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ABSTRACT

1-parameter persistent homology, a cornerstone in Topological Data Analysis
(TDA), studies the evolution of topological features such as connected compo-
nents and cycles hidden in data. It has found its application in strengthening
the representation power of deep learning models like Graph Neural Networks
(GNN). To enrich the representations of topological features, here we propose
to study 2-parameter persistence modules induced by bi-filtration functions. In
order to incorporate these representations into machine learning models, we intro-
duce a novel vectorization on 2-parameter persistence modules called Generalized
Rank Invariant Landscape (GRIL). We show that this vector representation is 1-
lipschitz (stable) and differentiable with respect to underlying filtration functions
and can be easily integrated into machine learning models to augment encoding
topological features. We present an algorithm to compute the vectorization and its
gradients. We also test our methods on synthetic graph datasets and benchmark
graph datasets, and compare the results with previous vector representations of
1-parameter and 2-parameter persistence modules

1 INTRODUCTION

Machine learning models such as and Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli
et al., 2009; Kipf & Welling, 2017; Xu et al., 2019) are well-known successful tools from the ge-
ometric deep learning community. The representation power of such models can be augmented
by infusing topological information as some vector representation of persistent homology of the
underlying space hidden in data. Many recent works have successfully integrated topological infor-
mation with machine learning models. (Carrière et al., 2020; Kim et al., 2020; Gabrielsson et al.,
2020; Hofer et al., 2020; Horn et al., 2022; Swenson et al., 2020; Bouritsas et al., 2022; Corbet
et al., 2019; Carrière & Blumberg, 2020; Vipond, 2020). In most of these works, the authors use
1-parameter persistence homology as the topological information. However, in (Corbet et al., 2019;
Vipond, 2020; Carrière & Blumberg, 2020), the authors use vector representations of 2-parameter
persistence modules. In (Carrière & Blumberg, 2020) and (Corbet et al., 2019), these representa-
tions are based on slices of 2-parameter persistence modules along lines, which are first studied
and computed by (Lesnick & Wright, 2015). In (Vipond, 2020), the author generalizes the notion
of 1-parameter persistence landscapes (Bubenik, 2015). In this paper we propose a novel vector
representation Generalized Rank Invariant Landscape (GRIL) for 2-parameter persistence modules
which encodes richer information beyond fibered barcodes alone. The building blocks are based on
the idea of generalized rank invariant (Kim & Mémoli, 2021; Dey et al., 2022). The construction
of GRIL is a generalization of persistence landscape (Bubenik, 2015; Vipond, 2020). We will show
that the vector representation GRIL is 1-Lipschitz and differentiable with respect to the filtration
function f , which allows us to build a differentiable topological layer, PERSGRIL, in a machine
learning pipeline. We demonstrate its use on synthetic datasets and standard graph datasets 1. From
the perspective of direct use of 2-parameter persistence modules into machine learning models, to
the best of our knowledge, this is the first work of its kind.

Persistent homology is a useful tool for characterizing the shape of data. Rooted in the theory of
algebraic topology and algorithms, it has spawned the flourishing area of Topological Data Analy-
sis(TDA). The classical persistent homology, also known as, 1-parameter persistence module, has
attracted plenty of attention from both theory (Edelsbrunner & Harer, 2010; Oudot, 2015; Carlsson
& Vejdemo-Johansson, 2021; Dey & Wang, 2022; Hofer et al., 2017; Li et al., 2022; Dey & Wang,

1the code for full implementation will be available after review process is completed.
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2022; Mémoli et al., 2022) and applications (Yan et al., 2021; Zhao et al., 2020; Yang et al., 2021b;a;
Banerjee et al., 2020; Wu et al., 2020; Wang et al., 2020; Chen et al., 2021; Hu et al., 2021; Yan et al.,
2022). The standard pipeline of 1-parameter persistence module is as follows: Given a domain of
interest X (e.g. a topological space, point cloud data, a graph, or a simplicial complex) with a scalar
function f : X → R, one filters the domain X by the sublevel sets Xα ≜ {x ∈ X | f(x) ≤ α} along
with a continuously increasing threshold α ∈ R. The collection {Xα}, which is called a filtration,
forms an increasing sequence of subspaces ∅ = X−∞ ⊆ Xα1

⊆ · · · ⊆ X+∞ = X . Along with
the filtration, topological features appear, persist, and disappear over some intervals. We consider p-
homology groups Hp(−) (over a field, see (Hatcher, 2000)) of the subspaces in this filtration, which
results into a sequence of vector spaces. These vector spaces are connected by inclusion-induced
linear maps forming an algebraic structure 0 = Hp(X−∞) → Hp(Xα1

) → · · · → Hp(X+∞).
(Hatcher, 2000)). This algebraic structure, known as 1-parameter persistence module induced by f
and denoted asMf , can be uniquely decomposed into a collection of atomic modules called interval
modules, which completely characterizes the topological features in regard to the three behaviors–
appearance, persistence, and disappearance of all p-dimensional cycles. This unique decomposition
of 1-parameter persistence module is commonly summarized as a persistence diagram (Edelsbrun-
ner et al., 2002) or barcode (Zomorodian & Carlsson, 2005). Figure 1 (left) shows a filtration of
a simplicial complex which induces a 1-parameter persistence module and its decomposition into
bars.
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Figure 1: (left) 1-parameter filtration and bars; (right) a 2-parameter filtration inducing a 2-parameter
persistence module whose decomposition is not shown.

Some problems in practice may demand tracking the topological information in a filtration that is
not necessarily linear. For example, in (Adcock et al., 2014), 2-parameter persistence module is
shown to be better for classifying hepatic lesions compared to 1-parameter persistence. In (Keller
et al., 2018), a virtual screening system based on 2-parameter persistence modules are shown to be
effective for searching new candidate drugs. In such applications, instead of studying a sequential
filtration filtered by a scalar function, one may study a grid-filtration induced by a R2-valued bi-
filtration function f : X → R2 with R2 equipped with partial order u ≤ v : u1 ≤ v1, u2 ≤ v2;
see Figure 1(right) for an example of 2-parameter filtration. Following a similar pipeline as the
1-parameter persistence module, one will get a collection of vector spaces {Mf

u}u∈R2 indexed by
vectors u = (u1, u2) ∈ R2 and linear maps {Mf (u ≤ v) : Mf

u → Mf
v | u ≤ v ∈ R2} for

all comparable u ≤ v. The entire structure Mf , in analogy to the 1-parameter case, is called a
2-parameter persistence module induced from f . Unlike 1-parameter case, the algebraic structure of
2-parameter persistence modules is much more complicated. There is no complete discrete invariant
like persistence diagrams or barcodes for 2-parameter persistence modules (Carlsson & Zomorodian,
2009). A good non-complete invariant for 2-parameter persistence modules should characterize
as many non-isomorphic topological features as possible. At the same time it should be stable
with respect to small perturbations of filtration functions, which guarantees its important properties
of continuity and differentiability for machine learning models. Therefore, how to build a good
summary for 2-parameter persistence modules which is also applicable to machine learning models
is an important problem.

