CODI: Compressing Chain-of-Thought into Continuous Space via
Self-Distillation

Anonymous ACL submission

Abstract

Chain-of-Thought (CoT) enhances Large Lan-
guage Models (LLMs) by enabling step-by-
step reasoning in natural language. However,
the language space may be suboptimal for rea-
soning. While implicit CoT methods attempt
to enable reasoning without explicit CoT to-
kens, they have consistently lagged behind ex-
plicit CoT method in task performance. We
propose CODI (Continuous Chain-of-Thought
via Self-Distillation), a novel framework that
distills CoT into a continuous space, where a
shared model acts as both teacher and student,
jointly learning explicit and implicit CoT while
aligning their hidden activation on the token
generating the final answer. CODI is the first
implicit CoT method to match explicit CoT’s
performance on GSM8k while achieving 3.1x
compression, surpassing the previous state-of-
the-art by 28.2% in accuracy. Furthermore,
CODI demonstrates scalability, robustness, and
generalizability to more complex CoT datasets.
Additionally, CODI retains interpretability by
decoding its continuous thoughts, making its
reasoning process transparent. Our findings es-
tablish implicit CoT as not only a more efficient
but a powerful alternative to explicit CoT.

1 Introduction

Large Language Models (LLMs) have exhibited
remarkable reasoning capabilities (OpenAl, 2024;
Anthropic, 2024; Google, 2024), with Chain-of-
Thought (CoT) (Wei et al., 2022) emerging as a
key technique for enabling step-by-step reasoning
via natural language rationales.

However, neuroscientific studies (Amalric and
Dehaene, 2016, 2019) show that human mathemat-
ical reasoning does not primarily involve language
processing areas in brains, suggesting that natural
language may not be the most effective medium
for reasoning. Furthermore, (Lin et al., 2025) high-
lights that LLMs often depend heavily on specific
tokens during reasoning, which can lead to er-
rors despite the tokens being commonsensically

CoT-SFT Question —» - — ' > Answer EExplicitCoT

Question —» " —» " ' — " Answer Stagel

Coconut Question = —" " — " Answer S"‘g”);

Question —» - - — " Answer Stagenlé

Implicit

CoT

Question =" = = — " Answer
CODI) Distill |

Question - —» — — Answer

CoT Token Continuous Thought Language Modeling Loss

Figure 1: Illustration of the training process of differ-
ent reasoning approaches. CoT-SFT is standard CoT
finetuning. Coconut learns implicit CoT by curriculum
learning. CODI learns implicit CoT by self-distillation.

valid. Replacing these tokens with alternatives has
been shown to improve performance, underscoring
LLMs’ sensitivity to linguistic features in natural
language rationales. These insights motivate a shift
from natural language CoT representations (Ex-
plicit CoT and Discrete Tokens) to dense, continu-
ous representations (Implicit CoT and Continuous
Thoughts) that may better align with the compact
and abstract nature of reasoning.

Implicit CoT requires two major design consid-
erations: the forward function and the training ob-
jective. Various forward functions have been ex-
plored, including removing all reasoning tokens
(Deng et al., 2023, 2024), adding fixed learning
tokens (Pfau et al., 2024; Goyal et al., 2024), per-
forming autoregression by connecting the last hid-
den activation to the next input embedding (Hao
et al., 2024). The autoregression approach appears
to perform the best, likely because it increases the
effective computational depth. However, the key
design challenge for implicit CoT lies in the train-
ing objective. While explicit CoT learns reasoning
through language modeling over annotated CoT
tokens, implicit CoT cannot rely on this standard
language modeling approach, as it must avoid gen-
erating explicit CoT tokens by definition.

To address this challenge, Coconut (Hao et al.,

2024), the state-of-the-art method, adopts a cur-
riculum learning strategy initially introduced by
(Deng et al., 2024) as illustrated in Figure 1. It
gradually replaces the initial CoT tokens with con-
tinuous thoughts while maintaining the language
modeling objective on the remaining CoT tokens.
In this way, the language modeling loss encourages
the continuous thoughts to behave like the removed
CoT tokens, and at the final stage of learning, all
CoT tokens are replaced with continuous thoughts,
achieving full implicit CoT. However, while Co-
conut outperforms the No-CoT baseline (which
entirely omits CoTs), it still lags behind CoT-SFT
by 20% on GSM8Kk, exposing a key limitation in
the implicit CoT paradigm. We believe these limi-
tations stem from the curriculum learning strategy
itself—the multi-stage process delays the acquisi-
tion of a complete discrete CoT. If the model fails
to generate the correct continuous thought at any
stage due to forgetting or incomplete learning, er-
rors propagate through subsequent stages, limiting
overall performance.

We propose CODI (Continuous Chain-of-
Thought via Self-Distillation), a novel framework
that distills explicit CoT into implicit CoT by align-
ing the hidden activation of the token responsi-
ble for generating the final answer as illustrated
in Figure 1. CODI reframes implicit CoT learn-
ing as a self-distillation task (Wang et al., 2023;
Gou et al., 2021), where the same model serves as
both teacher and student. Unlike conventional self-
distillation having the two roles of equal capability,
CODI enhances the teacher’s knowledge by provid-
ing them distinct input contexts: the teacher learns
from the groundtruth CoT and final answer using
a language modeling objective, while the student
generates continuous thoughts before predicting
the final answer—our target task. Distillation oc-
curs at the token preceding the final answer, which
Orgad et al. (2025) identify as encoding crucial rea-
soning information. Since we can formally show
that CoT influences the hidden activation of this
token only by a shift (Section 3.3), CODI enforces
alignment between the teacher and student by min-
imizing their hidden activation differences using
an L1 distance loss, effectively injecting explicit
CoT supervision into implicit CoT generation. This
single-step distillation in feature space mitigates
the forgetting issues inherent in curriculum learn-
ing, enabling more effective implicit CoT training.

The main contributions are threefold:

* We propose CODI, a novel self-distillation frame-
work that enables LLLMs to reason in a compact

continuous space, providing an alternative to ac-
celerate reasoning with high performance.

* We demonstrate the effectiveness of distilling
knowledge from explicit CoT (teacher) to im-
plicit CoT (student) by aligning the hidden activa-
tion of a single token, simplifying the distillation
process and improving efficiency.

» Extensive experiments show that CODI is robust,
scalable, and generalizable to more complex CoT
datasets. Additionally, CODI maintains inter-
pretability, making its reasoning process trans-
parent.

