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Abstract

Chain-of-Thought (CoT) enhances Large Lan-001
guage Models (LLMs) by enabling step-by-002
step reasoning in natural language. However,003
the language space may be suboptimal for rea-004
soning. While implicit CoT methods attempt005
to enable reasoning without explicit CoT to-006
kens, they have consistently lagged behind ex-007
plicit CoT method in task performance. We008
propose CODI (Continuous Chain-of-Thought009
via Self-Distillation), a novel framework that010
distills CoT into a continuous space, where a011
shared model acts as both teacher and student,012
jointly learning explicit and implicit CoT while013
aligning their hidden activation on the token014
generating the final answer. CODI is the first015
implicit CoT method to match explicit CoT’s016
performance on GSM8k while achieving 3.1×017
compression, surpassing the previous state-of-018
the-art by 28.2% in accuracy. Furthermore,019
CODI demonstrates scalability, robustness, and020
generalizability to more complex CoT datasets.021
Additionally, CODI retains interpretability by022
decoding its continuous thoughts, making its023
reasoning process transparent. Our findings es-024
tablish implicit CoT as not only a more efficient025
but a powerful alternative to explicit CoT.026

1 Introduction027

Large Language Models (LLMs) have exhibited028

remarkable reasoning capabilities (OpenAI, 2024;029

Anthropic, 2024; Google, 2024), with Chain-of-030

Thought (CoT) (Wei et al., 2022) emerging as a031

key technique for enabling step-by-step reasoning032

via natural language rationales.033

However, neuroscientific studies (Amalric and034

Dehaene, 2016, 2019) show that human mathemat-035

ical reasoning does not primarily involve language036

processing areas in brains, suggesting that natural037

language may not be the most effective medium038

for reasoning. Furthermore, (Lin et al., 2025) high-039

lights that LLMs often depend heavily on specific040

tokens during reasoning, which can lead to er-041

rors despite the tokens being commonsensically042

Figure 1: Illustration of the training process of differ-
ent reasoning approaches. CoT-SFT is standard CoT
finetuning. Coconut learns implicit CoT by curriculum
learning. CODI learns implicit CoT by self-distillation.

valid. Replacing these tokens with alternatives has 043

been shown to improve performance, underscoring 044

LLMs’ sensitivity to linguistic features in natural 045

language rationales. These insights motivate a shift 046

from natural language CoT representations (Ex- 047

plicit CoT and Discrete Tokens) to dense, continu- 048

ous representations (Implicit CoT and Continuous 049

Thoughts) that may better align with the compact 050

and abstract nature of reasoning. 051

Implicit CoT requires two major design consid- 052

erations: the forward function and the training ob- 053

jective. Various forward functions have been ex- 054

plored, including removing all reasoning tokens 055

(Deng et al., 2023, 2024), adding fixed learning 056

tokens (Pfau et al., 2024; Goyal et al., 2024), per- 057

forming autoregression by connecting the last hid- 058

den activation to the next input embedding (Hao 059

et al., 2024). The autoregression approach appears 060

to perform the best, likely because it increases the 061

effective computational depth. However, the key 062

design challenge for implicit CoT lies in the train- 063

ing objective. While explicit CoT learns reasoning 064

through language modeling over annotated CoT 065

tokens, implicit CoT cannot rely on this standard 066

language modeling approach, as it must avoid gen- 067

erating explicit CoT tokens by definition. 068

To address this challenge, Coconut (Hao et al., 069
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2024), the state-of-the-art method, adopts a cur-070

