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Abstract

Many recent language models (LMs) of the001
Transformers family are capable of in-context002
learning (ICL), manifested in the LMs’ abil-003
ity to perform a new task solely from its de-004
scription in a natural language input. Previous005
work curating these models assumes that ICL006
emerges from vast over-parametrization or the007
scale of multi-task training. However, a com-008
plementary branch of recent theoretical work at-009
tributes ICL emergence to specific properties of010
training data and creates functional in-context011
learners in small-scale, synthetic settings.012

Inspired by these findings, we propose a013
Concept-aware Training (CoAT) method con-014
structing training scenarios that make it benefi-015
cial for the LM to learn to utilize the analogi-016
cal reasoning concepts. We measure that data017
sampling of CoAT substantially improves mod-018
els’ ICL on unseen tasks, resulting in the perfor-019
mance comparable to the previous in-context020
learners trained on over 1600 tasks when we ap-021
ply CoAT with only two QA datasets. Our anal-022
yses show that CoAT’s improvements can be023
attributed to models’ reinforced ability to bene-024
fit from natural concepts from demonstrations025
over the reliance on the pre-trained semantic026
priors common for previous ICL models.027

1 Introduction028

The in-context learning (ICL), as initially uncov-029

ered by Brown et al. (2020), is a specific task re-030

quiring language models (LMs) to infer and apply031

correct functional relationships from the pairs of032

inputs and outputs (i.e. demonstrations) presented033

in user-provided input prompt (Li et al., 2023a).034

Given that a small set of demonstrations can be035

obtained for any machine learning task, in-context036

learning presents a much more versatile and practi-037

cal alternative to task-specific models.038

Modern in-context learners can often perform039

ICL with quality comparable to task-specialized040

models (Zhao et al., 2023; Štefánik et al., 2023).041

"Input: Who was the first black president in Mexico?
 Context: [synthetic]
 Prediction: AMG

 Input: What are the names of all the stores located in Khanewal District?
 Context: [synthetic]
 Prediction: KUF

 Input: What is motto of the state whose official symbol is cranberry?
 Context: [synthetic]
 Prediction: "

"TNC"

QA demonstrations with analogical reasoning concept
(select→project→filter→project)

Predicted sample (using analogical concept)

Correct prediction

In-context learner

Figure 1: Example from synthetic TeaBReAC dataset
with demonstrations sharing analogical reasoning chain.
In Concept-aware Training (CoAT), we use such ex-
amples in training to enable models to benefit from
latent reasoning concepts within in-context learning.

