
Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity
Classification

Anonymous ACL submission

Abstract

As part of an automated fact-checking001
pipeline, the claim veracity classification task002
consists in determining if a claim is supported003
by an associated piece of evidence. The com-004
plexity of gathering labelled claim-evidence005
pairs leads to a scarcity of datasets, partic-006
ularly when dealing with new domains. In007
this paper, we introduce SEED, a novel vector-008
based method to few-shot claim veracity classi-009
fication that aggregates pairwise semantic dif-010
ferences for claim-evidence pairs. We build011
on the hypothesis that we can find class repre-012
sentative vectors that capture average semantic013
differences for claim-evidence pairs in a class,014
which can then be used for classification of015
new instances. We compare the performance016
of our method with competitive baselines in-017
cluding fine-tuned BERT/RoBERTa models,018
as well as the state-of-the-art few-shot veracity019
classification method that leverages language020
model perplexity. Experiments conducted on021
the FEVER and SCIFACT datasets show con-022
sistent improvements over competitive base-023
lines in few-shot settings. Our code is avail-024
able here.1025

1 Introduction026

As a means to mitigate the impact of online misin-027

formation, research in automated fact-checking is028

attracting increasing attention (Zeng et al., 2021).029

A typical automated fact-checking pipeline con-030

sists of two main components: (1) claim detec-031

tion, which consists in identifying the set of sen-032

tences, out of a long text, deemed capable of be-033

ing fact-checked (Konstantinovskiy et al., 2020),034

and (2) claim validation, which aims to do both035

evidence retrieval and veracity classification for036

claims (Pradeep et al., 2020). As a key component037

of the automated fact-checking pipeline, the verac-038

ity classification component is generally framed039

as a task in which a model needs to determine if040

1Github repository link is omitted for blind review.
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Figure 1: SEED consists of two steps: 1. Captures
average semantic differences between claim-evidence
pairs for each class, leading to a JDIFFqK representa-
tive vector per class. 2. During inference, each input
vector JDIFFqK is compared with these representative
vectors.

a claim is supported by a given piece of evidence 041

(Hanselowski et al., 2018; Thorne et al., 2018; Wad- 042

den et al., 2020; Lee et al., 2021). It is dominantly 043

tackled as a label prediction task: given a claim c 044

and a piece of evidence e, predict the veracity la- 045

bel for the claim c which can be one of “Support”, 046

“Contradict” or “Neutral”. For example, the claim 047

“A staging area is only an unused piece of land.” is 048

contradicted by the evidence “A staging area (oth- 049

erwise staging point, staging base or staging post) 050

is a location where organisms, people, vehicles, 051

equipment or material are assembled before use.” 052

Despite recent advances in the veracity classifica- 053

tion task, existing methods predominantly involve 054

training big language models, and/or rely on sub- 055

stantial amounts of labelled data, which can be 056

unrealistic in the case of newly emerging domains 057

such as COVID-19 (Saakyan et al., 2021). To over- 058
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come these dependencies, we set out to propose059

a novel and effective method to veracity classifi-060

cation with very limited data, e.g. as few as 10061

to 20 samples per veracity class. To develop such062

method, we hypothesise that a method can leverage063

a small number of training instances, such that the064

semantic differences within claim-evidence pairs065

will be similar for each veracity class. Hence, we066

can calculate a representative vector for each class067

by averaging semantic differences within claim-068

evidence pairs of that class. These representative069

vectors would then enable making predictions on070

unseen claim-evidence pairs. Figure 1 provides an071

illustration.072

Building on this hypothesis, we propose a novel073

method, Semantic Embedding Element-wise Dif-074

ference (SEED), as a method that can leverage075

a pre-trained language model to build class rep-076

resentative vectors out of claim-evidence seman-077

tic differences, which are then used for inference.078

The method can be flexibly used with any lan-079

guage models, although for experimental purposes080

here we make use of sentence-BERT (Reimers and081

Gurevych, 2019). By evaluating on two benchmark082

datasets –FEVER and SCIFACT–, and comparing083

both with fine-tuned language models –BERT (De-084

vlin et al., 2019) and RoBERTa (Liu et al., 2019)–085

and with the state-of-the-art few-shot claim verac-086

ity classification method that leverages perplexity087

(Lee et al., 2021), we demonstrate the effectiveness088

of our method. SEED validates the effectiveness089

of our proposed paradigm to tackle the veracity090

classification task based on semantic differences,091

which we consistently demonstrate in three differ-092

ent settings on two datasets.093

We make the following contributions:094

• We introduce SEED, a novel method that095

computes semantic differences within claim-096

evidence pairs for effective and efficient few-097

shot claim veracity classification.098

• By experimenting on two datasets, we demon-099

strate the effectiveness of SEED to outper-100

form two competitive baselines in the most101

challenging settings with limited numbers of102

shots. While the state-of-the-art perplexity-103

based model is restricted to two-class classifi-104

cation, SEED offers the flexibility to be used105

in two- or three-class settings.106

• We perform a post-hoc analysis of the method,107

further delving into the results to understand108

performance variability through standard devi-109

ations, as well as to understand method conver- 110

gence through the evolution of representative 111

vectors. 112

2 Related Work 113

The recent increase of interest in automated fact- 114

checking research is evident in survey papers cov- 115

ering different angles: Thorne and Vlachos (2018) 116

focuses on unifying the task formulations and 117

methodologies, Kotonya and Toni (2020b) centers 118

on generating explanations, Nakov et al. (2021) 119

elaborates on assisting human fact checkers, Zeng 120

et al. (2021) overviews the emerging tasks of claim 121

detection and claim validation, and finally Guo et al. 122

(2021) presents a comprehensive and up-to-date 123

survey that highlights research challenges. Publicly 124

available datasets have been gradually improving 125

in terms of scale (Thorne et al., 2018; Sathe et al., 126

2020; Aly et al., 2021), enriched features (Augen- 127

stein et al., 2019; Ostrowski et al., 2020; Kotonya 128

and Toni, 2020a), on-demand domains (Wadden 129

et al., 2020; Diggelmann et al., 2021; Saakyan et al., 130

2021), and novel perspectives (Chen et al., 2019; 131

Schuster et al., 2021). Recently proposed systems 132

address various challenges, e.g. improving evi- 133

dence retrieval in a noisy setting (Samarinas et al., 134

2021), understanding the impact of evidence-aware 135

sentence selection (Bekoulis et al., 2021), develop- 136

ing domain-transferable fact verification (Mithun 137

et al., 2021). 138

When dealing with veracity classification, most 139

recent systems fine-tune a large pre-trained lan- 140

guage model to do three-way label predic- 141

tion, including VERISCI (Wadden et al., 2020), 142

VERT5ERINI (Pradeep et al., 2020), Para- 143

graphJoint (Li et al., 2021). Despite the evident 144

effectiveness of these methods, fine-tuning models 145

depends on the availability of substantial amounts 146

of labelled data, which are not always accessible, 147

particularly for new domains. They can also be 148

very demanding in terms of computing resources 149

and time. Given these limitations, here we argue for 150

the need of developing more affordable solutions 151

which can in turn achieve competitive performance 152

in few-shot settings and/or with limited computing 153

resources. 154

Research in few-shot veracity classification is 155

however still in its infancy. To the best of our 156

knowledge, existing work has limited its applica- 157

bility to binary veracity classification, i.e., keeping 158

the “Support” class and merging the “Contradict” 159
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and “Neutral” classes into a new “Not_Support”160

