
740 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

A Privacy-Preserving Graph Neural Network for
Network Intrusion Detection

Xinjun Pei , Xiaoheng Deng , Senior Member, IEEE, Shengwei Tian , Ping Jiang , Yunlong Zhao,
and Kaiping Xue , Senior Member, IEEE

Abstract—With the ever-growing attention on communication
security, machine learning-based network intrusion detection sys-
tem (NIDS) is widely utilized to meet different security require-
ments. However, most of the existing methods manually extract or
learn features from raw traffic, which is usually expensive, com-
plicated, and time-consuming. Moreover, this also brings unprece-
dented challenges for preserving users’ privacy in the communica-
tion process, making it difficult for existing solutions to be deployed
in practice due to the privacy requirements from legal policies.
This paper proposes a privacy-preserving graph neural network
(named NIGNN) for NIDS, which can encode the local structure
and traffic features. To address the privacy issues pertaining to the
application of graph representation learning, we design a privacy
message-passing mechanism with formal privacy guarantees, in
which sensitive information potentially contained in graph vertices
will be kept private. Specifically, we design a privacy-enhancement
graph representation that introduces a degree-sensitive item in
vertex-based aggregation to reduce noise. Our theoretical analysis
shows that NIGNN can provide a provable privacy guarantee. Ex-
tensive experiments demonstrate NIGNN’s performance in main-
taining a sound privacy-accuracy trade-off.

Index Terms—Network intrusion detection, privacy-preserving,
supervised learning, differential privacy, graph neural networks.

I. INTRODUCTION

IN RECENT years, network intrusion detection has attracted
widespread attentions from academia and industry. While

users have greatly benefited from the convenience brought by
the Internet, network intrusion incidents have undoubtedly in-
creased public concerns about security [1], [2]. The evolution of

Manuscript received 28 July 2023; revised 28 March 2024; accepted 16 June
2024. Date of publication 21 June 2024; date of current version 16 January
2025. This work was supported by the National Natural Science Foundation
of China Project under Grant 62172441 and Grant 62172449, in part by the
Joint Funds for Railway Fundamental Research of National Natural Science
Foundation of China under Grant U2368201, in part by the special fund of Na-
tional Key Laboratory of Ni&Co Associated Minerals Resources Development
and Comprehensive Utilization under Grant GZSYS-KY-2022-018 and Grant
GZSYS-KY-2022-024, in part by Key Project of Shenzhen City Special Fund
for Fundamental Research under Grant JCYJ20220818103200002, and in part
by the National Natural Science Foundation of Hunan Province under Grant
2023JJ30696. (Corresponding author: Xiaoheng Deng.)

Xinjun Pei, Xiaoheng Deng, Ping Jiang, and Yunlong Zhao are with the School
of Electronic Information, Shenzhen Research Institute, Central South Univer-
sity, Changsha 410083, China (e-mail: pei_xinjun@163.com; dxh@csu.edu.cn;
pjiang@csu.edu.cn; 214711102@csu.edu.cn).

Shengwei Tian is with the School of Software, Xinjiang University, Wulumuqi
830001, China (e-mail: tianshengwei@163.com).

Kaiping Xue is with the Department of Electronic Engineering and Informa-
tion Science, University of Science and Technology of China, Hefei 230027,
China (e-mail: kpxue@ustc.edu.cn).

Digital Object Identifier 10.1109/TDSC.2024.3417853

network intrusion attacks has prompted researchers to continu-
ously develop new network intrusion prevention systems (NIDS)
to identify the network intrusion activities.

With the rapid development of neural networks, deep learning
(DL)-based NIDS methods have become state-of-the-art solu-
tions. Such methods often extract traffic features manually and
feed them into the well-designed model to obtain classification
results. Existing DL-based NIDS methods extract various traffic
features (e.g., message type sequences, packet lengths, and raw
byte sequences) as input data to feed into the classification
model. However, in the real world, network traffic data often
exists in the form of graphs, which contain the long-term evolu-
tion and dynamic changes of network traffic flow. Representing
network traffic as a graph provides a more effective means of
capturing dependencies in a traffic network, thereby maximizing
data integrity. Unfortunately, most existing DL-based NIDS
methods only focus on extracting and learning statistical features
of network packets, while ignoring the structural information of
the network traffic data [3], [4]. Due to the lack of utilization
of the structure and topology of network flow data, they can
result in the neglect of valuable information derived from packet
relationships in the flow data. As a result, these systems may fall
short in detecting complex network attacks. Therefore, we intro-
duce the concept of mapping network traffic as a non-euclidean
graph with packet relationships to maximize data integrity. A
general traffic topology graph is used to describe the traffic
network instead of the representation of euclidean space data in
traditional DL-based methods, thereby better capturing packet
relationships.

Graph Neural Networks, as a subfield of deep learning,
have demonstrated remarkable success across domains, such
as computer vision, natural language processing, and social
network analysis. Their adaptability to diverse non-euclidean
graph structures makes them ideal for analyzing complex net-
work traffic patterns. To leverage the topological and attribute
information of network traffic, some studies have applied graph
neural networks (GNNs) to NIDS. For instance, Zheng et al.
[3] introduced a GCN-based method for network traffic clas-
sification, which combines traffic trace graphs with statistical
features to achieve high classification accuracy even with very
few labeled data. Zhu et al. [4] proposed a Darknet Graph Neural
Network (DGNN) for darknet traffic classification, which can
effectively curb malicious darknet activities. However, many
existing graph-based NIDS methods ignore privacy concerns.
Traffic data are vulnerable to various privacy graph attacks. To

1545-5971 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-3525-5102
https://orcid.org/0000-0002-3898-4303
https://orcid.org/0000-0003-2095-7523
mailto:pei_xinjun@163.com
mailto:dxh@csu.edu.cn
mailto:pjiang@csu.edu.cn
mailto:214711102@csu.edu.cn
mailto:tianshengwei@163.com
mailto:kpxue@ustc.edu.cn

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 741

overcome this challenge, we introduced a privacy-preserving
graph neural network (named NIGNN) for NIDS. We extend
the differential privacy (DP) method in the context of NIGNN
to effectively preserve data privacy.

Existing studies employ DP algorithms [5], [6], [7], [8] to
train deep learning models to defend against privacy inference
attacks, such as private inference attacks and membership in-
ference attacks. This is typically done by adding DP noise
to the gradients of the model during training, or by training
the model using a noisy loss function. For example, Pan et
al. [5] proposed a regression model based on an adaptive DP
mechanism, which dynamically allocates privacy budgets and
adds noise to the objective function. Furthermore, the work in
[6] developed a private-preserving deep learning, which applies
DP to a stochastic gradient descent (SGD) algorithm. They
performed a refined analysis of privacy costs by tracking pri-
vacy loss. Similarly, Jaewoo et al. [7] proposed a DP-based
SGD solution, which can be improved by carefully allocating
privacy budgets for each iteration. Additionally, the study in
[8] introduced a private LSTM language model to provide a
user-level privacy guarantee. Although these methods introduce
private-preserving DL models to protect user sensitive data, they
may not be suitable for many graph learning-based scenarios,
such as those based on GNN models. There are still theoretical
and practical challenges. In this paper, we extend the application
of DP to node classification tasks with GNNs.

Nonetheless, training a GNN model [9] under the constraint
of DP is highly challenging than other privacy deep learning
models due to the particularity of graphs. In GNNs, vertices are
interconnected through edges. The GNN model updates vertex
representations via a messaging framework, involving multiple
exchanges of hidden representations between adjacent vertices
[10]. Consequently, applying DP to GNN models may incur high
noise [10], potentially compromising the data utility. In addition,
the influence of neighbors on the aggregation is not uniform,
which limits the ability of GNNs to learn vertex representations.
To overcome this challenge, this paper designs a degree-sensitive
privacy-enhancement measure for GNN aggregation and up-
dates, which exerts different effects on vertices by incorpo-
rating contributions from numerous neighboring vertices. This
approach effectively reduces the impact of DP noise, allowing
for a more precise representation of vertices. The involvement
of more neighbors will offer significant advantages in mitigating
the adverse effects of DP noise. In this case, the utility of the
model can be preserved without consuming too much privacy
budget.

Based on the above ideas, we propose a privacy-preserving
NIGNN for network intrusion detection, which transforms net-
work traffic data into graph structures wherein vertices repre-
sent the traffic, and edges represent the IP hosts. Shaping the
network-wide traffic states as a graph can describe the network
traffic distribution in a heterogeneous spatial space. This design
provides an intuitive description of the network-wide traffic
state, allowing graph analysis techniques to detect network
intrusion activities effectively. Besides, we train the NIGNN
with a privacy graph convolution layer to prevent adversaries
from inferring sensitive information, which uses a correlation

coefficient perception (CCP)-based DP mechanism to enforce
privacy preservation to the GNN model. To reduce the noise
introduced by the DP mechanism, we design a degree-sensitive
privacy-enhancement measure in the aggregation and update of
GNN, which incorporates contributions from numerous neigh-
boring nodes to generate a more accurate representation of
the underlying data. In short, the proposed NIGNN ensures
the practicality of the model while avoiding potential privacy
leakages. To the best of our knowledge, we are the first to
investigate the problem of privacy-preserving GNN model in
NIDS, which prevents network intrusions while preserving user
privacy. The main contributions of this paper are summarized as
follows:
� We propose a novel graph construction method for network

intrusion detection, which shapes the network-wide traffic
states into a graphical representation describing network
traffic distribution in a heterogeneous space. This gives so-
phisticated feature representations using graph structures.
This enables excellent potentials in modeling sophisticated
feature representations and graph structures.