riculum learning strategy initially introduced by071

(Deng et al., 2024) as illustrated in Figure 1. It072

gradually replaces the initial CoT tokens with con-073

tinuous thoughts while maintaining the language074

modeling objective on the remaining CoT tokens.075

In this way, the language modeling loss encourages076

the continuous thoughts to behave like the removed077

CoT tokens, and at the final stage of learning, all078

CoT tokens are replaced with continuous thoughts,079

achieving full implicit CoT. However, while Co-080

conut outperforms the No-CoT baseline (which081

entirely omits CoTs), it still lags behind CoT-SFT082

by 20% on GSM8k, exposing a key limitation in083

the implicit CoT paradigm. We believe these limi-084

tations stem from the curriculum learning strategy085

itself—the multi-stage process delays the acquisi-086

tion of a complete discrete CoT. If the model fails087

to generate the correct continuous thought at any088

stage due to forgetting or incomplete learning, er-089

rors propagate through subsequent stages, limiting090

overall performance.091

We propose CODI (Continuous Chain-of-092

Thought via Self-Distillation), a novel framework093

that distills explicit CoT into implicit CoT by align-094

ing the hidden activation of the token responsi-095

ble for generating the final answer as illustrated096

in Figure 1. CODI reframes implicit CoT learn-097

ing as a self-distillation task (Wang et al., 2023;098

Gou et al., 2021), where the same model serves as099

both teacher and student. Unlike conventional self-100

distillation having the two roles of equal capability,101

CODI enhances the teacher’s knowledge by provid-102

ing them distinct input contexts: the teacher learns103

from the groundtruth CoT and final answer using104

a language modeling objective, while the student105

generates continuous thoughts before predicting106

the final answer–our target task. Distillation oc-107

curs at the token preceding the final answer, which108

Orgad et al. (2025) identify as encoding crucial rea-109

soning information. Since we can formally show110

that CoT influences the hidden activation of this111

token only by a shift (Section 3.3), CODI enforces112

alignment between the teacher and student by min-113

imizing their hidden activation differences using114

an L1 distance loss, effectively injecting explicit115

CoT supervision into implicit CoT generation. This116

single-step distillation in feature space mitigates117

the forgetting issues inherent in curriculum learn-118

ing, enabling more effective implicit CoT training.119

The main contributions are threefold:120

• We propose CODI, a novel self-distillation frame-121

work that enables LLMs to reason in a compact122

continuous space, providing an alternative to ac- 123

celerate reasoning with high performance. 124

• We demonstrate the effectiveness of distilling 125

knowledge from explicit CoT (teacher) to im- 126

plicit CoT (student) by aligning the hidden activa- 127

tion of a single token, simplifying the distillation 128

process and improving efficiency. 129

• Extensive experiments show that CODI is robust, 130

scalable, and generalizable to more complex CoT 131

datasets. Additionally, CODI maintains inter- 132

pretability, making its reasoning process trans- 133

parent. 134

2 Related Work 135

Implicit Chain-of-Thought Reasoning. Im- 136

plicit CoT methods aim to enhance reasoning 137

without verbalizing intermediate steps as in CoT, 138

thereby accelerating inference speed. Theoretical 139

work (Strobl et al., 2024; Merrill and Sabharwal, 140

2024) establishes that additional computational 141

tokens enhance transformers’ reasoning capacity. 142

Empirical studies (Pfau et al., 2024; Goyal et al., 143

2024) validate these insights by training LLMs with 144

extra dummy tokens before answering though in 145

a limited scale and effect. Recent efforts (Deng 146

et al., 2023, 2024) distills CoT reasoning by fine- 147

tuning. They improve over the No-CoT baseline, 148

but fall behind CoT finetuning possibly due to dis- 149

carding all intermediate tokens. Addressing this, 150

Coconut (Hao et al., 2024) reintroduces interme- 151

diate reasoning tokens via autoregressive hidden 152

state propagation, combining curriculum learning 153

from (Deng et al., 2024). While this achieves some 154

improvement over (Deng et al., 2024), Coconut 155

still lags behind explicit CoT, which we attribute to 156

forgetting in curriculum learning. CODI replaces 157

curriculum learning with a novel self-distillation 158

framework, enabling a single-step learning process 159

that avoids forgetting issues. Our work is also in- 160

spired by in-context compression (Ge et al., 2024; 161

Li et al., 2024b), though our work is compressing 162

the generation instead of the existing contexts. 163

Knowledge Distillation. Knowledge distillation 164

(KD) (Gou et al., 2021; Xu et al., 2024) has 165

emerged as a key strategy for transferring CoT rea- 166

soning capabilities from teacher to student mod- 167

els. Traditional approaches (Hsieh et al., 2023; Ho 168

et al., 2023) train smaller student models to mimic 169

step-by-step outputs from larger teacher LLMs, mo- 170

tivated by findings that CoT reasoning emerges pre- 171

dominantly in large models (Wei et al., 2022). Self- 172
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Figure 2: CODI enables the model to generate continuous CoTs by jointly training a student and teacher task
within a shared LLM, distilling knowledge from the teacher to the student. The Student task (left) generates the
answer by autoregressively decoding continuous thoughts, while the Teacher task (right) generates the answer using
the groundtruth CoT via teacher forcing. Both tasks learn the generated texts via cross-entropy loss (Lstudent and
Lteacher), and share the same LLM. Knowledge distillation is achieved by applying LKD (L1 loss) between student
and teacher hidden activation across all layers (hstudent and hteacher).