class. Lee et al. (2021) hypothesised that evidence-161

conditioned perplexity score from language models162

would be helpful for assessing claim veracity. They163

explored using perplexity scores with a threshold164

th to determine claim veracity into “Support” and165

“Not_Support”: if the score is lower than the thresh-166

old th, it is classified as “Not_Support” and oth-167

erwise “Support”. This method proved to achieve168

better performance on few-shot binary classifica-169

tion than fine-tuning a BERT model. In proposing170

our SEED method, we use this method as the state-171

of-the-art baseline for few-shot veracity classifica-172

tion in the same two-class settings, while SEED is173

also applicable to and experimented in three-class174

settings.175

Use of class representative vectors for text clas-176

sification has also attracted interest in the research177

community recently. In a similar vein to our178

proposed approach SEED, prototypical networks179

(Snell et al., 2017) have proven successful in few-180

shot classification as a method using representative181

vectors for each class in classification tasks. Proto-182

typical networks were proposed as a solution to iter-183

atively build class prototype vectors for image clas-184

sification through parameter updates via stochastic185

gradient descent, and have recently been used for186

relation extraction in NLP (Gao et al., 2019; Fu187

and Grishman, 2021). While building on a similar188

idea, our SEED method further proposes the use of189

semantic differences to come up with a meaningful190

and comparable representation of claim-evidence191

pairs, a method that has not been studied in the192

context of claim veracity classification.193

3 SEED: Methodology194

We hypothesise that we can make use of sentence195

embeddings (Reimers and Gurevych, 2019) from196

pre-trained language models such as BERT and197

RoBERTa to effectively compute pairwise semantic198

differences between claims and their associated199

evidences. These differences can then be averaged200

into a representative vector for each class, which201

can in turn serve to make predictions on unseen202

instances during inference.203

We formalise this hypothesis through the imple-204

mentation of SEED as follows. For a given claim-205

evidence pair made of claim c and evidence e, we206

first leverage a pre-trained language model to ob-207

tain sentence embeddings JcK and JeK. We then cap-208

ture a representation of their semantic difference by209

calculating the element-wise difference |JcK− JeK|, 210

following the method proposed by Reimers and 211

Gurevych (2019) as part of the classification objec- 212

tive function. Formally, for a claim-evidence pair 213

x that has sentencexc and sentencexe , we have: 214

JDIFFxK = |JsentencexcK−JsentencexeK| (1) 215

To address the task of veracity classification that 216

compares a claim with its corresponding evidence, 217

we obtain the mean vector of all JDIFF K vectors 218

within a class. We store this mean vector as the 219

representative of the target claim-evidence relation. 220

That is, for each class c that has n training sam- 221

ples available, we obtain its representative relation 222

vector with equation 2. 223

JRelationcK

= JDIFFcK

=
1

n

n∑
i=1

(JDIFFiK)

=
1

n

n∑
i=1

(|JevidenceiK− JclaimiK|)

(2) 224

During inference, we first obtain the query 225

JDIFFqK vector for a given unseen claim-evidence 226

pair, then calculate Euclidean distance between the 227

JDIFFqK vector and every computed JRelationcK 228

vector, e.g. JSupportK, JContradictK and 229

JNeutralK for three-way veracity classification, 230

and finally inherit the veracity label from the candi- 231

date relation vector that has the smallest Euclidean 232

distance value. 233

4 Experiment Settings 234

4.1 Datasets 235

We conduct experiments on the FEVER (Thorne 236

et al., 2018) and SCIFACT (Wadden et al., 2020) 237

datasets (see examples in Table 1). FEVER, a 238

benchmark, large-scale dataset for automated fact- 239

checking, contains claims that are manually mod- 240

ified from Wikipedia sentences and their corre- 241

sponding Wikipedia evidences. SCIFACT is a 242

smaller dataset that focuses on scientific claims. 243

The claims are annotated by experts and evidences 244

are retrieved from research paper abstracts. For no- 245

tation consistency, we use “Support”, “Contradict” 246

and “Neutral” as veracity labels for both datasets.2 247

2Originally, FEVER uses “Support”, “Refute” and “Not
Enough Info” as veracity categories, while SCIFACT uses

3



FEVER

Claim Evidence Veracity

“In 2015, among Americans, more than 50%
of adults had consumed alcoholic drink at
some point.”

“For instance, in 2015, among Americans, 89% of adults
had consumed alcohol at some point, 70% had drunk it
in the last year, and 56% in the last month.”

“Suppport”

“Dissociative identity disorder is known
only in the United States of America.”

“DID is diagnosed more frequently in North America
than in the rest of the world, and is diagnosed three to
nine times more often in females than in males.”

“Contradict”

“Freckles induce neuromodulation.” “Margarita Sharapova (born 15 April 1962) is a Russian
novelist and short story writer whose tales often draw on
her former experience as an animal trainer in a circus.”

“Neutral”

SCIFACT

Claim Evidence Veracity

“Macropinocytosis contributes to a cell’s
supply of amino acids via the intracellular
uptake of protein.”

“Here, we demonstrate that protein macropinocytosis
can also serve as an essential amino acid source.”

“Suppport”

“Gene expression does not vary appreciably
across genetically identical cells.”

“Genetically identical cells sharing an environment can
display markedly different phenotypes.”

“Contradict”

“Fz/PCP-dependent Pk localizes to the an-
terior membrane of notochord cells during
zebrafish neuralation.”

“These results reveal a function for PCP signalling in
coupling cell division and morphogenesis at neurulation
and indicate a previously unrecognized mechanism that
might underlie NTDs.”

“Neutral”

Table 1: Veracity classification samples from the FEVER and SCIFACT datasets.