� We develop a privacy-preserving GNN to identify network
intrusions, which utilizes a CCP-based DP mechanism
to enforce privacy preservation to the GNN models. We
design a degree-sensitive privacy-enhancement measure to
exert different effects on vertices, which can reduce the
noise introduced by the DP mechanism while effectively
learning an accurate model.

� Extensive experiments carried out on real-world datasets
demonstrate the effectiveness of NIGNN in identifying
network intrusions. The proposed NIGNN can achieve
a high detection rate while providing a rigorous privacy
guarantee.

The rest of the paper is structured as follows. Section II
describes the related works. Section III briefly introduces some
preliminaries. Section V gives the privacy-preserving NIGNN
in details. Section VI evaluates the proposed NIGNN. Finally,
we conclude the paper in Section VII.

II. RELATED WORK

In recent years, deep learning (DL) methods have been applied
in NIDS with unprecedented detection performance. In gen-
eral, these methods follow a prevailing paradigm: the features
extracted from raw traffic are first mapped into dense vector
representations (e.g., word embeddings), and then concatenated
together to input into a deep learning model to extract and learn
high-order latent information. The work in [11] tested a variety
of DL models and demonstrated the effectiveness of shallow
neural network architectures in detecting network intrusions.
Moreover, Liu et al. [12] presented a traffic obfuscation frame-
work to prevent traffic analysis attacks. Das et al. [13] proposed a
natural language processing to convert HTTP requests into vec-
tors. Then, the learning model is used to detect anomalous traffic.
Moreover, Liu et al. [14] designed a utility-optimal differentially
private mechanism in cognitive radio networks, which provides
real-time differential location privacy. Hsu et al. [15] used a deep
reinforcement learning model to reflect traffic behaviors, which

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

has the self-updating capability. However, these methods cannot
directly operate on graph structure data [10], thereby ignoring
the spatial structure information of traffic network.

The proliferation of network intrusions has presented un-
precedented challenges in preserving users’ privacy. While In-
ternet anonymity dissociates an individual’s identity from their
network activities [16], any collection of data for NIDS may
jeopardize the anonymity of users [17], thereby putting their
privacy at risk. Sgaglione et al. [18] proposed a signature-based
intrusion detection system that employs homomorphic encryp-
tion to enhance the security of sensitive data. However, using
homomorphic encryption to encrypt data is computationally
expensive, which affects the performance of the whole system.
To reduce the computational overhead, Mokry et al. [19] pro-
posed a privacy-preserving clustering algorithm for an intrusion
detection system. This algorithm employs lightweight crypto-
graphic techniques (mainly additive secret sharing) to protect the
privacy of intrusion alert data. Additionally, Alazab et al. [20]
introduced a federated learning (FL)-based intrusion detection
system that creates a global detection model without sharing
private data, where each entity trains its local model using its
private data and then shares the model updates (gradients) with
a central server. Similarly, Jin et al. [21] proposed an evolvable
system architecture for an intrusion detection system, which
utilizes a federated incremental learning method to aggregate the
knowledge from diverse local models and incrementally update
the FL model. However, the effectiveness of federated learning
relies on the collaboration of a large number of devices. This
collaboration can introduce a lot of communication overhead.
Although these methods introduce privacy-preserving methods
to protect sensitive intrusion data, they may not be suitable for
GNN-based NIDS. In this paper, we extend the application of the
differential privacy method to NIDS, which can not only identify
network intrusion but also protect the privacy of intrusion data.

Recent GNN is considered an emerging research area and has
been successfully applied across various fields, such as action
recognition [22], click-through rate (CTR) prediction [23], and
few-shot learning [24]. The ability to model irregular graph data
is crucial for the GNN models, and many variants have been
proposed, such as graph convolutional networks [10], graph
attention networks [25], GraphSAGE [26], and so on. These
methods recursively aggregate and transform neighborhood in-
formation to update vertex representations. As a result, the
graph structure is encoded into the neural network to improve
classification performance. As the deployment of these models
becomes more widespread, there are concerns about graph pri-
vacy. However, due to the relational characteristics of graphs,
training a privacy-preserving GNN model is more challenging
than other privacy deep learning models. To address these chal-
lenges, researchers are turning their attention to the integration of
privacy measures (e.g., differential privacy) into GNNs. There
are a few attempts to provide privacy protection in the field
of graph-based learning algorithms. Zhang et al. [27] reviewed
various privacy attacks and privacy-preserving techniques in the
graph domain. In [28], the authors categorized representative
trustworthy GNN algorithms from a computational perspective.
For instance, Wang et al. [29] proposed a privacy-preserving

GNN for cloud environments that supports secure GNN train-
ing and inference by encrypting graph data using lightweight
encryption techniques. In [30], the authors extended the privacy-
preserving GNN in a federated learn-based recommendation
system. They applied local differential privacy to local gradients
to protect the privacy of user-item graphs. Another study by Miao
et al. [31] introduced a privacy-preserving collaborative GNN
for distributed graph databases, which utilizes a cluster-based
DP algorithm to reduce model degradation. Similarly, Zhang
et al. [32] proposed a distributed GCN framework that uses
a subgraph sampling method to reduce communication and
memory overhead. In another study, Bhaila et al. [33] studied the
application of randomization mechanisms in high-dimensional
feature settings, and utilized frequency estimates of graph clus-
ters to supervise the training procedure at a sub-graph level.
Sajadmanesh et al. [34] proposed a locally private graph neural
network (LPGNN). They designed a multi-bit-based local dif-
ferential privacy method to protect node privacy. Following this
work [34], Du et al. [35] proposed an evaluation method to char-
acterize the trade-off between utility and privacy for LPGNN.
Furthermore, Lin et al. [36] utilized the multi-bit algorithm
[34] to perturb node features, and employed a random response
algorithm to perturb the graph structure. However, introducing
too much noise can reduce data utility and compromise model
quality. Although these methods introduce privacy-preserving
GNN models to protect user sensitive information, there are
relatively few studies on privacy-preserving GNN-based NIDS.
There are still theoretical and practical challenges. Our work
is inspired by recent advances in privacy-preserving techniques
and graph representation learning. In this paper, we proposed
a privacy-preserving GNN (named NIGNN) for NIDS. The
main goal is to protect the privacy of network traffic data while
leveraging the predictive power of GNNs for the identification
of network intrusions.

III. PRELIMINARIES

A traffic network consists of a set of IP hosts. Each pair of IP
hosts may communicate with each other. This paper treats the
traffic network as a directed graph, denoted by G = (V, E , X)
where V denotes the set of N vertices, and E denotes the set of
M edges. We consider that the network intrusion detection can
be transformed to a specific type of node classification task. We
denote X ∈ R|V|×d as a feature matrix. Each vertex vi ∈ V has a
d-dimensional feature vector vi = xi = {xi1, xi2, ..., xid} with
a corresponding label yi ∈ {0, 1}. Formally, a labeled example
is a tuple (xi, yi) ∈ G: a d-dimensional feature vector xi with a
label yi. This task is to construct a GCN from G that enables us
to output the prediction ŷi for every vertex. ŷ is used to estimate
the probability of network intrusion appearing. Specifically, to
prevent traffic analysis attacks, the proposed NIGNN is trained
under the constraint of differential privacy. Next, we briefly
introduce the definitions of DP and GNN.

A. Differential Privacy

Differential privacy is a privacy definition specifically de-
signed for the problem of privacy-preserving data analysis. The

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 743

Fig. 1. Details of message passing.

key idea behind DP [6] is that it does not permit discering of
any individual’s record. In other words, no matter what auxil-
iary information is available, the adversaries cannot infer the
sensitive informantion of training data. To protect the privacy,
we formally define DP as follows:

Definition 1: (ε-DP). A randomized algorithm A : D → R
with domain D and range R satisfies ε-DP, if for any two
neighboring databases D, D′ differing on at most one tuple,
and for all possible outputs O ⊆ R(A), we have:

Pr[A(D) ∈ O] ≤ eε Pr [A (D′) ∈ O] .

The privacy budget ε, as a metric of privacy loss, controls the
privacy-utility trade-off. A smaller value of ε indicates a higher
privacy guarantee but more reduced the data utility. Formally,
we define the l1-sensitivity as below.

Definition 2 (l1-sensitivity): For any function f : X → Rd,
the l1-sensitivity of f is:

Δf = max
D,D′

‖f (D)− f (D′)‖1 .

The Laplace noise mechanism [37] is a well-known DP
method, which can be described as below.

Theorem 1: Laplace mechanism. For any function f , the
Laplace mechanism Af (D) � f(D) + Lap(0,Δf/ε) satisfies
ε-DP.

Proof: Proof of Theorem 1 can be found in [38].
The Laplace mechanism perturbs the private value with a

random noise drawn from a Laplace distribution Lap(0,Δf/ε)
with mean zero and variance Δf/ε. The noise scale is calibrated
by the l1-sensitivity Δf (divided by ε).