distillation (Yang et al., 2024; Dong et al., 2024)173

leverage self-distillation to preserve the model’s174

original behavior, akin to the KL divergence loss175

used in RLHF (Ouyang et al., 2022). Our work176

is based on self-distillation framework, but further177

strengthens the teacher by providing it with richer178

input contexts, enabling the student to learn from179

it like knowledge distillation. Since the teacher180

and student tasks differ, CODI can also be viewed181

as a form of multitask learning (Crawshaw, 2020).182

Moreover, CODI distinguishes itself by allowing183

reason in the latent space other than natural lan-184

guage, which is rarely explored in prior knowledge185

distillation works. This innovation enables more186

flexible and efficient reasoning.187

3 CODI: Continuous Chain-of-Thought188

via Self Distillation189

Unlike traditional CoT reasoning, CODI bypasses190

autoregression in the vocabulary space, and directly191

connects the last hidden representation to the sub-192

sequent input. The key challenge in training such a193

model with continuous thoughts lies in designing194

an appropriate training objective. Conventional rea-195

soning learning in explicit CoT fine-tuning relies196

on a language modeling objective over annotated197

CoT tokens, which inevitably leads to discrete CoT198

token generation—contradicting the definition of199

implicit CoT.200

3.1 Overview201

CODI addresses this by introducing a self-202

distillation framework (Figure 2) with two train-203

ing tasks: a teacher task and a student task. The204

teacher task learns explicit CoT generation, while205

the student task learns implicit continuous CoT 206

generation. Knowledge distillation is achieved by 207

aligning the hidden activation of a key token from 208

the teacher to the student via LKD. The overall 209

training objective is a weighted sum of three losses, 210

which will be detailed later: 211

L = αLteacher + βLstudent + γLKD, (1) 212

where α, β, and γ are hyperparameters controlling 213

the balance among the objectives.. 214

A Python implementation of this framework is 215

provided in Figure A3. 216

3.2 Student Task 217

The student task (Figure 2, left), the target task, 218

generates continuous thoughts by autoregressively 219

propagating the last hidden states and learns to 220

generate the answer token using a cross-entropy 221

loss: 222

Lstudent = − 1

N

N∑
i=1

logP (yi | y1:i−1, Q, Z), (2) 223

where P is the probability distribution of the LLM, 224

y refers the answer label, Q refers the question 225

tokens, and Z refers the continuous thoughts. 226

On its own, the model benefits only marginally 227

from the additional computation (Goyal et al., 228

2024) compared with the No-CoT scenario be- 229

cause there are no supervision for the continuous 230

thoughts. 231

Additionally, CODI applies modifications exclu- 232

sively to the student task. Two special tokens, bot 233

and eot, mark the start and end of continuous rea- 234

soning, inspired by (Hao et al., 2024). A two-layer 235
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MLP followed by layer normalization transforms236

the hidden representations of continuous thought237

tokens before feeding them into the next step.238

3.3 Teacher Task239

Unlike the student task, the teacher task (Figure240

2, right) performs explicit CoT generation using a241

language modeling objective:242

Lteacher = − 1

N

N∑
i=1

logP (yi | y1:i−1, Q), (3)243

where y refers both the CoT and the answer labels,244

and Q refers the question tokens.245

The teacher task serves two key functions: (1)246

Reference Learning: By learning explicit CoTs,247

the teacher task equips the model with structured248

reasoning patterns, offering a foundational refer-249

ence for the student task. (2) Latent Supervi-250

sion: As the teacher has access to ground-truth251

CoT tokens, its hidden activation at the answer-252

generating token encapsulate essential reasoning253

information by attending to all preceding CoT to-254

kens. In contrast, the student initially operates255

without such structured guidance. To address this256

disparity, CODI aligns the hidden activation of this257

token between the teacher and student across all258

layers using an L1 loss:259

LKD =
1

M

M∑
l=1

|sg[hl
teacher]− hl

student|, (4)260

where M indicates the number of layers in the261

LLM, sg denotes stop gradient, and hl is the hidden262

activation of the LLM’s l-th layer.263

The Distilled Token. Rather than aligning with264

all tokens in the generated sentence, we select a dis-265

tillation token for alignment. Inspired by the recent266

observations (Orgad et al., 2025) that the hidden267

activation of the token intermediately preceding the268

answer, i.e., the colon (“:”) in the answer prompt269

“The answer is:” (as shown in Figure 2), encodes270

far more information than output logits. We select271

this token’s hidden activation, h, for distillation.272

This selection can be further verified by the shift273

mechanism in in-context learning. Recent work (Li274

et al., 2024a; Liu et al., 2023) demonstrates that in-275

context examples influence the final query token by276

shifting its hidden activation values. Extending this277

idea, we show that CoT tokens similarly induce a278

shift in hidden activation values of this target token,279

as formalized in Equation 5:280

hl
CoT ≈ hl

no-CoT + f
(
WV R(WKR)Tq

)
, (5)281

where q is the query of this target token, hl
CoT is the 282

hidden activation at layer l with CoT (equivalent 283

to hl
teacher), h

l
no-CoT is the corresponding activation 284

without CoT, and the remaining term quantifies the 285

shift introduced by the CoT rationale R. 286

This suggests that the target token’s hidden acti- 287

vation encode the influence of preceding reasoning 288

steps, and hl
student can learn this shift by minimiz- 289

ing a simple distance metric, such as L1 loss, with 290

hl
teacher. A formal proof of this “CoT shift” phe- 291

nomenon is provided in Appendix B. 292

3.4 Training and Inference 293

Training. The continuous thoughts are generated 294

dynamically during training, as they are not known 295

beforehand. To achieve this, we decode them step 296

by step, with a cache storing previous keys and val- 297

ues to maintain efficiency. When applying distance 298

loss between two hidden activation, we observed 299

a significant norm variations across layers (Deng 300

et al., 2023; Cheng and Durme, 2024). To address 301

this, we normalize each layer’s activation by divid- 302

ing them by the standard deviation of the teacher’s 303

hidden activation within the current batch. 304

For the distillation task, we employed the same 305

model for the teacher task and the student task 306

for two reasons: (1) Warm-up: When the teacher 307

trains alongside the student, it creates a warm-up ef- 308

fect for LKD. Both components start from the same 309

initialization point, diverge during training, and 310

gradually converge as the student adapts. In con- 311

trast, a static pre-trained teacher initially presents 312

an overly challenging objective, as its hidden states 313

reflect fully developed reasoning patterns that the 314

untrained student cannot immediately match. (2) 315

Shared model representations: Using the same 316

model mitigates alignment issues in hidden acti- 317

vation that arise when using separate models, en- 318

abling smoother and more effective information 319

transfer between the teacher and student. The cor- 320

responding ablation studies, which validate these 321

findings, are detailed in Table 3. 322

For training data, we exclude the final CoT 323

step—the step responsible for generating the final 324

answer—because including this step could allow 325

the teacher’s hidden activation to take a shortcut. 326

Specifically, the model might directly copy the re- 327

sult from the last CoT step to the token responsible 328

for generating the exact answer token, bypassing 329

the reasoning process. This behavior would under- 330

mine the quality of the target hidden activation, as 331

they would no longer fully encode the reasoning 332

patterns. The ablation results demonstrating the 333
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impact of this exclusion are presented in Table 3.334