However, it remains unclear why some LMs are 042

able of ICL in such quality while others are not; 043

Initial work introducing GPT3 (Brown et al., 2020) 044

followed by Thoppilan et al. (2022); Chowdhery 045

et al. (2022); inter alia explains ICL as an emergent 046

consequence of models’ scale. But more recent 047

LMs (Sanh et al., 2022; Wang et al., 2022; Wei 048

et al., 2021; Ouyang et al., 2022) are based on 049

10 to 100 times smaller models while reaching 050

comparable ICL quality, instead attributing the ICL 051

ability to a vast volume and diversity of pre-training 052

tasks and instruction formats. Hence, should we 053

claim in-context learning ability to the scale of 054

training data or model size? 055

The complementary branch of theoretical studies 056

is more specific in identifying covariates responsi- 057

ble for the emergence of ICL in data irregularities, 058

i.e. the properties of the data that can not be ex- 059

plained by mere statistical co-occurrence of tokens. 060

1



Notably, Xie et al. (2022) identify the key property061

in the occurrence of text dependencies that can be062

resolved by identifying latent concepts that under-063

pin these dependencies. In this and other works064

that we survey in Section 2, Authors show that ICL065

can also emerge with both small data and small066

models, by curating and training on small synthetic067

datasets exhibiting specific properties.068

In this work, we adapt and empirically verify069

recent theories on data irregularities fostering ICL070

in synthetic settings. In Section 3, we propose071

a data construction method that encourages the072

occurrence of concept-dependent irregularity in073

training samples, and hence, requires models to074

learn to utilise latent concepts that explain these075

irregularities (Fig. 1). We refer to this method as076

Concept-aware Training (CoAT).077

In Section 4, we explore the impact of this ad-078

justment in controlled settings. On a set of over079

70 tasks of SuperGLUE and Natural-Instructions,080

we find that CoAT can largely improve in-context081

learning performance over commonly-used un-082

controlled data selection, in many cases enabling083

ICL of otherwise not learnable tasks. Consequen-084

tially, models trained with CoAT on merely two (2)085

QA datasets reach performance comparable to in-086

context learners of similar or larger size trained on087

massive collections of over 1,600 diverse tasks.088

Our analyses attribute these improvements to089

the enhanced ability of CoAT-trained models to090

recover unseen concepts from demonstrations and091

to their robustness over labels’ semantics, in favour092

of functional relations presented in demonstrations.093

2 Background094

Methods for training in-context learners In-095

context learning ability, including few-shot ICL,096

was first uncovered in GPT3 (Brown et al., 2020)097

trained unsupervisedly for causal language mod-098

elling. With no other substantial differences to pre-099

vious GPT models, the emergence of ICL was at-100

tributed to GPT3’s scale, having grown to over 170-101

billion parameters since GPT2 (≈800M params).102

Not long after, a pivotal work of Schick and103

Schütze (2020) on a Pattern-exploiting training104

(PET) has shown that even much smaller (110M)105

models like BERT (Devlin et al., 2019) can be fine-106

tuned using self-training in a similarly small data107

regime, first disputing the assumption on the neces-108

sity of the scale in rapidly learning new tasks.109

A new branch of autoregressive generation mod-110

els further undermined the assumption of the size111

conditioning of ICL. In one of the pivotal works, 112

Min et al. (2022a) fine-tune smaller pre-trained 113

models (<1B parameters) on a large mixture of 114

tasks in the few-shot prompt format and shows 115

that such models are also able to perform well on 116

previously unseen tasks. Following approaches 117

also train smaller models for instruction following 118

(Sanh et al., 2022; Wang et al., 2022) on large mix- 119

tures of tasks, assuming that the model’s ability to 120

learn an unseen task without updates emerges from 121

a large variety of diverse instruction formats and 122

task types. A recently popularised reinforcement 123

learning approach of InstructGPT (Ouyang et al., 124

2022) also presents an adaptation of instruction- 125

following objectives, training on a large variety of 126

instructions with automatic feedback. 127

Recently, the instruction following approach 128

was complemented by joint training on program- 129

ming code generation tasks (Chen et al., 2021) and 130

by Chain-of-Thought (CoT) objective (Wei et al., 131

2022), where the model is trained to respond with 132

a sequence of natural-language steps deducing its 133

answer (Zhao et al., 2023). Both these extensions 134

were empirically shown to enhance ICL ability (Fu 135

and Khot, 2022) and were adopted by Flan models 136

(Chung et al., 2022). 137

Analyses of ICL Despite the accuracy of ICL in 138

many recent LMs, it remains a matter of open dis- 139

cussion as to why the in-context learning emerges. 140

Recent studies shed some light in this direction 141

through controlled experimentation, finding that 142

the LMs’ decision-making in ICL does not align 143

with human intuition; Notably, Lu et al. (2022) first 144

report on the sensitivity of LMs to the specific for- 145

mulation of the instructions in the prompt, while 146

Liu et al. (2022) report on LMs’ surprising sensi- 147

tivity to the ordering of in-context demonstrations. 148

Further, it was shown that LMs perform ICL com- 149

parably well when the labels of the demonstrations 150

are randomly shuffled (Min et al., 2022b) or when 151

the presented CoT sequences do not make sense 152

(Wang et al., 2023). We note that such behaviours 153

differ from learning a functional relation of inputs 154

and labels from demonstrations that we might ex- 155

pect from in-context learners (Li et al., 2023a). 156

Still, other studies report that under the right con- 157

ditions, LMs are able to learn functional relation- 158

ships solely from the input prompt; For instance, 159

studies of Akyürek et al. (2023); Li et al. (2023b) 160

show that Transformers can be trained to accurately 161

learn regression functions solely from the prompt. 162
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<sep> <sep> <sep>

picked demonstrations

P(  = 0.76

P(  = 0.43

P(  = 0.89

P(  = 0.62

<sep>

picked demonstrations

<sep> <sep>

All samples Informativeness condition Non-triviality condition

picked

predicted predicted

predicted

Figure 2: Demonstrations selection of Concept-aware training (CoAT): From all samples of the training dataset,
we first (i) filter out available samples to ones sharing a reasoning concept # with predicted sample (xpred, ypred).
From this subset, we (ii) incrementally pick the next demonstration, i.e. candidate sample ci such that the model Θ’s
probability of generating the correct prediction ypred if we pick ci among demonstrations is minimal.

Xie et al. (2022) might be the first to identify the163

causal effects on ICL quality in specific data proper-164

ties, rather than data scale, identifying the causal of165

the ICL in the presence of the latent concepts that166

LMs need to utilise to improve in the training task167

(either pre-training or fine-tuning). Related work168

attributes ICL to similar data irregularities, such as169

statistical burstiness (Chan et al., 2022) or compo-170

sitionality (Hahn and Goyal, 2023). Note that these171

studies are not conflicting with the aforementioned172

empirical results, but rather explain the causes of173

their success; For instance, in multi-task training,174

smaller LMs might indeed necessarily learn to iden-175

tify shared concepts from inputs (Wies et al., 2023).176

Our work builds upon these findings, but com-177

pared to the referenced studies limited to in-silico178

experiments, we bring the idea of concept-aware179

training into real-world settings, implemented with180

publicly available datasets and widely-used pre-181

trained models. We measure the impact of concept-182

aware data construction in extrinsic evaluation over183

70 diverse tasks and show its potential to substan-184

tially enhance data efficiency and robustness in185

training in-context learners, compared to previous186

work using magnitudes of more data and compute.187

3 Concept-Aware Training (CoAT)188

We propose a Concept-Aware Training (CoAT)189

method that adapts the findings of previous work190

in data-driven emergence of ICL by applying a191

conditional selection of few-shot demonstrations192

presented in the training prompts (Figure 2). We193

assume the format of training prompts widely194

used in the previous work training in-context few-195

shot learners, constructing training prompts from196

k demonstrations consisting of the inputs x with 197

labels y followed by the predicted input xpred: 198

[x1, y1, ⟨sep⟩, . . . , xk, yk, ⟨sep⟩, xpred]→ ypred 199

In this setting, CoAT proposes to filter in-context 200

demonstrations by two sequential conditions. The 201

main condition, denoted as informativeness con- 202

dition, assures to pick demonstrations that present 203

a reasoning concept C that is shared between a 204

picked demonstration (xi, yi) and the predicted ex- 205

ample (xpred, ypred), thus picking only the demon- 206

strations that are informative for the correct predic- 207

tion. In such settings, it is beneficial for the trained 208

model to learn to extract and apply concepts pre- 209

sented in the input prompt. 210

However, as the sole informativeness condition 211

may pick demonstrations very similar to the pre- 212

dicted sample, we propose a second, non-triviality 213

condition. This condition aims to filter the demon- 214

strations to ones with which it is ‘difficult’ for the 215

model to respond correctly. Further, this condi- 216

tion may increase the heterogeneity of different 217

concepts that co-occur among the demonstrations, 218

avoiding the over-reliance on the presence of a 219

small set of specific concepts in small-data settings. 220

3.1 Proposed Implementation 221

We propose to instantiate the CoAT method in two 222

training stages: First, we train LM on a synthetic 223

QA dataset with explicitly annotated reasoning con- 224

cepts. Second, we refresh the LM’s ability to work 225

with natural language prompts by further tuning 226

on a QA dataset with only natural language inputs. 227

Therefore, contrary to previous work, our resulting 228

models are trained on only two QA datasets. 229
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Informativeness condition We find a large col-230