B. Graph Neural Networks

This subsection presents a GNN model that directly operates
on graph-structured data. Fig. 1 gives an example. The GNN
can perform effective information propagation on the graph. Let
(A, X) be a tuple, which can be used as the input. X denotes
the feature matrix, and A denotes the adjacency matrix. For
every vertex in the graph, the GNN aggregates the vectors of its
adjacent neighbors to learn the vertex’s hidden representation.
This process is shown in Fig. 1. The graph structure and vertex

Fig. 2. Threat model.

features can be encoded by the neighborhood aggregation opera-
tion Agg() and update operation σ(). More formally, the hidden
representation hl

v of a vertex v can be described as follows.

hl
N (v) = Agg

({
hl−1
u , ∀u ∈ N (v)

})
, (1)

hl
v(θ) = σ

((
hl−1
v ⊕ hl

N (v)

)
W l
)
, (2)

where l is the number of layers, ⊕ represents the merge op-
eration, W represents the weight matrix, and N (v) represents
a set of its adjacent neighbors. Specifically, the Agg() is an
aggregate function with invariant permutation, such as max,
sum, or mean. Each layer updates all its hidden representations
H l = {hl

v}n0 by an activation function σ (such as Sigmoid and
ReLU), where n represents the number of hidden neurons. It is
worth mentioning that, the GCN takesX as input, i. e., h1

xi
(θ) =

σ((xi ⊕ Agg ({xu, ∀u ∈ N (xi)}))W 1). Let f(xi,ωωω) denote
the cost function andωωω∗ represents the optimal model parameter.
The objective of the GNN is minimize the given cost function
f(xi,ωωω) in order to find the optimal parameterωωω. Then, we give
the definition of ωωω∗ as follows.

ωωω∗ = argmin
ωωω

n∑
i=1

f (xi,ωωω) . (3)

IV. THREAT MODEL

A. System Architecture

In our study, we explore a typical IoT network, where IoT
nodes connect to the Internet via an access gateway, as depicted
in Fig. 2. We present a comprehensive network intrusion detec-
tion framework to defend against network intrusions and traffic
private analysis. This framework includes the Security Gateway,
Security Server, and Security Service.

1) Security Gateway: It serves as a local access gateway to
the Internet, allowing IoT devices to connect via Ethernet and
WiFi. Its primary function is to monitor and collect communi-
cation data from all IoT devices. All Security Gateways upload
their network traffic data to the Security Server for training a

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

744 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

large-scale intrusion detection system. Another function of the
Security Gateway is traffic filtering, which utilizes the predefined
rules or policies to inspect, analyze and filter incoming and
outgoing traffic. The predefined rules can be configured to block
network traffic based on various criteria, such as destination IP
address, source IP address, protocols, and port numbers. The
Security Gateway enforces the filtering rules to restrict malicious
traffic and reduce the risk of network attacks. Furthermore,
it monitors IoT device communications and detects abnormal
communication behaviors caused by malicious IoT devices.

2) Security Server: We consider that Security Server has suf-
ficient computational power to train a large-scale deep learning-
based NIDS system. It is supported by the IoT security ser-
vices provided by companies like Google and Microsoft. These
services collect all network traffic data from security gateways
to facilitate large-scale network intrusion detection and traffic
behavior analysis.

3) Security Service: It maintains a repository of NIDS to
suport Security Gateway to quickly query and identify abnormal
traffic. Security Service periodically collects network traffic data
to update the large-scale NIDS model provided by Security
Server. Under cyber-attacks and other network anomalies, it also
can support fast response and prevent the expansion of network
attacks by blocking node communication.

B. System Model

In an IoT network, communication between IoT nodes occurs
through the transmission of traffic, and each IoT node in the
network has the ability of transmiting and forwarding traffic.
Note that in most cases, traffic cannot be directly routed from
the source IP node to the destination IP node. Instead, it typ-
ically necessitates traversal through one or more forwarding
devices. However, due to the inherent limitations in the com-
puting resources of IoT nodes, on-device monitoring is seldom
feasible. In this context, Security Gateway switches stand out
as the primary forwarding devices responsible for forwarding
or discarding traffic, which serves as a vital component for
security-related measures within IoT networks to identify and
monitor traffic patterns, detect anomalies, and enforce security
policies. The transmission process of all traffic within an IoT
network can be mathematically expressed as follows:

SRC → (Ns1 , Rs1) → (Ns2 , Rs2) · · · (Nsn , Rsn) → DES,
(4)

where SRC indicates the source IP address of IP host H ,
DES indicates the destination IP address of IP host H , Nsi

indicates i-th IoT node, and Rsi indicates the traffic processing
rules associated with the IoT node Nsi . Then, we establish
the anomaly detection components in the Security Gateway for
device communication monitoring and traffic capture, where
each traffic is assigned to a specific class y ∈ {0, 1}. y = 1
indicates malicious traffic, and y = 0 indicates normal traffic.
Then, the Security Gateway extracts statistic features from the
raw network traffic to characterize the behavior of the traffic.

C. Adversary Model and Assumptions

We divide our threat model into two distinct classes of adver-
saries with differing visibility into the home network:

A1 - Network intrusion attacks: We consider an Adversary,
referred to as ”Adversary 1”, who lacks knowledge of the home
network topology but possesses the ability to launch attacks
against IoT nodes from an external network. Adversary 1 can
launch a variety of network traffic attacks, such as backdoors,
fuzzers, and DoS attacks, etc. The goal of Adversary 1 is to
execute network intrusion attacks that compromise as many IoT
nodes as possible, thereby destabilizing device functionality and
potentially infecting additional devices. Fig. 2 shows our threat
model. For example, a DoS attack can deplete the resources of
one or more servers, or block specific links within a data center.
Ultimately, these coordinated attacks overwhelm the targeted
servers with an excessive amount of network traffic.

A2 - Privacy inference attacks based on traffic analysis:
Within the context of deep learning-based NIDS, the pro-
cessing of the original network traffic leads to the generation
of sequences of traffic features. These sequences encompass
various attributes, such as traffic packets, traffic bytes, traffic
duration, protocol types, TCP flags, etc. To establish a robust
deep learning-based NIDS, the traffic features are typically
transmitted to a Security Server for training the deep learning
model. However, such communication raises privacy concerns,
as traffic features contain a lot of important information, which
could reveal private information about the activities of a home’s
occupants. For example, traffic rates from the indoor security
camera in a smart home reveal whether the user is present at
home when the camera detects movement, and traffic rates from
the switch reveal when the IoT device is turned on or off. For
example, a member inference attack [39] can infer whether a
data record belongs to the training dataset of the target model.
Suppose the training data is collected within a home network.
When a network observer (referred to as ”Adversary 2”) de-
termines a sub-training set using the member inference attack,
Adversary 2 can reasonably infer a user’s home activities from
the sequence of traffic features of the sub-training set through
traffic analysis.

D. Design Choices

This paper presents a novel privacy-preserving NIGNN for
network intrusion detection, which shapes the network-wide
traffic states into a graph. This method uses graph analysis
method to detect network intrusion activities, effectively weak-
ening the network intrusion attacks A1. Despite the importance
of privacy in traffic analysis, few efforts have been devoted
to studying privacy inference attacks in this context of deep
learning NIDS. This paper reveals how attackers can infer user
privacy through traffic analysis. We trained the GNN model
under DP constraints to mitigate privacy inferences from traffic
feature sequences (privacy inference attack A2). By integrating
privacy-preserving measures into the design and development
of graph mining-based NIDS systems, it is possible to achieve a
balance between effective intrusion detection and preservation
of individual privacy. To our best knowledge, in the field of

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 745

NIDS, it is the first attempt that graph anaysis-based NIDS is
proposed to prevent network intrusion while preserving user
privacy.

V. DIFFERENTIAL PRIVACY GRAPH NEURAL NETWORKS FOR

INTRUSION DETECTION

In this section, a privacy-preserving NIGNN is proposed.
We consider that network intrusion detection can be regarded
as a specific type of node classification task. In Section V-A,
we transform the network traffics as graph data that describes
the transition between network-wide traffic states at consecutive
time steps. Section III-B describes how NIGNN encodes graph
structure and traffic features. Section V-B describes how to
construct a privacy graph convolution layer in NIGNN that
perturbs the model input. Finally, we propose a degree-sensitive
privacy-enhancement mechanism to reduce the noise in Section
V-C.

A. Graph-based Traffic Representation

A traffic network usually consists of a set of IP hosts. Network
intrusion detection can be seen as a specic time series analysis
problem, which aims at predicting future network attacks in the
trafc network using historical data. In this study, we transform
the time series analysis into a node classication problem. Sub-
sequently, a network-wide trafc graph is constructed to capture
the spatial structure of the trafc data, which represents trafc ows
as vertices and hosts as edges. Based on the link homophily [3],
trafc ows with public IP hosts exhibit similar application trends,
which can be measured on the graph. For instance, in a peer-to-
peer (P2P) application, hosts frequently connect with multiple
collaborating hosts, and trafc ows between them are associated
with the same application [3]. Equally, we can obtain the same
conclusion in client-server applications. We then use the NIGNN
to model the temporal and spatial properties of the graph. This
relational view of network trafc treats the node classication
problem as information dissemination over the network-wide
trafc graph. In this part, we contract a network-wide traffic graph.