4.2 Method implementation248

We implement SEED by using sentence-BERT249

(Reimers and Gurevych, 2019) with huggingface250

model hub (Wolf et al., 2020). Specifically,251

we use three variants of BERT (Devlin et al.,252

2019) as the base model: BERT-base, BERT-253

large and BERT-nli. The first two are avail-254

able on huggingface model hub with model id255

bert-base-uncased and bert-large-uncased. The256

last one has been fine-tuned on natural language257

inference (NLI) tasks and is available on sen-258

tence BERT repository with model id bert-base-259

nli-mean-tokens. We include experiments with260

SEEDBERTNLI
due to the proximity between the261

veracity classification and natural language infer-262

ence tasks. We use SEEDBERTB
, SEEDBERTL

263

and SEEDBERTNLI
to denote them hereafter.264

4.3 Baselines265

We compare our method with two baseline meth-266

ods: perplexity-based (PB) method and fine-tuning267

(FT) method.268

Perplexity-Based Method (PB) The perplexity-269

based method (Lee et al., 2021) is the current270

SOTA method for few-shot veracity classification.271

It uses conditional perplexity scores generated by272

“Supports”, “Refutes” and “No_Info”.

pre-trained language models to find a threshold 273

that enables binary predictions. If the perplexity 274

score of a given claim-evidence pair is higher than 275

the threshold, it is assigned the “Support” label; 276

otherwise, the “Not_Support” label. We conduct 277

experiments with BERT-base and BERT-large for 278

direct comparison with other methods. We denote 279

them as PBBERTB
and PBBERTL

hereafter. 280

Fine-Tuning Method (FT) We also conduct ex- 281

periments with widely-used model fine-tuning 282

methods. Specifically, we fine-tune vanilla BERT- 283

base, BERT-large, RoBERTa-base and RoBERTa- 284

large models from huggingface model hub (Wolf 285

et al., 2020). The associated model ids are 286

bert-base-uncased, bert-large-uncased, roberta- 287

base and roberta-large respectively. Following 288

Lee et al. (2021), we use 5e−6 for FTBERTB
289

and FTRoBERTaB as learning rate and 2e−5 for 290

FTBERTL
and FTRoBERTaL . All models share 291

the same batch size of 32 and are trained for 10 292

epochs. We denote them as FTBERTB
, FTBERTL

, 293

FTRoBERTaB and FTRoBERTaL hereafter. 294

4.4 Experimental Design 295

Experiments are conducted in three different con- 296

figurations: binary FEVER veracity classification, 297

three-way FEVER veracity classification and three- 298
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way SCIFACT veracity classification. The first299

configuration is designed to enable direct compari-300

son with the SOTA method (i.e. PB), as it is only301

designed for doing binary classification.302

We conduct N-shot experiments (i.e. those with303

n training samples per class) with the following304

choices of n: 2, 4, 6, 8, 10, 20, 30, 40, 50, 100.305

Note that one may argue that 50-shot and 100-shot306

are not necessarily few-shot, however we chose307

to include them to further visualise the trend of308

methods up to 100 shots. The number of shots n309

refers to the number of instances, per class, e.g.310

2-shot experiments would include 6 instances in to-311

tal when experimenting with 3 classes. To control312

for fluctuations in performance scores owing to the313

randomness of selecting n shots, for each n-shot ex-314

periment we use 10 different random seeds ranging315

from 123 to 132, and we report the mean results.316

Likewise, due to the variability in performance of317

the FT method given its non-deterministic nature,318

we do 5 runs for each setting and report the mean319

results.320

5 Results321

We report overall accuracy performance of each322

task formulation here.323

5.1 FEVER Binary Classification324

Experiment Setup For binary classification, we325

use the FEVER data provided by the original au-326

thors of the PB method (Lee et al., 2021) for fair327

comparison. The data contains 3333 “Support” in-328

stances and 3333 “Not_Support” instances.3 For329

n-shot setting, we sample n shots –i.e. n instances330

per class– as the train set, and use the rest –i.e.331

3333 − n instances per class– as the test set. We332

present experiments with all three methods (SEED,333

PB, FT).334

Results As shown in Figure 2, SEED achieves335

the overall best performance in few-shot settings.336

When given fewer than 10 shots, the accuracy of337

the FT method remains low at around 50%, which338

is close to a random guess for a balanced, bi-339

nary classification task. Meanwhile, PBBERTB
,340

PBBERTL
, SEEDBERTB

and SEEDBERTL
341

achieve similar results at around 57%. In 10-shot,342

20-shot and 30-shot settings, SEED outperforms343

PB method, which in turn outperforms the FT344

method. In 40-shot and 50-shot setting, FTBERTL
345

3The “Not_Support” is obtained by sampling and merging
original instances from both “Contradict” and “Neutral”

Figure 2: Comparison of few-shot accuracy perfor-
mance on the binary FEVER dataset.

surpasses PB, although FTBERTB
, FTRoBERTaB 346

and FTRoBERTaL perform remarkably lower. In 347

the 100-shot setting, FTBERTL
manages to out- 348

perform SEEDBERTB
and SEEDBERTL

and 349

achieves similar performance as SEEDBERTNLI
. 350

FTBERTB
, FTRoBERTaB and FTRoBERTaL in 351

the 100-shot setting failed to outperform SEED, de- 352

spite that FTRoBERTaL successfully outperformed 353

PB. Overall, SEED with vanilla pre-trained lan- 354

guage models outperforms both baselines in 10- 355

shot to 50-shot settings. In addition, SEED with 356

BERT-nli always achieves the best performance up 357

to 100 shots. 358

Interestingly, the increase of shots has very dif- 359

ferent effects on each method. SEED experiences 360

significant accuracy improvement as shots increase 361

when given fewer than 20 shots; the performance 362

boost then slows down drastically afterwards. Start- 363

ing with reasonably high accuracy, PB achieves a 364

mild performance improvement when given more 365

training samples. When given fewer than 10 shots, 366

the FT method doesn’t experience reliable perfor- 367

mance increase over training data increase; it only 368

starts to experience linear performance boost after 369

10-shots. 370

5.2 FEVER Three-Way Classification 371

Experiment Setup We use 3333 randomly sam- 372

pled instances for each class out of “Support”, 373

“Contradict” and “Neutral” from the original 374

FEVER test set as the total dataset for our experi- 375

ment. For n-shot setting, we sample n shots, i.e. n 376

instances per class, as the train set, and use the rest, 377

i.e. 3333 − n instances per class, as the test set. 378

In these experiments we compare SEED and FT, 379

5



excluding PB as it cannot be applied to three-class380

experiments.381

Figure 3: Comparison of few-shot accuracy perfor-
mance on the FEVER dataset.