Inference. The inference process in CODI mir-335

rors the student task during training (Figure 2, left).336

The model autoregressively decodes n continuous337

thoughts following the question and the bot token.338

Once the reasoning process is complete, the eot339

token is manually inserted to terminate continu-340

ous reasoning and switch the model to language341

generation mode, decoding the final answer.342

4 Experiments343

We demonstrate the effectiveness of CODI’s rea-344

soning in a continuous space through experiments345

on mathematical reasoning tasks.346

4.1 Experimental Setup347

Training Data. We utilize two datasets to train348

our models–GSM8k-Aug and GSM8k-Aug-NL. (1)349

We use the GSM8k-Aug dataset from (Deng et al.,350

2023), which has proven effective for training im-351

plicit CoT methods (Deng et al., 2024; Hao et al.,352

2024). This dataset extends the original GSM8k353

training set (Cobbe et al., 2021) to 385k samples by354

prompting GPT-4. To facilitate implicit CoT train-355

ing, all natural language interleaving within the356

CoT is removed, leaving only structured mathemat-357

ical expressions such as “<< 10÷ 5 = 2 >><<358

2 × 2 = 4 >><< 6 × 4 = 24 >>”. (2) We359

also use GSM8k-Aug-NL, a version that preserves360

natural language explanations, to assess both the361

generalizability and effectiveness of our approach362

to compress more verbose CoTs. Examples and363

statistics are in Appendix C.364

Evaluation Benchmarks for OOD. In addition365

to the test split of GSM8k, we assess model ro-366

bustness on three out-of-domain (OOD) bench-367

marks: (1) SVAMP (Patel et al., 2021), a dataset of368

elementary-school arithmetic word problems with369

simple variations designed for robustness test; (2)370

GSM-HARD (Gao et al., 2022), a modified version371

of the GSM8k test split where numbers are replaced372

with values of larger magnitude to increase diffi-373

culty; and (3) MultiArith (Roy and Roth, 2015), a374

subset of MAWPS (Koncel-Kedziorski et al., 2016)375

containing multi-step mathematical word problems.376

Examples and statistics are in Appendix C.377

Baselines. We consider the following baselines:378

(1) CoT-SFT: Finetunes the model on CoT data,379

enabling it to generate intermediate steps followed380

by the final answer. As CoT-SFT relies on sam-381

pling, we set the temperature to 0.1 and report the382

average result over 10 runs. (2) No-CoT-SFT: Fine- 383

tunes the model using only direct answers, with- 384

out generating intermediate steps. (3) iCoT (Deng 385

et al., 2024): Implements a curriculum learning 386

strategy called "Stepwise Internalization", which 387

injects CoT’s reasoning patterns into the model’s 388

internal states. This allows the model to generate di- 389

rect answers with higher accuracy during inference. 390

(4) Coconut (Hao et al., 2024): Build upon iCoT 391

by autoregressively generating intermediate contin- 392

uous CoT representations, similar to the approach 393

in our work. (5) CODI: our method trained with 394

six continuous thought tokens, matching the setup 395

in Coconut. Baselines (2)–(5) are deterministic 396

models, and their results are reported from a single 397

run. Two base models are considered GPT-2 (Rad- 398

ford et al., 2019) and LLaMA3.2-1b (Meta, 2024). 399

More implementation details are in Appendix A. 400

4.2 Main Results 401

Mathematical Reasoning. Table 1 shows the 402

evaluation results on GSM8k. CODI achieves a 403

significant performance improvement over other 404

implicit CoT methods. In the settings of GPT-2, 405

CODI surpasses iCoT by 45.7% and Coconut by 406

28.2%. Notably, CODI is the first continuous CoT 407

method to perform on par with CoT-SFT, achieving 408

99.1% of CoT-SFT’s performance. Unlike iCoT 409

and Cococnut failing to scale up to larger models 410

(Hao et al., 2024), CODI successfully scales to 411

LLaMA1b, achieving 90.3% of CoT-SFT’s perfor- 412

mance. These results highlight CODI’s superiority 413

in terms of accuracy for in-domain mathematical 414

reasoning tasks. 415

Efficiency. CODI utilizes a fixed set of six con- 416

tinuous thoughts, enclosed by two special tokens, 417

resulting in a total of eight "tokens" for reason- 418

ing. As shown in Table 2, CODI achieves substan- 419

tial efficiency gains, with a speedup of approxi- 420

mately 2.7× (3.1× CoT compression) for compact 421

CoTs trained on GSM8k-Aug and 5.9× (7.8× CoT 422

compression) for verbose CoTs trained on GSM8k- 423

Aug-NL, demonstrating CODI’s effectiveness in 424

reducing reasoning overhead. 425

Robustness. To assess robustness, we evaluate 426

CODI on out-of-distribution datasets. Notably, 427

CODI consistently outperforms CoT-SFT across all 428

three benchmarks for GPT-2. We attribute this to 429

CODI’s reduced tendency to overfit, as evidenced 430

by its significantly lower training accuracy com- 431

pared to CoT-SFT (Table A3). This difference 432

arises because CODI lacks exact imitation targets 433
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Method In-Domain Out-of-Distribution
GSM8k GSM8k-NL SVAMP GSM-Hard MultiArith