Fig. 3(a) illustrates a general traffic network. There are 6
IP hosts labeled as s1, s2, ..., s6, where each IP host has some
traffic packets. For example, the IP host S1 have send two traffic
packets γs1

t1
and γs1

t3
and received one traffic packet γs2

t2
. The

packet’s timestamps are denoted as ti, where i = 1..k, and k
is the total number of packets or nodes. When we measure the
traffic data collected by sth IP host for a certain period of time,
the collected data sequence can be characterized in the form of
a time series, denoted by γs = {γ1, γ2, . . . , γT } ∈ RT×M . We
extract characteristics for each traffic packet. The extracted set
of features can now describe each traffic packet. For the sth IP
host Si, its traffic packet γs

t at time t is described by several
features, such as timestamps, inter-packet mean time, and flow
duration. For simplicity, we only use directed connections to
construct the edges of the graph. Consequently, the traffic data
sequence is transformed into the form of a network-wide traffic
graph.

We are interested in utilizing the graph structure to analyze
the trafc . In our case, the traffic data is transformed to a graph

Fig. 3. Details of graph transformation.

representation. We demonstrate the mapping of a network traffic
flow into a graph-structured representation in which each packet
is assigned to a node, and packet relations are encapsulated in
edges with the chronological relationship serving as the edge
direction. Fig. 3(b) illustrates a general graph-structured network
traffic flow representation. The details of how a network traffic
flow is mapped to each graph entity are presented as follows.
� In Fig. 3(a), the traffic γs1

t1
and γs1

t3
have the common host

s1. In Fig. 3(b), there exists a directed edge between γs1
t1

and γs1
t3

.
� We regard the receiving and sending traffic of a host as

two vertices in the graph, and use a directed connection
to construct the edge between the two vertices, e.g., γs1

t1
is

linked to γs2
t2

in Fig. 3(b).
� We set a threshold thr that designates the maximum time

interval. Temporal information is the inter-arrival time
between packets and can be calculated by tr − ts. In this
scenario, s is the sender node index and r is the receiver node
index. When the threshold thr is set to 1, |t3 − t1| > thr.
As shown in Fig. 3(b), there is no edge between the two
vertices γs1

t1
and γs2

t3
.

For simplicity, all traffic data can form a traffic feature matrix
X = {x1,x2, . . . ,xn}, where X ∈ RN×M , and each element
x1 represents a traffic data γs

t . Let A ∈ RN×N be the adjacency
matrix of the network-wide traffic graph. When the traffic i and
j have a common IP host, Ai,j = 1, otherwise Ai,j = 0. After
that, the network-wide traffic graph is constructed, which can be
represented as G = (X,A).

B. Private Graph Convolution Layer With Correlation
Coefficient Perception Noise

In our proposed NIGNN, we construct a private gaph convo-
lution (PGC) layer that perturbs the input features. Fig. 4 shows

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

746 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

Fig. 4. An overview of NIGNN architecture.

an overview of NIGNN architecture. To achieve DP, a baseline
approach is to insert the same magnitude of noise (selected
from an identical noise distribution 1

|D|Lap(0,Δh/ε1)) to the
all input X . Intuitively, the baseline approach can work well.
In practice, this assumption is not valid, and the utility of the
model may be affected as the contribution of each feature may
vary.

Moreover, we propose a correlation coefficient perception
(CCP)-based DP mechanism, which relies on a weighted corre-
lation coefficient matrix to inject different magnitudes of noise
into the model input. Since features are dependent of each other
(e.g., duration versus number of packets, flow byte rate versus
flow packet rate, and minimum segment size versus minimum
inter-arrival time of packets), we adopt CCP to quantify the
extent of statistical dependence between two variables. In CCP,
Spearman rank correlation coefficient is recommended for data
with deviations or outliers [40]. In essence, rank correlation
analysis is conducted for measuring both linear and general
relationships between two variables. It determines whether one
variable takes on a larger or smaller value concerning the
other variable, although not necessarily in a linear manner
[40].

Recall that feature matrix X consists of a set of traf-
fic data x1,x2, ...,xn, where each row xi contains d fea-
tures xi1, xi2, ..xid. Let t(p) = {x1p, x2p, ..., xnp} and t(q) =
{x1q, x2q, ..., xnq} be two column vectors. Let t′(p) =
{x′

1p, x
′
2p, ..., x

′
np} and t′(q) = {x′

1q, x
′
2q, ..., x

′
nq} be the per-

mutations of t(p) and t(q), respectively. Spearman cor-
relation between t(p) and t(q) can be described as
follows.

r(t(p),t(q)) =
cov

(
t′(p), t′(q)

)
σ̂t′(p) σ̂x′(q)

, (5)

where σ̂t′(p) and σ̂t′(q) denote the standard deviations of rank
variables, and cov(t′(p), t′(q)) represents the covariance of rank
variables. Only if all n ranks are distinct integers, Spearman

correlation can be computed by r(t(p),t(q)) = 1− 6
∑n

i=1 df2
i

n(n2−1) [41]
where dfi = x′

ip − x′
iq is the difference between the two ranks.

Algorithm 1: Private Graph Convolution Layer With DP.
Input: Original traffic data X , privacy budget ε
Output: The perturbed PGC layer PGCD′(W)
1: Security Gateway side:
2: Δf = 2

∑
h∈H0

d;
3: for each 0 ≤ j ≤ d do
4: εj = βj · ε1;
5: end for
6: for xi ∈ D, i ∈ [0, n] do
7: for xij ∈ xi, j ∈ [0, d] do
8: Perturb the vertex feature:
9: x′

ij = PGCxi
(xij) = xij +

1
|D|Lap(0,Δf/εj);

10: end for
11: Obtain the perturbed vertex representation:
12: x′

i = {x′
i1, x

′
i2, ..., x

′
id};

13: end for
14: Update PGC ′

x′
i

to the Security Server;
15: Security Server side:
16: Construct the PGC layer:
17: hD′(W) =

∑
x′
i∈D′(x′

i ·W);

18: PGCD′(W) = {hD′(W)}h∈PGC ;
19: return PGCD′(W).

Intuitively, the Spearman correlation between t(p) and t(q)

is large (resp. small) when observations have a similar (resp.
dissimilar) rank. For j-th input feature xij , we calculate the
Spearman correlations between it and all other features (i.e.,
rj = {r(t(j),t(1)), r(t(j),t(2)), ..., r(t(j),t(d))}). As a result, we can

denote a privacy budget ratio as βj =
|rj |

1
d ·
∑d

j=0 |rj | . For j-th input

feature, the privacy budget can be denoted as εj = βj · ε.
As mentioned earlier, each traffic data xi is represented by

a d-dimensional vertex vector xi, where xi = {xi1, xi2, ..xid}.
Here, the PGC layer perturbs each vertex feature xij of xi. For
j-th input feature xij of xi, we can have:

x′
ij = PGCxi

(xij) = xij +
1

|D|Lap (0,Δf/εj) , (6)

where x′
ij is the perturbed vertex feature. Specifically, Δf is set

to 2
∑

f d. Then, the perturbed vertex data x′
i can be represented

by:

x′
i = {x′

i1, x
′
i2, ..., x

′
id}.

= {PGCxi
(xi1), PGCxi

(xi2), ..., PGCxi
(xid)}. (7)

After that, the Security Gateway uploads the perturbed datax′
i

to the Security Server to train a privacy-preserving GNN. On the
Security Server side, we construct the PGC layer PGCD(W),
and take the perturbed vertex featuresx′

i as input. The PGC layer
PGCD′(W) consists of a set of hidden neurons h̄D(W) :

h̄D′(W) =
∑

x′
i∈D′

(x′
i ·W), (8)

PGCD′(W) =
{
h̄D′(W)

}
h∈PGC

. (9)

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 747

As explaining in Algorithm 1, we first determine the sensitiv-
ity Δf and the privacy budget εj (lines 2–4). Then, each vertex
aggregates the information of its neighbors (lines 6–8) followed
by a perturbation with Laplace noise (lines 9–10). Lastly, all
hidden neurons are updated (lines 12–14). We give the bound of
the sensitivity Δf as follows.

Lemma 1: Let D and D′ be any two neighboring datasets. Let
PGCD(W) and PGCD′(W) be the two PGC layers on D and
D′, respectively. We have:

{
hD(W) =

∑
xi∈D(xi ·W)

PGCD(W) = {hD(W)}h∈PGC{
hD′(W) =

∑
x′
i∈D′(x′

i ·W)

PGCD′ (W) =
{
hD′(W)

}
h∈PGC

Then, we have the following inequality:

Δf =
∑

h∈PGC

d∑
j=1

∥∥∥∥∥∥
∑
xi∈D

xij −
∑
x′
i∈D′

x′
ij

∥∥∥∥∥∥
1

≤ 2
∑

h∈PGC

d.

where d is the feature dimensions of xi ∈ D.
Proof: Assume that D and D′ differ in the last tuple. Let

xn(x
′
n) be the last tuple in D(D′). We have that

Δh =
∑

h∈PGC

d∑
j=1

∥∥∥∥∥∥
∑
xi∈D

xij −
∑
x′
i∈D′

x′
ij

∥∥∥∥∥∥
1

=
∑

h∈PGC

d∑
j=1

∥∥xnj − x′
nj

∥∥
1

≤ 2max
xi∈D

∑
h∈PGC

d∑
j=1

‖xij‖1 .