Results Figure 3 shows a general trend to in-382

crease performance as the amount of training data383

increases for both methods. When given 10 or384

fewer shots, SEED shows significant performance385

advantages. When given between 2 and 10 shots,386

performance of fine-tuned models fluctuates around387

33%, which equals to a random guess. Meanwhile,388

SEED achieves significant accuracy improvement389

from less than 40% to around 55% with vanilla390

pre-trained language models. In this scenario,391

the performance gap between the two methods392

that use the same model base ranges from 6%393

to 26%. With 20 shots, SEED with vanilla pre-394

trained language models significantly outperform395

FTBERTB
, FTRoBERTaB and FTRoBERTaL , al-396

though FTBERTL
managed to achieve similar re-397

sults. With 30 shots, SEED with vanilla pre-398

trained language models reach its performance399

peak at around 60% and SEEDBERTNLI
peaks400

around 68%. Given 30 or more shots, SEED401

slowly gets surpassed by the FT method. Specifi-402

cally, FTBERTL
surpasses SEED with vanilla pre-403

trained language models using 30 shots, while404

FTRoBERTaL and FTBERTB
only achieve a simi-405

lar effect with 100 shots. However, FTRoBERTaB406

never outperforms SEED within 100 shots. In addi-407

tion, SEEDBERTNLI
has enormous performance408

advantages when given fewer than 10 shots, de-409

spite being outperformed by FTBERTL
at 40 shots.410

Overall, SEED experiences a performance boost411

with very few shots, whereas the FT method is412

more demanding, whose performance starts to in-413

crease only after 10 shots. 414

Interestingly, SEEDBERTB
outperforms 415

SEEDBERTL
starting from 6 shots. This perfor- 416

mance difference within SEED further results in 417

another interesting observation: SEEDBERTB
418

achieves better overall accuracy than FTBERTL
at 419

10 shots. 420

5.3 SCIFACT Three-Way Classification 421

Experiment Setup The SCIFACT dataset is 422

much smaller than the FEVER dataset, originally 423

with only 809 claims for training and 300 claims 424

for development (the test set being withheld for a 425

shared task is not yet available at the time of writ- 426

ing). For each n-shot setting, we randomly sample 427

n instances for each class out of “Support”, “Con- 428

tradict” and “Neutral”, which are used as the train 429

set. Given the imbalanced nature of the develop- 430

ment set (i.e. 138, 114 and 71 pairs for each class), 431

we randomly sample 70 instances for each class 432

in the development set and use them for evalua- 433

tion. We again compare SEED and FT in these 434

experiments. 435

Figure 4: Comparison of few-shot accuracy perfor-
mance on the SCIFACT dataset.

Results Figure 4 shows again an expected in- 436

crease in performance for both methods as they 437

use more training data. Despite taking a bit longer 438

to pick up, SEED still starts its performance boost 439

early on. Increasing from 2 to 10 shots, SEED 440

gains a substantial increase in performance. In 441

addition, the FT method performs similarly to a 442

random guess at around 33% accuracy when given 443

10 or fewer shots. When given 20 shots, FT still 444

falls behind SEED, which differs from the trend 445

seen with the FEVER three-way veracity classi- 446
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fication. SEEDBERTB
and SEEDBERTL

peak447

at around 45%, while SEEDBERTNLI
peaks at448

around 50% with only 20 shots. At 30-shots and 40-449

shots, SEED still shows competitive performance,450

where FTBERTL
outperforms two of the SEED451

variants, but still falls behind SEEDBERTNLI
.452

FTRoBERTaL outperforms SEED with vanilla453

BERT models at 50-shots and FTBERTB
and454

FTRoBERTaB achieves that at 100-shots.455

The accuracy scores on the SCIFACT dataset456

are noticeably lower than on the FEVER dataset.457

The FT method is again more demanding on the458

number of shots and experiences a noticeable delay459

to overtake SEED, more so on SCIFACT than on460

FEVER. This highlights the challenging nature of461

the SCIFACT dataset, where SEED still remains462

the best in few-shot settings.463

6 Post-hoc Analysis464

6.1 Impact of shot sampling on performance465

Random selection of n shots for few-shot exper-466

iments can lead to a large variance in the results,467

which we mitigate by presenting averaged results468

for 10 samplings. To further investigate the vari-469

ability of the three methods under study, we look470

into the standard deviations.471

Figure 5: Standard deviation comparison on binary
FEVER veracity classification.

Figure 5 presents the standard deviation dis-472

tribution on Binary FEVER Veracity Classifica-473

tion, which is largely representative of the standard474

deviations of the models across the different set-475

tings (for detailed standard deviation values across476

settings please refer to Appendix C.). We only477

analyse configurations that utilise BERT-base and478

BERT-large for direction comparison across meth-479

ods. Overall, PB always has the lowest standard 480

deviation, which demonstrates its low performance 481

variability across random sampling seeds. When 482

given 10 or fewer shots, the standard deviation of 483

SEED is comparatively higher than that of FT. It im- 484

plies that the SEED method experiences larger per- 485

formance fluctuations when given very few shots. 486

Despite its robustness to random sampling when 487

given 10 or fewer shots, FT’s accuracy performance 488

remains significantly lower than other methods and 489

close to random guess, as shown in Figure 2. Fur- 490

thermore, when given more than 10 shots, the stan- 491

dard deviations of FT surpass SEED with large 492

margin. The FT method loses its advantages in ro- 493

bustness and becomes more vulnerable to random 494

sampling than the SEED method. 495

In short, PB is the most robust method to sam- 496

ple variations, despite underperforming SEED on 497

average; SEED is still generally more robust than 498

the FT method, except for cases with fewer shots 499

where FT underperforms. 500

6.2 Why does SEED plateau? 501

As presented in §5, the performance improvement 502

of SEED becomes marginal when given more than 503

40 shots. Given that SEED learns mean represen- 504

tative vectors based on training instances for each 505

class, the method likely reaches a stable average 506

vector after seeing a number of shots. To investi- 507

gate the converging process of representative vec- 508

tors, we measure the variation caused in the mean 509

vectors by each additional shot added. Specifically, 510

for values of n ranging from 2 to 200, we calculate 511

the Euclidean distance between n-shot relation vec- 512

tors and (n-1)-shot representative vectors, which 513

measures the extent to which representative vectors 514

were altered since the addition of the last shot. Fig- 515

ure 6 depicts the converging process with FEVER 516

three-way veracity classification. Across three dif- 517

ferent model bases, the amount of variation drops 518

consistently for larger numbers of n shots, with 519

a more prominent drop for n={2-21} and a more 520

modest drop subsequently. From a positive an- 521

gle, this indicates the ability of SEED to converge 522

quickly, which validates the use of semantic dif- 523

ferences for verification. From a negative angle, it 524

also means that the method stops learning as much 525

for larger numbers of shots as it becomes stable. 526

The curves of BERT-base and BERT-large 527

largely overlap each other, while the curve of 528

BERT-nli does not conjoin until convergence. It 529

7



Figure 6: SEED converging on three-way FEVER veracity classification with increasing number of n shots.

