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Abstract

Scene simulation in autonomous driving has gained sig-
nificant attention because of its huge potential for gener-
ating customized data. However, existing editable scene
simulation approaches face limitations in terms of user in-
teraction efficiency, multi-camera photo-realistic rendering
and external digital assets integration. To address these
challenges, this paper introduces ChatSim, the first sys-
tem that enables editable photo-realistic 3D driving scene
simulations via natural language commands with external
digital assets. To enable editing with high command flex-
ibility, ChatSim leverages a large language model (LLM)
agent collaboration framework. To generate photo-realistic
outcomes, ChatSim employs a novel multi-camera neural
radiance field method. Furthermore, to unleash the poten-
tial of extensive high-quality digital assets, ChatSim em-
ploys a novel multi-camera lighting estimation method to
achieve scene-consistent assets’ rendering. Our experiments
on Waymo Open Dataset demonstrate that ChatSim can han-
dle complex language commands and generate correspond-
ing photo-realistic scene videos. Code can be accessed at:
https://github.com/yifanlu0227/ChatSim.

1. Introduction
Perception [12, 15–17, 38, 66] is the window of an au-

tonomous vehicle into the external environment. To ensure
the robustness of the vehicle’s perceptual capabilities during
both training and testing phases, it necessitates the collec-
tion of high-quality perception data in substantial volumes
[13, 58]. However, the operation of a fleet for the acqui-
sition of real-world data often incurs prohibitive expenses,
particularly for specialized or customized requirements. For
instance, in the aftermath of an accident or intervention in-
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Figure 1. ChatSim enables the editing of photo-realistic 3D driving
scene simulations via language commands.

volving an autonomous vehicle, it is imperative to test the
vehicle’s perception system across a spectrum of similar sce-
narios. While replicating such scenario data from real-world
instances is nearly impossible due to the uncontrollability of
actual scenes [9, 52], customized scene simulation emerges
as a vital and feasible alternative. It enables the precise mod-
eling of specific conditions without high costs and logistical
complexities of real-world data collection [4, 72].

To effectively simulate customized driving scenes, we
identify three key properties as fundamental. First, the sim-
ulation should be capable of following sophisticated or ab-
stract demands, thereby facilitating the production. Sec-
ond, the simulation should generate photo-realistic, view-
consistent outcomes, which allow for the closest approxima-
tion to vehicle observations in real-world scenarios. Third,
it should allow for the integration of external digital assets
[6, 44] with their photo-realistic textures and materials while
fitting the lighting conditions. This capability would unlock
the potential for data expansion by incorporating a wide
array of external digital assets, satisfying customized needs.

A vast array of significant works have been proposed
for scene simulation, yet they fail to meet all three of



these requirements. Traditional graphics engines, such as
CARLA [22] and UE [25], offer editable virtual environ-
ments with external digital assets, but the data realism is
restricted by asset modeling and rendering qualities. Image
generation based methods, such as BEVControl [71], Drive-
Dreamer [63], MagicDrive [26], can generate realistic scene
images based on various control signals, including BEV
maps, bounding boxes and camera poses. However, they
struggle to maintain view consistency and face challenges
in importing external digital assets due to the absence of
3D spatial modeling. Rendering-based methods have been
proposed to obtain photo-realistic and view-consistent scene
simulation. Notable examples like UniSim [73] and MARS
[68] come equipped with a suite of scene-editing tools. How-
ever, these systems require extensive user involvement in
every trivial editing step via code implementation, which is
ineffective when performing the editing. Furthermore, while
they handle vehicles in observed scenarios effectively, their
inability to support external digital assets restricts opportuni-
ties for data expansion and customization.

To fulfill the identified requirements, we introduce Chat-
Sim, the first system that enables editable photo-realistic 3D
driving scene simulations via natural language commands
with external digital assets. To use ChatSim, users simply
engage in a conversation with the system, issuing commands
through natural language without any involvement in inter-
mediate simulation steps; see Figure 1 for illustration.

To address complex or abstract user commands effec-
tively, ChatSim adopts a large language model (LLM)-based
multi-agent collaboration framework. The key idea is to
exploit multiple LLM agents, each with a specialized role,
to decouple an overall simulation demand into specific edit-
ing tasks, thereby mirroring the task division and execution
typically founded in the workflow of a human-operated com-
pany. This workflow offers two key advantages for scene
simulation. First, LLM agents’ ability to process human lan-
guage commands allows for intuitive and dynamic editing of
complex driving scenes, enabling precise adjustments and
feedback. Second, the collaboration framework enhances
simulation efficiency and accuracy by distributing specific
editing tasks among specialized agents, ensuring detailed and
realistic simulations with improved task completion rates.