lection of annotated reasoning concepts in a231

TeaBReaC dataset of Trivedi et al. (2022), con-232

taining more than 900 unique explanations over a233

relatively large set of synthetic QA contexts. Each234

explanation maps a natural question to the answer235

span through a sequence of declarative reasoning236

steps, such as “select→group→project”. We use237

these patterns as informative concepts C and hence,238

in CoAT, we construct training input texts only239

from demonstrations sharing the reasoning chain240

with the predicted sample (Fig. 1).241

To restore the model’s ability to work with a natu-242

ral language, in the second step, we fit the resulting243

model to natural inputs by further fine-tuning on244

AdversarialQA dataset (Bartolo et al., 2021); As245

the annotations of reasoning concepts in general246

QA datasets are scarce, in this case, we naively use247

the initial word of the question (“Who”, “Where”,248

. . . ) as the shared concept, aware that such-grouped249

samples are not always mutually informative.250

Non-triviality condition We implement the non-251

triviality condition of CoAT by (i) selecting a ran-252

dom set of samples Xinfo : |Xinfo| = 20 from the253

demonstrations that pass the Informativeness con-254

dition. (ii) Afterwards, we iteratively pick a se-255

quence of i ∈ 1..k demonstrations from this set,256

with a randomly-chosen k : 2 ≤ k ≤ 8.257

1. For each sample (x j, y j) ∈ Xinfo passing in-258

formativeness condition, we compute a like-259

lihood of generating the correct prediction if260

a given sample is included among demonstra-261

tions. The likelihood is computed as a product262

of likelihoods of generating correct prediction263

ypred in the teacher-forced generation.264

2. In each step i, we add to the demonstrations a265

sample with which the likelihood of generat-266

ing correct prediction is minimal (Figure 2).267

4 Experiments268

The primary goal of our experiments is to assess269

whether the theoretically-supported data construc-270

tion in CoAT can also enhance the practical quality271

of ICL in the resulting model. To evaluate this272

hypothesis, we construct training configurations us-273

ing the same settings, but either using or not using274

CoAT’s filters in training data construction.275

We follow with analyses attributing CoAT’s276

empirical improvements to changes in specific277

model’s abilities; We assess whether (i) CoAT-278

trained model can really benefit from presented279

latent concepts and (ii) whether this ability also 280

applies in a natural-language settings. Finally, we 281

explore (iii) whether the gains of CoAT can be 282

attributed to improved ability to override models’ 283

sole reliance on the “meaning” of the labels, ob- 284

served in smaller ICL models (Wei et al., 2023). 285

4.1 Training and Evaluation Setup 286

To maximise comparability with the previous 287

work, we fine-tune Tk-CoAT from mT5 pre-trained 288

models of Xue et al. (2021) on (1) TeaBReaC 289

dataset, followed by (2) AdversarialQA dataset. In 290

both stages, we fine-tune all model parameters in 291

teacher-forced next-token prediction (sequence-to- 292

sequence objective) until convergence of evaluation 293

loss in each training stage.1 We further detail the 294

parameters of the training process in Appendix A. 295

We survey the evaluation settings adopted in pre- 296

vious work in a few-shot learning with the aim of 297

constructing our evaluation testbed from the widest 298

possible variety of tasks, but avoiding tasks that do 299

not require a reasoning ability, or that are close to 300

the training tasks of ours, or of the previous work 301

we compare to. With this objective, we perform our 302

evaluations on two collections of tasks: (i) Super- 303

GLUE (Wang et al., 2019) consisting of 10 tasks re- 304

quiring a variety of reasoning skills, and (ii) evalua- 305

tion set of Natural-Instructions (Wang et al., 2022) 306

from which we pick 60 extractive tasks. 307

We construct the evaluation scenarios from k = 3 308

randomly but consistently chosen demonstrations 309

consisting of self-contained prompts, with options 310

including the expected label (Sanh et al., 2022). For 311

SuperGLUE tasks, we verbalize both the demon- 312

strations and predicted sample using all available 313

templates within PromptSource library (Bach et al., 314

2022) for the best-performing template for each 315

model. For Natural-Instructions tasks, we prefix 316

the demonstrations with the instruction provided 317

with each task, consistently with the training format 318

of Tk-Instruct and Flan models. We complement 319

all the evaluations with confidence intervals from 320

bootstrapped evaluation (population n = 100, re- 321

peats r = 200). To maximise fairness of evaluation 322

among the models, we analyse the error cases and 323

choose to report the results in ROUGE-L for Su- 324

perGLUE, and in a standard accuracy for Natural- 325

Instructions. We specify the metrics selection anal- 326

ysis and other evaluation details in Appendix B. 327

1All our experiments and final models are on https://
github.com/authoranonymous321/concept-training
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4.2 Baselines328