2 2-PARAMETER PERSISTENCE LANDSCAPE

From the perspective of representation learning, a persistence module can be viewed as a special
representation of a discrete topological space, like point cloud data or graph embedding, which cap-
tures geometric and topological information. 1-parameter persistence module captures information
about topological features that persist across different scales. Here, we consider a bi-filtration which
leads to a 2-parameter persistence module. To better utilize the richer information captured by 2-
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parameter persistence modules, here we propose GRIL (Generalized Rank Invariant Landscape), a
stable and differentiable vectorized representation of a 2-parameter persistence module.

Let M = Mf be a 2-parameter persistence module induced by a filtration function f . We say a
connected subset I ⊆ R2 is an interval if ∀u ≤ v ≤ w, [u ∈ I,w ∈ I] =⇒ [v ∈ I]. The
restriction of M to an interval I , denoted as M |I , is the collection of vector spaces {Mu | u ∈ I}
along with linear maps {M(u ≤ v) | u,v ∈ I)}. One can define generalized rank:

rkM (I) ≜ rank[lim
←−−

M |I → lim
−−→

M |I ]

where lim
←−−

M |I → lim
−−→

M |I is the unique linear map from the limit of M |I to the colimit of M |I .
When I = [u,v] ≜ {w ∈ R2 | u ≤ w ≤ v} is a rectangle subset in R2, lim

←−−
M |I = Mu and

lim
−−→

M |I = Mv . Then rkM (I) equals the traditional rank of the linear map M(u ≤ v). We refer
the reader to (MacLane, 1971) for the definitions of limit and colimit in category theory. The basic
idea of GRIL is to compute a collection of generalized ranks {rkM (I)}I∈W over some covering set
W on R2, which is called a generalized rank invariant (Kim & Mémoli, 2021) of M overW .

We chooseW to be a set of Worms defined as follows:

W ≜
{

p
ℓ

δ
| δ > 0, ℓ ≥ 1,p ∈ R2

}
where

p
ℓ

δ
≜ {q | ∃α ∈ R, |α| ≤ (ℓ− 1)δ : ∥q − p− (α,−α)∥∞ ≤ δ}.

We call the p in p
ℓ

δ
the center point of the ℓ-worm and δ the width of the ℓ-worm. As a special

case, when ℓ = 1, p
1

δ
= p

δ
≜ {q : ∥p − q∥∞ ≤ δ} is a δ-square with side 2δ centered at p.

In general, for any ℓ ≥ 1, δ > 0, ℓ-worm p
ℓ

δ
is the union of all δ-squares q

δ
centered at some

point q on the off-diagonal line segment p+ α(1,−1) with |α| ≤ (ℓ− 1)δ. Therefore, we can also
equivalently write p

ℓ

δ
=

⋃
q=p+(α,−α)
|α|≤(l−1)δ

q
δ
. See Figure 2 (left) for an illustration of a 2-worm

example. We now define GRIL.

 

Figure 2: A 2-worm, discretized 2-worm and expanded discretized 2-worm. ρ denotes grid resolu-
tion. The blue dotted lines show the intermediate staircase with step-size ρ. The red dotted lines
form parts of the squares with size d which are replaced by the blue dotted lines in the worm. The
last figure shows the expanded 2-worm with red and blue dotted lines. The expanded 2-worm has
width d+ ρ which is the one step expansion of the worm with width d.

Definition 2.1 (Generalized Rank Invariant Landscape ). For a persistence module M , the Gener-
alized Rank Invariant Landscape (GRIL) of M is a function λM : R2 × N+ × N+ → R defined
as

λM (p, k, ℓ) ≜ sup
δ≥0
{rkM ( p

ℓ

δ
) ≥ k}. (1)

Proposition 2.1. GRIL is equivalent to the generalized rank invariant onW . Here the equivalence
means bijective reconstruction from each other (proof in Appendix B).

In practice, we choose center points p from some finite subset P ⊂ R2, e.g. a finite uniform grid
in R2, and consider k ≤ K, ℓ ≤ L for some K,L ∈ N+. Then λM can be viewed as a vector of
dimension |P| ×K × L. See Figure 3 for an illustration of the overall pipeline of our construction
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of λM starting from a filtration function on a simplicial complex. Figure 4 shows the discriminating
power of GRIL where we see that GRIL can differentiate between shapes that are topologically
non-isomorphic.
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Figure 3: The construction starts from a simplicial complex with a bi-filtration function as shown
on the top right. The simplicial complex consists of two vertices connected by one edge. Based
on the bi-filtration, a simplicial bi-filtration can be defined as shown on the top left. On the bottom
left, a 2-parameter persistence module is induced from the above simplicial filtration. If we check
the dimensions of the vector spaces on all points of the plane, there are 1-dimensional vector spaces
on red, blue and light purple regions. On the L-shaped dark purple region, the vector spaces have
dimension 2. Finally, on this 2-parameter persistence module, we calculate λM

f

(p, k, ℓ) for all
tuples (p, k, ℓ) ∈ P × K × L to get our GRIL vector representation. By Defintion 2.1 the value
λM

f

(p, k, ℓ) corresponds to the width of the supremum ℓ-worm on which the generalized rank is at
least k. On the bottom right, the interval in red is the maximal 2-worm for λM

f

(p, k = 1, ℓ = 2).
The green interval is the maximal 2-worm for λM

f

(q, k = 2, ℓ = 2). The yellow square is the
maximal 1-worm for λM

f

(r, k = 1, ℓ = 1), and the blue interval is the maximal 3-worm for
λM

f

(r, k = 1, ℓ = 3).

Stability and Differentiability of GRIL. An important property of GRIL is its stability property
which makes it immune to small perturbations of the input bi-filtration while still retaining the ability
to characterize topologies. We show GRIL is 1-Lipschitz (stable) with respect to input filtrations.

Proposition 2.2. Given two filtration functions f, f ′ : X → R2, ∥λMf − λMf′∥∞ ≤ ||f − f ′||∞
(proof in Appendix B).

Remark 2.1. Note that when X is a finite space (e.g. finite simplicial complex (see Definition A.1),
point cloud) with |X | = n then, any f : X → R2 can be represented as a vector in R2n.

We now define PERSGRIL.

Definition 2.2 (PERSGRIL). For a finite space X with |X | = n and fixed k, ℓ,p, PERSGRIL is a
function Λk,ℓ

p : R2n → R given by Λk,ℓ
p (f) = λM

f

(k, ℓ,p).

Proposition 2.3. PERSGRIL is Lipschitz continuous with respect to the bi-filtration functions on
finite spaces. (proof in Appendix B.)

2y-axis represents Rips filtration and x-axis represents density. Density value of a vertex v, denoted by γv , is
defined as 1− exp(Avg. nearest neighbor distance of v). For an edge e := (u, v) and a triangle t := (u, v, w),
γ is defined as max(γu, γv) and max(γu, γv, γw) respectively. Rips filtration value of all vertices rv is 0. For
an edge e := (u, v), the Rips filtration value ruv is the Euclidean distance between u and v. For a triangle
t := (u, v, w), the filtration value rt = max(ruv, ruw, rvw) is the maximum over all its edges. The filtration
value is rounded off to the nearest hundredth decimal place for visualization purposes.
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Figure 4: GRIL as a topological discriminator: each row shows a point cloud P , its density-Rips
bi-filtration 2, GRIL value heatmap for 1-dimensional homology and generalized ranks k = 1 and
k = 2 named as λ1 and λ2 respectively. First Betti number (β1) of a circle is 1 which is reflected
in λ1 being non-zero. β1 for two circles is 2 which is reflected in both λ1 and λ2 being non-zero.
Similarly, β1 of a circle and disk together is 1 which is reflected in λ1 being non-zero but λ2 being
zero for this point cloud.