2 Related Work

Implicit Chain-of-Thought Reasoning. Im-
plicit CoT methods aim to enhance reasoning
without verbalizing intermediate steps as in CoT,
thereby accelerating inference speed. Theoretical
work (Strobl et al., 2024; Merrill and Sabharwal,
2024) establishes that additional computational
tokens enhance transformers’ reasoning capacity.
Empirical studies (Pfau et al., 2024; Goyal et al.,
2024) validate these insights by training LLMs with
extra dummy tokens before answering though in
a limited scale and effect. Recent efforts (Deng
et al., 2023, 2024) distills CoT reasoning by fine-
tuning. They improve over the No-CoT baseline,
but fall behind CoT finetuning possibly due to dis-
carding all intermediate tokens. Addressing this,
Coconut (Hao et al., 2024) reintroduces interme-
diate reasoning tokens via autoregressive hidden
state propagation, combining curriculum learning
from (Deng et al., 2024). While this achieves some
improvement over (Deng et al., 2024), Coconut
still lags behind explicit CoT, which we attribute to
forgetting in curriculum learning. CODI replaces
curriculum learning with a novel self-distillation
framework, enabling a single-step learning process
that avoids forgetting issues. Our work is also in-
spired by in-context compression (Ge et al., 2024;
Li et al., 2024b), though our work is compressing
the generation instead of the existing contexts.

Knowledge Distillation. Knowledge distillation
(KD) (Gou et al., 2021; Xu et al., 2024) has
emerged as a key strategy for transferring CoT rea-
soning capabilities from teacher to student mod-
els. Traditional approaches (Hsieh et al., 2023; Ho
et al., 2023) train smaller student models to mimic
step-by-step outputs from larger teacher LLMs, mo-
tivated by findings that CoT reasoning emerges pre-
dominantly in large models (Wei et al., 2022). Self-

Large Language Model

t 1\1"\:f

<question>

' Cross Entropy Loss

The answer is:

The answer i{g

g

..

Cross Entropy Loss

<CoT> The answer is:

: L KD ™cevacsssessssnsssansssansnnnnsnnnnnsdanns® 7]
B :
1 i
i : Large Language Model !
1 1

1
o t t I
I
1 ! <question> <CoT> The answer i]
LY I

Figure 2: CODI enables the model to generate continuous CoTs by jointly training a student and teacher task
within a shared LLM, distilling knowledge from the teacher to the student. The Student task (left) generates the
answer by autoregressively decoding continuous thoughts, while the Teacher task (right) generates the answer using
the groundtruth CoT via teacher forcing. Both tasks learn the generated texts via cross-entropy loss (Lsudent and
Lieacher)> and share the same LLM. Knowledge distillation is achieved by applying Lxp (L1 loss) between student
and teacher hidden activation across all layers (hgygent and heeacher)-

distillation (Yang et al., 2024; Dong et al., 2024)
leverage self-distillation to preserve the model’s
original behavior, akin to the KL divergence loss
used in RLHF (Ouyang et al., 2022). Our work
is based on self-distillation framework, but further
strengthens the teacher by providing it with richer
input contexts, enabling the student to learn from
it like knowledge distillation. Since the teacher
and student tasks differ, CODI can also be viewed
as a form of multitask learning (Crawshaw, 2020).
Moreover, CODI distinguishes itself by allowing
reason in the latent space other than natural lan-
guage, which is rarely explored in prior knowledge
distillation works. This innovation enables more
flexible and efficient reasoning.

3 CODI: Continuous Chain-of-Thought
via Self Distillation

Unlike traditional CoT reasoning, CODI bypasses
autoregression in the vocabulary space, and directly
connects the last hidden representation to the sub-
sequent input. The key challenge in training such a
model with continuous thoughts lies in designing
an appropriate training objective. Conventional rea-
soning learning in explicit CoT fine-tuning relies
on a language modeling objective over annotated
CoT tokens, which inevitably leads to discrete CoT
token generation—contradicting the definition of
implicit CoT.

3.1 Overview

CODI addresses this by introducing a self-
distillation framework (Figure 2) with two train-
ing tasks: a teacher task and a student task. The
teacher task learns explicit CoT generation, while

the student task learns implicit continuous CoT
generation. Knowledge distillation is achieved by
aligning the hidden activation of a key token from
the teacher to the student via Lxp. The overall
training objective is a weighted sum of three losses,
which will be detailed later:

L = aLieacher + BLswdent + YLKD, (D

where «, 3, and ~ are hyperparameters controlling
the balance among the objectives..

A Python implementation of this framework is
provided in Figure A3.

3.2 Student Task

The student task (Figure 2, left), the target task,
generates continuous thoughts by autoregressively
propagating the last hidden states and learns to
generate the answer token using a cross-entropy
loss:

N
1
Litudent = N E log P(y; | y1:i-1,Q, Z), (2)
=1

where P is the probability distribution of the LLM,
y refers the answer label, () refers the question
tokens, and Z refers the continuous thoughts.

On its own, the model benefits only marginally
from the additional computation (Goyal et al.,
2024) compared with the No-CoT scenario be-
cause there are no supervision for the continuous
thoughts.

Additionally, CODI applies modifications exclu-
sively to the student task. Two special tokens, bot
and eot, mark the start and end of continuous rea-
soning, inspired by (Hao et al., 2024). A two-layer

MLP followed by layer normalization transforms
the hidden representations of continuous thought
tokens before feeding them into the next step.

3.3 Teacher Task

Unlike the student task, the teacher task (Figure
2, right) performs explicit CoT generation using a
language modeling objective:

N

Eteacher = _% ; log P(yz | Y1:i—1, Q), (3)
where y refers both the CoT and the answer labels,
and Q) refers the question tokens.

The teacher task serves two key functions: (1)
Reference Learning: By learning explicit CoTs,
the teacher task equips the model with structured
reasoning patterns, offering a foundational refer-
ence for the student task. (2) Latent Supervi-
sion: As the teacher has access to ground-truth
CoT tokens, its hidden activation at the answer-
generating token encapsulate essential reasoning
information by attending to all preceding CoT to-
kens. In contrast, the student initially operates
without such structured guidance. To address this
disparity, CODI aligns the hidden activation of this
token between the teacher and student across all
layers using an L1 loss:

M
1
Lxp = M Z ‘Sg[hgeacher] - hétudent|’ “)
=1
where M indicates the number of layers in the
LLM, sg denotes stop gradient, and h' is the hidden
activation of the LLM’s [-th layer.

The Distilled Token. Rather than aligning with
all tokens in the generated sentence, we select a dis-
tillation token for alignment. Inspired by the recent
observations (Orgad et al., 2025) that the hidden
activation of the token intermediately preceding the
answer, i.e., the colon (*:”) in the answer prompt
“The answer is:” (as shown in Figure 2), encodes
far more information than output logits. We select
this token’s hidden activation, h, for distillation.
This selection can be further verified by the shift
mechanism in in-context learning. Recent work (Li
et al., 2024a; Liu et al., 2023) demonstrates that in-
context examples influence the final query token by
shifting its hidden activation values. Extending this
idea, we show that CoT tokens similarly induce a
shift in hidden activation values of this target token,
as formalized in Equation 5:

thoT ~ hflO—COT + f (WVR(WKR>T(1): (5)

where q is the query of this target token, thOT is the
hidden activation at layer [with CoT (equivalent
to hﬁeacher), hflo_coT is the corresponding activation
without CoT, and the remaining term quantifies the
shift introduced by the CoT rationale R.

This suggests that the target token’s hidden acti-
vation encode the influence of preceding reasoning
steps, and himdem can learn this shift by minimiz-
ing a simple distance metric, such as L1 loss, with
hieacher. A formal proof of this “CoT shift” phe-
nomenon is provided in Appendix B.