To generate photo-realistic outcomes, we propose McN-
eRF in ChatSim, a novel neural radiance field method that
incorporates multi-camera inputs, offering a broader scene
rendering. This integration fully exploits camera setups
on vehicles but raises two significant challenges: camera
pose misalignment due to asynchronized trigger times and
brightness inconsistency due to different camera exposure
times. To address camera pose misalignment, McNeRF
uses a multi-camera alignment to reduce extrinsic parameter
noises, ensuring rendering quality. To address brightness in-
consistency, McNeRF integrates the critical exposure times

to recover scene radiance in HDR, markedly mitigating the
issue of color discrepancies at the intersections of two cam-
era images with different exposure times.

To import external digital assets with their realistic tex-
tures and materials, we propose McLight, a novel multi-
camera lighting estimation that blends skydome and sur-
rounding lighting. Our skydome estimation restores accu-
rate sun behavior with peak intensity residual connection,
enabling the rendering of prominent shadows. For surround-
ing lighting, McLight queries McNeRF to achieve complex
location-specific illumination effects, like those in the tree
shade with sunlight being blocked. This significantly im-
proves the rendering realism of the integrated 3D assets.

We conduct extensive experiments on the Waymo au-
tonomous driving dataset and show that ChatSim generates
photo-realistic customized perception data including dan-
gerous corner cases according to various human language
commands. Our method is compatible with mixed, highly-
abstract and multi-round commands. Our method achieves
SoTA performance with an improvement of 4.5% in photo-
realism with a wide-angle rendering. Moreover, we demon-
strate our lighting estimation outperforms the SoTA methods
both qualitatively and quantitatively, reducing the intensity
error and angular error by 57.0% and 9.9%.

2. Related Work
Scene simulation for autonomous driving. Current scene
simulation methods can be generally divided into three cate-
gories: graphics engines, image generation, and scene ren-
dering. Graphics engines, such as CARLA [22], AirSim [54],
OpenScenario Editor [24], 51Sim-One [1] and RoadRunner
[21], create a virtual world for simulating a wide range of
driving scenarios. However, there exists a significant domain
gap between the virtual world and reality. Image generation
methods can generate realistic scene images based on dif-
ferent control signals, such as HD maps [26, 39, 59], sketch
layout [71], bounding boxes [26, 39, 63], text [26, 33, 39, 63]
and driving actions [33, 63]. However, these approaches can
hardly maintain scene consistency. To obtain a coherent
driving scene, methods based on scene rendering target to
reconstruct the 3D scene. READ [41] employs point clouds
and uses a U-Net to render images. With the rapid develop-
ment of Neural Radiance Field (NeRF) [7, 8, 43, 45, 56, 62],
several works [28, 34, 47, 48, 61, 68, 69, 73] also exploit
NeRFs to model cars and static street backgrounds in out-
door environments. Moreover, notable examples like UniSim
[73] and MARS [68] come equipped with a suite of scene-
editing tools. However, these methods require extensive user
involvement in intermediate editing steps and they fail to
support external digital assets for data expansion. In this
work, we propose ChatSim that achieves automatic simula-
tion editing via language commands and integrates external
digital assets to enhance realism and flexibility. In ChatSim,



Method Photo-
realistic Dim. Multi-

camera Editable External
assets Language Open-

source
CARLA [22] 3D ✓ ✓ ✓ ✓
AirSim [54] 3D ✓ ✓ ✓ ✓

OpenScenario [24] 3D ✓ ✓ ✓ ✓
51Sim-One [1] 3D ✓ ✓ ✓

RoadRunner [21] 3D ✓ ✓ ✓ ✓
BEVGen [59] ✓ 2D ✓ ✓ ✓

BEVControl [71] ✓ 2D ✓ ✓
DriveDreamer [63] ✓ 2D ✓ ✓ ✓

DrivingDiffusion [39] ✓ 2D ✓ ✓ ✓
GAIA-1 [33] ✓ 2D ✓ ✓

MagicDrive [26] ✓ 2D ✓ ✓
READ [41] ✓ 3D ✓

Neural SG [47] ✓ 3D ✓ ✓
Neural PLF [48] ✓ 3D ✓

S-NeRF [69] ✓ 3D ✓ ✓
UniSim [73] ✓ 3D ✓
MARS [68] ✓ 3D ✓ ✓

ChatSim (Ours) ✓ 3D ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of existing and proposed methods for au-
tonomous driving simulation.

