to constant factor). It is well known that if

Xi ∼ SG(σ2
i ) are independent random variables for i = 1, . . . , n, then

∑n
i=1Xn ∼ SG(

∑n
i=1 σ

2
i )

and for any a, b > 0, a · X1 + b ∼ SG(a2 · σ2
1). A bounded random variable X ∈ [a, b] is

SG((b− a)2/4).

Sub-Gaussian random variables satisfy the following concentration bound,
Lemma 2.1 (Hoeffding’s inequality [18]). Let {Xi}ni=1 be independent SG(σ2) random variables,

then P
(∣∣∣∑n

i=1Xi − E
[∑n

i=1Xi

]∣∣∣ ≥ t) ≤ 2 exp
(
−t2

2nσ2

)
.

3 Differentially private MAB in the shuffle model

In this paper, we use the shuffle model to give a private solution to the multi-armed bandit problem,
attaining similar privacy guarantees to that of the local privacy model (LDP), without sacrificing
the regret. That is, our algorithm almost matches the best known regret in the centralized model
of differential privacy. Our algorithms rely on the fact that algorithms for the multi-armed bandit
problem take decisions based on sums of rewards received from the users. Hence, we rely on a
particularly efficient and accurate mechanism for private binary summation in the shuffle model as
a building block in our algorithms. Specifically, for any ε, δ ∈ (0, 1), let Msum be a private binary
summation mechanism, which for any number of users (batch size) m ∈ N, is (ε, δ)-SDP, unbiased,
and has an error distribution which is independent of the input, and is sub-Gaussian with variance
σ2
ε,δ = O

(
log 1

δ

ε2

)
.13 Note that our notation of Msum does not include ε and δ which will always be

clear from context or inherited from the algorithm which runs Msum. The challenge is to combine
Msum with the well studied arm elimination (AE) MAB algorithm to get an SDP algorithm for the
MAB problem with almost optimal regret.14

3.1 SDP-AE: Shuffle Differentially Private Arm Elimination

We base our algorithm on the (non-private) arm elimination (AE) algorithm for the MAB problem,
which informally maintains a set of viable arms (initially set to be [k]), and each phase pulls the set
of viable arms sequentially. Once a phase ends, we search for arms which are noticeably suboptimal
in comparison to some other arm, and we eliminate them from the set of viable arms.

To adapt AE to the shuffle model, in each phase t each arm is pulled not once, but rather by a whole
batch of users. Once all the users in the batch pull the arm and receive their reward, we apply

13Note that our methods and algorithms should work similarly if they were built over other common algorithms
for the MAB problem in which batching makes sense, such as the UCB algorithm.

14For completeness, in Appendix C we give a complete description and a proof of such a mechanism Msum.
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the private binary summation mechanism Msum to the batch’s rewards, which gives the server an
unbiased but noisy estimate of the sum of rewards in the batch. This estimate has two sources of
error, which we account for when we compute the upper confidence bound – the empirical error
due to sampling the reward function of the arm, and the error due to the private binary summation
mechanism Msum.

3.1.1 Algorithm outline

In the algorithm below which we call Shuffle Differentially Private Arm Elimination (SDP-AE), we
update the estimate of the mean reward of each arm a after every batch of users who sample a. The
algorithm works in phases, and maintains a set of viable arms initially set to be [k]. In each phase, for
every viable arm we have a single batch of users sampling it. At the end of phase t, we denote by Ŝta
the noisy estimate of the cumulative sum of the rewards from all previous samples of a in the phases
1, . . . , t, and denote by N t

a the total number of previous samples of arm a in the phases 1, . . . , t. The
natural estimate for the mean reward of the arm a (denoted by µ̂ta) is therefore µ̂ta = Ŝta/N

t
a. We then

calculate the upper and lower confidence bounds UCBta and LCBta respectively of each viable arm
a after each phase t using a specific bound which takes into account both sources of error. We finally
eliminate any remaining arm with an upper confidence bound which is strictly smaller than the lower
confidence bound of some other arm. Algorithm 1 consolidates the algorithm presentation above.