corresponds well with the overall performance ad-530

vantages of utilising BERT-nli as presented in §5.531

It implies that using language models fine-tuned532

on relevant tasks allow larger impact to be made533

with initial few shots. Future work may deepen the534

explorations in this direction. For example, using a535

model fine-tuned on FEVER veracity classification536

to address SCIFACT veracity classification.537

7 Discussion538

With experiments on two- and three-class settings539

on two datasets, FEVER and SCIFACT, SEED540

shows state-of-the-art performance in few-shot set-541

tings. With only 10 shots, SEED with vanilla542

BERT models achieves approximately 58% accu-543

racy on binary veracity classification, 8% above FT544

and 1% above PB. Furthermore, SEED achieves545

around 56% accuracy on three-way FEVER, while546

FT models underperform with a 38% accuracy, an547

absolute performance gap of 18%. Despite the548

difficulty of performing veracity classification on549

scientific texts in the SCIFACT dataset, SEED still550

achieves accuracy above 42%, which is 9% higher551

than FT. When utilising BERT-nli, SEED consis-552

tently achieves improvements with 10 shots only:553

15% higher than FT and 8% higher than PB on554

FEVER binary veracity classification; 23% higher555

than FT on FEVER three-way veracity classifica-556

tion and 17% higher than FT on SCIFACT three-557

way veracity classification. Further, Appendix A558

presents detailed classwise F1 performance, which559

shows that improved performance is also consistent560

across classes.561

In comparison with PB, SEED has better learn-562

ing capacities, higher few-shot performance, and563

most importantly, it is more flexible for doing multi- 564

way veracity classification, enabling in this case 565

both two-class and three-class experiments. With 566

respect to FT, SEED is better suited and faster to 567

deploy in few-shot settings. It is more effective re- 568

garding few-shot data usage, generally more robust 569

to random sampling, and it has lower demand on 570

data quantity and computing resources. 571

While SEED demonstrates the ability to learn 572

representative vectors that lead to effective veracity 573

classification with limited labelled data and com- 574

putational resources, its performance plateaus with 575

large numbers of shots. SEED has proven effective 576

for few-shot claim veracity classification experi- 577

ments. Its extension to adapt to scenarios with 578

more shots remains an open problem that is beyond 579

the scope of this work. 580

8 Conclusions 581

We have presented an efficient and effective SEED 582

method which achieves significant improvements 583

over the baseline systems in few-shot veracity clas- 584

sification. By comparing it with a perplexity-based 585

few-shot claim veracity classification method as 586

well as a range of fine-tuned language models, 587

SEED achieves state-of-the-art performance in the 588

task on two datasets and three different settings. 589

Given its low demand on labelled data and compu- 590

tational resources, SEED can be easily extended, 591

for example, to new domains with limited labelled 592

examples. 593
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A Classwise F1 Performances 771

We present classwise F1 performance here for fur- 772

ther understanding of the results. Figure 7 sheds 773

light on addressing the task of FEVER binary ve- 774

racity classification. Both SEED and FT method 775

gain improved performance on both classes with 776

more data. The SEED method and PB method have 777

significant performance advantages on the “Sup- 778

port” class, when given 10 or fewer shots. Despite 779

that the PB method initially achieves very high per- 780

formance on the “Support” class at around 60%, 781

it then experiences a performance drop and ends 782

at around 55% for BERT-base and 58% for BERT- 783

large. 784

Figures 8 and 9 show consistent classwise per- 785

formance patterns in tackling three-way veracity 786

classification on both FEVER and SCIFACT. Both 787

figures indicate that SEED has better overall per- 788

formance in all three classes when given fewer 789

than 20 shots, where performance on the “Sup- 790

port” class always has absolute advantages over 791

the FT method and performance on the “Neutral” 792

class experiences the biggest boost. At around 20- 793

shot,s the FT method starts to overtake largely due 794

to improved performance on the “Neutral” class. 795

Interestingly, within SEED, SEEDBERTB
outper- 796

forms SEEDBERTL
, which in turn outperforms 797

SEEDBERTNLI
. 798

In general, classwise F1 performance shows con- 799

sistent performance patterns with overall accuracy 800

performance. The SEED method has significant 801

performance advantages when given 10 or fewer 802

shots in all classes. The PB method has very good 803

performance on predicting the “Support” class ini- 804

tially but struggles to improve with more data. The 805

FT method has underwhelming performance on all 806

classes when given very few shots and gain big im- 807

provements over training data increase, especially 808

on the “Neutral” class. 809
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Figure 7: Comparison of few-shot classwise F1 performance on the binary FEVER dataset.

Figure 8: Comparison of few-shot classwise F1 performance on the FEVER dataset.

Figure 9: Comparison of few-shot classwise F1 performance on the SCIFACT dataset.

B Detailed Accuracy and Classwise F1810

Scores811

We report detailed performance scores of the three812

conducted experiments here, namely FEVER bi-813

nary veracity classification, FEVER three-way ve-814

racity classification and SCIFACT three-way ve-815

racity classification. All of the reported scores are816

mean scores of multiple runs.817

B.1 FEVER Binary Veracity Classification 818

Table 2 reports detailed few-shot performance 819

for PBBERTB
and PBBERTL

. Table 3 reports 820

detailed few-shot performance for FTBERTB
, 821

FTBERTL
, FTRoBERTaB and FTRoBERTaL . 822

Table 4 reports detailed few-shot perfor- 823

mance for SEEDBERTB
, SEEDBERTL

824

and SEEDBERTNLI
. 825
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PBBERTB
| PBBERTL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.565 0.602 0.476 0.576 0.590 0.521
4 0.570 0.603 0.507 0.581 0.583 0.564
6 0.573 0.586 0.531 0.573 0.605 0.508
8 0.571 0.594 0.518 0.575 0.596 0.524
10 0.572 0.592 0.523 0.578 0.588 0.546
20 0.570 0.550 0.545 0.569 0.577 0.497
30 0.575 0.537 0.581 0.584 0.556 0.596
40 0.577 0.558 0.579 0.583 0.578 0.582
50 0.577 0.548 0.585 0.583 0.569 0.585
100 0.580 0.550 0.596 0.585 0.579 0.586

Table 2: Few-Shot PB Performance on FEVER Bi-
nary Veracity Classification. Acc stands for accuracy;
F1S , F1Not stands for F1 score for “Support” and
“Not_Support” respectively.

FTBERTB
| FTBERTL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.501 0.345 0.380 0.504 0.398 0.363
4 0.498 0.363 0.352 0.509 0.422 0.355
6 0.502 0.355 0.384 0.498 0.400 0.365
8 0.508 0.379 0.386 0.492 0.339 0.399
10 0.498 0.310 0.423 0.500 0.358 0.383
20 0.509 0.320 0.500 0.555 0.532 0.495
30 0.524 0.387 0.479 0.573 0.530 0.575
40 0.530 0.367 0.544 0.598 0.607 0.544
50 0.542 0.430 0.556 0.621 0.638 0.575
100 0.576 0.550 0.556 0.694 0.707 0.672

FTRoBERTaB
| FTRoBERTaL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.501 0.341 0.350 0.500 0.336 0.361
4 0.500 0.280 0.417 0.499 0.376 0.311
6 0.500 0.357 0.325 0.499 0.333 0.372
8 0.502 0.417 0.304 0.500 0.343 0.332
10 0.500 0.395 0.287 0.500 0.367 0.320
20 0.504 0.349 0.377 0.521 0.424 0.464
30 0.504 0.284 0.431 0.520 0.428 0.455
40 0.509 0.364 0.427 0.544 0.488 0.529
50 0.519 0.466 0.372 0.554 0.552 0.520
100 0.561 0.507 0.535 0.615 0.617 0.574

Table 3: Few-Shot FT Performance on FEVER Bi-
nary Veracity Classification. Acc stands for accuracy;
F1S , F1Not stands for F1 score for “Support” and
“Not_Support” respectively.