By Rademacher’s theorem (Evans & Gariepy, 2015), we have PERSGRIL, as a Lipschitz continuous
function, being differentiable almost everywhere.

Corollary 2.4. PERSGRIL is differentiable almost everywhere.

The differentiability of PERSGRIL in Corollary 2.4 refers to the existence of all directional deriva-
tives. But the existence of a steepest direction as the "gradient" of PERSGRIL might not be unique.
We propose an algorithm to efficiently compute one specific steepest direction based on the follow-
ing theorem.

Theorem 2.5. Consider the space of all filtration functions {f : X → R2} on a finite space X
with |X | = n, which is equivalent to R2n. For fixed k, ℓ,p, there exists a measure-zero subset
Z ⊆ R2n such that for any f ∈ R2n \ Z satisfying the following generic condition: ∀x ̸= y ∈
X , f(x)1 ̸= f(y)1, f(x)2 ̸= f(y)2, there exists an assignment s : X → {±1, 0,±ℓ}2 such that

∇sΛ
k,ℓ
p (f) ≜ limα→0

Λk,ℓ
p (f+αs)−Λk,ℓ

p (f)

α∥s∥∞ = maxg∈X ∇gΛ
k,ℓ
p (f).

The proof of Theorem 2.5 in Appendix B also shows how to find the assignment s with the cor-
responding set of supporting simplices. This result leads us to update the simplicial filtration with
such an assignment s. See the description of enhancing topological features in section 4.

3 ALGORITHM

We present an algorithm to compute GRIL in this section. High-level idea of the algorithm is as
follows: Given a bi-filtration function f : X → R2, for each (p, k, ℓ) ∈ P × K × L, we need to
compute λM

f

(p, k, ℓ) = supδ≥0{rk
Mf

( p
ℓ

δ
) ≥ k}. In essence, we need compute the maximum

width over worms on which the generalized rank is at least k. In order to find the value of this
width, we use binary search. We compute generalized rank rkM

f
(
p

ℓ

δ

)
by applying the algorithm

proposed in (Dey et al., 2022), which uses zigzag persistence on a boundary path. This zigzag
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persistence is computed efficiently by a recent algorithm proposed in (Dey & Hou, 2022) 3. We
denote the sub-routine to compute generalized rank over a worm by COMPUTERANK in algorithm
1 mentioned below. COMPUTERANK(f, I) takes as input a bi-filtration function f and an interval I ,
and outputs generalized rank over that interval. In order to use the algorithm proposed in (Dey et al.,
2022), the worms need to have their boundaries aligned with a grid structure defined on the range
of f . Thus, we normalize f to be in the range [0, 1]× [0, 1], define a grid structure on [0, 1]× [0, 1]
and discretize the worms. Let Grid = {

(
m
M , n

M

)
| m,n ∈ {0, 1, . . . ,M}} for some M ∈ Z+.

We denote the grid resolution as ρ ≜ 1/M . We uniformly sample center points for the worms

P ⊆ Grid from this grid. We consider discrete worms p̂
ℓ

δ
≜

⋃
q=p+(α,−α)
|α|≤(l−1)δ
q∈Grid

q
δ

for all p ∈ P .

See Figure 2 as an illustration of discrete worms. Now all the discrete worms p̂ are intervals

whose boundaries are aligned with the Grid. We apply the procedure COMPUTERANK

(
f, p̂

ℓ

δ

)
to compute rkM

f

(
p̂

ℓ

δ

)
. Let λ̂M

f

(p, k, ℓ) = supδ≥0{rk
Mf

( p̂
ℓ

δ
) ≥ k}. One can observe that

λ̂M
f

(p, k, ℓ) − λM
f

(p, k, ℓ) ≤ ρ. Therefore, we compute λ̂ as an approximation of λ with the
approximation gap controlled by the grid resolution ρ. The pseudo-code is given in Algorithm 1.
The algorithm is described in detail in Appendix C

Algorithm 1 COMPUTEGRIL

Input: f : Bi-filtration function, ℓ ≥ 0, k ≥ 1,p ∈ P ⊆ Grid, ρ: grid resolution
Output: λ(p, k, l) : Persistence landscape at a point p for fixed k and ℓ

1: dmin ← ρ, dmax ← 1
2: while dmin ≤ dmax do
3: d← (dmin + dmax)/2

4: I ← p̂
ℓ

d
5: r ← COMPUTERANK(f, I )
6: IF r = k THEN
7: rk← d
8: dmin ← d+ ρ
9: ELSE IF r > k THEN

10: dmin ← d+ ρ
11: ELSE IF r < k THEN
12: dmax ← d− ρ

RETURN rk

Time complexity. Assuming a grid with t nodes and a bi-filtration of a complex with n simplices
on it, one can observe that each probe in the binary search takes O((t + n)ω) time where ω <
2.37286 is the matrix multiplication exponent (Alman & Williams, 2021). This is because each
probe generates a zigzag filtration of length O(t) with O(n) simplices. Therefore, the binary search
takes O((t+n)ω log t) time giving a total time complexity of O(t((t+n)ω log t)) that accounts for
O(t) worms.

4 EXPERIMENTS

We create a differentiable topological layer based on GRIL named PERSGRIL which is in line with
Definition 2.2. In essence, PERSGRIL takes in a bi-filtration function as input and gives the value of
GRIL on the persistence module generated by the filtration function as output.

Experiment with HourGlass dataset. We test our model on a synthetic dataset (HourGlass) that
entails a binary graph classification problem over a collection of attributed undirected graphs. Note
that this synthetic dataset is designed to show that some attributed graphs can be easily classfied by
2-parameter persistence modules while not easy for 1-parameter persistence moduels or commonly

3https://github.com/taohou01/fzz
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used GNN models. Each graph G from either class is composed with two circulant subgraphs
G1, G2 connected by some cross edges. The node attributes are order indices generated by two
different traversals T1, T2. The label of classes corresponds to these two different traversals T1, T2.
Therefore, the classification task is that given an attributed graph G, the model needs to predict
which traversal is used to generate G. See Figure 5 (left) as an example of two attributed graphs
with same graph structure but node attributes generated by two different traversals. More details
can be found in Appendix D.1. We denote HourGlass[a,b] as the dataset of graphs generated with
node size of each circulant subgraphs in range [a, b]. We generate three datasets with different
sizes: HourGlass[10,20], HourGlass[21,30], HourGlass[31,40]. Each dataset contains roughly 400
graphs. We evenly split HourGlass[21,30] into balanced training set and testing set on which we
compare PERSGRIL with several commonly used GNN models from the literature including: Graph
Convolutional Networks (GCN)(Kipf & Welling, 2017), Graph Isomorphism Networks (GIN) (Xu
et al., 2019) and a 1-parameter persistent homology vector representation called persistence image
(PersImg (Adams et al., 2017). All GNN models contain 3 aggregation layers. All models use 3-
layer multilayer perceptron (MLP) as classifiers. More details about model and training settings can
be found in Appendix D.1. After that we also test these trained models on HourGlass[10,20] and
HourGlass[31,40] to check if they can generalize well on smaller and larger graphs. The experiment
results are shown in Table 1. We can see that this dataset can be easily classified by our model based
on 2-parameter persistence modules with good generalization performance. But it is not easy for
1-parameter persistence method like PersImg or some GNN models.