Algorithm 1: SDP-AE (Shuffle Differentially Private Arm Elimination)
1 Input: privacy parameters ε and δ, batch size m and horizon T .
2 Initialize: Ŝ0

a = 0, N0
a = 0 and µ̂0

a = 0 for every a ∈ [k];

3 Let σ2
ε,δ = O

(
log 1

δ

ε2

)
be the sub-Gaussian variance of the error distribution of Msum;

4 Let V = [k] denote the set of viable arms;
5 for phase t← 1, 2, . . . do
6 for arm a ∈ V do
7 for each new user i← 1 to m do
8 User i pulls the arm a and observes reward rta,i;
9 If total arm samples in current algorithm run is T , exit;

10 end
11 Communication: Perform private binary summation Zta ←Msum

(
{rta,i}mi=1

)
;

12 Server update: Update Ŝta ← Ŝt−1
a + Zta, N t

a ← N t−1
a +m, and finally µ̂ta ← Ŝta/N

t
a;

13 end

14 Confidence bounds: For each arm a, calculate Ita ←
(

2
√
tσε,δ
Nta

+ 1√
Nta

)
·
√

2 log T , and

the upper and lower confidence bounds UCBta ← µ̂ta + Ita and LCBta ← µ̂ta − Ita;
15 Elimination: remove all arms a from V such that UCBta < maxa′∈S LCB

t
a′ ;

16 end

3.1.2 Analysis

The privacy is trivial, since each batch we use the (ε, δ)-SDP mechanism Msum. We now focus on
regret.

Theorem 3.1 gives a bound on the regret of SDP-AE as a function of the batch size m. We follow a
somewhat standard regret bound analysis for arm elimination, comprising two parts. The first part
uses Hoeffding’s inequality to derive a high probability bound on

∣∣µ̂ta − µa∣∣, the error between the
empirical average reward and the true mean reward of the arm a at a given phase t. The second
part uses this bound to bound the expected number of times we sample each suboptimal arm a, and
summing over all suboptimal arms we get a bound on the regret.
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Theorem 3.1. The algorithm SDP-AE is (ε, δ)-SDP, and has a distribution-dependent re-

gret of O

(∑
a∈[k]:∆a>0

(
log T
∆a

+
σ2
ε,δ log T

m∆a
+m∆a

))
, and a distribution-independent regret of

O

√(1 +
σ2
ε,δ

m

)
kT log T +mk

.

Proof sketch. Fix a phase t. For any arm a, we have µ̂ta =
∑t
s=1Msum({rsa,i}

m
i=1)

Nta
, where N t

a = m · t.

We apply Hoeffding’s inequality (Lemma 2.1) once on the sequence of actual rewards of the users,
and once on the sequence of errors that Msum introduces into the approximated sum of rewards. We

conclude that with high probability, ∀a ∈ [k],∀t ∈ [T ], we have
∣∣µ̂ta − µa∣∣ ≤ ( 2

√
tσε,δ
Nta

+ 1√
Nta

)
·

√
2 log T .

Assuming this high probability event, each arm a is necessarily eliminated after the phase t0
where

∣∣µ̂t0a − µa∣∣ becomes at most roughly ∆a/4. We show that this occurs after at most

O

(
log T
∆2
a

+
σ2
ε,δ·log T

m∆2
a

)
pulls of the arm a, and since we must complete the batch of size m, the

total regret of the arm a is at most Ra = O

(
log T
∆a

+
σ2
ε,δ·log T

m∆a
+m∆a

)
. To get the distribution-

dependent regret we sum the regret above over all arms. For the distribution-independent regret, we

split this sum based on if the arm a has ∆a < β where β = Θ

(√
(1+σ2

ε,δ/m)k log T

T

)
or not, and

bound each sum separately. Namely, bound the contribution of arms with ∆a < β by βT .

Recall that the private binary summation mechanism Msum’s error distribution is sub-Gaussian with
variance σ2

ε,δ = O
(

log 1
δ

ε2

)
. We fix a concrete batch size m in SDP-AE, and apply Theorem 3.1 to

get the following corollary.