Random demonstrations selection (Tk-random)329

We assess the impact of CoAT’s controlled selec-330

tion of demonstrations against a baseline trained in331

the same settings but picking the in-context demon-332

strations randomly with uniform probability over333

the whole training set. This methodology of con-334

structing training prompts was used by a majority335

of the referenced work training smaller in-context336

learners, including Tk-Instruct (Wang et al., 2022)337

and Flan (Chung et al., 2022). Apart from the338

demonstration selection, all other training configu-339

rations, including data settings, are identical to §4.1340

to assure comparability with CoAT models.341

Demonstrations passing only Informativeness342

condition (Tk-info) In this baseline, we perform343

ablation of the Non-triviality condition introduced344

in Section 3 by picking the demonstrations passing345

only the Informativeness condition. Hence, such-346

picked demonstrations in the training input context347

are mutually informative by the shared concept but348

can exhibit cases where some of the demonstrations349

are very similar to the predicted sample, making it350

trivial for the model to perform correct prediction.351

All other training settings are unchanged (§4.1).352

4.3 Other evaluated models353

To give additional context to our results, we also354

evaluate three recent in-context learners for which355

we can assess which datasets were used in their356

training mix: (1) T0 of Sanh et al. (2022) trained357

on a mixture of 35 datasets of different tasks in zero-358

shot settings, mostly of QA type, mapped into a359

self-containing human-understandable interaction360

format; (2) Tk-Instruct of Wang et al. (2022) pre-361

trained in a few-shot format similar to ours, on a362

mixture of 1,616 diverse tasks; (3) Flan models363

of Chung et al. (2022) further extend data settings364

of Tk-Instruct to a total of 1,836 tasks, including365

chain-of-thought labels, i.e. a step-by-step reason-366

ing chain mapping input prompt to a label.367

All these models are based on the same pre-368

trained model (T5), making the results comparable369

to the level of fine-tuning methodology. The latter370

two works use the data construction comparable to371

our Tk-random but in vastly larger data settings.372

4.4 Analyses373

In our analyses, we question major assumptions374

that our implementation of CoAT builds upon.375

Tk-Info-3B
Tk-Random-3B
Tk-Random-3B
Tk-Random-1B

Tk-CoAT-3B
Tk-Info-3B

Tk-CoAT-3B
Tk-CoAT-1B

19
44
45

41

40
15
14

13

1
1
1

6
Natural-Instructions: All tasks

Tk-Info-3B
Tk-Random-3B
Tk-Random-3B
Tk-Random-1B

Tk-CoAT-3B
Tk-Info-3B

Tk-CoAT-3B
Tk-CoAT-1B

3
18
19

12

16
2
1

6

1

2
Natural-Instructions: Reasoning tasks

Left wins similar Right wins

Figure 3: Efficiency of Concept-aware training:
Natural-Instructions: Pairwise comparison of mod-
els trained using selected training configurations (§4.2)
on (top) all and (bottom) reasoning tasks of Natural-
Instructions collection. Values in green and red bars
indicate a number of tasks where the referenced model
reaches significantly higher accuracy than the other. For
the tasks denoted as similar, the difference in perfor-
mance falls into the evaluation’s confidence intervals.

Can CoAT-trained models really use the reason- 376

ing concepts? Fundamentally, Concept-aware 377

training assumes that (i) CoAT improves the abil- 378

ity to extract and benefit from presented reasoning 379

concepts when available, and that (ii) this ability 380

generalizes to concepts not observed in training. 381

If the model can truly utilize a reasoning concept 382

C, it will be able to improve on a set of predictions 383

where C is applicable when presented with demon- 384

strations exhibiting the use of C in-context. Thus, 385

our first analysis evaluates models’ performance in 386

a few-shot setting where we ensure that the demon- 387

strations share a concept with the predicted sample. 388

Afterwards, we quantify models’ ability to improve 389

from the concept by computing the difference in 390

accuracy between such concept-sharing evaluation 391

and conventional evaluation using randomly cho- 392

sen demonstrations. 393

We perform the first analysis on TeaBReAC with 394

annotated reasoning chains as concepts C, which 395

are guaranteed to be informative for prediction. To 396

evaluate generalization to unseen concepts, we fil- 397

ter out all samples with reasoning chains that were 398

present in training. This results in 316 evaluation 399

scenarios presenting models with 14 previously 400

unseen reasoning patterns. In this setting, we com- 401

pare the concept-improving ability of CoAT-trained 402

models with the baseline model (Tk-random). 403

Can pre-training with synthetic demonstrations 404

also improve the of use natural concepts? Our 405

implementation of CoAT assumes that the ability to 406
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AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC
Tk-random-1B 49.4±5.2 43.6±4.8 52.7±5.1 21.8±3.9 29.3±4.6 18.0±4.0 15.3±3.8 34.0±5.0 74.7±3.4 5.1±2.4

Tk-random-3B 50.2±5.4 57.5±4.8 52.0±5.5 47.8±5.1 48.9±4.8 50.1±4.4 16.3±7.3 62.8±4.6 75.5±2.8 2.1±1.5

Tk-info-1B 50.0±4.2 42.6±5.7 52.0±4.3 47.2±3.9 49.2±4.8 53.2±4.5 15.5±4.0 19.6±2.3 61.5±2.3 3.2±1.2

Tk-info-3B 50.8±4.6 57.2±4.9 53.5±4.8 47.3±5.4 54.7±4.9 53.6±4.7 22.6±4.5 64.4±4.8 76.3±3.0 2.7±2.1

Tk-CoAT-1B 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6

Tk-CoAT-3B 50.3±5.2 57.2±4.8 53.0±4.5 50.8±2.7 52.0±5.4 53.0±5.6 20.6±3.8 63.6±4.3 81.3±3.3 11.2±3.6

Table 1: Efficiency of concept-aware training: SuperGLUE: ROUGE-L scores of ICL models evaluated in
few-shot setting on tasks of SuperGLUE (Wang et al., 2019), trained using (i) random demonstrations sampling
used in previous work, (ii) informative demonstrations sampling (§4.2) and (iii) informative+non-trivial sampling
(CoAT; §3). Underlined are best results per each task and model size.
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Figure 4: Performance comparison to previous work:
Natural-Instructions: : Pairwise comparison of CoAT
models trained using two (2) tasks vs. the models of
previous work trained on mixtures of 35 (T0), 1,616
(Tk-Instruct) and 1,836 tasks (Tk-Flan). Values denote
the number of tasks where the model reaches signifi-
cantly better accuracy. Evaluations over (top) all tasks,
(middle) reasoning tasks, (bottom) tasks with labels not
present in the training mix of Tk-Instruct and Tk-Flan.