we integrate McNeRF, a novel neural radiance field designed
to leverage multi-camera inputs for high-fidelity rendering.
Lighting estimation. Lighting estimation focuses on as-
sessing the illumination conditions of a real-world environ-
ment to seamlessly integrate digital objects. Early methods
[35, 36] for outdoor environments use explicit cues like de-
tected shadows on the ground. Recent works usually adopt
learning-based approaches [27, 30, 31, 37, 40, 74] by pre-
dicting different lighting representations like spherical lobes
[10, 40], light probes [37], environment map [53, 55], HDR
sky model [31, 64, 74] and lighting volume [64]. However,
few of them consider multi-camera input, which is common
for driving scenarios. In this paper, we propose a novel
multi-camera lighting estimation method, McLight, combin-
ing with our McNeRF, to estimate a wider range of lighting
and obtain the spatially-varying lighting effects of assets.
Large language model and collaborative framework.
Large Language Models (LLMs) are AI systems trained on
extensive data to understand, generate, and respond to human
language. GPT [11] is a pioneering work to generate human-
like content. The following updated versions GPT-3.5 [14]
and GPT-4 [46], provide more intelligent capabilities like
chatting, browsing and coding. Notable other large language
models include InstructGPT [49], LLaMA [60] and PaLM
[5, 18]. Based on LLM, many works [3, 23, 29, 65, 76]
improve the problem-solving abilities by integrating com-
munication among multiple agents. [32] and [67] define a
group of well-organized agents to form operating procedures
with conversation and code programming. In this paper, we
exploit the power of collaborative LLM agents in simulation
for autonomous driving, enabling the various editing of 3D
scenes via language commands.

3. Collaborative LLM-Agents for Editing
The ChatSim system analyzes specific user commands

and returns a video that meets customized needs; see Figure
2. Since user commands could be abstract and sophisticated,

it requires the system to have flexible task-handling ability.
Directly applying a single LLM agent struggles with multi-
step reasoning and cross-referencing. To address this, we
design a series of collaborative LLM agents, where each
agent is responsible for a unique aspect of the editing task.

3.1. Specific Agent’s Functionality
Agents in ChatSim comprise two key components: a Large

Language Model (LLM) and the corresponding role func-
tions. The LLM is responsible for understanding the received
commands while the role functions process the received data.
Each agent is equipped with unique LLM prompts and role
functions tailored to their specific duties within the system.
To accomplish their tasks, agents first convert the received
commands to a structured configuration using LLM with
the assistance of prompts. Then the role functions utilize
the structured configuration as parameters to process the re-
ceived data and produce the desired outcomes; see an agent
example on the right side of Figure 2. This workflow en-
dows agents with both language interpretation capabilities
and precise execution capabilities.
Project Manager Agent. The project manager agent decom-
poses direct commands into clear natural language instruc-
tions dispatched to other editing agents. To equip the project
manager agent with the capability of command decomposi-
tion, we design a series of prompts for its LLM. The core
idea of the prompts is to describe the action set, give the over-
all goal, and define the output form with examples; The role
functions send the decomposed instructions to other agents
for editing. The presence of the project manager agent en-
hances the system’s robustness in interpreting various inputs
and streamlines operations for clarity and fine granularity.
Tech agent for view adjustment. The view adjustment
agent generates suitable extrinsic camera parameters. The
LLM in the agent translates the natural language instructions
for viewpoint adjustment into movement parameters to the
target viewpoint’s position and angle. In role functions,
these movement parameters are turned into transformation
matrices required by the extrinsic, which are then multiplied
by the original parameters to yield a new viewpoint.
Tech agent for background rendering. The background
rendering agent renders the scene background based on
multi-camera images. The LLM receives the rendering com-
mand and then operates the role functions for rendering.
Notably, in role functions, we specifically integrate a novel
neural radiance field method (McNeRF) taking multi-camera
inputs and considering exposure time, solving the problem
of blurring and brightness inconsistency in multi-camera
rendering, see more details in Section 4.1.
Tech agent for vehicle deleting. The vehicle deleting agent
removes specified vehicles from the background. It first iden-
tifies current vehicle attributes like 3D bounding boxes and
colors from given scene information or results from a scene
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Figure 2. ChatSim system overview. The system exploit multiple collaborative LLM agents with specialized roles to decouple an overall
demand into specific editing tasks. Each agent equips an LLM and corresponding role functions to interpret and execute its specific tasks.

# General task description
"I will give you a transformation operation for my viewpoint, which may include translation

in 'x', 'y', 'z' or a rotation 'theta' around z-axis. " 
# Interpretation of details

"For translation, positive 'x' represents forward, positive 'y' represents left, and 'z'
represents up. It follows a left-hand coordinate system."

"For rotation, positive 'theta' is counterclockwise. So from own perspective, my viewpoint
turns to the left. 'theta' is in degree." 