Corollary 3.2. SDP-AE with a batch size of m =
⌈
σε,δ

⌉
= Θ

(
log 1

δ

ε2

)
is (ε, δ)-SDP and has a

distribution-dependent regret of

O

 ∑
a∈[k]:∆a>0

(
log T

∆a
+

∆a log 1
δ

ε2

) = O


 ∑
a∈[k]:∆a>0

log T

∆a

+
k log 1

δ

ε2

 ,

and a distribution-independent regret of O
(√

kT log T +
k log 1

δ

ε2

)
.

3.2 VB-SDP-AE: Variable Batch Shuffle Differentially Private Arm Elimination

In this section we modify SDP-AE to give an (ε, δ)-SDP algorithm for the MAB problem
with improved additional regret. Recall that SDP-AE has a distribution-dependent regret of

O

((∑
a∈[k]:∆a>0

log T
∆a

)
+

k log 1
δ

ε2

)
, whereas the best known regret for (ε, δ) centralized-DP is

due to Tossou and Dimitrakakis [28], and is O
((∑

a∈[k]:∆a>0
log T
∆a

)
+ k

ε

)
. Since any SDP algo-

rithm can be emulated by a centralized-DP mechanism, we can only wish to match the regret of
Tossou and Dimitrakakis [28]. Hence, the natural question is: “Can we reduce the dependence in ε of
the additive (second) regret term from 1

ε2 to 1
ε?”15

15Note that a Naive attempt to convert the algorithm of Tossou and Dimitrakakis [28] from the centralized
model to the shuffle model fails. This is since in the centralized model they can decrease the relative noise as the
number of iteration increases by keeping the raw data from the users and reusing it in later iterations. However,
in our setting, the noise per shuffle batch has to remain constant for privacy, and we do not have access to the
raw data of the users.
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Before presenting our solution, we first indicate two intuitive approaches that fail. The first is to
continue using batches of constant size m = Ω(1/ε2). This idea fails since intuitively in the worst
case we can expect a first batch regret of m = Ω(1/ε2) which already surpasses O(1/ε). The second
is to try to directly adapt the algorithm of Tossou and Dimitrakakis [28], which can be interpreted as
AE with batches of size

⌈
1/ε
⌉
. Unfortunately, this adaptation fails since it requires that the added

noise to the empirical mean of each arm decreases with time, whereas in the shuffle model, we
must ensure privacy with respect to each batch equally and independently, so the total noise cannot
decrease with time.

Now for our improved algorithm, observe that using a large batch size increases the regret a lot
for arms which are very suboptimal. This is since rather than pulling these arms only a few times
until we detect that they are suboptimal, we commit ourselves to pulling them throughout a large
batch. On the other hand, fixing the batch size to be small increases the overall estimation error, since
every application of the SDP summation algorithm Msum introduces an error of the same magnitude
(specifically, the error is sub-Gaussian with variance σ2

ε,δ = O
(

log 1
δ

ε2

)
) independently of the batch

size. Hence, more executions of Msum translates to more noise due to privacy. We therefore extend
SDP-AE to support variable size batches, which start small and gradually increase. Intuitively, the
smaller batches initially, allow us to quickly eliminate very suboptimal arms with only a small number
of pulls. We gradually increase the batch size to reduce the per-user error introduced by the private
binary summation mechanism. Specifically, we double the batch size after each phase.

3.2.1 Algorithm outline

We consolidate the idea above into Algorithm 2 below, which we call Variable Batch Shuffle Differ-
entially Private Arm Elimination (VB-SDP-AE), which uses a different batch size mt = 2t for each
phase t:

Algorithm 2: VB-SDP-AE (Variable Batch Shuffle Differentially Private Arm Elimination)
1 Input: privacy parameters ε and δ and horizon T .
2 Initialize: Ŝ0

a = 0, N0
a = 0 and µ̂0

a = 0 for every a ∈ [k];

3 Let σ2
ε,δ = O

(
log 1

δ

ε2

)
be the sub-Gaussian variance of the error distribution of Msum;

4 Let V = [k] denote the set of viable arms;
5 for phase t← 1, 2, . . . do
6 Let mt ← 2t;
7 for arm a ∈ V do
8 for each new user i← 1 to mt do
9 User i pulls the arm a and observes reward rta,i;