Testing accuracy of models on HourGlass
Model GCN GIN PersImg PERSGRIL
HourGlass[21,30] 87.25±4.0 84.00±4.4 74.00±7.4 100.0±0.0
HourGlass[10,20] 67.31±4.6 62.98±3.4 50.33±1.6 99.79±0.1
HourGlass[31,40] 87.75±2.2 79.10±6.2 86.95±5.0 100.0±0.0

Table 1: Table of testing results from different models. Last two rows show the testing results on
HourGlass[10,20] and HourGlass[31,40] of models trained on HourGlass[21,30].

1, 1T1, T2 →

2, 2

3, 11

5, 12 7, 13

9, 14

10, 15

8, 5

6, 44, 3

12, 7

11, 6

13, 16
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19, 19

20, 20

18, 10

16, 914, 8

Figure 5: (Left) An example of a graph consisting of two circulant subgraphs. The pair of indices
on each node represents the its order on the traversals T1 and T2 respectively. Both traversals start
from the left node as the root node. (Right) Cross edges placed across two subgraphs.

Graph experiments. We perform a series of experiments on graph classification to test the proposed
model. We use standard datasets such as PROTEINS, DHFR, COX2 and MUTAG (Morris et al.,
2020). A quantitative summary of these datasets is given in Appendix D.2. On these datasets, we
compare the performance of GRIL with other models such as multiparameter persistence landscapes
(MP-L) (Vipond, 2020), multiparameter persistence images (MP-I) (Carrière & Blumberg, 2020),
multiparameter persistence kernel (MP-K) (Corbet et al., 2019) and PersLay (Carrière et al., 2020).

In (Carrière & Blumberg, 2020), the authors use the heat kernel signature (HKS) and Ricci curvature
on the graphs to form a bi-filtration. We also use the same bi-filtration and report the result in the
column Gril HKS-RC. Since the graphs in all of these datasets have node attributes, we also form
Density-Alpha bi-filtration on the node features and compare the performance of GRIL on this bi-
filtration (Gril D-Alpha) with other methods. Density-Alpha bi-filtration uses Distance-to-Measure
function as the filtration function for one coordinate and an Alpha complex filtration in the other
coordinate. We use a simple 1-layer MLP as a classifier in order to test the discriminating power of
GRIL features. We can see from Table 2 that GRIL with 1-layer MLP gives better performance as
compared to multiparameter persistence image, multiparameter persistence kernel, multiparameter
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persistence landscapes on PROTEINS, COX2 and MUTAG. However it doesn’t seem to perform
as well on DHFR. On PROTEINS, COX2 and MUTAG, GRIL has comparable performance with
PersLay. (Carrière et al., 2020). Perslay also uses a 1-layer MLP as the classifier. However, PersLay
uses spectral features of the graph along with the 1-parameter persistence diagrams corresponding
to the filtration given by the heat kernel signature as the filtration function. The reported results are
after ten-fold cross validation. The full details of the experiments are given in Appendix D.2

Dataset MP-I MP-K MP-L PersLay GRIL HKS-RC GRIL D-Alpha
PROTEINS 67.3 ± 3.5 67.5 ± 3.1 65.8 ± 3.3 74.8 ± 0.3 71.6 ± 4.2 72.6 ± 4.9

DHFR 80.2 ± 2.3 81.7 ± 1.9 79.5 ± 2.3 80.3 ± 0.8 71.3 ± 3.7 61.8 ± 2.5
COX2 77.9 ± 2.7 79.9 ± 1.8 79.0 ± 3.3 80.9 ± 1.0 78.7 ± 0.0 80.6 ± 2.5

MUTAG 85.6 ± 7.3 86.2 ± 2.6 85.7 ± 2.5 89.8 ± 0.9 89.4 ± 7.0 88.4 ± 8.4

Table 2: 10-fold cross validation test accuracy of different models on graph datasets. The values of
the MP-I, MP-K, MP-L columns are as reported in (Carrière & Blumberg, 2020) and those in the
PersLay column are as reported in (Carrière et al., 2020).

We have compared the performance of this model with different values of k in λ(p, k, ℓ). The results
are reported in Table 5 in Appendix D. We report the computation times for these datasets in Table
6 in Appendix D. In Table 4, we show the performance of GRIL with different grid resolutions.

Differentiability of PERSGRIL: A proof of concept. In the previous experiments we showed
how PERSGRIL can be used to obtain topological signatures from graphs to facilitate a specific
downstream task, which in our case is a graph classification problem. In that application, we build
PERSGRIL on a static filtration function. By static, we mean that we computed the topological
features and used them as an input to a classifier. In this experiment, we demonstrate, as a proof of
concept, how PERSGRIL can be easily integrated in a differentiable framework (with the theoretical
foundation laid in Sec.2, specifically Theorem 2.5) like the standard neural network architectures.
We show this by rearranging the positions of input points, i.e. encouraging formation of clusters,
holes by choosing suitable loss functions.

As shown in Figure 6, input to PERSGRIL is points sampled non-uniformly from two circles. Re-
call that GRIL is defined over a 2-parameter persistence module induced by some filtration function
f = (fx, fy). For every vertex v, we assign fx(v) = 1 − exp( 1

α

∑α
i=1 d(v, vi)), where vi denotes

i-th nearest neighbor of the vertex v and d(v, vi) denotes the distance between v and vi. For our ex-
periments we fix α = 5. We set fy(v) = 0. We compute ALPHACOMPLEX filtration (Edelsbrunner
& Harer, 2010) of the points and for each edge e := (u, v) we assign fx(e) = max(fx(u), fx(v))
and fy(e) = 1 − exp(d(u, v)). To obtain a valid bi-filtration function on the simplicial complex
we extend the bi-filtration function from 1-simplices to 2-simplices, i.e. triangles. We pass f as
an input to PERSGRIL, coded with the framework PYTORCH (Paszke et al., 2019), that computes
persistence landscapes. PERSGRIL uniformly samples n center points from the grid [0, 1]2. Since
GRIL value computation can be done independently for each k and a center point, we take advantage
of parallel computation and implement the code in a parallel manner. In the forward pass we get
GRIL values λ(p, k, ℓ) for generalized rank k = 1, 2, worm size ℓ = 2 and homology of dimension
1 while varying p over all the sampled center points. After we get the GRIL values, we compute the
assignment s according to Theorem 2.5. During the backward pass, we utilize this assignment to
compute the derivative of PERSGRIL with respect to the filtration function and consequently update
it. We get n values of λ(·, 1, 2) for n center points. We treat these n values as a vector and denote is
as λ1. Similarly, we use λ2 to denote the vector formed by values λ(·, 2, 2). We minimize the loss
L = −(∥λ1∥22 + ∥λ2∥22). Figure 6 shows the result after running PERSGRIL for 200 epochs. The
optimizer we use to optimize the loss function is Adam (Kingma & Ba, 2015) with a learning rate
of 0.01.