GPT-2 Small
CoT-SFT 44.1% 34.8% 41.8% 9.8% 90.7%
No-CoT-SFT 19.1% 19.1% 16.4% 4.3% 41.1%
iCoT 30.1%* 3.2% 29.4% 5.7% 55.5%
Coconut 34.1%* − − − −
CODI (Ours) 43.7% 35.3% 42.9% 9.9% 92.8%

LLaMA3.2-1b
CoT-SFT 61.6% 54.1% 66.7% 15.6% 99.3%
No-CoT-SFT 30.9% 30.9% 44.1% 7.1% 70.9%
iCoT 19.0% 15.2% 40.9% 4.4% 39.0%
CODI (Ours) 55.6% 49.7% 61.1% 12.8% 96.1%

Table 1: Results on four datasets: GSM8k, SVAMP, GSM-Hard, and MultiArith. GSM8k-NL indicates that the
training data is GSM8k-Aug-NL, the verbose dataset, instead of GSM8k-Aug. Results marked with * are taken
from the corresponding papers (Deng et al., 2024; Hao et al., 2024). Coconut’s results are incomplete due to the
unavailability of open-source code.

for continuous thoughts during training, making it434

less prone to memorizing patterns and more adapt-435

able to novel scenarios.436

Compress CoTs with Natural Language. Pre-437

vious works (Deng et al., 2024; Hao et al., 2024)438

primarily trained on GSM8k-Aug, which consists439

only of mathematical expressions. To evaluate440

CODI’s generalizability, we extend our analysis441

to a more complex CoT dataset, GSM8k-Aug-NL.442

Table 1 shows that both GPT-2 and LLaMA1b443

perform worse on it compared to GSM8k-Aug.444

This decrease in performance stems from the ad-445

ditional natural language tokens, which add noise446

and make imitation learning more difficult. Sur-447

prisingly, CODI surpasses CoT-SFT when using448

GPT-2 and achieves a higher relative score improve-449

ment on LLaMA1b compared to models trained on450

GSM8k-Aug. Moreover, iCoT almost fails in this451

task because the longer sequence makes curriculum452

learning challenging. Furthermore, with the aver-453

age CoT length increasing to 62.1 (Table 2), CODI454

achieves a compression ratio of 7.8, suggesting that455

the optimal compression ratio is dataset-dependent.456

These results demonstrates CODI’s ability to han-457

dle more complex CoT training data, showcasing458

its applicability to diverse reasoning datasets.459

Compression Ratio. The number of continuous460

thoughts used during training is a crucial hyper-461

parameter, influencing both the computation allo-462

cation and the compression ratio. As shown in463

Figure 3, CODI consistently outperforms Coconut464

across all compression ratios. Interestingly, both465

methods exhibit a similar trend: accuracy peaks466

when using six continuous thoughts. We attribute467

Method GSM8k-Aug GSM8k-Aug-NL
Time (#Tokens) Time (#Tokens)

GPT-2
CoT-SFT 0.17s (25.1) 0.36s (62.1)
No-CoT-SFT 0.035s (0) 0.035s (0)
CODI 0.062s (8) 0.062s (8)

LLaMA-1b
CoT-SFT 0.73s (25.4) 1.62s (68.8)
No-CoT-SFT 0.16s (0) 0.16s (0)
CODI 0.27s (8) 0.27s (8)

Table 2: Efficiency comparison of different reasoning
methods in terms of inference time per math problem
on GSM8k. Measured with batch size = 1 on an Nvidia
A100 GPU. CoT Token counts are shown in parentheses.

this to the dataset’s structure, specifically the av- 468

erage number of CoT steps. When fewer than six 469

continuous thoughts are used, the model lacks suf- 470

ficient expressiveness to capture reasoning steps 471

effectively. Conversely, beyond six, the additional 472

complexity may not provide further benefits, as 473

most problems do not require additional reasoning 474

steps. Instead, the increased sequence length in- 475

troduces optimization challenges, outweighing any 476

potential gains.

Figure 3: Accuracy on GSM8k against the number of
continuous thought tokens used during training.

477
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Methods (GPT-2) Accuracy(%)

No-CoT 19.1%
CODI 43.7%
- ind. static teacher 27.1%

w/ multitask student 42.2%
- ind. trained teacher −

w/ multitask student 42.7%
- w/o L1 loss 24.5%
- w/ CoT last step 31.7%
- w/o Projection 42.5%

Table 3: Ablation studies. ind. static teacher refers
to training an independent teacher model beforehand.
w/ multitask student extends it by allowing the student
model to also learn CoT generation. ind. trained teacher
refers to training an independent teacher model along
with the student model.