recover reasoning concepts transfers from synthetic407

pre-training dataset to natural-language applica-408

tions. Additionally, although TeaBReAC covers409

over 900 different reasoning chains, it is unclear410

how relevant these concepts are for real use cases.411

Therefore, to evaluate if CoAT-trained models im-412

prove in recovering concepts also from a natural413

language, we evaluate CoAT-trained models on the414

ability to improve from natural-language demon-415

strations presenting applicable concepts.416

Previous work of Štefánik and Kadlčík (2023)417

evaluated ICL ability over four different functional418

concepts, all extracted from explanations of natural-419

language datasets. We adopt the concepts of this 420

work and evaluate models for in-context learning 421

of the following concepts: (i) reasoning logic of 422

NLI samples of GLUE-Diagnostic dataset (Wang 423

et al., 2018), (ii) entity relations annotated in hu- 424

man explanations (Inoue et al., 2020) in the Hot- 425

potQA dataset (Yang et al., 2018), (iii) functional 426

operations annotated in general elementary-grade 427

tests of OpenBookQA (Mihaylov et al., 2018), and 428

(iv) shared facts in science exams of WorldTree 429

dataset (Jansen et al., 2018; Xie et al., 2020). 430

Identically to the case of synthetic concepts, we 431

evaluate the ability of CoAT models to benefit from 432

these concepts presented in demonstrations and 433

compare to random demonstrations’ selection (Tk- 434

random) used in previous work. 435

Does concept-aware training mitigate models’ 436

over-reliance on learnt semantic priors? As 437

mentioned in Section 2, previous work reports 438

functional deficiencies of previous in-context learn- 439

ers, including surprising insensitivity of in-context 440

learners to the assigned demonstrations’ labels 441

(Min et al., 2022b). Wei et al. (2023) attribute this 442

to models’ over-reliance on the semantic priors ob- 443

tained in pre-training, which override in-context 444

learning of the functional relations. However, such 445

behaviour is defective, as the ability to learn func- 446

tional relations is necessary for robust and inter- 447

pretable in-context learning of truly unseen tasks. 448

To evaluate the impact of concept-aware training 449

on models’ sole reliance on its semantic priors, we 450

follow the setup of Wei et al. (2023) and assess 451

models’ reliance on labels’ semantics in a standard 452

few-shot evaluation (§4.1), with one of the two 453

modifications; (i) Changing the labels to tokens 454

with irrelevant meaning for the prediction task, 455

such as ‘Foo’, ‘Bar’ etc. (ii) Shuffling the labels 456

so that semantically incorrect labels are assigned 457

in the demonstrations, but the input-label mapping 458
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remains consistent. In both settings, the task’s func-459

tional relation can still be recovered from demon-460

strations, but the sole reliance on semantics will461

either not help, or will mislead the model.462

In this setting, we evaluate three model types:463

(i) CoAT-trained models, (ii) models with ran-464

dom training demonstrations (Tk-random), and465

(iii) models trained identically as Tk-random, but466

fine-tuned only on a natural-context QA dataset467

(denoted Tk-QA). We perform the evaluation over468

8 SuperGLUE tasks with discrete labels.469

5 Results470

Efficiency of Concept-aware training Evalua-471

tion on SuperGLUE presented in Table 1 compares472

the quality of ICL by models trained using our473

CoAT implementation (Tk-CoAT; §3) to random474

demonstrations selection used by previous work475

(Tk-random). Values show that CoAT significantly476

improves the quality of in-context learning against477

the Tk-random baseline in 6 of 10 cases of smaller478

models and in 3 of 10 cases at larger models, with479

comparable results in all the other cases. Averages480

over the scores show that CoAT provides the most481

substantial gains in the case of the smaller model482

(+34.4%) by avoiding the failures to understand483

the task at hand exhibited in CB, RTE and BoolQ484

with Tk-Random. In smaller models, part of this485

robustness can be attributed to both the Informa-486

tiveness and Non-triviality condition, but the sole487

concept-aware demonstrations selection (Tk-Info)488

carries the largest portion of improvements.489

While the failures to understand the task seem490

mostly mitigated in the larger baseline model, the491

evaluation and our subsequent analyses of mod-492

els’ predictions over Natural-Instruction (NI) tasks493

(Figure 3) again show a similar trend; For 18 and494

24 of 60 Natural-Instructions’ tasks, 1B and 3B Tk-495

Random completely misunderstands the provided496

instruction, responding mostly outside the domain497

of labels. This is the case only for 5 and 4 NI tasks498

in the case of 1B and 3B CoAT models. The ad-499

vance of CoAT models is further magnified when500

we zoom to only the reasoning tasks. Evaluations501

by other task types can be found in Appendix C.2.502

Comparison to multitask learners Figure 4503

compares the performance of CoAT models with504

the models of previous work, trained on large mix-505

tures of 35–1,836 tasks. In the comparison over all506

the NI tasks (Fig. 4; top), we can see that the perfor-507

mance of CoAT models is better or comparable for508

the majority of the tasks in 5 out of 6 competitions.509
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Figure 5: In-context learning of new concepts: Im-
provements of in-context learners when presented with
demonstrations exhibiting an informative reasoning con-
cept. Evaluated with synthetic examples of TeaBReAC
(left), and diverse natural examples (right; §4.4).

Despite being explicitly trained with the instruc- 510

tions, our per-task analyses show that Tk-Instruct 511

models also fail to understand instructions in 9 and 512

4 cases for 1B and 3B models, respectively. 513

The evaluation on reasoning tasks (Fig. 4; mid- 514

dle) supports our hypothesis that CoAT particularly 515

promotes improvements in in-context learning of 516

new reasoning ability, winning on reasoning tasks 517

over Flan and Tk-Instruct in a comparable num- 518

ber of cases than the opponents. Finally, we look 519

at a few tasks where Tk-Instruct and Flan can not 520

rely on the exposition of labels presented in their 521

training mix (Fig. 4; bottom). We find that in 3 out 522

of 4 comparisons, CoAT models reach significantly 523

better accuracy on the majority of these tasks. 524

Further evaluations evidencing comparability of 525

CoAT models with multitask learning are available 526

in Appendix C; Noticeably, a comparison with Tk- 527

Instruct on SuperGLUE shows that CoAT’s 1B and 528

3B models reach higher absolute results on 3 and 4 529

out of the 7 Tk-Instruct’s unseen tasks. 530

5.1 Analyses 531

Concept-aware training improves the ability to 532

benefit from unseen concepts Figure 5 evalu- 533

ates models’ ability to improve from presented 534

concepts as the absolute difference in performance 535

between random and concept-sharing demonstra- 536

tion selection. Specifically, evaluation with unseen 537

TeaBReAC concepts (left) also assesses models’ 538

ability to extrapolate the utilisation of latent con- 539

cepts to 14 previously unseen reasoning chains. 540

Both CoAT and random-demonstration models 541

(§4.2) can improve from concepts presented in 542

demonstrations. However, the improvement of 543

CoAT-trained models is significantly larger and ex- 544
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Figure 6: Models’ reliance on semantic priors: To
evaluate models’ reliance on its semantic representa-
tions, we (left) replace labels with ‘non-sensical’ to-
kens, with no direct correspondence to the semantics
of the task, such as ‘foo’, ‘bar’, etc.; and (right) flip
the original labels, so that e.g. ‘negative’ label corre-
sponds to a positive-sentiment sample. CoAT models
can in-context learn the input-output mapping similarly
well with non-sensical labels and rely on the labels’
semantics much less than previous in-context learners.