Since ∀xi, j : xij ∈ [0, 1], we have that: Δh ≤2
∑

h∈PGC d.
Lemma 2: Algorithm 1 preserves ε-DP in the computation of

PGCD(W).
Proof: According to the calculation of GCN, for each h ∈

PGCD, h can be re-written as follows.

h̄D(W) =
d∑

j=1

[∑
xi∈D

(
xij +

1

|D|Lap (0,Δf/εj)

)
W

]

=
d∑

j=1

ξ̄hj W.

Algorithm 2: Degree-Sensitive Graph Convolution Layer.

Input: The perturbed PGC layer PGC, adjacency matrix
A

Output: The degree-sensitive graph convolution layer
DGC

1: Obtain the degree of each vertex from the adjacency
matrix A:

2: DegSet = ObtainDegree(A);
3: for v ∈ V, degv ∈ DegSet do
4: Compute the degree item D(v, deg) for each vertex:

5: d(v, deg) =

{
(degv)

ρ, degv > thr
(ε
degv

)ρ, degv ≤ thr
6: Obtain the vertex representation:
7: ĥv = D(v, deg) · hv ⊕ Agg ({hl−1

u , ∀u ∈ N (v)});
8: ĥv(W) = σ(ĥvW);
9: end for

10: Construct the DGC layer:
11: DGC = {ĥv(W)}ĥv∈DGC ;

12: return DGC(W).

Then, we set Δh to 2
∑

h∈H0
d, as shown in Algorithm 1. We

have

Pr
(
PGCD(W)

)
Pr
(
PGCD(W)

) =

∏
h

∏d
j=0 exp

(
εj‖∑xi∈D xij−ξ̄hj ‖1

Δh

)
∏

h

∏d
j=0 exp

⎛⎝ εj

∥
∥
∥
∥
∑

x′
i
∈D′ x′

ij−ξ̄hj

∥
∥
∥
∥
1

Δh

⎞⎠
≤
∏
h

d∏
j=0

exp

⎛⎝ εj
Δf

∥∥∥∥∥∥
∑
xi∈D

xij −
∑
x′
i∈D′

x′
ij

∥∥∥∥∥∥
1

⎞⎠
≤
∏
h

d∏
j=1

exp

(
εj
Δf

2 max
xn∈D

‖xnj‖1
)

≤
∏
h

d∏
j=1

exp

(
2εj
Δf

)
≤
∏
h

d∏
j=1

exp

(
ε

Δf
· 2 · |rj |

1
d

∑d
j=1 |rj |

)

≤ exp

⎛⎝ ε

Δf
· 2
∑
h

d

⎡⎣ d∑
j=1

|rj |∑d
j=1 |rj |

⎤⎦⎞⎠ = exp (ε) .

C. Degree-Sensitive Graph Convolution Layer

Recall that in the PGC layer, the DP mechanism is used
to perturb every vertex features by adding Laplace noise
1
|D|Lap(0,Δh/εj) into xij , and the level of noise introduced by
each individual vertex xi is controlled by the privacy budget
ε. Hence, the presence of noise can significantly impact the
accuracy and reliability of aggregated information. Considering
the impact of noise introduced by the PGC layer on the aggrega-
tion process, we propose a degree-sensitive graph convolution
(named DGC) layer DGC(·), which manipulates the outputs
of DGC(·) by giving vertices with a very small number of
neighbors relatively higher impacts on the model learning. The

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

748 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

DGC(·) is designed to alleviate the impact of the DP noise
introduced by PGC(·) and enhance the overall performance
of the model. In the context of vertex-based aggregation, it is
naturally quite sensitive to the number of neighbors. It is worth
noting that the original GNN treats all the vertices equally.
However, the influence of neighbors on the aggregation is not
uniform.

In order to alleviate the impact of the DP noise, each vertex v is
associated with a degree item d(v, deg), where deg is the degree
of v. The DGC(W) can act as a noise reducer by dynamically
adjusting the update amplitude for each vertex based on its de-
gree. The degree item d(v, deg) indicates the vertex importance.
Clearly, a vertex with more neighbors is more important. This
is because the involvement of more neighbors can counteract
the adverse effects of noise during the aggregation process, (i.e.,
Agg()). In other words, the collective contribution from these
vertices counteracts the noise introduced by each individual
vertex by the PGC layer. The resulting aggregation reflects a
more accurate representation of the underlying data. Therefore,
vertices with more neighbors should assign smaller degree terms
d(v, deg), aiming to preserve the aggregation results obtained
from the previous layer. This allows the model to learn with
reduced noise, bringing the results closer to those of a noise-free
model. Conversely, vertices with fewer neighbors are considered
less important and are assigned higher values of the degree term
d(v, deg). This strategy encourages more substantial updates for
vertices with fewer neighbors, facilitating the model’s ability to
move away from local optima and learn more effectively. In
general, our method can balance the update amplitude based on
the degree of each vertex. This ensures that both vertices with
many or few neighbors contribute meaningfully to the learning
process, enhancing the model’s adaptability.

Formally, we define the degree term d(v, deg) as follows.

d(v, deg) =

{
(degv)

ρ , degv > thr(
ε

degv

)ρ
, degv ≤ thr

(10)

where thr is a threshold parameter, and ρ ∈ [0, 1] is a control
parameter.

As shown in Algorithm 2, the DGC layer takes the output of
the PGC layer as its input. When the privacy budget ε is small,
the output of the PGC layer contains more noise. In contrast,
when the privacy budget ε is large, the output of the PGC layer
contains less noise. To accommodate different privacy scenarios,
we incorporated the privacy budget parameter ε into the (10),
allowing the model to dynamically adjust the update amplitude
based on the level of privacy protection required. Intuitively, a
smaller privacy budget ε (indicating more added noise) implies
a need for a more cautious and conservative update amplitude
(i.e., a smaller d(v, deg)). As a result, a smaller privacy budget
ε should result in a smaller d(v, deg), which ensures that the
update amplitude aligns with the noise level.

In the DGC layer DGC(·), the hidden representation hv of a
vertex v can be updated as follows.

hv = hv ⊕ Agg
({

hl−1
u , ∀u ∈ N (v)

})
, (11)

ĥv = d(v, deg) · hv, (12)

ĥv(W) = σ
(
ĥvW

)
, (13)

where hv represents the hidden representation of a vertex v, and
hu represents the hidden representation of a neighbor vertex
u. N (v) represents the set of its adjacent neighbors, Agg() is
an aggregate function, ⊕ represents the merge operation, and
W represents the weight matrix. For a vertex v, (11) is used
to aggregate information from its adjacent neighbors N (v). By
introducing a degree item d(v, deg), (12) acts as a noise reducer
to alleviate the impact of noise introduced by the PGC layer.
Following this, (13) updates the hidden representation of a node
v. Finally, the DGC layer employs (14) to update all hidden
representations.

DGC(W) = {ĥv(W)}ĥv∈DGC , (14)

As a result, the DGC layer can capture and leverage relevant
information from the graph structure while mitigating the ad-
verse effects of noise, thereby enhancing the robustness and
performance of the proposed NIGNN. Our method not only
maintained the original network structure, but also strengthened
the learning with regard to the vertex-based aggregation.

After building the DGC layer DGC(W), we stack the graph
convolution layers {H1, H2, ..., H l} on the top of DGC(W).
In Fig. 5, benign vertices and malicious vertices in the network
traffic graph constructed in this paper are denoted by red and
blue circles, respectively. This visualization serves to illustrate
the impact of the number of neighbors. The first row shows
vertices with a small number of neighbors, falling below the
threshold thr. Conversely, the second row shows vertices with
a large number of neighbors. Intuitively speaking, with the
advantage in quantity, vertices with more neighbors tend to
have clearer classification boundaries compared to those with
fewer neighbors, leading to better classification results. The
visual analysis presented in Fig. 5 sheds light on the crucial
role played by neighbor number in the accuracy and robustness
of the classification task.

Fig. 5(a) and (d) focus on evaluating the effects of the raw
network traffic graph without any additional modifications or
enhancements, which can be served as a baseline. Fig. 5(b)
and (e) provide an overview of the effect of PGC(·), which
enforces privacy preservation to the standard GNN. Fig. 5(c)
and (f) illustrate the DGC(·), which augments PGC(·) by
applying different impacts to vertex update process. A direct
comparison of the results presented in Fig. 5(b) and (e) with those
in (c) and (f) allows for an assessment of the effectiveness of
DGC(·) in mitigating the adverse effects of noise and improving
classification accuracy. By incorporating tailored vertex update
strategies, DGC(·) enables enhanced adaptation to the under-
lying network traffic patterns, ultimately enhancing the model’s
ability to accurately classify benign and malicious vertices.