4.3 Ablation Studies478

Independent Teacher. To evaluate the need of479

self-distillation, we tested settings where the stu-480

dent does not share the model with the teacher481

(Table 3). Without learning explicit CoT genera-482

tion (ind. static teacher), the model performs483

badly and fails to generate meaningful continu-484

ous CoTs after decoding. Adding an explicit CoT485

generation objective (w/ multitask student)486

significantly restores performance, indicating the487

importance of reference learning. Additionally,488

training the teacher alongside the student (ind.489

trained teacher) leads to better results than us-490

ing a pre-trained, static teacher (ind. static491

teacher), supporting the argument of the warm-492

up effect. Finally, using a unified model (CODI)493

outperforms maintaining separate teacher-student494

models (ind. trained teacher), reinforcing the495

idea that shared model representations help miti-496

gate alignment issues in hidden states.497

Distillation Loss. Table 3 shows that removing498

the L1 loss (Equation 4) linking the teacher and499

student processes (w/o L1 Loss) leads to a signifi-500

cant performance drop, indicating the importance501

of supervision from the distillation token. While502

the model still performs well in CoT generation, it503

fails to integrate this skill into continuous CoT rea-504

soning, treating them as independent tasks rather505

than a unified reasoning process.506

Others. Keeping the final step of the CoT chain507

appears to negatively impact performance, support-508

ing our claim that it provides shortcuts. Further-509

more, the projection layer of continuous thought510

tokens (shown as the MLP layer before each of511

the continous thought token z1 · · · zk in Figure 2)512

enhances CODI’s effectiveness, likely by helping513

to discriminate discrete and continuous CoT repre- 514

sentations. 515

5 Further Analysis 516

5.1 Interpretability Analysis 517

Interpreting CODI’s continuous thoughts is inher- 518

ently challenging because these representations 519

lack explicit imitation targets. However, CODI 520

exhibits an ability to produce observable intermedi- 521

ate results (Figure 4) within its continuous thoughts 522

by projecting its last hidden state into vocabulary 523

space via the model’s word embeddings – treating it 524

in the same way as a standard text token. Addition- 525

ally, the corresponding operands contributing to 526

these intermediate results can often be found in the 527

attended tokens of the latent representation. For 528

example, the second thought token, z2, attends to 529

both "1" and "7" to produce the decoded token "7". 530

While the operator itself (e.g., ×) is not explicitly 531

visible in the attention mechanism—since opera- 532

tors are in the context—it is reasonable to infer 533

that the transformer layers implicitly perform this 534

operation. Another interesting observation is that 535

each intermediate result is separated by a seemingly 536

meaningless continuous token. We hypothesize 537

that these tokens act as placeholders or transitional 538

states during the computation of intermediate re- 539

sults. This aligns with the idea that the transformer 540

may require multiple passes to complete the calcu- 541

lation for each intermediate step. More case studies 542

are in the Appendix E. 543

Total Steps 1 2 3

Accuracy 97.1% 83.9% 75.0%

Table 4: CODI’s top-5 intermediate results matching
reference CoT across problems requiring different num-
bers of step.

Beyond the case study, we aim to establish that 544

CODI’s interpretability is a general pattern by an 545

accuracy metric. We extract all correctly predicted 546

answers, decode the corresponding intermediate 547

results, and compare them against the reference 548

intermediate solutions. Table 4 reveals that when 549

there is only one intermediate result, CODI cor- 550

rectly matches the reference 97.1% of the time. For 551

CoT sequences with lengths up to 3, CODI con- 552

sistently achieves over 75% accuracy in decoding 553

valid intermediate results. These findings high- 554

light CODI’s reliability in generating meaningful 555

intermediate reasoning steps, demonstrating its po- 556

tential to effectively handle reasoning tasks with 557

interpretable intermediate outputs. 558
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Figure 4: A case study illustrating CODI’s interpretability by analyzing its attended tokens and decoded tokens
of each of the six latent thought tokens, z1 · · · z6. Attended tokens: these represent the top-10 tokens that the
continuous thought attends to when generating the next thought/token. Some attended tokens appear in the form
of ‘zi = x’, indicating attention to the i-th continuous thought. Here x represents the top-1 token that the latent
thought maps to in vocabulary space. Decoded tokens: these are the top-5 words that the continuous thoughts are
projected back to in vocabulary space by multiplying them with the vocabulary embeddings.

5.2 CODI’s Pattern Learning559

GPT-2 CODI Coconut Res Op-Res

Accuracy 43.7% 34.1% 34.0% 35.7%

Table 5: Comparison of GPT-2 finetuned on two datasets
derived from CODI’s decoded thoughts. Res: using
intermediate results as CoT. Op-Res: using intermediate
operators and results as CoT.