5 CONCLUSION

This work presents GRIL, a 2-parameter persistence vectorization based on generalized rank invari-
ant which we show is stable and differentiable with respect to the bi-filtration functions. Further, we
present an algorithm for computing GRIL which is a synergistic confluence of the recent develop-
ments in computing generalized rank invariant of a 2-parameter module and an efficient algorithm
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Figure 6: The figures show the rearrangement of points according to the loss function, which in our
case is increasing the norm of λ1 and λ2 vectors. We start with two circles containing some noisy
points inside. We observe that the points rearrange to form two circles because that increases the
norm of λ1 and λ2 vectors.

for computing zigzag persistence. We propose PERSGRIL, a differentiable topological layer, which
can be used as a topological feature extractor in a differentiable manner. As a topological feature
extractor, PERSGRIL can perform better than Graph Convolutional Networks (GCNs) and Graph
Isomorphism Networks (GINs) on some synthetic datasets. It performs better than the existing mul-
tiparameter persistence methods on some graph benchmark datasets. Further, we give a proof of
concept for the differentiability of PERSGRIL by rearranging the point cloud to enhance its topolog-
ical features. We believe that the additional topological information that a 2-parameter persistence
module encodes, as compared to a 1-parameter persistence module, can be leveraged to learn better
representations. Further directions of research include using PERSGRIL with GNNs for filtration
learning to learn more powerful representations. We hope that this work motivates further research
into exploring this direction.
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A BACKGROUND AND DEFINITIONS

Here, we give the detailed definitions of all the concepts explained in the paper. We begin by defining
a simplicial complex.

Definition A.1 (Simplicial Complex). An abstract simplicial complex is a pair (V,Σ) where V is
a finite set and Σ is a collection of non-empty subsets of V such that if σ ∈ Σ and if τ ⊆ σ
then τ ∈ Σ. A topological space |(V,Σ)| can be associated with the simplicial complex which can
be defined using a bijection t : V → {1, 2, . . . , |V |} as the subspace of R|V | formed by the union⋃
σ∈Σ

h(σ), where h(σ) denotes the convex hull of the set {et(s)}s∈σ , where ei denotes the standard

basis vector in R|V |.

We shall now define a zigzag filtration and the zigzag persistence module induced by it.

Definition A.2. A zigzag filtration is a sequence of simplicial complexes where both insertions and
deletions of simplices are allowed, the possibility of which we indicate with double arrows:

X0 ↔ X1 ↔ · · · ↔ Xn = X .

Applying homology functor on such a filtration we get a zigzag persistence module that is a sequence
of vector spaces connected either by forward or backward linear maps:

H∗(X0)↔ H∗(X1)↔ · · · ↔ H∗(Xn).

Now, we give the definition of 2-parameter filtration over R2 and the 2-parameter persistence module
induced by it.

Definition A.3 (2-parameter simplicial filtration over R2). A 2-parameter simplicial filtration, also
called bi-filtration, over R2 is a collection of simplicial complexes {Xu}u∈R2 with inclusion maps
Xu ↪−→ Xv for u ≤ v, that is, u1 ≤ u2 and v1 ≤ v2 where u = (u1, u2) and v = (v1, v2).

Definition A.4 (2-parameter Persistence Module). Given a bi-filtration, {Xu}u∈R2 , by considering
the homology of the simplicial complexes in the bi-filtration over the finite field Z2, we get a collec-
tion of vector spaces {Mu | u ∈ R2} along with a collection of linear maps {Mu→v :Mu →Mv |
u ≤ v} . Each inclusion map in the bi-filtration induces a linear map between the corresponding
homology vector spaces.

Having defined 2-parameter filtration and 2-parameter persistence module, we now define the notion
of an Interval in R2. In the definition, we shall make use of the standard partial order on R2, i.e.,
u ≤ v if u1 ≤ v1 and u2 ≤ v2 for u = (u1, u2) and v = (v1, v2).

Definition A.5. An interval in R2 is a subset ∅ ≠ I ⊆ R2 that satisfies the following:

1. If p,q ∈ I and p ≤ r ≤ q, then r ∈ I;

2. If p,q ∈ I , then there exists a finite sequence (p = p0,p1, , ...,pm = q) ∈ I so that every
consecutive points pi,pi+1 are comparable in the partial order for i ∈ {0, . . . ,m− 1}.

We now give the formal definition of generalized rank invariant over intervals in R2. However,
generalized rank invariant can be defined over any locally finite connected poset.

Definition A.6 (Generalized Rank (Kim & Mémoli, 2021)). Given a 2-parameter persistence mod-
ule M and an intervals I ⊆ R2, the generalized rank of M restricted to I , rkM (I), is defined as

rkM (I) ≜ rank[lim
←−−

M |I → lim
−−→

M |I ].

Here lim
←−−

M |I , lim−−→M |I denote the limit and colimit of the functor M when restricted to I . We refer
the reader to (MacLane, 1971) for the definitions of limit and colimit in category theory.

For a collection of intervals I, the collection rkMI ≜ {rkM (I) | I ∈ I} is called generalized rank
invariant of M over I.

We can define a metric on the space of persistence modules based on their generalized rank invariants
over all intervals in R2.
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Definition A.7 (Erosion Distance (Patel, 2018; Kim & Mémoli, 2021)). Let Int(R2) be the collec-
tion of all intervals in R2. LetM andN be two persistence modules. The erosion distance is defined
as

dE(M,N) ≜ inf
ε≥0
{∀I ∈ Int(R2), rkM (I) ≥ rkN (I+ε) and rkN (I) ≥ rkM (I+ε)}.

Here I+ε denotes the ε-extension of the interval I .

B STABILITY AND DIFFERENTIABILITY: PROOFS

In this section, we provide the proof for stability and differentiability of GRIL. We begin by defining
some metrics on the space of persistence modules based on GRIL.

Definition B.1. Given two persistence modules M and N , a morphism f : M → N is a collection
of linear maps {fu :Mu → Nu}u∈R2 such that fu ◦Nu→v =Mu→v ◦ fv,∀u ≤ v.

Definition B.2. Given a persistence module M and ϵ ∈ R, we define the shift module M←ϵ through
M←ϵ

u =Mu+ϵ and M←ϵ
u→v =Mu+ϵ→v+ϵ. Here u+ ϵ = (u1 + ϵ,u2 + ϵ).

Definition B.3. For a pair of persistence module M and N and some ϵ ∈ R≥0, an ϵ-interleaving
between M and N is a pair of morphisms ϕ : M → N←ϵ and ψ : N → M←ϵ such that ∀u ∈
R2,Mu→u+2ϵ = ψu+ϵ ◦ ϕu and Nu→u+2ϵ = ϕu+ϵ ◦ ψu. If such interleaving exists, we say M and
N are ϵ-interleaved.