3.4 Training and Inference

Training. The continuous thoughts are generated
dynamically during training, as they are not known
beforehand. To achieve this, we decode them step
by step, with a cache storing previous keys and val-
ues to maintain efficiency. When applying distance
loss between two hidden activation, we observed
a significant norm variations across layers (Deng
et al., 2023; Cheng and Durme, 2024). To address
this, we normalize each layer’s activation by divid-
ing them by the standard deviation of the teacher’s
hidden activation within the current batch.

For the distillation task, we employed the same
model for the teacher task and the student task
for two reasons: (1) Warm-up: When the teacher
trains alongside the student, it creates a warm-up ef-
fect for Lxp. Both components start from the same
initialization point, diverge during training, and
gradually converge as the student adapts. In con-
trast, a static pre-trained teacher initially presents
an overly challenging objective, as its hidden states
reflect fully developed reasoning patterns that the
untrained student cannot immediately match. (2)
Shared model representations: Using the same
model mitigates alignment issues in hidden acti-
vation that arise when using separate models, en-
abling smoother and more effective information
transfer between the teacher and student. The cor-
responding ablation studies, which validate these
findings, are detailed in Table 3.

For training data, we exclude the final CoT
step—the step responsible for generating the final
answer—because including this step could allow
the teacher’s hidden activation to take a shortcut.
Specifically, the model might directly copy the re-
sult from the last CoT step to the token responsible
for generating the exact answer token, bypassing
the reasoning process. This behavior would under-
mine the quality of the target hidden activation, as
they would no longer fully encode the reasoning
patterns. The ablation results demonstrating the

impact of this exclusion are presented in Table 3.

Inference. The inference process in CODI mir-
rors the student task during training (Figure 2, left).
The model autoregressively decodes n continuous
thoughts following the question and the bot token.
Once the reasoning process is complete, the eot
token is manually inserted to terminate continu-
ous reasoning and switch the model to language
generation mode, decoding the final answer.

4 Experiments

We demonstrate the effectiveness of CODI’s rea-
soning in a continuous space through experiments
on mathematical reasoning tasks.

4.1 Experimental Setup

Training Data. We utilize two datasets to train
our models—GSM8k-Aug and GSM8k-Aug-NL. (1)
We use the GSM8k-Aug dataset from (Deng et al.,
2023), which has proven effective for training im-
plicit CoT methods (Deng et al., 2024; Hao et al.,
2024). This dataset extends the original GSM8k
training set (Cobbe et al., 2021) to 385k samples by
prompting GPT-4. To facilitate implicit CoT train-
ing, all natural language interleaving within the
CoT is removed, leaving only structured mathemat-
ical expressions such as “<< 10 +5 =2 >><<
2X2=4>><<6x4=24>>" (2) We
also use GSM8k-Aug-NL, a version that preserves
natural language explanations, to assess both the
generalizability and effectiveness of our approach
to compress more verbose CoTs. Examples and
statistics are in Appendix C.

Evaluation Benchmarks for OOD. In addition
to the test split of GSM8k, we assess model ro-
bustness on three out-of-domain (OOD) bench-
marks: (1) SVAMP (Patel et al., 2021), a dataset of
elementary-school arithmetic word problems with
simple variations designed for robustness test; (2)
GSM-HARD (Gao et al., 2022), a modified version
of the GSM8Kk test split where numbers are replaced
with values of larger magnitude to increase diffi-
culty; and (3) MultiArith (Roy and Roth, 2015), a
subset of MAWPS (Koncel-Kedziorski et al., 2016)
containing multi-step mathematical word problems.
Examples and statistics are in Appendix C.

Baselines. We consider the following baselines:
(1) CoT-SFT: Finetunes the model on CoT data,
enabling it to generate intermediate steps followed
by the final answer. As CoT-SFT relies on sam-
pling, we set the temperature to 0.1 and report the

average result over 10 runs. (2) No-CoT-SFT: Fine-
tunes the model using only direct answers, with-
out generating intermediate steps. (3) iCoT (Deng
et al., 2024): Implements a curriculum learning
strategy called "Stepwise Internalization", which
injects CoT’s reasoning patterns into the model’s
internal states. This allows the model to generate di-
rect answers with higher accuracy during inference.
(4) Coconut (Hao et al., 2024): Build upon iCoT
by autoregressively generating intermediate contin-
uous CoT representations, similar to the approach
in our work. (5) CODI: our method trained with
six continuous thought tokens, matching the setup
in Coconut. Baselines (2)—(5) are deterministic
models, and their results are reported from a single
run. Two base models are considered GPT-2 (Rad-
ford et al., 2019) and LLaMA3.2-1b (Meta, 2024).
More implementation details are in Appendix A.

4.2 Main Results

Mathematical Reasoning. Table 1 shows the
evaluation results on GSM8k. CODI achieves a
significant performance improvement over other
implicit CoT methods. In the settings of GPT-2,
CODI surpasses iCoT by 45.7% and Coconut by
28.2%. Notably, CODI is the first continuous CoT
method to perform on par with CoT-SFT, achieving
99.1% of CoT-SFT’s performance. Unlike iCoT
and Cococnut failing to scale up to larger models
(Hao et al., 2024), CODI successfully scales to
LLaMAT1b, achieving 90.3% of CoT-SFT’s perfor-
mance. These results highlight CODI’s superiority
in terms of accuracy for in-domain mathematical
reasoning tasks.

Efficiency. CODI utilizes a fixed set of six con-
tinuous thoughts, enclosed by two special tokens,
resulting in a total of eight "tokens" for reason-
ing. As shown in Table 2, CODI achieves substan-
tial efficiency gains, with a speedup of approxi-
mately 2.7x (3.1x CoT compression) for compact
CoTs trained on GSM8k-Aug and 5.9x (7.8x CoT
compression) for verbose CoTs trained on GSM8k-
Aug-NL, demonstrating CODI’s effectiveness in
reducing reasoning overhead.

Robustness. To assess robustness, we evaluate
CODI on out-of-distribution datasets. Notably,
CODI consistently outperforms CoT-SFT across all
three benchmarks for GPT-2. We attribute this to
CODTI’s reduced tendency to overfit, as evidenced
by its significantly lower training accuracy com-
pared to CoT-SFT (Table A3). This difference
arises because CODI lacks exact imitation targets

Method In-Domain Out-of-Distribution

GSMS8k GSMSKk-NL | SVAMP GSM-Hard MultiArith
GPT-2 Small
CoT-SFT 44.1% 34.8% 41.8% 9.8% 90.7%
No-CoT-SFT 19.1% 19.1% 16.4% 4.3% 41.1%
iCoT 30.1%* 3.2% 29.4% 5.7% 55.5%
Coconut 34.1%* — — — —
CODI (Ours) 43.7% 35.3% 42.9% 9.9% 92.8%
LLaMA3.2-1b
CoT-SFT 61.6% 54.1% 66.7% 15.6% 99.3%
No-CoT-SFT 30.9% 30.9% 44.1% 7.1% 70.9%
iCoT 19.0% 15.2% 40.9% 4.4% 39.0%
CODI (Ours) 55.6% 49.7% 61.1% 12.8% 96.1%

Table 1: Results on four datasets: GSM8k, SVAMP, GSM-Hard, and MultiArith. GSM8k-NL indicates that the
training data is GSM8k-Aug-NL, the verbose dataset, instead of GSM8k-Aug. Results marked with * are taken
from the corresponding papers (Deng et al., 2024; Hao et al., 2024). Coconut’s results are incomplete due to the

unavailability of open-source code.

for continuous thoughts during training, making it
less prone to memorizing patterns and more adapt-
able to novel scenarios.