B.2 FEVER Three-way Veracity826

Classification827

Table 5 reports detailed few-shot performance828

for FTBERTB
, FTBERTL

, FTRoBERTaB and829

FTRoBERTaL . Table 6 reports detailed few-shot830

performance for SEEDBERTB
, SEEDBERTL

831

and SEEDBERTNLI
.832

B.3 SCIFACT Three-way Veracity833

Classification834

Table 7 reports detailed few-shot performance835

for FTBERTB
, FTBERTL

, FTRoBERTaB and836

FTRoBERTaL .837

Table 8 reports detailed few-shot perfor-838

mance for SEEDBERTB
, SEEDBERTL

and839

SEEDBERTNLI
.840

SEEDBERTB
| SEEDBERTL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.557 0.592 0.444 0.545 0.627 0.341
4 0.562 0.574 0.527 0.579 0.586 0.511
6 0.565 0.583 0.530 0.580 0.593 0.534
8 0.580 0.603 0.542 0.572 0.571 0.531
10 0.584 0.599 0.551 0.582 0.599 0.541
20 0.615 0.632 0.590 0.604 0.639 0.555
30 0.617 0.621 0.610 0.615 0.641 0.582
40 0.624 0.629 0.618 0.622 0.645 0.593
50 0.628 0.634 0.620 0.624 0.643 0.602
100 0.635 0.636 0.632 0.626 0.641 0.610

SEEDBERTNLI

Shots Acc F1S F1Not

2 0.596 0.636 0.512
4 0.619 0.632 0.592
6 0.659 0.665 0.646
8 0.651 0.651 0.645
10 0.654 0.652 0.650
20 0.697 0.696 0.696
30 0.702 0.702 0.701
40 0.705 0.706 0.704
50 0.705 0.706 0.704
100 0.706 0.706 0.706

Table 4: Few-Shot SEED Performance on FEVER Bi-
nary Veracity Classification. Acc stands for accuracy;
F1S , F1Not stands for F1 score for “Support” and
“Not_Support” respectively.

FTBERTB
| FTBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.317 0.214 0.281 0.271 0.319 0.283 0.302 0.240
4 0.334 0.287 0.331 0.220 0.367 0.277 0.388 0.276
6 0.371 0.329 0.354 0.219 0.309 0.257 0.301 0.231
8 0.286 0.221 0.296 0.223 0.351 0.274 0.403 0.240
10 0.385 0.273 0.401 0.280 0.384 0.320 0.369 0.300
20 0.488 0.341 0.585 0.316 0.586 0.416 0.749 0.390
30 0.418 0.340 0.433 0.295 0.654 0.476 0.907 0.485
40 0.521 0.434 0.658 0.263 0.686 0.497 0.951 0.542
50 0.524 0.377 0.617 0.385 0.712 0.538 0.963 0.584
100 0.650 0.460 0.904 0.487 0.771 0.652 0.972 0.673

FTRoBERTaB
| FTRoBERTaL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.333 0.145 0.209 0.157 0.334 0.137 0.249 0.167
4 0.335 0.215 0.187 0.157 0.333 0.139 0.157 0.250
6 0.334 0.189 0.175 0.172 0.333 0.132 0.173 0.216
8 0.333 0.169 0.214 0.140 0.334 0.145 0.194 0.202
10 0.333 0.153 0.175 0.197 0.334 0.171 0.175 0.212
20 0.340 0.195 0.185 0.207 0.428 0.383 0.439 0.275
30 0.359 0.223 0.239 0.196 0.500 0.383 0.640 0.416
40 0.384 0.290 0.266 0.260 0.564 0.418 0.759 0.454
50 0.405 0.391 0.303 0.291 0.587 0.472 0.794 0.450
100 0.557 0.441 0.727 0.443 0.674 0.544 0.882 0.565

Table 5: Few-Shot FT Performance on FEVER Three-
way Veracity Classification. Acc stands for accuracy;
F1C , F1N and F1S stands for F1 score for “Contra-
dict”, “Neutral” and “Support” respectively.

C Detailed Standard Deviation Scores 841

Here we report detailed standard deviation scores 842

of the three conducted experiments over multiple 843

runs. 844

C.1 FEVER Binary Veracity Classification 845

Table 9 reports detailed few-shot performance for 846

PBBERTB
and PBBERTL

. 847

Table 10 table reports detailed few-shot perfor- 848

mance for FTBERTB
, FTBERTL

, FTRoBERTaB 849
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SEEDBERTB
| SEEDBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.383 0.331 0.216 0.431 0.392 0.290 0.252 0.461
4 0.459 0.360 0.501 0.476 0.468 0.336 0.522 0.489
6 0.519 0.389 0.664 0.514 0.513 0.385 0.653 0.493
8 0.546 0.417 0.726 0.510 0.536 0.397 0.706 0.485
10 0.559 0.424 0.744 0.519 0.554 0.368 0.731 0.535
20 0.594 0.445 0.805 0.528 0.580 0.413 0.768 0.528
30 0.604 0.455 0.817 0.527 0.579 0.412 0.774 0.511
40 0.617 0.464 0.821 0.549 0.589 0.420 0.776 0.532
50 0.622 0.469 0.819 0.556 0.590 0.418 0.776 0.537
100 0.635 0.477 0.821 0.585 0.594 0.422 0.774 0.551

SEEDBERTNLI

Shots Acc F1C F1N F1S

2 0.463 0.371 0.226 0.599
4 0.534 0.431 0.462 0.625
6 0.586 0.476 0.592 0.656
8 0.595 0.490 0.625 0.651
10 0.612 0.489 0.661 0.664
20 0.653 0.532 0.721 0.684
30 0.670 0.550 0.744 0.690
40 0.681 0.559 0.756 0.699
50 0.687 0.560 0.758 0.711
100 0.694 0.567 0.767 0.714

Table 6: Few-Shot SEED Performance on FEVER
Three-way Veracity Classification. Acc stands for ac-
curacy; F1C , F1N and F1S stands for F1 score for
“Contradict”, “Neutral” and “Support” respectively.

and FTRoBERTaL .850

Table 11 reports detailed few-shot perfor-851

mance for SEEDBERTB
, SEEDBERTL

and852

SEEDBERTNLI
.853

C.2 FEVER Three-way Veracity854

Classification855

Table 12 reports detailed few-shot performance856

for FTBERTB
, FTBERTL

, FTRoBERTaB and857

FTRoBERTaL . Table 13 reports detailed few-shot858

performance for SEEDBERTB
, SEEDBERTL

859

and SEEDBERTNLI
.860

C.3 SCIFACT Three-way Veracity861

Classification862

Table 14 reports detailed few-shot performance863

for FTBERTB
, FTBERTL

, FTRoBERTaB and864

FTRoBERTaL . Table 15 reports detailed few-shot865

performance for SEEDBERTB
, SEEDBERTL

866

and SEEDBERTNLI
.867

FTBERTB
| FTBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.326 0.111 0.249 0.200 0.328 0.154 0.237 0.179
4 0.341 0.238 0.222 0.160 0.333 0.175 0.238 0.191
6 0.334 0.180 0.245 0.157 0.340 0.155 0.180 0.252
8 0.333 0.149 0.233 0.214 0.335 0.222 0.203 0.165
10 0.328 0.143 0.254 0.178 0.340 0.259 0.225 0.121
20 0.381 0.210 0.414 0.184 0.416 0.310 0.434 0.313
30 0.415 0.230 0.516 0.232 0.479 0.353 0.573 0.396
40 0.417 0.257 0.541 0.247 0.510 0.387 0.649 0.417
50 0.458 0.323 0.588 0.291 0.531 0.404 0.675 0.480
100 0.519 0.414 0.686 0.424 0.558 0.486 0.720 0.478