Definition B.4. For two persistence modules M and N , we define the interleaving distance as
dI(M,N) ≜ infϵ≥0{M and N are ϵ-interleaved}.
Definition B.5. For persistence module M,N with GRILs λM , λN , define

dL(M,N) ≜ ||λM − λN ||∞.

We shall now look at a property of GRIL that will help in proving the stability.

Definition B.6. Given any interval I and ε ≥ 0, let I+ε be the ε-extension of I defined as:

I+ε ≜
⋃
p∈I

p
ε

(2)

where p
ε
≜ {q : ||p− q||∞ ≤ ε} is the∞-norm ε-neighbourhood of x.

Proposition B.1.
(
p

ℓ

δ

)+ε

⊆ p
ℓ

δ+ε
.

In order to better analyze the stability property of persistence landscape, we define a distance in a
similar flavour as erosion distance for the underlying collection of all worms.

Notation B.7. Denote the collection of all worms asW ≜
{

p
ℓ

δ
| δ > 0, l ∈ N+,p ∈ R2

}
.

Definition B.8. ForW ≜
{

p
ℓ

δ
| δ > 0, l ∈ N+,p ∈ R2

}
, define a distance dWE as follows:

dWE (M,N) ≜ inf
{
ε | ∀ p

ℓ

δ
∈ W, [rkM

(
p

ℓ

δ

)
≥ rkN

(
p

ℓ

ε+δ

)
and rkN

(
p

l

δ

)
≥ rkM

(
p

ℓ

ε+δ

)
]
}
.

(3)

Proposition B.2. dL = dWE ≤ dE , where dE is the erosion distance.

Proof. dWE ≤ dE is obvious by definition.

To show dL ≤ dWE . Given two persistence modules M,N , assume dIE (M,N) = ϵ. For fixed
p, k, ℓ, let λM (p, k, ℓ) = δ1 and λN (p, k, ℓ) = δ2. Without loss of generality, assume δ2 ≥ δ1.
We want to show that δ2 − δ1 ≤ ϵ. By the construction of dWE , we know that for any α > 0,
k > rkN ( p

ℓ

δ1+α
(x)) ≥ rkM ( p

ℓ

δ1+ϵ+α
(x)). One can get δ1 + ϵ+ α > δ2 =⇒ ϵ+ α > δ2 − δ1.

By taking α→ 0, we have δ2 − δ1 ≤ ϵ.
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To show dWE ≤ dL. Let dL(M,N) = δ. For any I = p
ℓ

ϵ
∈ I, we want to show that rkM ( p

ℓ

ϵ
) ≥

rkN ( p
ℓ

ϵ+δ
) and rkN ( p

ℓ

ϵ
) ≥ rkM ( p

ℓ

ϵ+δ
). We prove the first inequality. The second one can

be proved in a similar way. Let k = rkN ( p
ℓ

ϵ+δ
), then λN (p, k, ℓ) ≥ ϵ + δ. By the assumption

dL(M,N) = δ, we know that λN (p, k, ℓ) ≥ ϵ, which implies rkM ( p
ℓ

ϵ
) ≥ k = rkN ( p

ℓ

ϵ+δ
).

Proposition. 2.1 GRIL is equivalent to the generalized rank invariant on W . Here equivalence
means bijective reconstruction from each other.

Proof. Constructing GRIL from generalized rank invariant on W is immediate from the definition
of GRIL.

On the other direction, for any p, δ, ℓ, the generalized rank rkMW( p
ℓ

δ
) can be reconstructed by GRIL

as follows:
rkMW( p

ℓ

δ
) = argmax

k
{λ(p, k, ℓ) ≥ δ} (4)

It is not hard to check that, this construction, combined with the construction of persistence land-
scape, gives a bijective mapping between (generalized) rank invariants overW and GRILs.

By the stability property of erosion distances, we can immediately get the stability of GRIL as
follows:

Proposition. 2.2 For two filtration functions f, f ′ : X → R2, ||λMf − λMf′ ||∞ ≤ ||f − f ′||∞.

Proof. Let Mf and Mf ′ be the persistence modules derived by f and f ′ respectively. Then, we
have the following chain of inequalities:

∥λM
f

− λM
f′

∥∞ = dL(M
f ,Mf ′) ≤ dE(M

f ,Mf ′) ≤ dI(Mf ,Mf ′) ≤ ∥f − f ′∥∞

where dI(Mf ,Mf ′) is the interleaving distance. The second last inequality has been shown in (Kim
& Mémoli, 2021).

Recall that when X is a finite space (e.g. finite simplicial complex, point cloud) then, any f : X →
R2 can be considered as an n× 2 matrix which can be linearized into a vector in R2n. Let us denote
that vector by vf .
Proposition (2.3). PERSGRIL is Lipschitz continuous with respect to bi-filtration functions on finite
spaces.

Proof. Given filtration functions f, f ′ and their corresponding vector representations vf , vf ′ ∈ R2n,
it is easy to see that ∥f − f ′∥∞ ≤ 2∥vf − vf ′∥∞ ≤ 2∥vf − vf ′∥. Combining this with the chain of
inequalities in the previous proposition, we get that PERSGRIL is Lipschitz continuous with respect
to the underlying filtration functions.

Theorem (2.5). Consider the space of all filtration functions {f : X → R2} on a finite spaceX with
|X | = n, which is equivalent to R2n. For fixed k, ℓ,p, there exists a measure-zero subset Z ⊆ R2n

such that for any f ∈ R2n \ Z satisfying the following generic condition: ∀x ̸= y ∈ X , f(x)1 ̸=
f(y)1, f(x)2 ̸= f(y)2, there exists an assignment s : X → {±1, 0,±ℓ}2 such that

∇sΛ
k,ℓ
p (f) ≜ lim

α→0

Λk,ℓ
p (f + αs)− Λk,ℓ

p (f)

α∥s∥∞
= max

g∈X
∇gΛ

k,ℓ
p (f).

Proof. By Corollary 2.4 we know there exists some measure-zero setR ⊂ R2n such that PERSGRIL

is differentiable in R̄ ≜ R2n \R. Let M =Mf be a 2-parameter persistence module induced from
some generic filtration function f ∈ R̄ and I = p

ℓ

d
be an ℓ-worm in R2 centered at some point p.