Compress CoTs with Natural Language. Pre-
vious works (Deng et al., 2024; Hao et al., 2024)
primarily trained on GSM8k-Aug, which consists
only of mathematical expressions. To evaluate
CODI’s generalizability, we extend our analysis
to a more complex CoT dataset, GSM8k-Aug-NL.
Table 1 shows that both GPT-2 and LLaMAI1b
perform worse on it compared to GSM8k-Aug.
This decrease in performance stems from the ad-
ditional natural language tokens, which add noise
and make imitation learning more difficult. Sur-
prisingly, CODI surpasses CoT-SFT when using
GPT-2 and achieves a higher relative score improve-
ment on LLaMA1b compared to models trained on
GSMS8k-Aug. Moreover, iCoT almost fails in this
task because the longer sequence makes curriculum
learning challenging. Furthermore, with the aver-
age CoT length increasing to 62.1 (Table 2), CODI
achieves a compression ratio of 7.8, suggesting that
the optimal compression ratio is dataset-dependent.
These results demonstrates CODI’s ability to han-
dle more complex CoT training data, showcasing
its applicability to diverse reasoning datasets.

Compression Ratio. The number of continuous
thoughts used during training is a crucial hyper-
parameter, influencing both the computation allo-
cation and the compression ratio. As shown in
Figure 3, CODI consistently outperforms Coconut
across all compression ratios. Interestingly, both
methods exhibit a similar trend: accuracy peaks
when using six continuous thoughts. We attribute

Method GSMB8k-Aug GSM8k-Aug-NL
‘ Time (#Tokens) | Time (#Tokens)

GPT-2

CoT-SFT 0.17s (25.1) 0.36s (62.1)

No-CoT-SFT | 0.035s (0) 0.035s (0)

CODI 0.062s (8) 0.062s (8)

LLaMA-1b

CoT-SFT 0.73s (25.4) 1.62s (68.8)

No-CoT-SFT | 0.16s (0) 0.16s (0)

CODI 0.27s (8) 0.27s (8)

Table 2: Efficiency comparison of different reasoning
methods in terms of inference time per math problem
on GSM8k. Measured with batch size = 1 on an Nvidia
A100 GPU. CoT Token counts are shown in parentheses.

this to the dataset’s structure, specifically the av-
erage number of CoT steps. When fewer than six
continuous thoughts are used, the model lacks suf-
ficient expressiveness to capture reasoning steps
effectively. Conversely, beyond six, the additional
complexity may not provide further benefits, as
most problems do not require additional reasoning
steps. Instead, the increased sequence length in-
troduces optimization challenges, outweighing any
potential gains.

IS
b
o

Accuracy (%)

w w w by =
N v ~ o N
m o wv o un

w
<
IS

cobl
—m— COCONUT
-~~~ CoT-SFT

0 2 a 6 8 0 12
Number of Continuous Thoughts

Figure 3: Accuracy on GSM8k against the number of
continuous thought tokens used during training.

Methods (GPT-2) \ Accuracy(%)
No-CoT 19.1%
CODI 43.7%
- ind. static teacher 27.1%
w/ multitask student 42.2%
- ind. trained teacher —
w/ multitask student 42.7%
- w/o L1 loss 24.5%
- w/ CoT last step 31.7%
- w/o Projection 42.5%

Table 3: Ablation studies. ind. static teacher refers
to training an independent teacher model beforehand.
w/ multitask student extends it by allowing the student
model to also learn CoT generation. ind. trained teacher
refers to training an independent teacher model along
with the student model.

4.3 Ablation Studies

Independent Teacher. To evaluate the need of
self-distillation, we tested settings where the stu-
dent does not share the model with the teacher
(Table 3). Without learning explicit CoT genera-
tion (ind. static teacher), the model performs
badly and fails to generate meaningful continu-
ous CoTs after decoding. Adding an explicit CoT
generation objective (w/ multitask student)
significantly restores performance, indicating the
importance of reference learning. Additionally,
training the teacher alongside the student (ind.
trained teacher) leads to better results than us-
ing a pre-trained, static teacher (ind. static
teacher), supporting the argument of the warm-
up effect. Finally, using a unified model (CODI)
outperforms maintaining separate teacher-student
models (ind. trained teacher), reinforcing the
idea that shared model representations help miti-
gate alignment issues in hidden states.

Distillation Loss. Table 3 shows that removing
the L1 loss (Equation 4) linking the teacher and
student processes (w/o L1 Loss) leads to a signifi-
cant performance drop, indicating the importance
of supervision from the distillation token. While
the model still performs well in CoT generation, it
fails to integrate this skill into continuous CoT rea-
soning, treating them as independent tasks rather
than a unified reasoning process.

Others. Keeping the final step of the CoT chain
appears to negatively impact performance, support-
ing our claim that it provides shortcuts. Further-
more, the projection layer of continuous thought
tokens (shown as the MLP layer before each of
the continous thought token z; - - - 2, in Figure 2)
enhances CODI’s effectiveness, likely by helping

to discriminate discrete and continuous CoT repre-
sentations.

S Further Analysis

5.1 Interpretability Analysis

Interpreting CODI’s continuous thoughts is inher-
ently challenging because these representations
lack explicit imitation targets. However, CODI
exhibits an ability to produce observable intermedi-
ate results (Figure 4) within its continuous thoughts
by projecting its last hidden state into vocabulary
space via the model’s word embeddings — treating it
in the same way as a standard text token. Addition-
ally, the corresponding operands contributing to
these intermediate results can often be found in the
attended tokens of the latent representation. For
example, the second thought token, 29, attends to
both "1" and "7" to produce the decoded token "7".
While the operator itself (e.g., X) is not explicitly
visible in the attention mechanism—since opera-
tors are in the context—it is reasonable to infer
that the transformer layers implicitly perform this
operation. Another interesting observation is that
each intermediate result is separated by a seemingly
meaningless continuous token. We hypothesize
that these tokens act as placeholders or transitional
states during the computation of intermediate re-
sults. This aligns with the idea that the transformer
may require multiple passes to complete the calcu-
lation for each intermediate step. More case studies
are in the Appendix E.

Total Steps | 1 2 3
‘ 97.1% 83.9% 75.0%

Accuracy

Table 4: CODI’s top-5 intermediate results matching
reference CoT across problems requiring different num-
bers of step.