FTRoBERTaB
| FTRoBERTaL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.334 0.125 0.268 0.152 0.333 0.202 0.171 0.182
4 0.330 0.146 0.208 0.170 0.334 0.162 0.217 0.160
6 0.331 0.111 0.182 0.224 0.335 0.178 0.155 0.218
8 0.335 0.218 0.152 0.157 0.333 0.194 0.169 0.172
10 0.333 0.235 0.148 0.147 0.334 0.133 0.214 0.213
20 0.341 0.172 0.212 0.161 0.381 0.338 0.315 0.303
30 0.355 0.270 0.177 0.234 0.423 0.389 0.494 0.299
40 0.377 0.335 0.250 0.267 0.445 0.393 0.520 0.374
50 0.386 0.351 0.248 0.337 0.482 0.390 0.576 0.444
100 0.504 0.457 0.611 0.414 0.563 0.462 0.705 0.495

Table 7: Few-Shot FT Performance on SCIFACT
Three-way Veracity Classification. Acc stands for ac-
curacy; F1C , F1N and F1S stands for F1 score for
“Contradict”, “Neutral” and “Support” respectively.

SEEDBERTB
| SEEDBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.368 0.238 0.302 0.416 0.376 0.227 0.347 0.428
4 0.387 0.323 0.420 0.370 0.368 0.290 0.359 0.381
6 0.400 0.302 0.454 0.394 0.395 0.302 0.419 0.413
8 0.415 0.325 0.483 0.405 0.413 0.352 0.437 0.400
10 0.421 0.326 0.496 0.422 0.425 0.326 0.470 0.430
20 0.443 0.334 0.554 0.432 0.445 0.327 0.533 0.447
30 0.441 0.308 0.566 0.431 0.454 0.303 0.575 0.447
40 0.450 0.301 0.584 0.438 0.461 0.296 0.587 0.466
50 0.453 0.302 0.591 0.441 0.464 0.288 0.599 0.466
100 0.451 0.286 0.594 0.438 0.464 0.274 0.607 0.464

SEEDBERTNLI

Shots Acc F1C F1N F1S

2 0.399 0.341 0.277 0.451
4 0.458 0.399 0.368 0.530
6 0.472 0.431 0.393 0.531
8 0.480 0.416 0.441 0.538
10 0.500 0.432 0.456 0.578
20 0.509 0.424 0.494 0.580
30 0.517 0.439 0.505 0.582
40 0.521 0.451 0.515 0.577
50 0.527 0.453 0.526 0.581
100 0.533 0.468 0.531 0.582

Table 8: Few-Shot SEED Performance on SCIFACT
Three-way Veracity Classification. Acc stands for ac-
curacy; F1C , F1N and F1S stands for F1 score for
“Contradict”, “Neutral” and “Support” respectively.
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PBBERTB
| PBBERTL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.019 0.054 0.149 0.020 0.053 0.144
4 0.014 0.042 0.099 0.010 0.043 0.074
6 0.015 0.051 0.105 0.014 0.046 0.102
8 0.015 0.047 0.108 0.015 0.048 0.107
10 0.015 0.046 0.107 0.013 0.049 0.094
20 0.011 0.090 0.116 0.020 0.102 0.160
30 0.008 0.095 0.072 0.005 0.063 0.047
40 0.008 0.059 0.069 0.005 0.038 0.038
50 0.008 0.064 0.071 0.004 0.049 0.047
100 0.007 0.047 0.056 0.004 0.028 0.033

Table 9: Few-Shot PB Standard Deviation on FEVER
Binary Veracity Classification. Acc stands for accu-
racy; F1S , F1Not stands for F1 score for “Support”
and “Not_Support” respectively.

FTBERTB
| FTBERTL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.025 0.326 0.273 0.038 0.313 0.255
4 0.025 0.322 0.285 0.039 0.310 0.248
6 0.035 0.320 0.271 0.043 0.302 0.245
8 0.039 0.320 0.262 0.039 0.310 0.252
10 0.034 0.316 0.260 0.033 0.316 0.267
20 0.056 0.305 0.174 0.066 0.201 0.176
30 0.053 0.307 0.186 0.072 0.191 0.084
40 0.063 0.300 0.111 0.063 0.116 0.156
50 0.070 0.262 0.075 0.054 0.047 0.138
100 0.074 0.197 0.078 0.037 0.041 0.064

FTRoBERTaB
| FTRoBERTaL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.003 0.320 0.326 0.003 0.319 0.317
4 0.005 0.319 0.308 0.003 0.323 0.320
6 0.002 0.326 0.325 0.005 0.309 0.319
8 0.005 0.300 0.312 0.001 0.330 0.331
10 0.002 0.320 0.325 0.006 0.319 0.326
20 0.008 0.313 0.306 0.022 0.233 0.227
30 0.009 0.310 0.303 0.018 0.231 0.232
40 0.013 0.285 0.268 0.028 0.165 0.146
50 0.022 0.257 0.269 0.027 0.096 0.115
100 0.032 0.164 0.166 0.063 0.126 0.133

Table 10: Few-Shot FT Standard Deviation on FEVER
Binary Veracity Classification. Acc stands for accu-
racy; F1S , F1Not stands for F1 score for “Support”
and “Not_Support” respectively.

SEEDBERTB
| SEEDBERTL

Shots Acc F1S F1Not Acc F1S F1Not

2 0.045 0.109 0.165 0.046 0.119 0.171
4 0.044 0.172 0.125 0.062 0.118 0.060
6 0.046 0.130 0.082 0.060 0.088 0.071
8 0.063 0.164 0.078 0.051 0.076 0.068
10 0.055 0.121 0.056 0.054 0.108 0.069
20 0.022 0.025 0.051 0.016 0.022 0.044
30 0.014 0.020 0.030 0.023 0.037 0.035
40 0.007 0.008 0.022 0.013 0.020 0.027
50 0.006 0.009 0.020 0.011 0.011 0.027
100 0.003 0.005 0.011 0.006 0.011 0.012

SEEDBERTNLI

Shots Acc F1S F1Not

2 0.095 0.125 0.137
4 0.115 0.138 0.107
6 0.045 0.058 0.051
8 0.078 0.096 0.073
10 0.081 0.102 0.077
20 0.011 0.026 0.019
30 0.015 0.022 0.018
40 0.013 0.019 0.012
50 0.009 0.015 0.009
100 0.006 0.011 0.007

Table 11: Few-Shot SEED Standard Deviation on
FEVER Binary Veracity Classification. Acc stands for
accuracy; F1S , F1Not stands for F1 score for “Sup-
port” and “Not_Support” respectively.