Given that CODI’s continuous thoughts can of-560

ten be decoded into intermediate results, it raises561

a question: is CODI effectively equivalent to a562

GPT-2 fine-tuned on a dataset containing CODI’s563

decoded patterns? We created a dataset contain-564

ing only intermediate results (e.g., “CoT: 20, 7,565

27. Result: 9” translated from the case study566

in Figure 4). Additionally, since some cases of567

CODI show decoded operators like ‘×’ and ‘−’ in-568

terleaved with intermediate results, we also create a569

synthetic CoT dataset that includes both operators570

and results (e.g., “CoT: ×, 20, ×, 7, +, 27.571

Result: 9”). As shown in Table 5, while models572

trained on the two synthetic datasets outperform573

the No-CoT baseline, they give significantly infe-574

rior results compared to CoT and CODI, though 575

perform on par with Coconut. These result sug- 576

gest that CODI learns richer information from the 577

teacher task through distillation than pure imitation 578

on language-level intermediate results alone, high- 579

lighting the advantages of our training framework. 580

6 Conclusion 581

We introduced CODI, a novel paradigm for reason- 582

ing in the continuous space. Our extensive experi- 583

ments demonstrate CODI’s effectiveness as the first 584

continuous CoT method to match the performance 585

of explicit CoT, while achieving a high compres- 586

sion ratio. Furthermore, CODI shows its scalability, 587

robustness, generalizability to more complex CoT 588

data, while retaining interpretability. Future re- 589

search should explore CODI’s application to more 590

diverse and challenging tasks. A promising direc- 591

tion is the integration of multimodality, leverag- 592

ing continuous embeddings for seamless modality 593

merging. We hope this work inspires further ex- 594

ploration into reasoning in representations more 595

compact than language, paving the way for more 596

efficient and versatile reasoning paradigms. 597

8



7 Limitations598

In the paper, our approach focuses on knowledge599

transfer by probing the token (”:”) responsible for600

generating the first answer token. However, this601

choice may be suboptimal, as some answers begin602

with “-”, and removing such cases improves perfor-603

mance, suggesting that critical reasoning informa-604

tion might also reside in the token generating the605

second answer token. Additionally, probing the to-606

ken that concludes the CoT reasoning—potentially607

summarizing the entire process—could offer alter-608

native supervision signals. Furthermore, the cur-609

rent answer prompt, “The answer is:”, is an arbi-610

trary design choice that may influence the effec-611

tiveness of knowledge transfer. Investigating these612

aspects further could enable CODI to extend its613

distillation framework to broader reasoning tasks.614

Another limitation of the current continuous615

training approach is the absence of intermediate616

gradients until the end of the sequence. With six617

continuous thought tokens, the first token’s gradi-618

ent is backpropagated from six or more steps away619

(specifically, from the token generating the final620

answer), which may introduce optimization chal-621

lenges. This issue could become more pronounced622

when scaling to more complex problems requiring623

longer continuous reasoning chains.624

Furthermore, CODI’s current configuration is625

fully deterministic, whereas one advantage of CoT626

is its inherent stochasticity, which allows models to627

improve performance through self-consistency, tree628

search, and Monte Carlo Tree Search (MCTS). In-629

troducing controlled randomness into CODI could630

restore this property. Potential solutions include in-631

tegrating dropout layers, leveraging Variational Au-632

toencoders (VAEs), or applying diffusion models633

atop the current projection layer to enable diverse634

and robust reasoning paths.635

Finally, our studies primarily focus on mathe-636

matical problems, as mathematical CoT training637

data are more abundant and mathematical problems638

inherently require complex reasoning. However,639

this focus may limit the generalizability of CODI640

to broader reasoning scenarios. Future work should641

explore its applicability to more diverse reasoning642

tasks beyond mathematical domains.643
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A Implementation Details825

For all experiments, we use the AdamW optimizer826

(Loshchilov and Hutter, 2019) with a cosine sched-827

uler (without cycles) and a linear warm-up over the828

first 3% of steps. The effective batch size is 128.829

Both α and β are set to 1 (Equation 1). We ap-830

ply LoRA (Hu et al., 2022) finetuning with a rank831

of 128 and an alpha value of 32, using bfloat16832

precision.833

For GPT-2, we set the learning rate to 3e-3 and834

γ to 1. Training runs for 40 epochs, taking approx-835

imately 36 hours on a single A100 (80GB).836

For LLaMA-3.2-1b, we use a learning rate of 8e-837

4 and set γ to 20, as we observe that its distillation838

loss has a much smaller magnitude. The model is839

trained for 10 epochs, requiring approximately 48840

hours on a single A100 (80GB).841

For iCoT training of GPT-2, we use a learning842

rate of 5e-5 and train for 100 epochs, removing 4843

tokens per epoch for GSM8k-Aug-NL. For iCoT844

training of LLaMA-1b, we use a learning rate of845

1e-5 and train for 50 epochs, removing 8 tokens per846

epoch for GSM8k-Aug and 16 tokens per epoch847

for GSM8k-Aug-NL.848

B Proof: CoTs Contribute a Shift in849

Hidden Activation850

In this section, we provide a proof to demonstrate851

why Chain-of-Thought (CoT) contributes a shift852

in hidden activation. This proof is largely inspired853

by the work of (Li et al., 2024a), which analyzed854

In-Context Learning.855

In a typical CoT training dataset, the input usu-856

ally consists of four components: the question Q,857

the rationale R, the prompt for the answer P (e.g.,858

"The answer is:"), and the final answer A.859

We analyze the attention activation of the last860

prompt token, q—in this case, ":"—at the l-th trans-861

former layer. The output activation al from the862

attention heads of this token is given by:863

al = WV [Q;R;P ]softmax(
WK [Q;R;P ]Tq√

d
)