10 If total number of arm samples is T , exit;
11 end
12 Communication: Perform private binary summation Zta ←Msum

(
{rta,i}m

t

i=1

)
;

13 Server update: Update Ŝta ← Ŝt−1
a +Zta, N t

a ← N t−1
a +mt, and finally µ̂ta ← Ŝta/N

t
a;

14 end

15 Confidence bounds: For each arm a, calculate Ita ←
(

2
√
tσε,δ
Nta

+ 1√
Nta

)
·
√

2 log T , and

the upper and lower confidence bounds UCBta ← µ̂ta + Ita and LCBta ← µ̂ta − Ita;
16 Elimination: remove all arms a from V such that UCBta < maxa′∈S LCB

t
a′ ;

17 end

3.2.2 Analysis

The privacy is trivial, since in each batch we use the (ε, δ)-SDP mechanism Msum. We now focus on
regret.

To give a regret bound on VB-SDP-AE, we follow a similar proof to that of Theorem 3.1.
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Theorem 3.3. The algorithm VB-SDP-AE is (ε, δ)-SDP, and has a distribution-dependent

regret of O
((∑

a∈[k]:∆a>0
log T
∆a

)
+ kσε,δ log T

)
, and a distribution-independent regret of

O
(√
kT log T + kσε,δ log T

)
.

Proof sketch. A slight modification of the proof of Theorem 3.1 lets us recover that with high probabil-

ity, ∀a ∈ [k],∀t ∈ [T ], we have that
∣∣µ̂ta − µa∣∣ ≤ ( 2

√
tσε,δ
Nta

+ 1√
Nta

)
·
√

2 log T . Assuming this high

probability event, adapting the proof of Theorem 3.1 to our exponentially growing batch sizes gives
that each arm a is necessarily eliminated after we have already performedO

(
log T
∆2
a

+
σε,δ·log T

∆a

)
pulls

of the arm a. Unlike the proof of Theorem 3.1, since the batch sizes grow as 2t, the additional pulls
of the arm a required to complete the last batch before elimination, adds only a factor of 2 to the total
number of pulls to the arm. Hence, the regret of the arm a is at most Ra = O

(
log T
∆a

+ σε,δ · log T
)

.

To get the distribution-dependent regret we sum the regret above over all arms. For the distribution-

independent regret, we split this sum based on if the arm a has ∆a < β where β = Θ

(√
k log T
T

)
or

not, and bound each sum separately. Namely, bound the regret over arms with ∆a < β by βT .

We recall that the private binary summation mechanism Msum’s error distribution is sub-Gaussian

with variance σ2
ε,δ = O

(
log 1

δ

ε2

)
, i.e., σε,δ = O

(√
log 1

δ

ε

)
, and apply Theorem 3.3 to get the

following corollary.
Corollary 3.4. VB-SDP-AE is (ε, δ)-SDP and has a distribution-dependent regret of

O

((∑
a∈[k]:∆a>0

log T
∆a

)
+

k
√

log 1
δ log T

ε

)
, and a distribution-independent regret of

O

(√
kT log T +

k
√

log 1
δ log T

ε

)
.

4 Conclusion and future work

In this paper, we gave and analyzed differentially private algorithms for the MAB problem, closing
the inevitable multiplicative Ω(1/ε2) regret gap between the local model and the centralized model,
by considering the (intermediate) shuffle model. Our algorithms are batched variants of AE, which
use a private binary summation mechanism for the shuffle model as a building block. Compared
to the non-private AE algorithm’s regret, our first algorithm SDP-AE has an additive factor of
k log 1

δ

ε2 using constant size batches, and our second algorithm VB-SDP-AE improves the additive

factor to k
√

log 1
δ log T

ε by using exponentially growing batches, which enable the early detection and
elimination of very suboptimal arms.

A natural future work is to extend our results (i.e., the usage of a private binary summation mechanism
for the shuffle model) to more general RL settings such as linear/contextual bandits or Markov decision
processes. It would also be interesting to study whether our log T term in the additional additive
regret factor can be shaved through a more sophisticated algorithm, or an alternative analysis. Finally,
it is interesting to study whether there are more refined distribution-dependent regret bounds that
depend on the KL-divergence as in Kaufmann et al. [20].
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