D. The Correctness and Applicability of the NIGNN

This section summarizes the key steps of our NIGNN. Algo-
rithm 1 presents the procedures of CCPM in the PGC layer,
which enforces privacy preservation to the standard GNN. This
procedure is independent of the number of training epochs. Δf

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 749

Fig. 5. The decision boundaries for the cluster of vertices with a small number of neigbors produced by the (a) raw network traffic graph, (b) PGC(·) with
ρ = 0.8 and thr = 10, and (c) DGC(·) with ρ = 0.8 and thr = 10. The decision boundaries for the cluster of vertices with a large number of neigbors produced
by the (d) raw network traffic graph, (e) PGC(·) with ρ = 0.8 and thr = 10, and (f) DGC(·) with ρ = 0.8 and thr = 10.

depends on the dimensions of vertex features, but do not depend
on the number of training epochs. According to Lemma 2, the
PGC layer is ε-differentially privacy, and thus the computation
of the DGC layer and l hidden layers {H1, H2..., H l} above
PGC are differentially private because there is no additional
information from the traffic data to be accessed.

VI. PERFORMANCE EVALUATION

In this section, we conduct a number of experiments using
real-world datasets to evaluate the privacy-utility performance of
NIGNN. We are interested in network intrusion detection where
traffics are connected via directed edges, forming a graph. The
task is to detect network intrusions.

A. Datasets and Evaluation Metrics

1) Datasets: In our experiment, we evaluated NIGNN on
three benchmark datasets. The DIDarknet [42], Tor-nonTor
[43], and UNSW-NB [44] datasets are widely used in NIDS.
The DIDarknet dataset [42] is an open-source repository that
includes malicious traffic from the darknet and correspond-
ing benign traffic from various sources such as Chat, Email,
Browsing, etc. It also reflects how network nodes act in space,
and how each node contacts with each other within a certain
time interval. Note that the latest trend of using protocols (like
VPN/Non-VPN) to encrypt and disguise Internet traffic makes
network traffic classification an open challenge. In light of this,
we also evaluated our method on the Tor-nonTor dataset [43], in
which each Tor traffic includes a set of time-based features. The
UNSW-NB dataset [44] mixes normal real-world network traffic
with synthesized cyber-attack activity traffic, in which attacks
have been categorized into nine types, such as Backdoors, Dos,
Worms, etc. Table II provides details of these datasets.

TABLE I
FREQUENTLY USED NOTATIONS

TABLE II
MAIN DATASETS USED IN OUR EVALUATION STUDIES

2) Evaluation Metrics: In our experiments, we evaluate the
performance of the privacy-preserving NIGNN based on some
common performance evaluation metrics in machine learning,
including accuracy and ROC. The primary objective of this paper
is to achieve a high detection rate for network intrusion detection.
Specifically, we shuffled the examples and trained on 60% of the
data, validated on 20% of the data, and tested on the rest 20%
as listed in Table II.

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

750 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

Fig. 6. Experimental results of different private-preserving method comparisons under varying privacy budgets ε.

TABLE III
NIGCN VERSUS PRIVATE-PRESERVING METHODS

B. Comparative Classification Performance

In this experiment, we compare NIGNN with other private-
preserving techniques. Fig. 6 and Table III illustrate the accuracy
of each algorithm under varying privacy budgets ε. These base-
line methods are introduced below:
� DPSGDGCN and DS-DPSGDGCN: Following the work

of [45] and [7], we re-implement a differentially private
stochastic gradient descent (DPSGD)-based GCN, namely
DPSGDGCN. This method introduces DP in the back
propagation learning procedure, which provides a strong
privacy guarantee. In addition, to verify the validity of
the degree sensitivity-based privacy-enhancement measure
proposed in this paper, we constructed a degree sensitive-
based DPSGDGCN, namely DS-DPSGDGCN.

� LPGCN and DS-LPGCN:The LPGCN was originally de-
signed by [34], which introduces a multi-bit-based privacy-
preserving mechanism to protect the node data privacy.
Similar to DS-DPSGDGCN, we also built a degree-
sensitive LPGCN, namely DS-LPGCN.

� GaussGCN and DS-GaussGCN: The GaussGCN uses the
Gaussian-based DP mechanism in the input layer of the
standard GCN, and injects the Gaussian noise [6], [37],
[46] into the model inputs.

� LapGCN and DS-LapGCN: Similar to GaussGCN, the
LapGCN injects the Laplace noise [6], [37], [46] sampled
from the Laplacian distribution into the model inputs.

� NIGCN and DS-NIGCN: The two models use the CCP-
based DP mechanism proposed in this paper to perturb the
model inputs.

From the results, we can find that GaussGCN and LapGCN
outperform DPSGDGCN on all benchmark datasets. This is

because the DPSGDGCN can only be trained in a limited
number of epochs. As the number of iterations of the model
increases, the privacy budget ε noise and accumulate, reducing
utility. Moreover, the baseline models (such as GaussGCN and
LapGCN) incur significant errors on the three datasets when the
ε is small (e.g., ε = 0.01). The reason is that too much noise is
added, making it difficult for the baseline models to converge to
global optimization. The performance of the baseline models
improves as the privacy budget ε increases. Importantly, we
observe that NIGNN outperforms all other private-preserving
methods in all cases. This proves the effectiveness of our ap-
proach. As shown in Fig. 6 and Table III, the performance
of NIGNN shows almost no variations to the changes in ε on
all benchmark dataset. This means that NIGNN allows using
smaller values of ε for better privacy protection without sacri-
ficing much of its accuracy. Fig. 7 provides the ROC results
of all baselines on the three datasets. In summary, NIGNN
can achieve the privacy-utility trade-off. Specifically, we also
found that classification performance is further improved when
the degree-sensitive mechanism is employed. This is because
the degree sensitivity mechanism can mitigate the effect of
noise.

C. Robustness to Attribute Inference Attacks

In this experiment, we investigate the accuracy of attribute
inference attacks under both non-private and privacy-preserving
NIGNN frameworks. As illustrated in Table IV, the Rand at-
tack approach serves as the baseline method for predicting
users’ sensitive attributes. It randomly assigns predictions to
sensitive attributes without leveraging any information from
the dataset. As expected, the Rand attack approach achieved

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 751

Fig. 7. ROC curve of NIGNN versus private-preserving methods on three benchmark datasets.

TABLE IV
ACCURACY OF ATTRIBUTE INFERENCE ATTACK UNDER NON-PRIVATE AND

PRIVACY-PRESERVING NIGNN

close to 50% accuracy on all three datasets, which is con-
sistent with random guess expectations. Following previous
work [35], we re-implemented the MB attack model to infer
sensitive attributes. In the case of the MB attack, we assume
that the attacker possessed partial knowledge of the training
dataset. We then evaluated the performance of the MB attack
model under both non-private and privacy-preserving settings.
In the non-private setting, the MB attack model achieved high
accuracies of of 85.73%, 92.56%, and 97.36% on the three
datasets, respectively. These results show that MB attack models
can effectively and accurately infer sensitive attributes in the
absence of privacy protection mechanisms. However, under
the privacy-preserving setting, the accuracy of the MB attack
model is significantly reduced. Additionally, following previous
work [47], we re-implemented the RI-MI and FP-MA meth-
ods, which were originally developed to reconstruct missing
attributes. The results summarized in Table IV indicate that RI-
MI performs relatively poorly, achieving similar performance
to the Rand attack method. In contrast, FP-MA achieves bet-
ter attack accuracy in the non-privacy setting. However, the
proposed privacy-preserving NIGNN significantly reduces the
attack accuracy of both RI-MI and FP-MA. For instance, the
attack accuracy of FP-MA is reduced by 33.7%, 69.58%, and
79.7% on the three datasets, respectively. These results demon-
strate the effectiveness of the privacy-preserving NIGCN in
mitigating attribute inference attacks. In conclusion, the accu-
racy of attribute inference attacks differs significantly between
non-private and privacy-preserving NIGNN frameworks. While
non-private NIGNN is vulnerable to attribute inference attacks,
the privacy-preserving NIGNN offers a more robust defense
against such attacks by leveraging techniques such as differential
privacy.

TABLE V
EFFECT OF DIFFERENT FEATURES

D. The Influence of Different Features

To show the effectiveness of the traffic-based vertex features
used in this paper, we compared the classification performance
of our feature extraction with some other methods. Fig. 8 and
Table V present the evaluation results, providing valuable in-
sights into the performance of different models. These baseline
methods are introduced below:
� OH and DS-OH: Following the work of [34] and [9], the

OH method uses the one-hot encoding of vertex degrees.
A standard model of GCN originally proposed by [10]
was then used for training. Specifically, we set the feature
dimension equal to the originally provided traffic-based
vertex features.

� RD and DS-RD: The RD [34] consists of a four-layer GCN,
which randomly initializes the input features with a Gaus-
sian distribution. The two learning models are optimized
with stochastic gradient descent (SGD).

Specifically, these methods can be regarded as ”fully private”
because they do not require any private vertex features. In Fig. 9,
we see that OH and RD yield inferior performance. The OH
model gives similar performances to the RD model on the three
datasets. Our method performs considerably better than these
two fully private methods, i.e., OH and RD. Experimental results
demonstrate the effectiveness of traffic-based vertex features
used in this paper. This means that vertex features are helpful
for network intrusion detection.