Beyond the case study, we aim to establish that
CODTI’s interpretability is a general pattern by an
accuracy metric. We extract all correctly predicted
answers, decode the corresponding intermediate
results, and compare them against the reference
intermediate solutions. Table 4 reveals that when
there is only one intermediate result, CODI cor-
rectly matches the reference 97.1% of the time. For
CoT sequences with lengths up to 3, CODI con-
sistently achieves over 75% accuracy in decoding
valid intermediate results. These findings high-
light CODI’s reliability in generating meaningful
intermediate reasoning steps, demonstrating its po-
tential to effectively handle reasoning tasks with
interpretable intermediate outputs.

f N N
Question: Jenny buys 1 bag of cookies a week. The bag has 36 cookies and she puts 4 cookies
in her son's lunch box 5 days a week. Her husband eats 1 cookie a day for 7 days. Jenny eats Golden CoT
kthe rest of the cookies. How many cookies does Jenny eat? JL)
(Y 4 N\ /ﬁ
Attented Tokens: [€]’, “ 47, €., ¢ 5° ¢ Her’, ¢ week’, ¢ days’, ‘<bot>’, ¢?’]
<bot> s , s s , , ,) _
ot Decoded Token: [© 207, <207, ¢ 27, ¢ 187, ¢ 22°] <<4x5=20>>
— - J
'd Y 4 N\
Attented Tokens: [¢)’, ‘<bot>= 20’, ¢.’, “.’, ¢ Her’, ¢ days’, ‘?’, ¢ 5’, ‘days’]
Z Decoded Token: [€!7, 1”2, ¢:> ¢ 2> ¢]
- J & J
e N s 3
Attented Tokens: [€]’, ¢ 17, “.’, ¢ 7°, ‘<zl>=.’, ¢ days’, ¢ day’, ¢ ’, ¢ for’
Z; Decoded Token: [E 7” 7’ T T 73’ T 77°] ’ e v ’] sdbisrts
L) L , , > ,)
(R e N
o Attented Tokens: [, ‘<zl>=.’, ‘<z2>= 7’, ‘?’, ‘<bot>= 20’, ‘7’, ‘days’, ‘rest’, ..]
3 Decoded Token: [¢ is’, ¢ takes’, ¢ comes’, ¢ finds’, ‘ goes’]
. J . J
'd \ { N\
Attented Tokens: [‘]’, , ‘<z3>= is’, , ‘<zl>=., <7, ‘.7,]
Z,
4 Decoded Token: [, <277, ‘3, ‘ress’, ‘28’]
(. J/ \ J/
) ~
Zs Attented Tokens: []’, ‘<z3>= is’, ‘<z4>=27’, ‘<zl>=.’, ‘<z2>=7’, ‘?’, ‘<bot>=20’, ..]
Decoded Token: [¢ comes’, ...’, ¢ is’, ¢ goes’, ‘”’]
-/ L y,
s N e N\
Attented Tokens: [‘]’, ‘<z2>= 7’, ‘<bot>= 20’, ‘<z3>= is’, ‘<z5>= comes’, ‘<zl>=.’, .]
¥4
6 Decoded Token: [, €37, <27, ’28’, ¢ 28’]
" J . J
e R r N
Attented TI)!(E]-’IS: [<3’, <7, " is’, ‘The’, ¢ answer’, ¢ 36’, ‘<z4>=27’, ‘<bot>= 20’, ..] <<36-27=9>>
Model Prediction: The answer is: 9 <lendoftext|> _)
" J \ J

Figure 4: A case study illustrating CODI’s interpretability by analyzing its attended tokens and decoded tokens
of each of the six latent thought tokens, z; - - - z5. Attended tokens: these represent the top-10 tokens that the
continuous thought attends to when generating the next thought/token. Some attended tokens appear in the form
of ‘z; = «’, indicating attention to the i-th continuous thought. Here x represents the top-1 token that the latent
thought maps to in vocabulary space. Decoded tokens: these are the top-5 words that the continuous thoughts are
projected back to in vocabulary space by multiplying them with the vocabulary embeddings.

5.2 CODDI’s Pattern Learning

GPT-2 | CODI
Accuracy | 43.7%

Res
34.0%

Coconut

34.1%

Op-Res
35.7%

Table 5: Comparison of GPT-2 finetuned on two datasets
derived from CODI’s decoded thoughts. Res: using
intermediate results as CoT. Op-Res: using intermediate
operators and results as CoT.

Given that CODI’s continuous thoughts can of-
ten be decoded into intermediate results, it raises
a question: is CODI effectively equivalent to a
GPT-2 fine-tuned on a dataset containing CODI’s
decoded patterns? We created a dataset contain-
ing only intermediate results (e.g., “CoT: 20, 7,
27. Result: 9” translated from the case study
in Figure 4). Additionally, since some cases of
CODI show decoded operators like ‘<’ and ‘—’ in-
terleaved with intermediate results, we also create a
synthetic CoT dataset that includes both operators
and results (e.g., “CoT: x, 20, x, 7, 4+, 27.
Result: 97). As shown in Table 5, while models
trained on the two synthetic datasets outperform
the No-CoT baseline, they give significantly infe-

rior results compared to CoT and CODI, though
perform on par with Coconut. These result sug-
gest that CODI learns richer information from the
teacher task through distillation than pure imitation
on language-level intermediate results alone, high-
lighting the advantages of our training framework.

6 Conclusion

We introduced CODI, a novel paradigm for reason-
ing in the continuous space. Our extensive experi-
ments demonstrate CODI’s effectiveness as the first
continuous CoT method to match the performance
of explicit CoT, while achieving a high compres-
sion ratio. Furthermore, CODI shows its scalability,
robustness, generalizability to more complex CoT
data, while retaining interpretability. Future re-
search should explore CODI’s application to more
diverse and challenging tasks. A promising direc-
tion is the integration of multimodality, leverag-
ing continuous embeddings for seamless modality
merging. We hope this work inspires further ex-
ploration into reasoning in representations more
compact than language, paving the way for more
efficient and versatile reasoning paradigms.

7 Limitations

In the paper, our approach focuses on knowledge
transfer by probing the token (”:”’) responsible for
generating the first answer token. However, this
choice may be suboptimal, as some answers begin
with “-”, and removing such cases improves perfor-
mance, suggesting that critical reasoning informa-
tion might also reside in the token generating the
second answer token. Additionally, probing the to-
ken that concludes the CoT reasoning—potentially
summarizing the entire process—could offer alter-
native supervision signals. Furthermore, the cur-
rent answer prompt, “The answer is:”, is an arbi-
trary design choice that may influence the effec-
tiveness of knowledge transfer. Investigating these
aspects further could enable CODI to extend its
distillation framework to broader reasoning tasks.

Another limitation of the current continuous
training approach is the absence of intermediate
gradients until the end of the sequence. With six
continuous thought tokens, the first token’s gradi-
ent is backpropagated from six or more steps away
(specifically, from the token generating the final
answer), which may introduce optimization chal-
lenges. This issue could become more pronounced
when scaling to more complex problems requiring
longer continuous reasoning chains.