Let ∂(I) be the boundary of I excluding the right most vertical edge and bottom most vertical edge
(See Figure 7 as an illustration). It is shown in (Dey et al., 2022) that, over the boundary ∂(I), a
so-called zigzag persistence module can be defined by taking the restricting M to ∂(I) (in practice
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it is enough to take a zigzag path to approximate the smooth off-diagonal boundary) on which the
number of full bars is equal to rkM (I). Let I ′ = p

ℓ

d′
be another ℓ-worm centered at p for some

d′ ̸= d. One can observe that, if the zigzag filtrations on ∂(I) and ∂(I ′) have the same order of
insertion and deletion of simplices , then the number of full bars on M |∂(I) and M |∂(I′) are the
same, which means rkM (I) = rkM (I ′). Now let d = λM (k, ℓ,p), I = p

ℓ

d
, I− = p

ℓ

d−ϵ
, I+ =

p
ℓ

d+ϵ
for some small enough ϵ. Based on the definition of λM , we know that rkM (I−) ≥ k

and rkM (I+) < k, which means that zigzag filtrations change on some simplices while moving
from ∂(I−) to ∂(I+). Either the collection of simplices changes or the order of simplices changes.
The former case corresponds to the simplices with x or y-coordinate aligned with some vertical or
horizontal edges on the ∂(I). The latter case corresponds to those pairs of simplices (σ, τ) such that
f(σ) ∨ f(τ) ≜ (max(f(σ)1, f(τ)1),max(f(σ)2, f(τ)2) is on some off-diagonal edges on ∂(I).
By the generic condition of the filtration function f , we can locate those simplices as the set S,
which we call support simplices. The assignment function s is defined on each σ ∈ S by assigning
s(σ) = ±1 or±ℓ which is consistent with the moving direction of the edge from ∂(I) to ∂(I+). We
discuss the assignment values case by case:

We can divide the boundary into four edges: bottom (off-diagonal) edge eb, top (horizontal) edge
et, left (vertical) edge el, right (off-diagonal) edge er.

1. s(σ) = (0,+ℓ) if σ has y-coordinate the same as et,

2. s(σ) = (−ℓ, 0) if σ has x-coordinate the same as el,

3. s(σ) = (0,−1), s(τ) = (−1, 0) if f(σ) ∨ f(τ) is on eb and f(σ)1 ≤ f(τ)1,

4. s(σ) = (0,+1), s(τ) = (+1, 0) if f(σ) ∨ f(τ) is on er and f(σ)1 ≤ f(τ)1,

See Figure 7 as an illustration. We assume f satisfies the condition that the supporting simplices in
S either all belong to cases 1 and 2 or all belong to cases 3 and 4, but not a combination of them. It
is not hard to see that the collection of f for which this condition does not hold is a measure zero set
in R2n. Let us denote the collection of all such f ’s by F . Then, Z = F ∪R is a measure zero set in
R2n which consists of f ’s which do not satisfy the condition and those points where PERSGRIL is
not differentiable.

Now, check for such a generic f /∈ Z so that the directional derivative ∇sλ(f) is indeed a maximal
directional derivative. For the cases 3 and 4, the stability property in Proposition 2.2 implies that,
for any α > 0 and any direction vector g ∈ R2n with ∥g∥∞ = 1, we have λ(f + αg) − λ(f) ≤ α.
Also it is not hard to check that λ(f + αs) − λ(f) = α for α > 0 small enough since the zigzag
persistence of Mf+αs|J with J = p

ℓ

d+α
has the same collection of simplices and orders as Mf |I

with I = p
ℓ

d
, which means they have the same rank. Therefore, we have ∀∥g∥∞ = 1, λ(f +αg)−

λ(f) ≤ λ(f + αs) − λ(f) =⇒ ∇gΛ(f) ≤ ∇sΛ(f). For the case 1 (the case 2 is similar), the
support simplex is on edge et. Now for any direction vector g ∈ R2n and α > 0 small enough, let
∆d = Λ(f + αg) − Λ(f) and let ∆yet be the difference between y-coordinates of et’s from p

ℓ

d

and p
ℓ

d+∆d
. Note that ∆d

∆yet
= ℓ and |Λ(f+αg)−Λ(f)|

α∥g∥∞ ≤ ∆d
∆yet

since in order to change Λ(f) by ∆d

one has to at least move edge et by ∆yet , which correspondingly changes the y-coordinate of s(σ)
by ∆yet . From the above argument, we can get the directional derivative ∇gΛ(f) is bounded from
above by the ratio ∆d

∆yet
= 1

ℓ = ∇sΛ(f). The case for α < 0 is symmetric.

In summary, ∇sλ(f) indeed maximizes the directional derivative for f .

C ALGORITHM

Here, we describe the algorithm in detail. In practice, we are usually presented with a piecewise
linear (PL) approximation f̂ of a R2-valued function f on a discretized domain such as a finite
simplicial complex. The PL-approximation f̂ itself is R2-valued. Discretizing the parameter space
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∂(I ′)

σ1

p

∂(I)

σ2

σ4

σ3

ℓ = 2

s(σ1) = (0, 2)

s(σ1) = (0, 2)

s(σ2) = (−2, 0)

eb

el

et

er

s(σ3) = (0,−1)

s(σ4) = (−1, 0)

Figure 7: Two examples of 2-worm I, I ′. Blue and red lines are boundaries of I and I ′ respectively
on which the zigzag persistence modules are constructed for computing ranks. σi, i = 1, 2, 3, 4 are
four support simplices on ∂(I). s(σi) is the assignment function values on σi.

R2 by a grid, we consider a lower star bi-filtration of the simplicial complex. Analogous to the
1-parameter case, a lower star bi-filtration is obtained by assigning every simplex the maximum of
the values over all of its vertices in each of the two co-ordinates. With appropriate scaling, these
(finite) values can be mapped to a subset of points in a uniform finite grid over [0, 1]×[0, 1]. Observe
that because of the maximization of values over all vertices, we have the property that two simplices
σ ⊆ τ have values f̂(σ) ∈ R2 and f̂(τ) ∈ R2 where f̂(σ) ≤ f̂(τ). A partial order of the simplices
according to these values provide a bi-filtration over the grid [0, 1]× [0, 1].

Choosing center points for worms. Let us denote the chosen grid as Grid = {
(
m
M , n

M

)
| m,n ∈

{0, 1, . . . ,M}} for some M ∈ Z+. We denote the grid resolution as ρ ≜ 1/M . We sample a
uniform subgrid P ⊆ Grid as the collection of center points for the worms to be used to build GRIL.

Discretized ℓ-worms. We saw the definition of ℓ-worm in the previous section. However, in prac-
tice, since we work with a discrete grid rather than R2, we use discretized ℓ-worms as an approxima-
tion. The approximation gap is determined by the grid resolution ρ. A discretized ℓ-worm centered
at p with width d is the union of 2ℓ − 1 squares with centers at p + (kd,−kd) and p − (kd,−kd)
where k ∈ {0, 1, . . . , ℓ − 1} along with the intermediate staircases between two squares of step-
size equal to grid resolution (ρ). Figure 2 (middle) shows the discretization of a 2-worm. This
construction is sensitive to the grid resolution.

Computing generalized ranks. We need to compute the generalized rank rkM ( p
ℓ

d
) for every

worm p
ℓ

d
to decide whether to increase its width or not. We use a result of (Dey et al., 2022) to

compute rkM ( p
ℓ

d
). It says that rkM ( p

ℓ

d
) can be computed by considering a zigzag module and

computing the number of full bars (bars that begin at the start of the zigzag filtration and persist
until the end of the filtration) in its decomposition. This zigzag module decomposition can be
obtained by restricting the bi-filtration on the boundary of rkM ( p

ℓ

d
) and using any of the zigzag

persistence algorithms on the resulting zigzag filtration. We use the recently published efficient
algorithm and its associated software (Dey & Hou, 2022) for computing zigzag persistence.