E. Comparison With Graph-Less NIDS Methods

In this experiment, we compared the proposed graph-based
NIGNN with several state-of-the-art graph-less NIDS methods.
Table VI shows the results. Notably, linear regression (LR) and

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

752 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

Fig. 8. Experimental results of different feature comparisons under varying privacy budgets ε.

Fig. 9. Experimental results of different feature comparisons.

TABLE VI
EFFECT OF DIFFERENT GRAPH-LESS NIDS METHODS

support vector machine (SVM) perform the worst among the
graph-less NIDS methods. This suggests that they may not be
able to capture the complex and nonlinear patterns in network
traffic data, limiting their ability to accurately detect network
intrusions. In contrast, neural network models including deep
neural networks (DNN), convolutional neural networks (CNN),
recurrent neural networks (RNN), and long short-term memory
(LSTM) networks can better fit the data distribution, resulting
in higher detection performance. However, it is noteworthy that
even though these neural network models outperform LR and
SVM in graph-less NIDS methods, they are still not comparable
to the proposed graph-based NIGNN method. This result demon-
strates the superiority of the proposed NIGNN in detecting
network intrusions, and emphasizes the unique advantages of
graph-based approaches in modeling the complex graph struc-
tures and relationships within network traffic data. By leveraging
the graph structure of network data, NIGNN can capture com-
plex interactions between network entities and effectively detect
network intrusions.

F. Comparison With Different Graph Neural Networks

In our experiment, we included some state-of-the-art GNN
models, i.e., GCN [10], GAT [25], SAGE [26], SGCN [48],
and TAGCN [49], which are commonly used for graph-related

tasks. To highlight the significance of the proposed NIGNN
framework, we re-implemented these baseline models in the
NIGNN framework. Fig. 10 and Table VII show the accuracy
results of each model across varying privacy budgets. From the
results, we find that the baseline GCN performs considerably
better than GAT and SGCN but are almost worse than the
SAGE. The accuracy gain is increased by roughly 3.5% on
the three datasets. It indicates that SAGE can capture useful
information. Specifically, TAGCN performs better than the base-
line model SAGE. This is because TAGCN utilizes a set of
fixed-size filters to perform graph convolution without the need
for convolution approximation, enabling efficient extraction of
local features. Therefore, we recommend adopting the TAGCN
model in the NIGNN framework. When ε is set to 1, the
accuracy loss is less than 1% in the worst case, demonstrat-
ing the effectiveness of our privacy-preserving method. This
is because the aggregate function in the graph convolutional
layer can eliminate most of the noise in the vertex features.
The results clearly show that the proposed NIGNN not only
preserves the power of the original NIGNN on the detection
task but also provides compelling evidence on improving privacy
and utility.

Directly injecting noise to the model input would incur
much noise due to the aggregation operation. To alleviate
this problem, this paper proposes a graph convolution layer
based on degree sensitivity privacy-enhancement mechanism,
which manipulates the outputs of this layer by giving vertices
with very few neighbors a relatively high influence on model
learning. To highlight the significance of the proposed degree
sensitivity-based privacy-enhancement mechanism, we intro-
duce the degree sensitivity privacy-enhancement mechanism
into these baseline models, i.e., DS-GCN, DS-GAT, DS-SAGE,
DS-SGCN, and DS-TAGCN. Fig. 11 depicts the ROC results
of the performance comparison. We can see that using degree
sensitivity mechanism can effectively improve model accuracy.

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 753

Fig. 10. Experimental results of different graph-based model comparisons under varying privacy budgets ε.

TABLE VII
NIGNN VERSUS GRAPH-BASED MODELS

Fig. 11. ROC curve of NIGNN versus graph-based models on three benchmark datasets.

Fig. 12. Effect of different components, wrt. privacy budget ε, with DP.

This verifies the validity of the proposed degree sensitivity
privacy-enhancement mechanism.

G. Ablation experiment

To demonstrate the contribution of each module in the NIGNN
framework, we conducted a set of experiments. To have a fair
comparison, the non-private NIGNN adopts a standard three-
layer GCN as a baseline model. Compared to these baseline

models, the performance of the proposed private-preserving
NIGNN is closest to that of the non-private NIGNN on all
three benchmark datasets. Figs. 12, 13, and Table VIII show
the results. We observe that the accuracy is almost identical to
that of non-private NIGNN, demonstrating its strong general-
ization ability. Our model can achieve high detection accuracy
while effectively protecting user privacy. Futhermore, we test
the effects of the PGC and DGC on performance, respectively,

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

754 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

Fig. 13. Ablation studies of NIGNN on three benchmark datasets.

TABLE VIII
EFFECT OF DIFFERENT COMPONENTS

i.e., NIGNN without PGC (with DGC) and NIGNN without
DGC (with PGC). We can see that without the PGC layer, the
baseline model (NIGNN without PGC) is comparable to the
non-private NIGNN and even exceeds it on the Tor-nonTor and
UNSW-NB datasets. This is because this model only uses the
DGC layer, which shows that the DGC layer is useful and can
effectively improve model performance. Moreover, it can be
observed that the baseline model (NIGNN without DGC) has
the worst performance on all datasets. This is not surprising,
as the PGC layer used in this model introduces a lot of DP
noise into the model input, which results in degraded model
performance.

VII. CONCLUSION

The existing deep learning-based methods do not consider
the topologic structure information of network traffic graph.
This paper proposes a graph construction method to transform
network traffic data into graph structures. Then, the network
intrusion detection can be converted to a specific type of node
classification task. Moreover, we built a differential privacy-
based graph representation learning model that is trained within
an appropriate privacy budget ε. In fact, our privacy-preserving
method can be easily generalized to other tasks. Moreover,
we design a degree-sensitive privacy-enhancement measure to
exert different effects on vertices, which can reduce the noise
introduced by the DP mechanism while effectively learning an
accurate model. We evaluated the performance of NIGNN on
three datasets for network intrusion detection. Experimental re-
sults demonstrate that NIGNN can achieve a high detection rate
close to the non-privacy ones, while providing a rigorous privacy
guarantee. The superior performance of NIGNN highlights that
privacy-preserving GNN is a worthwhile exploration.

REFERENCES

[1] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying IoT security: An exhaustive survey on IoT vulnerabilities
and a first empirical look on internet-scale IoT exploitations,” IEEE
Commun. Surveys Tut., vol. 21, no. 3, pp. 2702–2733, Third Quarter 2019.

[2] A. L. Buczak and E. Guven, “A survey of data mining and machine learning
methods for cyber security intrusion detection,” IEEE Commun. Surveys
Tut., vol. 18, no. 2, pp. 1153–1176, Second Quarter 2016.

[3] J. Zheng and D. Li, “GCN-TC: Combining trace graph with statistical fea-
tures for network traffic classification,” in Proc. IEEE Int. Conf. Commun.,
2019, pp. 1–6.

[4] Y. Zhu et al., “DGNN: Accurate darknet application classification adopting
attention graph neural network,” IEEE Trans. Netw. Service Manag.,
vol. 21, no. 2, pp. 1660–1671, Apr. 2024.

[5] K. Pan, M. Gong, K. Feng, and K. Wang, “Differentially private regression
analysis with dynamic privacy allocation,” Knowl. Based Syst., vol. 217,
2021, Art. no. 106795.

[6] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.

[7] J. Lee and D. Kifer, “Concentrated differentially private gradient descent
with adaptive per-iteration privacy budget,” in Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 1656–1665.

[8] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning dif-
ferentially private recurrent language models,” in Proc. Int. Conf. Learn.
Representations, pp. 1–10, 2018.

[9] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks,” in Proc. Int. Conf. Learn. Representations, 2018, pp. 1–13.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2016,
pp. 1–10.

[11] D. E. Kim and M. Gofman, “Comparison of shallow and deep neural net-
works for network intrusion detection,” in Proc. IEEE 8th Annu. Comput.
Commun. Workshop Conf., 2018, pp. 204–208.

[12] J. Liu, C. Zhang, and Y. Fang, “EPIC: A differential privacy framework to
defend smart homes against internet traffic analysis,” IEEE Internet Things
J., vol. 5, no. 2, pp. 1206–1217, Apr. 2018.

[13] S. Das, M. Ashrafuzzaman, F. T. Sheldon, and S. Shiva, “Network intru-
sion detection using natural language processing and ensemble machine
learning,” in Proc. IEEE Symp. Ser. Comput. Intell., 2020, pp. 829–835.

[14] J. Liu, C. Zhang, B. Lorenzo, and Y. Fang, “DPavatar: A real-time location
protection framework for incumbent users in cognitive radio networks,”
IEEE Trans. Mobile Comput., vol. 19, no. 3, pp. 552–565, Mar. 2020.

[15] Y.-F. Hsu and M. Matsuoka, “A deep reinforcement learning approach for
anomaly network intrusion detection system,” in Proc. IEEE 9th Int. Conf.
Cloud Netw., 2020, pp. 1–6.

[16] T. Elahi, G. Danezis, and I. Goldberg, “PrivEx: Private collection of traffic
statistics for anonymous communication networks,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2014, pp. 1068–1079.