(6) 864

where WK and WV are the model’s key and 865

value parameters, [Q;R;P ] represents the concate- 866

nation of the three inputs, and
√
d is a scaling fac- 867

tor. 868

For simplicity of analysis, inspired by (Li et al., 869

2024a), we omit the softmax operation and the scal- 870

ing factor, as these do not affect the core conclusion. 871

With this simplification, the following derivation 872

holds: 873

al ≈ WV [Q;R;P ]WK [Q;R;P ]Tq 874

=
(
WV Q(WV Q)T +WV R(WV R)T 875

+WV P (WV P )T
)

q 876

=
(
WV [Q;P ](WV [Q;P ])T 877

+WV R(WV R)T
)

q 878

=
(
Wno-CoT +WV R(WKR)T

)
q 879

= alno-CoT +WV R(WKR)Tq 880

Here, Wno-CoT is defined as 881

WV [Q;P ](WK [Q;P ])T , accounting for the 882

contribution of Q and P without the CoT rationale. 883

Correspondingly, alno-CoT represents the attention 884

activation excluding CoT. 885

The additional term WV R(WKR)Tq represents 886

the contribution of the CoT rationale R to the hid- 887

den activation. We can get the hidden activation 888

by transforming the attention activation by a non- 889

linear function f : 890

hl ≈ hl
no-CoT + f

(
WV R(WKR)Tq

)
(7) 891

Thus, we conclude that the rationale R in the 892

CoT primarily contributes a shift in hidden acti- 893

vation values, emphasizing its role as an additive 894

factor in the latent representation. This shift can be 895

effectively captured and learned using a distance 896

metric. 897

C Datasets 898

We provide examples and statistics of training 899

datasets and evaluation benchmarks. 900
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C.1 Examples901

GSM8k-Aug*

Question = "Jen shared a pack of
chocolates among her friends. She
gave 20% to Lucy, 30% to Sarah and
the remaining were shared equally
among four others. If the pack
contained 100 chocolates, how many
chocolates were each of the four
others getting?"
CoT = "The total percentage given to
Lucy and Sarah is 20% + 30% = 50%.
So, the remaining percentage that
was shared among the others is 100%
- 50% = 50%. The total number of
chocolates shared among the others
is 100 * 50 / 100 = 50 chocolates.
So, each of the four others received
50 / 4 = 12.5 chocolates."
Answer = "12.5"

902

GSM8k-Aug

Question = "Out of 600 employees
in a company, 30% got promoted
while 10% received bonus. How many
employees did not get either a
promotion or a bonus?"
CoT = "«600*30/100=180»
«600*10/100=60» «180+60=240»
«600-240=360»"
Answer = "360"

903

SVAMP

Question = "There are 87 oranges and
290 bananas in Philip’s collection.
If the bananas are organized into
2 groups and oranges are organized
into 93 groups. How big is each
group of bananas?" Answer = "145"

904

MultiArith

Question = "There are 64 students
trying out for the school’s trivia
teams. If 36 of them didn’t get
picked for the team and the rest
were put into 4 groups, how many
students would be in each group?"
Answer = "7"

905

GSM-Hard

Question = "Janet’s ducks lay 16
eggs per day. She eats three
for breakfast every morning and
bakes muffins for her friends every
day with 4933828. She sells the
remainder at the farmers’ market
daily for $2 per fresh duck egg.
How much in dollars does she make
every day at the farmers’ market?"
Answer = "-9867630.0"

906

C.2 Statistics 907

The statistics of training data are shown in Table 908

A1, and the statistics of evaluation benchmarks are 909

shown in Table A2. 910

Training Dataset Num. Data Avg. CoT Tokens
GSM8k-Aug 385,620 20.3
GSM8k-Aug* 384,625 49.0

Table A1: Training data statistics.

Evaluation Benchmark Num. Data

GSM8k 1319
SVAMP 1000
GSM-Hard 1319
MultiArith 500

Table A2: Evaluation Benchmark statistics.

D Performance on Training Data 911

The training accuracy of CODI and CoT-SFT is 912

shown in Table A3. 913

GPT-2 LLaMA1b

CoT-SFT 99.1% 98.9%
CODI (Ours) 81.5% 95.0%

Table A3: Training Accuracies on GSM8k-Aug.

E Interpretability Case Studies 914

More case studies on the interpretability of CODI 915

are provided in Figure A1 and Figure A2 916

F CODI Code 917

The example Python code of CODI is illustrated in 918

Figure A3. 919

12



Figure A1: CODI’s interpretability on problems involving two steps.

Figure A2: CODI’s interpretability on problems involving one step.

13



class ContinuousCoTviaKnowledgeDistillation:
def __init__(self,):

self.num_latent = 6
self.alpha, self.beta, self.gamma = 1, 1, 1

self.llm = get_gpt2_model()
self.prj = nn.Sequential(

nn.Linear(hidden_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim),

)

def forward(x, y, x_cot_y):
# teacher learning
y_teacher = self.llm(x_cot_y)
teacher_ce_loss = cross_entropy(y_teacher, x_cot_y) # loss1

# student learning
latent = self.llm(torch.cat([x, bot_token], dim=1))[:, -1]
latent = self.prj(latent)
past_key_values = latent.past_key_values

# continuous CoT reasoning
for i in range(self.num_latent):

latent = self.llm(latent, past_key_values)
latent = self.prj(latent)
past_key_values = latent.past_key_values

y_student = self.llm(torch.cat([eot_token, y], dim=1), past_key_values)
student_ce_loss = cross_entropy(y_student, y) # loss2

# knowledge distillation
knowledge_distillation_loss = smooth_l1_loss(

y_teacher.hidden_states[:, teacher_exact_answer_token_position-1],
y_student.hidden_states[:, student_exact_answer_token_position-1]

) # loss3
# normalisation
knowledge_distillation_loss /= y_teacher.hidden_states[:,

teacher_exact_answer_token_position-1].std()

return self.alpha*teacher_ce_loss + self.beta*student_ce_loss + self.gamma*
knowledge_distillation_loss

Figure A3: Example Python code illustrating the ContinuousCoTviaKnowledgeDistillation class.
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