ceeds gains of Tk-random by 2-fold and 4-fold545

with the smaller and larger model, respectively.546

This comparison verifies that CoAT’s data construc-547

tion really improves our targeted skill of utilizing548

latent concepts when presented in demonstrations.549

CoAT pre-training on synthetic data also im-550

proves the use of natural concepts Evaluation of551

improvements on selected natural concepts shown552

in Figure 5 (right) shows that concept-learning abil-553

ity obtained on synthetic TeaBReAC concepts in-554

deed transfers to natural-language settings, as the555

CoAT-trained models can benefit from concepts556

significantly more than models trained without557

concept-aware data construction (Tk-random).558

However, evaluations over the individual reason-559

ing concepts (Figure 7 in Appendix C.3) show that560

even CoAT models can not benefit robustly from all561

concepts. Nevertheless, we note that in the cases562

where CoAT models do not improve, also none563

of the baselines benefit from presented concepts.564

This might be attributed to several reasons: (i) the565

presented concepts are not really informative for566

prediction, (ii) our training data allowed the mod-567

els to memorize relevant knowledge and, hence,568

do not need (and benefit from) the concepts’ expo-569

sure, or (iii) our training concepts were simply not570

sufficient to generalize over these new concepts.571

CoAT mitigates over-reliance on labels’ seman- 572

tic priors Evaluation with non-sensical labels 573

(Figure 6) shows that models pre-trained on a syn- 574

thetic TeaBReAC dataset (Tk-random, and Tk- 575

CoAT) can both better comprehend a new task from 576

sole input-output mapping when labels bear no 577

meaning. A comparison of Tk-random and Tk-QA 578

further suggests that the emergence of this prop- 579

erty in Tk-CoAT is a composition of both using a 580

synthetic dataset in pre-training (also used by Tk- 581

random) and CoAT’s data construction mechanism. 582

A comparison to previous models reveals that 583

multitask models experience substantially larger 584

decay in performance than our models, with la- 585

bels of incorrect meaning in demonstrations. We 586

suspect this may be a bias specific to massive multi- 587

task settings where it can explain a large portion 588

of training data. This result is consistent with Wei 589

et al. (2023), but contrary to their conclusions, we 590

show that ICL robust to semantic distractions is not 591

an exclusive ability of very large (≥ 100B) models. 592

Nevertheless, we note that the smaller CoAT 593

model still relies on labels’ semantics when recog- 594

nizable (Flipped labels case), less significantly than 595

previous work, but comparable to our baselines. 596

6 Conclusion 597

This paper introduces a Concept-aware Training 598

(CoAT) method; Building upon the recent theo- 599

ries on the emergence of in-context learning, CoAT 600

proposes to train in-context learners in data set- 601

tings which manifest irregularities necessitating 602

the emergence of in-context learning. We imple- 603

ment CoAT by constructing training prompts with 604

demonstrations that share a reasoning concept with 605

the predicted sample, allowing the trained model 606

to benefit from learning to extract and utilize the 607

reasoning concept that explains the prediction. 608

We find that data construction of CoAT fosters 609

in-context few-shot learning ability more efficiently 610

than strategies used in previous work. As a result, 611

CoAT delivers performance comparable to models 612

trained on over 1,600 tasks with only two QA tasks 613

while also making models more robust in learning 614

the functional relations from demonstrations based 615

on underlying concepts. 616

In a broader perspective, our work explores an 617

alternative axis of in-context learning to the known 618

model and data scale axes. We show that concept- 619

aware training presents a fruitful opportunity to 620

enhance the quality and robustness of in-context 621

learning in instructional and conversational models. 622
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Limitations623

Although our main objective is to assess the effi-624

ciency of concept-aware training, we acknowledge625

the limitations of our comparison to the previous626

work, where several aspects convolute the represen-627

tative comparison of different in-context learners:628

(i) each of the multitask learners was trained on a629

different, yet massive set of tasks, making it dif-630

ficult to find a broader collection that is new for631

multiple models; For this purpose, we surveyed632

three standard collections used for few-shot eval-633

uation: CLUES (Mukherjee et al., 2021), RAFT634

(Alex et al., 2021) and FLEX (Bragg et al., 2021),635

but found in total only three tasks unseen by the636

multitask learners of previous work, all of the same637

type (classification). Therefore, we use in our eval-638

uations (a) Tk-Instruct’s own evaluation set and639

(b) SuperGLUE with a significant overlay with the640

training tasks of previous work. (ii) many aspects641

make it “easier” for the model to improve, includ-642

ing the domain of labels or prompt format matching643

the training distribution (relevant to Tk-Instruct644

and Flan evaluated on Natural-Instructions).645

Another aspect that we neglect in our experi-646

ments in favour of more in-depth analyses is the647

impact of pretraining projected into the properties648

of the foundation model that we use. We pick mT5649

as a base model for our experiments to maximise650

comparability with previous methods. While we651

do not identify any concrete reason to assume that652

CoAT would perform worse with other base mod-653

els, one should note that our results do not provide654

any evidence against such an assumption.655

Finally, we note that the applicability of CoAT656

is conditioned by the availability of the annotated657

concepts C in the training datasets, which might658

be difficult to obtain for natural-language datasets.659

Our implementation circumvents this issue by us-660

ing a synthetically curated dataset; In our experi-661

ments, we simultaneously show that concept-aware662

abilities can also be obtained in the restrictive set-663

tings of synthetic-dataset pre-training. However,664

from our experiments, it remains an open ques-665

tion as to what extend could further extension of666

synthetically-generated datasets, possibly covering667

even more complex concepts, scale to further gains.668

Ethical Considerations & Broader Impact669

The primary motivation of our work is to minimise670

the computing demands for the creation of accurate671

in-context learners. We believe that our presented672

method, as well as the future data-efficient methods 673

driven by our still-deepening understanding of in- 674

context learning, will enable the democratization 675

of the creation of robust and accurate in-context 676

learning models for both research and industry. 677

Finally, we note that data-efficient methods (as 678

opposed to multitask training) for training ICLs 679

might open possibilities for creating accurate ICLs 680

specialized to languages outside English, where 681

training data is scarce. We look forward for the 682

future work exploring the potential of fine-tuning 683

specifically on the target-language datasets, creat- 684

ing in-context learners specially tailored for target 685

languages outside English. 686
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learning rate of 5e−5 and 2e−5, respectively. Other1071