[17] M. Keshk, E. Sitnikova, N. Moustafa, J. Hu, and I. Khalil, “An integrated
framework for privacy-preserving based anomaly detection for cyber-
physical systems,” IEEE Trans. Sustain. Comput., vol. 6, no. 1, pp. 66–79,
Jan.-Mar. 2021.

[18] L. Sgaglione, “Privacy preserving intrusion detection via homomorphic
encryption,” in Proc. Int. Conf. Enabling Technol.: Infrastructure Collab-
orative Enterprises, 2019, pp. 321–326.

[19] L. Mokry et al., “Efficient and privacy-preserving collaborative intrusion
detection using additive secret sharing and differential privacy,” in Proc.
IEEE Int. Conf. Big Data, Orlando, FL, USA, 2021, pp. 3324–3333.

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-PRESERVING GRAPH NEURAL NETWORK FOR NETWORK INTRUSION DETECTION 755

[20] A. Alazab, A. Khraisat, S. Singh, and T. Jan, “Enhancing privacy-
preserving intrusion detection through federated learning,” Electronics,
vol. 12, no. 16, 2023, Art. no. 3382.

[21] D. Jin, S. Chen, H. He, X. Jiang, S. Cheng, and J. Yang, “Federated incre-
mental learning based evolvable intrusion detection system for zero-day
attacks,” IEEE Netw., vol. 37, no. 1, pp. 125–132, Jan./Feb. 2023.

[22] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Skeleton-based action recognition
with directed graph neural networks,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 7912–7921.

[23] Z. Li, Z. Cui, S. Wu, X. Zhang, and L. Wang, “FI-GNN: Modeling feature
interactions via graph neural networks for CTR prediction,” in Proc. 28th
ACM Int. Conf. Inf. Knowl. Manage., 2019, pp. 539–548.

[24] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph neural
network for few-shot learning,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 11–20.

[25] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018, pp. 1–12.

[26] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 1024–1034.

[27] H. Zhang, B. Wu, X. Yuan, S. Pan, H. Tong, and J. Pei, “Trustworthy graph
neural networks: Aspects, methods and trends,” in Proc. IEEE, vol. 112,
no. 2, 2024, pp. 97–139.

[28] Y. Zhang et al., “A survey on privacy in graph neural networks: Attacks,
preservation, and applications,” 2023, arXiv:2308.16375.

[29] S. Wang, Y. Zheng, and X. Jia, “SecGNN: Privacy-preserving graph neural
network training and inference as a cloud service,” IEEE Trans. Serv.
Comput., vol. 16, no. 4, pp. 2923–2938, Jul./Aug. 2023.

[30] C. Wu, F. Wu, Y. Cao, Y. Huang, and X. Xie, “FedGNN: Feder-
ated graph neural network for privacy-preserving recommendation,”
2021, arXiv:2102.04925.

[31] X. Miao et al., “P 2 CG: A privacy preserving collaborative graph neural
network training framework,” VLDB J., vol. 32, no. 4, pp. 717–736, 2023.

[32] B. Zhang, M. Luo, S. Feng, Z. Liu, J. Zhou, and Q. Zheng, “PPSGCN:
A privacy-preserving subgraph sampling based distributed GCN training
method,” 2021, arXiv:2110.12906.

[33] K. Bhaila, W. Huang, Y. Wu, and X. Wu, “Local differen-
tial privacy in graph neural networks: A reconstruction approach,”
2023, arXiv:2309.08569.

[34] S. Sajadmanesh and D. Gatica-Perez, “Locally private graph neural net-
works,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2021,
pp. 2130–2145.

[35] W. Du, X. Ma, W. Dong, D. Zhang, C. Zhang, and Q. Sun,
“Calibrating privacy budgets for locally private graph neural net-
works,” in Proc. Int. Conf. Netw. Netw. Appl., 2021, pp. 23–29,
doi: 10.1109/NaNA53684.2021.00012.

[36] W. Lin, B. Li, and C. Wang, “Towards private learning on decentralized
graphs with local differential privacy,” IEEE Trans. Inf. Forensics Secur.,
vol. 17, pp. 2936–2946, 2022.

[37] M. U. Hassan, M. H. Rehmani, and J. Chen, “Differential privacy tech-
niques for cyber physical systems: A survey,” IEEE Commun. Surveys Tut.,
vol. 22, no. 1, pp. 746–789, First Quarter 2020.

[38] N. Li, M. Lyu, D. Su, and W. Yang, Differential Privacy: From Theory
to Practice, ser. Synthesis Lectures on Information Security, Privacy, &
Trust. San Rafael, CA, USA: Morgan, 2016.

[39] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in Proc. IEEE Symp. Secur.
Privacy, 2017, pp. 3–18.

[40] K. H. Zou, K. Tuncali, and S. G. Silverman, “Correlation and simple linear
regression,” Radiology, vol. 227, no. 3, pp. 617–622, 2003.

[41] J. C. F. de Winter, S. D. Gosling, and J. Potter, “Comparing the pearson and
spearman correlation coefficients across distributions and sample sizes: A
tutorial using simulations and empirical data,” Psychol. Methods, vol. 21,
no. 3, pp. 273–290, 2016.

[42] A. H. Lashkari, G. Kaur, and A. Rahali, “DIDarknet: A contemporary
approach to detect and characterize the darknet traffic using deep image
learning,” in Proc. 10th Int. Conf. Commun. Netw. Secur., 2020, pp. 1–13.

[43] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani, “Charac-
terization of TOR traffic using time based features,” in Proc. 3rd Int. Conf.
Inf. Syst. Secur. Privacy, 2017, pp. 253–262.

[44] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),” in
Proc. Mil. Commun. Inf. Syst. Conf., 2015, pp. 1–6.

[45] T. T. Mueller, J. C. Paetzold, C. Prabhakar, D. Usynin, D. Rueckert, and
G. Kaissis, “Differentially private graph neural networks for whole-graph
classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6,
pp. 7308–7318, Jun. 2023.

[46] L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen, “Privacy-preserving
collaborative deep learning with unreliable participants,” IEEE Trans. Inf.
Forensics Secur., vol. 15, pp. 1486–1500, 2020.

[47] I. E. Olatunji, A. Hizber, O. Sihlovec, and M. Khosla, “Does black-box
attribute inference attacks on graph neural networks constitute privacy
risk?” 2023, arXiv:2306.00578.

[48] F. Wu, A. H. S. Jr, T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in Proc. Proc. Int. Conf.
Mach. Learn., 2019, pp. 6861–6871.

[49] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology adaptive
graph convolutional networks,” 2017, arXiv: 1710.10370.

Xinjun Pei is currently working toward the PhD
degree with the School of Computer Science and
Engineering, Central South University, China. Since
2017, he has been engaged in the direction of infor-
mation security. His research interests include deep
learning, edge computing and IoT security.

Xiaoheng Deng (Senior Member, IEEE) received
the PhD degree in computer science from Central
South University, Changsha, Hunan, China, in 2005.
He is currently a full professor, dean of School of
Electronic Information, Central South University. He
is a Joint researcher of Shenzhen Research Institute,
Central South University, a senior member of CCF, a
member of CCF Pervasive Computing Council, and a
member of ACM. He has been a chair of CCF YOC-
SEF CHANGSHA from 2009 to 2010. His research
interests include network security, edge computing,

Internet of Things, online social network analysis, data mining, and pattern
recognization.

Shengwei Tian received the BS, MS, and PhD de-
grees from the School of Information Science and En-
gineering, Xinjiang University, China, in 1997, 2004
and 2010, respectively. He is currently a full professor,
dean of School of Software, Xinjiang University.
His research interests include artificial intelligence,
natural language processing, and cyberspace security.

Ping Jiang received the master’s degree in computer
engineering from the University of Western Ontario,
Canada, in 2018. He is currently working toward the
PhD degree with the Electrical and Communication
Engineering Department, Central South University,
China. His research interests include machine learn-
ing, natural language processing, computer vision,
and security issues in neural networks.

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/NaNA53684.2021.00012

756 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 1, JANUARY/FEBRUARY 2025

Yunlong Zhao received the bachelor’s degree from
the School of Computer Science, Beijing University
of Posts and Telecommunications, in 2020. He is cur-
rently working toward the PhD degree with the School
of Computer Science and Engineering, Central South
University, China. Since 2021, he has been engaged
in the direction of privacy protection. His research
interests include federated learning, edge computing,
and security issues in neural networks.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003, and the PhD degree from
the Department of Electronic Engineering and Infor-
mation Science (EEIS), USTC, in 2007. From 2012
to 2013, he was a postdoctoral researcher with the
Department of Electrical and Computer Engineering,
University of Florida. Currently, he is a professor in
the School of Cyber Security, USTC. His research
interests include next-generation Internet architec-

ture design, transmission optimization and network security. He serves on
the Editorial Board of several journals, including the IEEE Transactions on
Dependable and Secure Computing (TDSC), the IEEE Transactions on Wireless
Communications (TWC), and the IEEE Transactions on Network and Service
Management (TNSM). He has also served as a (lead) guest editor for many
reputed journals/magazines, including IEEE Journal on Selected Areas in Com-
munications (JSAC), IEEE Communications Magazine, and IEEE Network. He
is an IET Fellow.

Authorized licensed use limited to: Central South University. Downloaded on March 09,2025 at 06:32:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