Computing the value of GRIL using binary search. For a worm p
ℓ

d
and a given k ≥ 1, we

apply binary search to compute the value of GRIL. Let us denote the grid resolution by ρ. We do the
binary search for d in the range [dmin, dmax] where dmin = ρ and dmax = length of the grid. In
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each iteration, we compute rkM ( p
ℓ

d
) for d = (dmin + dmax)/2 and check if rkM ( p

ℓ

d
) ≥ k. We

increase the width of the worm by updating

d
p

1
3

6 7

8 9

10
11

4
5 p

2

Figure 8: (Left) The figure shows the 2-worm centered at p with width d. (Right) The highlighted
part denotes the boundary cap of the worm. The arrows in the figure denote the direction of arrows
in the zigzag filtration.

Refer to Figure 8 for an illustration of the zigzag filtration along the boundary cap of a 2-worm.

D EXPERIMENTAL SETUP

D.1 HOURGLASS DATASET

The two traversals T1 and T2 are designed as follows: T1 traverses G1, then followed by G2; T2
traverses upper halves G⊤1 ⊆ G1 and G⊤2 ⊆ G2 sequentially first, then followed by the other halves
G⊥1 ⊆ G1 andG⊥2 ⊆ G2. For cross edges, we randomly pick 2|V | pairs of nodes (with replacement)
in G⊤1 × G⊥2 on which we place cross edges. We don’t place multiple edges on the same pair of
nodes. In a similar way we place cross edges on G⊥1 × G⊤2 . Therefore, G has roughly 6|V | cross
edges between G1 and G2. The (roughly) total number of edges: |E| ≈ 5|V |. For methods based
on persistence modules, we take two filtration functions f1, f2 : V ∪ E → R on G as follows: let
x(v) be the node attribute on v given by the order index of the trace. Then

• f1 is given by ∀v ∈ V, f1(v) = x(v) and ∀e = (v, w) ∈ E, f1(e) = max(x(v), x(w)).

• f2 is given by f2(v) = 0 and f2 = C(e) where C(e) is a curvature value of e. Here we use
a version of discrete Ricci called Forman-Ricci curvature (Forman, 2003) computed by the
code provided in (Ni et al., 2019).

We compute for all points p in a uniform 4 × 4 grid the PERSGRIL values λ(p, k, ℓ) for general-
ized rank k = 1, 2, worm size ℓ = 2, and homology of dimension 0 and 1. Therefore, for each
graph our PERSGRIL generates a 64-dimensional vector as representation. For the method based
on 1-parameter persistence modules with persistence image vectorization, we compute 1-parameter
persistence modules for homology dimension 0, 1 on f1 and f2 independently. Each persistence
module will be vectorized on a 4 × 4 grid. Therefore, it also produces a 64-dimensional vector as
representation. For graph neural networks models, we use 3-layer GCN and 3-layer GNN with fixed
hidden dimension to be 16, followed by sum pooling and one fully-connected layer. We use 3-layer
multilayer perceptron (MLP) with fixed hidden dimension to be 16 as classifiers for all models. We
train all the models 100 epochs with cross entropy loss and Adam optimizer (Kingma & Ba, 2015)
with learning rate fixed to be lr=0.001. We do 5-fold cross validation and report the mean accuracy
and standard deviation.

D.2 GRAPH EXPERIMENTS

We performed a series of experiments on graph classification using GRIL. We used standard datasets
with node features such as PROTEINS, DHFR, COX2 and MUTAG (Morris et al., 2020). Description
of the graph classification tasks is given in Table 3. The node features of all the nodes were treated
as points in a higher dimensional space and we computed the Density-Alpha bi-filtration on the
nodes. We extended the filtration on the edges by considering the maximum of the values on the
corresponding nodes.

20



Under review as a conference paper at ICLR 2023

Dataset Num Graphs Num Classes Avg. No. Nodes Avg. No. Edges
PROTEINS 1113 2 39.06 72.82

COX2 467 2 41.22 43.45
DHFR 756 2 42.43 44.54

MUTAG 188 2 17.93 19.79

Table 3: Description of Graph Datasets

The Density-Alpha bi-filtration and the Heat Kernel Signature-Ricci Curvature bi-filtration, as done
in (Carrière & Blumberg, 2020), values are normalized so that they lie between 0 and 1. For the
experiments reported in 4, we fix the grid resolution ρ = 0.01. Thus, the square [0, 1] × [0, 1] has
100×100 many grid points. We sample 128 center points, p, out of these grid points uniformly. We
fix l = 2 for our experiments. We compute λ(p, k, ℓ) where p varies over the sampled 128 center
points and k varies from 1 to 10. Each such computation is done for dimension 0 homology (H0)
and dimension 1 homology (H1). We fix the value of learning rate as 0.001 for the experiments.

Dataset ρ = 0.02 ρ = 0.01 ρ = 0.005
MUTAG 87.9 ± 8.1 87.8 ± 8.8 87.9 ± 8.1

Table 4: 10-fold cross-validated test accuracy for different grid resolutions.

In Table 5, we provide a study of the performance of GRIL on different values of k on MUTAG and
COX2 datasets. We compare the 10-fold cross-validated test accuracy of GRIL on Density-Alpha
bi-filtration. For this study, we use a 1-layer MLP classifier and we fix the learning rate to be 0.001.
The columns in Table 5 represent the values of k chosen. For instance, [1 − 2] represents that we
computed λ(p, 1, ℓ) and λ(p, 2, ℓ) and concatenated these vectors before passing them to the 1-layer
MLP classifier. It seems that for datasets with smaller graphs such as MUTAG, using ranks higher
than 6 are not very useful. However, for datasets with comparatively bigger graphs, using higher
ranks seems to increase the performance of the model.

Dataset [1-2] [1-4] [1-6] [1-8] [1-10]
MUTAG 83.1 ± 9.0 86.8 ± 7.5 88.4 ± 8.4 87.8 ± 8.8 87.8 ± 8.8
COX2 78.7 ± 0.0 78.3 ± 1.2 79.6 ± 3.0 80.4 ± 2.2 80.6 ± 2.5

Table 5: 10-fold cross-validated test accuracy of Gril D-Alpha for different values of k.

We report the computation time for computing λ(p, k, ℓ) where l = 2, k ∈ {1, 2, . . . , 10} and p ∈ P
where |P| = 128 in Table 6. The GRIL features were calculated on Density-Alpha bi-filtration. The
computations were done on a Intel(R) Xeon(R) Gold 6248R CPU machine and the computation was
carried out on 32 cores. We report the total computation time per dataset average time it takes for
computation time (in seconds) per graph for each dataset.

Dataset Total Computation Time (s) Computation Time per graph(s)
PROTEINS 27851 25.02

COX2 15878 34.00
DHFR 23121 30.58

MUTAG 4358 23.18

Table 6: Computation times for GRIL features on Density-Alpha bi-filtration for graph datasets

In Table 4, we report the accuracy of GRIL on Density-Alpha bi-filtration with different grid resolu-
tions on the MUTAG dataset.
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