parameters remain identical between stages: effec-1072

tive batch size = 30 samples and early stopping1073

with the patience of 2,000 updates based on evalu-1074

ation loss on a standardized validation set of each1075

dataset. We do not report the absolute values of1076

evaluation loss as these are not directly comparable.1077

In CoAT training, we use a random subsample of1078

20 informative examples as a candidate set for a1079

selection of non-trivial demonstrations.1080

Other parameters of training configuration de-1081

fault to Training Arguments of Transformers library1082

(Wolf et al., 2020) in version 4.19.1. For readability,1083

we implement the relatively complex demonstra-1084

tions’ selection as a new objective of the Adaptor1085

library (Štefánik et al., 2022). The picked demon-1086

strations are encoded into a format consistent with1087

the evaluation.1088

B Evaluation details1089

SuperGLUE Evaluation format As mentioned1090

in Section 4.1, we verbalize both the demonstra-1091

tions and predicted sample using all available tem-1092

plates of PromptSource library (Bach et al., 2022),1093

obtaining prompts for each demonstration prompt1094

xi and its label yi in a free-text form. The prompts1095

commonly contain the full-text match of the possi-1096

ble labels as options for the model.1097

Following the example of Wang et al. (2022),1098

we additionally prepend the demonstrations and1099

labels with keywords “Input” and “Prediction” and1100

separate demonstrations with new lines. Thus, the1101

resulting input→output pairs in evaluation take this1102

format:1103

“Input: x1 Prediction: y1 <newline>1104

Input: x2 Prediction: y2 <newline>1105

Input: x3 Prediction: y3 <newline>1106

Input: xpred Prediction: ” → “ypred”1107

where demonstrations (xi, yi) are picked randomly1108

but consistently between all evaluated models.1109

Natural-Instructions Evaluation format In the1110

evaluations on Natural-Instructions, we closely fol-1111

low the example of Wang et al. (2022) and addi-1112

tionally prepend the sequence of demonstrations1113

with an instruction provided for each task:1114

“<task instruction> <newline>1115

Input: x1 Prediction: y1 <newline>1116

Input: x2 Prediction: y2 <newline>1117

Input: x3 Prediction: y3 <newline> 1118

Input: xpred Prediction: ” → “ypred” 1119

where the <task instruction> contains the instruc- 1120

tion as would be given to the annotators of the eval- 1121

uation task, usually spanning between 3–6 longer 1122

sentences. The demonstrations are again picked 1123

randomly but consistently between models. 1124

Evaluation metrics selection Previous work 1125

training in-context few-shot learners is not consis- 1126

tent in the use of evaluation metrics, and the choice 1127

usually boils down to either using the exact-match 1128

accuracy (Sanh et al., 2022; Chung et al., 2022) or 1129

ROUGE-L of Lin (2004) (Wang et al., 2022), eval- 1130

uating the longest common sequence of tokens. We 1131

investigate these two options with the aim of not 1132

penalising the models for minor discrepancies in 1133

the output format (in the accuracy case) but avoid- 1134

ing false positive evaluations in predictions that are 1135

obviously incorrect (in the ROUGE case). 1136

Investigation of the models’ predictions reveals 1137

that the selection of the metric makes a large dif- 1138

ference only in the case of Tk-Instruct models, 1139

where the situation differs between SuperGLUE 1140

and Natural-Instructions, likely due to the charac- 1141

ter of the evaluation prompts. 1142

(1) On SuperGlue, e.g. on MultiRC task, for the 1143

evaluation prompt: "Does answer sound like a valid 1144

answer to the question: question", Tk-Instruct-3B 1145

in our evaluation predicts "Yes." or "Yes it is" (in- 1146

stead of "Yes"), or "No not at all" (instead of "No"), 1147

likely due to the resemblance with the format of 1148

training outputs. As we do not wish to penalize 1149

these cases, we use ROUGE-L over all SuperGLUE 1150

evaluations. 1151

(2) In Natural-Instructions evaluation, we find 1152

that Tk-Instruct often predicts longer extracts 1153

from the input prompt. This is problematic with 1154

ROUGE-L in the cases where the extract contains 1155

all possible answers, such as in the Tk-Instruct- 1156

1B’s prediction: “yes or no” to the prompt whose 1157

instruction ends with “Please answer in the form 1158

of yes or no.”. As we encounter this behaviour in a 1159

large portion of Natural-Instructions tasks, we eval- 1160

uate all models on Natural-Instructions for exact- 1161

match accuracy after the normalization of the cas- 1162

ing and the removal of non-alphabetic symbols. 1163

To make sure that the model is presented with the 1164

exact-matching answer option, we exclude from 1165

evaluation the tasks where the correct answer is not 1166

presented in the task’s instruction. The reference 1167
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Figure 7: In-context learning of specific natural con-
cepts: While CoAT improves the ability to benefit from
reasoning concepts on average (Fig. 5), per-concept eval-
uation reveals that this ability is not consistently robust.