Furthermore, CODI’s current configuration is
fully deterministic, whereas one advantage of CoT
is its inherent stochasticity, which allows models to
improve performance through self-consistency, tree
search, and Monte Carlo Tree Search (MCTYS). In-
troducing controlled randomness into CODI could
restore this property. Potential solutions include in-
tegrating dropout layers, leveraging Variational Au-
toencoders (VAEs), or applying diffusion models
atop the current projection layer to enable diverse
and robust reasoning paths.

Finally, our studies primarily focus on mathe-
matical problems, as mathematical CoT training
data are more abundant and mathematical problems
inherently require complex reasoning. However,
this focus may limit the generalizability of CODI
to broader reasoning scenarios. Future work should
explore its applicability to more diverse reasoning
tasks beyond mathematical domains.

References

M. Amalric and S. Dehaene. 2016. Origins of the brain
networks for advanced mathematics in expert mathe-
maticians. Proceedings of the National Academy of
Sciences, 113(18):4909-4917.

M. Amalric and S. Dehaene. 2019. A distinct cortical
network for mathematical knowledge in the human
brain. Neurolmage, 189:19-31. Epub 2019 Jan 3.

Anthropic. 2024. Claude 3.5 sonnet.

Jeffrey Cheng and Benjamin Van Durme. 2024. Com-
pressed chain of thought: Efficient reasoning through
dense representations. Preprint, arXiv:2412.13171.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. ArXiv, abs/2110.14168.

Michael Crawshaw. 2020.
with deep neural networks:
abs/2009.09796.

Multi-task learning
A survey. ArXiv,

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024.
From explicit cot to implicit cot: Learning to inter-
nalize cot step by step. ArXiv, abs/2405.14838.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul
Smolensky, Vishrav Chaudhary, and Stuart Shieber.
2023. Implicit chain of thought reasoning via knowl-
edge distillation. ArXiv, abs/2311.01460.

Yijiang River Dong, Hongzhou Lin, Mikhail Belkin,
Ramon Huerta, and Ivan Vuli¢. 2024. Undial:
Self-distillation with adjusted logits for robust un-
learning in large language models. Preprint,
arXiv:2402.10052.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2024. In-context autoencoder for con-
text compression in a large language model. In The
Twelfth International Conference on Learning Repre-
sentations.

Google. 2024. Our next-generation model: Gemini 1.5.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A
survey. International Journal of Computer Vision,
129(6):1789-1819.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Nagara-
jan. 2024. Think before you speak: Training lan-
guage models with pause tokens. In The Twelfth
International Conference on Learning Representa-
tions.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. Preprint, arXiv:2412.06769.

https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1016/j.neuroimage.2019.01.001
https://doi.org/10.1016/j.neuroimage.2019.01.001
https://doi.org/10.1016/j.neuroimage.2019.01.001
https://doi.org/10.1016/j.neuroimage.2019.01.001
https://doi.org/10.1016/j.neuroimage.2019.01.001
https://www.anthropic.com/news/claude-3 -5-sonnet
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:221819295
https://api.semanticscholar.org/CorpusID:221819295
https://api.semanticscholar.org/CorpusID:221819295
https://api.semanticscholar.org/CorpusID:269982648
https://api.semanticscholar.org/CorpusID:269982648
https://api.semanticscholar.org/CorpusID:269982648
https://api.semanticscholar.org/CorpusID:264935229
https://api.semanticscholar.org/CorpusID:264935229
https://api.semanticscholar.org/CorpusID:264935229
https://arxiv.org/abs/2402.10052
https://arxiv.org/abs/2402.10052
https://arxiv.org/abs/2402.10052
https://arxiv.org/abs/2402.10052
https://arxiv.org/abs/2402.10052
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://blog.google/techno logy/ai/google-gemini-next-generation-model-february-2024
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14852—-14882, Toronto, Canada.
Association for Computational Linguistics.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Dis-
tilling step-by-step! outperforming larger language
models with less training data and smaller model
sizes. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 8003-8017,
Toronto, Canada. Association for Computational Lin-
guistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152-1157, San
Diego, California. Association for Computational
Linguistics.

Dongfang Li, zhenyu liu, Xinshuo Hu, Zetian Sun, Bao-
tian Hu, and Min Zhang. 2024a. In-context learning
state vector with inner and momentum optimization.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Zongqian Li, Yixuan Su, and Nigel Collier. 2024b.

500xcompressor: Generalized prompt compres-
sion for large language models. Preprint,
arXiv:2408.03094.

Zicheng Lin, Tian Liang, Jiahao Xu, Qiuzhi Lin, Xing
Wang, Ruilin Luo, Chufan Shi, Siheng Li, Yujiu
Yang, and Zhaopeng Tu. 2025. Critical tokens matter:
Token-level contrastive estimation enhances 1lm’s rea-
soning capability. Preprint, arXiv:2411.19943.

Sheng Liu, Haotian Ye, Lei Xing, and James Y. Zou.
2023. In-context vectors: Making in context learning
more effective and controllable through latent space
steering. ArXiv, abs/2311.06668.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

William Merrill and Ashish Sabharwal. 2024. The ex-
pressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

10

OpenAl. 2024. Hello gpt-4o.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Re-
ichart, Idan Szpektor, Hadas Kotek, and Yonatan Be-
linkov. 2025. LLMs know more than they show: On
the intrinsic representation of LLM hallucinations. In
The Thirteenth International Conference on Learning
Representations.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Jacob Pfau, William Merrill, and Samuel R. Bowman.
2024. Let’s think dot by dot: Hidden computation
in transformer language models. In First Conference
on Language Modeling.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743—1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Lena Strobl, William Merrill, Gail Weiss, David Chi-
ang, and Dana Angluin. 2024. What formal lan-
guages can transformers express? a survey. Transac-

tions of the Association for Computational Linguis-
tics, 12:543-561.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484—13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

https://doi.org/10.18653/v1/2023.acl-long.830
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://openreview.net/forum?id=gnnmB7y0Xx
https://openreview.net/forum?id=gnnmB7y0Xx
https://openreview.net/forum?id=gnnmB7y0Xx
https://arxiv.org/abs/2408.03094
https://arxiv.org/abs/2408.03094
https://arxiv.org/abs/2408.03094
https://arxiv.org/abs/2411.19943
https://arxiv.org/abs/2411.19943
https://arxiv.org/abs/2411.19943
https://arxiv.org/abs/2411.19943
https://arxiv.org/abs/2411.19943
https://api.semanticscholar.org/CorpusID:265149781
https://api.semanticscholar.org/CorpusID:265149781
https://api.semanticscholar.org/CorpusID:265149781
https://api.semanticscholar.org/CorpusID:265149781
https://api.semanticscholar.org/CorpusID:265149781
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://arxiv.org/abs/2407.21783
https://openai.com/index/hello-gpt-4o
https://openreview.net/forum?id=KRnsX5Em3W
https://openreview.net/forum?id=KRnsX5Em3W
https://openreview.net/forum?id=KRnsX5Em3W
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge
distillation of large language models. Preprint,
arXiv:2402.13116.

Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang,
Wei Chen, Minfeng Zhu, and Qian Liu. 2024. Self-
distillation bridges distribution gap in language
model fine-tuning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1028—
1043, Bangkok, Thailand. Association for Computa-
tional Linguistics.

A Implementation Details

For all experiments, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) with a cosine sched-
uler (without cycles) and a linear warm-up over the
first 3% of steps. The effective batch size is 128.
Both a and § are set to 1 (Equation 1). We ap-
ply LoRA (Hu et al., 2022) finetuning with a rank
of 128 and an alpha value of 32, using bfloat16
precision.

For GPT-2, we set the learning rate to 3e-3 and
~ to 1. Training runs for 40 epochs, taking approx-
imately 36 hours on a single A100 (80GB).

For LLaMA-3.2-1b, we use a learning rate of 8e-
4 and set y to 20, as we observe that its distillation
loss has a much smaller magnitude. The model is
trained for 10 epochs, requiring approximately 48
hours on a single A100 (80GB).

For iCoT training of GPT-2, we use a learning
rate of 5e-5 and train for 100 epochs, removing 4
tokens per epoch for GSM8k-Aug-NL. For iCoT
training of LLaMA-1b, we use a learning rate of
le-5 and train for 50 epochs, removing 8 tokens per
epoch for GSM8k-Aug and 16 tokens per epoch
for GSM8k-Aug-NL.

B Proof: CoTs Contribute a Shift in
Hidden Activation

In this section, we provide a proof to demonstrate
why Chain-of-Thought (CoT) contributes a shift
in hidden activation. This proof is largely inspired
by the work of (Li et al., 2024a), which analyzed
In-Context Learning.

In a typical CoT training dataset, the input usu-
ally consists of four components: the question @),
the rationale R, the prompt for the answer P (e.g.,
"The answer is:"), and the final answer A.

We analyze the attention activation of the last
prompt token, q—in this case, ":"—at the [-th trans-
former layer. The output activation a' from the
attention heads of this token is given by:

11

Wk|Q; R; P)Tq

a' = Wy [Q; R; P]softmax()

(0)
where Wy and Wy, are the model’s key and
value parameters, [(Q); R; P] represents the concate-
nation of the three inputs, and v/d is a scaling fac-
tor.
For simplicity of analysis, inspired by (Li et al.,
2024a), we omit the softmax operation and the scal-
ing factor, as these do not affect the core conclusion.

With this simplification, the following derivation
holds:

a' ~ Wy [Q; R; PIWk[Q; R; P]"q
= (W QW Q)T + Wy R(Wy R)T
+ WVP(WVP)T)q
= (Wvi@s PIOWv[Q: P))T
+ WVR(WVR)T)q

- <Wn0—CoT + WVR(WKR)T>q
= ai)o—CoT + WVR(WKR)Tq

Here, Who-CoT is defined as
Wy [Q; Pl(Wk[Q; P])T, accounting for the
contribution of) and P without the CoT rationale.
Correspondingly, aﬁlo_COT represents the attention
activation excluding CoT.

The additional term Wy R(Wy R)T q represents
the contribution of the CoT rationale R to the hid-
den activation. We can get the hidden activation
by transforming the attention activation by a non-
linear function f:

hl ~ bl oo+ f(WVR(WKR)Tq) %)

Thus, we conclude that the rationale R in the
CoT primarily contributes a shift in hidden acti-
vation values, emphasizing its role as an additive
factor in the latent representation. This shift can be
effectively captured and learned using a distance
metric.

C Datasets

We provide examples and statistics of training
datasets and evaluation benchmarks.

https://arxiv.org/abs/2402.13116
https://arxiv.org/abs/2402.13116
https://arxiv.org/abs/2402.13116
https://doi.org/10.18653/v1/2024.acl-long.58
https://doi.org/10.18653/v1/2024.acl-long.58
https://doi.org/10.18653/v1/2024.acl-long.58
https://doi.org/10.18653/v1/2024.acl-long.58
https://doi.org/10.18653/v1/2024.acl-long.58

C.1 Examples

GSM8k-Aug*

Question = "Jen shared a pack of
chocolates among her friends. She
gave 20% to Lucy, 30% to Sarah and
the remaining were shared equally
among four others. If the pack
contained 100 chocolates, how many
chocolates were each of the four
others getting?”

CoT = "The total percentage given to

So, the remaining percentage that
was shared among the others is 100%
- 50% = 50%. The total number of
chocolates shared among the others

So, each of the four others received
50 / 4 = 12.5 chocolates.”
\Answer = "12.5"

Lucy and Sarah is 20% + 30% = 50%.

is 100 * 50 / 100 = 50 chocolates.

-

GSMSk-Aug

Question = "Out of 600 employees
in a company, 30% got promoted
while 10% received bonus. How many
employees did not get either a
promotion or a bonus?”
CoT = "«600%30/100=180»
«600*10/100=60» «180+60=240»
«600-240=360»"

\\»Answer = "360"

SVAMP

Question = "There are 87 oranges and

If the bananas are organized into

2 groups and oranges are organized

into 93 groups. How big is each
\group of bananas?"” Answer = "145"

290 bananas in Philip’s collection.

/

MultiArith

Question = "There are 64 students
trying out for the school’s trivia
teams. If 36 of them didn’t get
picked for the team and the rest
were put into 4 groups, how many
students would be in each group?”
\\»Answer = "7"

-

12

GSM-Hard

Question = "Janet’s ducks lay 16
eggs per day. She eats three
for breakfast every morning and
bakes muffins for her friends every
day with 4933828. She sells the
remainder at the farmers’ market
daily for $2 per fresh duck egg.
How much in dollars does she make
every day at the farmers’ market?”
\Answer = "-9867630.0" /

C.2 Statistics

The statistics of training data are shown in Table
Al, and the statistics of evaluation benchmarks are
shown in Table A2.

Training Dataset | Num. Data Avg. CoT Tokens

GSM8k-Aug 385,620 20.3
GSMS8k-Aug* 384,625 49.0

Table Al: Training data statistics.

Evaluation Benchmark ‘ Num. Data

GSMS8k 1319
SVAMP 1000
GSM-Hard 1319
MultiArith 500

Table A2: Evaluation Benchmark statistics.

D Performance on Training Data

The training accuracy of CODI and CoT-SFT is
shown in Table A3.

| GPT-2 LLaMAlb

CoT-SFT 99.1% 98.9%
CODI (Ours) | 81.5% 95.0%

Table A3: Training Accuracies on GSM8k-Aug.

E Interpretability Case Studies

More case studies on the interpretability of CODI
are provided in Figure A1 and Figure A2

F CODI Code

The example Python code of CODI is illustrated in
Figure A3.