FTBERTB
| FTBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.229 0.258 0.399 0.305 0.237 0.233 0.406 0.288
4 0.232 0.278 0.398 0.284 0.243 0.243 0.445 0.289
6 0.229 0.296 0.429 0.290 0.253 0.249 0.429 0.281
8 0.238 0.256 0.382 0.276 0.262 0.249 0.443 0.284
10 0.239 0.280 0.444 0.310 0.219 0.243 0.442 0.295
20 0.196 0.266 0.425 0.301 0.128 0.211 0.370 0.261
30 0.202 0.236 0.419 0.287 0.064 0.162 0.186 0.180
40 0.179 0.229 0.397 0.271 0.033 0.138 0.032 0.164
50 0.163 0.206 0.427 0.262 0.037 0.154 0.012 0.132
100 0.065 0.132 0.183 0.206 0.035 0.064 0.006 0.105

FTRoBERTaB
| FTRoBERTaL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.008 0.224 0.242 0.229 0.005 0.198 0.244 0.224
4 0.014 0.238 0.224 0.224 0.006 0.213 0.225 0.234
6 0.010 0.235 0.228 0.231 0.002 0.213 0.233 0.241
8 0.001 0.235 0.242 0.213 0.008 0.222 0.235 0.231
10 0.006 0.224 0.230 0.239 0.006 0.217 0.224 0.238
20 0.013 0.226 0.229 0.231 0.068 0.167 0.244 0.182
30 0.040 0.239 0.253 0.228 0.066 0.123 0.157 0.095
40 0.057 0.221 0.266 0.221 0.066 0.105 0.151 0.121
50 0.068 0.150 0.275 0.185 0.077 0.098 0.188 0.106
100 0.068 0.102 0.157 0.130 0.102 0.134 0.193 0.130

Table 12: Few-Shot FT Standard Deviation on FEVER
Three-way Veracity Classification. Acc stands for ac-
curacy; F1C , F1N and F1S stands for F1 score for
“Contradict”, “Neutral” and “Support” respectively.
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SEEDBERTB
| SEEDBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.023 0.146 0.108 0.144 0.041 0.189 0.166 0.115
4 0.016 0.119 0.080 0.113 0.042 0.154 0.135 0.128
6 0.026 0.080 0.070 0.077 0.031 0.116 0.063 0.104
8 0.030 0.066 0.063 0.065 0.034 0.114 0.063 0.108
10 0.029 0.062 0.069 0.042 0.018 0.099 0.041 0.069
20 0.020 0.054 0.015 0.035 0.011 0.069 0.010 0.076
30 0.018 0.043 0.015 0.044 0.005 0.073 0.009 0.089
40 0.017 0.040 0.015 0.038 0.006 0.062 0.008 0.071
50 0.013 0.042 0.012 0.038 0.008 0.060 0.010 0.069
100 0.016 0.033 0.010 0.032 0.011 0.058 0.006 0.049

SEEDBERTNLI

Shots Acc F1C F1N F1S

2 0.055 0.110 0.176 0.027
4 0.051 0.083 0.142 0.086
6 0.040 0.063 0.088 0.050
8 0.043 0.046 0.075 0.062
10 0.036 0.048 0.060 0.032
20 0.013 0.026 0.026 0.031
30 0.024 0.016 0.025 0.052
40 0.020 0.013 0.019 0.037
50 0.019 0.024 0.019 0.029
100 0.011 0.013 0.010 0.024

Table 13: Few-Shot SEED Standard Deviation on
FEVER Three-way Veracity Classification. Acc stands
for accuracy; F1C , F1N and F1S stands for F1 score
for “Contradict”, “Neutral” and “Support” respectively.

FTBERTB
| FTBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.034 0.203 0.185 0.244 0.037 0.229 0.178 0.240
4 0.039 0.248 0.192 0.226 0.049 0.244 0.174 0.235
6 0.035 0.238 0.194 0.230 0.032 0.236 0.183 0.249
8 0.050 0.226 0.186 0.247 0.042 0.251 0.173 0.231
10 0.041 0.220 0.175 0.240 0.037 0.256 0.184 0.208
20 0.054 0.246 0.144 0.244 0.064 0.202 0.208 0.216
30 0.072 0.231 0.108 0.257 0.067 0.157 0.176 0.185
40 0.072 0.201 0.088 0.233 0.054 0.144 0.123 0.158
50 0.068 0.173 0.109 0.247 0.048 0.118 0.107 0.115
100 0.043 0.085 0.063 0.146 0.044 0.064 0.078 0.082

FTRoBERTaB
| FTRoBERTaL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.015 0.205 0.242 0.221 0.017 0.230 0.229 0.228
4 0.013 0.219 0.237 0.232 0.016 0.223 0.238 0.229
6 0.011 0.202 0.233 0.243 0.011 0.231 0.220 0.238
8 0.017 0.242 0.229 0.227 0.012 0.237 0.230 0.225
10 0.010 0.237 0.223 0.219 0.019 0.204 0.232 0.240
20 0.027 0.233 0.250 0.233 0.040 0.142 0.214 0.179
30 0.032 0.219 0.234 0.222 0.043 0.105 0.112 0.140
40 0.043 0.196 0.237 0.206 0.053 0.102 0.135 0.098
50 0.040 0.147 0.238 0.170 0.045 0.101 0.130 0.072
100 0.038 0.058 0.084 0.084 0.067 0.116 0.102 0.102

Table 14: Few-Shot FT Standard Deviation on SCI-
FACT Three-way Veracity Classification. Acc stands
for accuracy; F1C , F1N and F1S stands for F1 score
for “Contradict”, “Neutral” and “Support” respectively.

SEEDBERTB
| SEEDBERTL

Shots Acc F1C F1N F1S Acc F1C F1N F1S

2 0.025 0.134 0.130 0.114 0.045 0.116 0.131 0.121
4 0.044 0.075 0.066 0.107 0.042 0.082 0.084 0.124
6 0.037 0.087 0.073 0.112 0.036 0.090 0.082 0.095
8 0.030 0.086 0.048 0.103 0.027 0.098 0.066 0.112
10 0.033 0.071 0.086 0.070 0.036 0.130 0.084 0.072
20 0.032 0.060 0.045 0.037 0.030 0.080 0.053 0.051
30 0.025 0.042 0.032 0.026 0.038 0.078 0.058 0.063
40 0.023 0.017 0.036 0.027 0.030 0.063 0.048 0.038
50 0.019 0.023 0.033 0.021 0.023 0.055 0.028 0.034
100 0.015 0.022 0.029 0.020 0.023 0.029 0.037 0.036

SEEDBERTNLI

Shots Acc F1C F1N F1S

2 0.062 0.055 0.077 0.174
4 0.053 0.048 0.090 0.130
6 0.052 0.052 0.085 0.141
8 0.055 0.058 0.082 0.121
10 0.032 0.039 0.073 0.040
20 0.028 0.058 0.028 0.030
30 0.022 0.050 0.043 0.020
40 0.026 0.051 0.037 0.025
50 0.032 0.054 0.046 0.027
100 0.018 0.026 0.031 0.027

Table 15: Few-Shot SEED Standard Deviation on SCI-
FACT Three-way Veracity Classification. Acc stands
for accuracy; F1C , F1N and F1S stands for F1 score
for “Contradict”, “Neutral” and “Support” respectively.
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