to the list of Natural-Instructions evaluation tasks1168

can be found in Appendix C.4.1169

For the reported evaluations of the Reasoning1170

tasks, we pick from the list of evaluation tasks the1171

ones concerned with the reasoning task by simply1172

matching the tasks with ‘reasoning’ in their name,1173

resulting in the collection of 20 evaluation tasks.1174

C Further evaluations1175

C.1 SuperGLUE evaluations of other models1176

Table 2 compares the performance over the tasks1177

of SuperGLUE collection (Wang et al., 2019) for1178

CoAT models trained on two tasks of the same1179

(QA) type with in-context learners trained on 35–1180

1,836 tasks of the comparable size. Despite the1181

significantly smaller volumes and complexity of1182

the training dataset, CoAT-trained models show1183

competitive results to similar-size or even larger in-1184

context learners of previous work. For instance, the1185

1-billion-parameter Tk-CoAT performs better than1186

the 3-billion T0 in 3 cases (Ax-b, RTE, COPA) and1187

comparably in another 3 cases (WSC, CB, WiC).1188

In comparison with Tk-instruct of the same size,1189

Tk-CoAT-1B outperforms Tk-instruct in 3 out of1190

7 unseen tasks (WSC, CB, ReCoRD), and reaches1191

similar scores in most other cases, even in 2 out of1192

3 tasks that were included in Tk-instruct’s training1193

mix. Similarly, larger Tk-CoAT-3B outperforms1194

Tk-instruct on 4 of 7 new tasks (Ax-b, WSC, WiC,1195

ReCoRD), but with larger gaps on the others.1196

C.2 Natural-Instructions: other task types1197

Figure 8 evaluates the impact of CoAT’s mecha-1198

nism on the quality of in-context learning sepa-1199

rately on the English and non-English tasks. The1200

figure reveals that CoAT works particularly well1201

for non-English tasks. Our analyses found this is1202
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Figure 8: Impact of Concept-aware training per dif-
ferent language settings: Pairwise comparison of
models trained using selected training configurations
(§4.2) on (top) Non-English tasks and (bottom) English-
only tasks of Natural-Instructions collection. Values in
green and red bars indicate a number of tasks where the
referenced model reaches significantly higher accuracy
than the other. For the tasks denoted as similar, the
difference in performance falls within the evaluation’s
confidence intervals.

mainly due to the low performance of the base- 1203

line on the non-English tasks. We speculate that 1204

this can be a consequence of the higher reliance 1205

of the baseline on token semantics (Section 5.1); 1206

As our models are fine-tuned on an English-only 1207

QA model, such learnt reliance is not applicable in 1208

multilingual settings. 1209

Figure 9 compares the performance of CoAT 1210

models against the models of previous work, sep- 1211

arately on the English and non-English tasks. We 1212

can see that CoAT is slightly better at the mul- 1213

tilingual portion of Natural-Instructions, but the 1214

difference is not principal. 1215

C.3 Per-concept evaluations 1216

Figure 7 evaluates the performance gains of the 1217

baseline models (§4.2) and CoAT-trained models 1218

individually per each of the concepts of the natural 1219

datasets. While the CoAT models are able to bene- 1220

fit from concepts the largest in the relative change 1221

of quality, they are also not consistent in the abil- 1222

ity to benefit from all the concepts. However, as 1223

discussed in Section 5.1, this does not imply that 1224

CoAT is unable to utilize these concepts. 1225

C.4 Evaluation tasks and other configurations 1226

SuperGLUE (Wang et al., 2019) consists of the 1227

following tasks (as ordered in our Results, §5): 1228

Winogender Schema Diagnostics (AxG) (Rudinger 1229

et al., 2018), Broadcoverage Diagnostics (CB), 1230

The Winograd Schema Challenge, Commitment- 1231

Bank (CB), Recognizing Textual Entailment (RTE), 1232

14



# train tasks AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC
Flan-1B 1,836 84.8±3.9 21.9±4.0 70.7±4.8 92.5±2.8* 92.1±3.0* 69.9±5.1* 38.9±5.2* 92.3±2.7* 97.8±1.5* 88.3±3.2*

Flan-3B 95.3±3.7 22.0±8.0 80.2±9.2 92.7±6.7* 96.0±4.0* 79.7±8.3* 62.2±9.7* 92.1±5.1* 99.3±1.6* 90.4±6.4*

Tk-Instruct-1B 1,616 51.9±4.9 57.2±5.8 49.8±4.9 46.0±5.5 55.5±4.8 53.5±5.3 13.1±3.7 63.4±3.4* 76.9±3.2* 62.2±5.1*

Tk-Instruct-3B 53.5±4.7 49.9±4.9 51.2±4.9 66.3±4.6 62.7±4.6 50.4±4.8 18.6±4.2 68.8±4.4* 73.8±3.5* 59.9±4.9*

T0-3B 35 65.0±4.5 36.1±4.6 53.5±5.2 48.0±5.4 51.3±5.2 54.0±5.0 20.5±4.0 60.1±4.9 56.8±3.6 56.2±4.4

Tk-CoAT-1B 2 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6

Tk-CoAT-3B 50.3±5.2 57.2±4.8 53.0±4.5 50.8±2.7 50.6±5.4 53.0±5.6 20.6±3.8 63.6±4.3 75.3±3.3 11.2±3.6

Table 2: ICL performance: comparison to previous ICL models ROUGE-L of CoAT-trained ICL models and
models of comparable size in previous work. Evaluation setup consistent with Table 1 and (§4.1). In cases marked
with ∗, the task was used in the model’s training; Underlined are the best results per unseen task and model size.
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Figure 9: Comparison to previous work per dif-
ferent language settings: Pairwise comparison of
CoAT models vs. the models of previous work on (top)
Non-English tasks and (bottom) English-only tasks of
Natural-Instructions collection. Values denote the num-
ber of tasks where the model reaches significantly better
accuracy. For the tasks denoted as similar, the difference
in performance falls within the evaluation’s confidence
intervals.

ContextWords in Context (WiC) (Pilehvar and1233

Camacho-Collados, 2019), Reading Comprehen-1234

sion with Commonsense Reasoning (ReCoRD)1235

(Zhang et al., 2018), BoolQ (Clark et al., 2019),1236

Choice of Plausible Alternatives (COPA), Multi-1237

Sentence Reading Comprehension (MultiRC).1238

Natural-Instructions consists of a larger mixture1239

of tasks, which we do not enumerate here to main-1240

tain readability; the full list of evaluation tasks can1241

be found in the original work of Wang et al. (2022)1242

in Figures 11 and 12.1243

To maintain comparability of evaluations among1244

models, we deterministically fix the demonstration1245

selection procedure so that only the full prediction1246

prompts for all the models are the same. In the1247

analyses comparing the differences in performance 1248

(§4.4), we fixed the prediction samples (xpred) be- 1249

tween different demonstrations’ sampling strategies 1250

to avoid perplexing our comparison with possible 1251

data selection biases. Further details can be found 1252

in the referenced implementation. 1253

D Computational Requirements 1254

We run both training and evaluation experiments 1255

on a machine with dedicated single NVIDIA A100- 1256

SXM-80GB, 40GB of RAM and a single CPU core. 1257

Hence, all our reproduction scripts can run on this 1258

or a similar configuration. Two stages of training in 1259

total take at most 6,600 updates and at most 117h 1260

of training for Tk-CoAT to converge. 1261
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