-
Question: On Monday, Walt walked 4 miles. Tuesday, he walked 6 times as many miles as he
walked on Monday. His total mileage Monday through Wednesday was 41 miles. How many miles Golden CoT
did he walk on Wednesday?
_ _
r N T
Attented Tokens: [‘On’, < 4° ¢’ 2’ ¢ 6’ ¢ His’, ‘<bot>’, ‘as’, ‘41’
SLUE Decoded Token : [E24’ < 24%, < 16°, ¢ 26°, ¢ 21°] ! ST P
\ J \
' N e
Attented Tokens: [‘On’, ‘<bot>=24’, ‘?’, “.’, ¢ How’, ¢ 41’, ¢ as’, ‘.’, ‘miles’]
21 Decoded Token: [“17, 177, €12, «* ¢]
| — |\
r ~ I
Attented Tokens: [‘On’, ‘<zl>=!’, ‘<bot>=24’, < 4’ ¢’ ¢ as’, ‘?’, ‘41°, ‘6’
3 Decoded Token: [[‘zs’ 287, ¢ self, 320, 241 P e chr2a=28>
= ’)) ’
. J _
' ~\ '
Attented Tokens: [‘On’, ‘<zl>=1’, ‘<z2>=28’, ‘?’, ‘<bot>=24’, “.’, ‘How’, ‘41’, .]
Z3 Decoded Token: [177, €17, 72 50 ¢ »0]
| J |
e N e
Attented Tokens: [‘On’, ‘<zl>=1’, ¢ 4’ ‘<bot>=24’, ‘<z3>=!"’, ‘<z2>=28’, ‘as’, ..]
Z4 Decoded Token: [‘28°, ¢ 28°, ¢ self’, ‘327, ‘30°]
(. J |
—\
Zs Attented Tokens: [‘On’, ‘<zl>=!’, ‘<z3>=17’ ‘<z4>=28’, ‘<z2>=28’, ‘?’, “.’, .]
‘DecndedTnken: [>>2, 22, 1= a2 ¢
e N s
Attented Tokens: [‘On’, ¢ 4, ‘<zl>=!’, ‘<bot>=24’, ‘<z3>=1"’, ‘<z5>=>>’, ‘<z4=28>’,..]
Ze Decoded Token: [‘28°, ¢ 28, ¢ self’, ‘32’°, ‘30’]
L J \
s ™ e
. Attented Tokens: [‘On’, “:’, ¢ is’, ‘The’, ¢ answer’, ¢ 41’, ‘?’, ‘<z4>=28", .] <<41-28=13>>
. Model Prediction: The answer is: 13 <lendoftext|> _)
" J _

Figure Al: CODI’s interpretability on problems involving two steps.

s s
Question: Last Friday, 13 of the 82 teachers at Rydell Elementary School were sick. There Golden CoT
were 9 substitute teachers called in to help. How many teachers were at school that day? wiEn ey

S
s ™ s f \
Attented Tokens: [‘Last’, ¢ 827, ¢ 137, ‘?°, ¢ teachers’, ‘<bot>’, ¢ were’, ‘.’, ..
ST Decoded Token [E69’ 790, ¢« 790, ¢ 69, *75°] ’ ' S LR
: > , s ,
- J L
' ~\ 'd
zZ Attented Tokens: [‘Last’, ‘<bot>=69’, ¢?’, ¢ 82, ¢ How’, ¢.’, ¢.”, ¢ 9’, ‘at’]
1 Decoded Token: [-, ¢,”, ‘ETA’, ‘[/’, ‘>>’]
" J 1§
(N s
z Attented Tokens: [‘Last’, ¢ 82°, ¢ 13’, ‘<zl>=-’, ‘<bot>=69’, “.’, “.’, ¢ 9’ , ‘at’]
2 Decoded Token: [‘69°, ¢ 69°, ‘63°, ‘73’, ‘79’]
\ J q
e N s
Z Attented Tokens: [‘Last’, ‘<zl>=-’, ‘<z2>=69’, ‘<bot>=69’, ¢ 82’, “?’, “.’, ¢ How’, ..]
3 Decoded Token: [“-’, ¢ would’, ¢ is’, ‘ETA’, ¢,’]
(. J A\
(N\ 4
Attented Tokens: [‘Last’, ¢ 82°, ¢ 13°, ‘<zl>=-’, ‘<z3>=-’, ‘<z2>=69’, “.’, ‘ were’,..]
Zy Decoded Token: [*69°, ¢ 69, ¢ 797, 63, ‘73]
| J/ |
— -
Zs Attented Tokens: [‘Last’, ‘<zl>=-’, ‘<z3>=-’, ‘<z4>=69’, ‘<z2>=69’, ¢ 82’, ..]
Decoded Token: [‘-, ¢ would’, ‘ETA’, ¢ is’, ¢,’]
—— (.
e N e
Z Attented Tokens: [‘Last’, ¢ 82, ¢ 13’, ‘<zl>=-’, ‘<z5>=-’, ‘<z3>=-’, ‘<z4>=69’, ..]
6 Decoded Token: [69, ¢ 69°, ¢ 79°, ‘63’, ‘79’]
L J .
e N s
. Attented Tokens: [‘Last’, ‘:’, ¢ is’, ¢ answer’, ‘The’, ¢ 9’, ¢ 82’, ‘<z4>=69’, .] <<69+9=78>>
: Model Prediction: The answer is: 78 <lendoftext!> _)
_ J _

Figure A2: CODI’s interpretability on problems involving one step.

13

class ContinuousCoTviaKnowledgeDistillation:
def __init__(self,):
self.num_latent = 6
self.alpha, self.beta, self.gamma =1, 1, 1
self.1lm = get_gpt2_model()
self.prj = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.GELU(Q),
nn.Linear(hidden_dim, hidden_dim),

)

def forward(x, y, x_cot_y):
teacher learning
y_teacher = self.llm(x_cot_y)
teacher_ce_loss = cross_entropy(y_teacher, x_cot_y) # lossl

student learning

latent = self.llm(torch.cat([x, bot_token], dim=1))[:, -1]
latent = self.prj(latent)

past_key_values = latent.past_key_values

continuous CoT reasoning

for i in range(self.num_latent):
latent = self.llm(latent, past_key_values)
latent = self.prj(latent)
past_key_values = latent.past_key_values

y_student = self.llm(torch.cat([eot_token, y], dim=1), past_key_values)
student_ce_loss = cross_entropy(y_student, y) # loss2

knowledge distillation
knowledge_distillation_loss = smooth_11_loss(
y_teacher.hidden_states[:, teacher_exact_answer_token_position-1],
y_student.hidden_states[:, student_exact_answer_token_position-1]
) # loss3
normalisation
knowledge_distillation_loss /= y_teacher.hidden_states[:,
teacher_exact_answer_token_position-1].std()

return self.alpha*teacher_ce_loss + self.beta*student_ce_loss + self.gammax
knowledge_distillation_loss

Figure A3: Example Python code illustrating the ContinuousCoTviaKnowledgeDistillation class.

14

	Introduction
	Related Work
	CODI: Continuous Chain-of-Thought via Self Distillation
	Overview
	Student Task
	Teacher Task
	Training and Inference

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies

	Further Analysis
	Interpretability Analysis
	CODI's Pattern Learning

	Conclusion
	Limitations
	Implementation Details
	Proof: CoTs Contribute a Shift in Hidden Activation
	Datasets
	Examples
	Statistics

	Performance on Training Data
	Interpretability Case Studies
	CODI Code