# Return format
"Given my operation, return a dictionary in JSON format, with keys 'x', 'y', 'z', 'theta'." 

# Few-shot examples
"I will give you some examples:

<user>: rotate the viewpoint 30 degrees to the left; <assistant>: {\n  'x': 0,\n  'y': 0,\n
 'z': 0,\n  'theta': 30,\n } \

     <user>: move the viewpoint to the right by 1; <assistant>: {\n  'x': 0,\n  'y': -1,\n
 'z': 0,\n  'theta': 0,\n} " 

Figure 3. Prompt example of view adjustment agent.

perception model like [42]. The LLM gathers attributes of
the vehicles and performs matching with user requests. Upon
confirming the targeted vehicles, it employs a per-frame in-
painting model as the role functions, such as latent diffusion
methods [51], to effectively delete them from the scene.
Tech agent for 3D asset management. The 3D asset man-
agement agent selects and modifies 3D digital assets accord-
ing to user specifications. It constructs and maintains a 3D
digital asset bank; see our bank details in the Appendix.
To facilitate the addition of various objects, the agent first
uses LLM to select the most suitable asset by key attributes
matching with the requirements, such as color and type. If
the matching is not perfect, the agent could modify the asset
through its role functions like changing the color.
Tech agent for vehicle motion. The vehicle motion agent
creates the initial places and subsequent motions of vehicles
following the requests. Existing vehicle motion generation
methods cannot directly generate motion purely from text
and the scene map. To solve the problem, here we propose a
novel text-to-motion method. The key idea is linking a place-
ment and planning module as role functions with LLMs to
extract and turn motion attributes into coordinates. Motion
attributes include position attributes (e.g., distance, direc-
tion) and movement attributes (e.g., speed, action). For the
placement module, we endow each lane node in the lane map
with its attributes to match with the position attributes. The

planning module plans the vehicle’s approximate destination
lane node and then plans the intermediate trajectory by fit-
ting the Bezier curves. We also add trajectory tracking [70]
to fit vehicle dynamics; see more details in the Appendix.
Tech agent for foreground rendering. The foreground
rendering agent integrates camera extrinsic infomation, 3D
assets, and motion information to render foreground objects
in the scene. Notably, to seamlessly integrate the external
assets with the current scene, we design a multi-camera
lighting estimation method (McLight) into the role functions,
coupling with McNeRF. The estimated illumination is then
utilized by Blender API to generate foreground images. The
detailed technical aspects will be elaborated in Section 4.2.

3.2. Agent Collaboration Workflow
Agents with tailored functions collaboratively work to-

gether to edit based on user commands. The project manager
orchestrates and dispatches instructions to editing agents.
The editing agents form two teams: background generation
and foreground generation. For background generation, the
background rendering agent generates rendered images us-
ing the extrinsic parameters from the view adjustment agent,
followed by inpainting by the vehicle deleting agent. For
foreground generation, the foreground rendering agent ren-
ders the images using the extrinsic parameters from the view
adjustment agent, selected 3D assets from 3D asset man-
agement agent, and generated motions from vehicle motion
agent. Finally, the foreground and background images are
composed to create and deliver a video to the user. The edit-
ing information in each agent’s configuration is recorded by
the project manager agent for possible multi-round editings.

4. Novel Rendering Methods
Based on the collaborative LLM agents framework intro-

duced in Section 3, this section presents two novel rendering



techniques to enhance photo-realism in simulations. To
tackle the rendering challenges caused by multiple cameras,
we propose multi-camera neural radiance field (McNeRF), a
novel NeRF model considering the varied camera exposure
times for visual consistency. To render realistic external dig-
ital assets with location-specific lighting and accurate shad-
ows, we propose McLight, a novel hybrid lighting estimation
method combined with our McNeRF. Note that McNeRF
and McLight are leveraged by the background rendering
agent and the foreground rendering agent, respectively.

4.1. McNeRF for Background Rendering

An autonomous vehicle typically equips multiple cameras
to achieve a comprehensive perception view. However, this
poses challenges for NeRF training due to the misaligned
multi-camera poses from asynchronized camera trigger times
and the brightness inconsistency originating from different
exposure times. To address these challenges, the proposed
McNeRF uses two techniques: multi-camera alignment and
brightness-consistent rendering.
Multi-camera alignment. Autonomous vehicles, despite
having a localization module for accurate camera poses, face
challenges with asynchronous trigger times across multiple
cameras. To align camera extrinsics for NeRF training, our
core idea is to leverage a consistent spatial coordinate sys-
tem provided by Agisoft Metashape [2] to align the images
captured by multiple cameras at different timestamps.

Specifically, let I(i,k) and ξ(i,k) be the image captured by
the ith camera at the kth trigger and the corresponding cam-
era pose in the vehicle’s global coordinate space, respectively.
We first input all images into Metashape for recalibration.
The aligned camera pose is then obtained as:

ξ̂(i,k) = TM→G · ξ(i,k)M ,

where ξ
(i,k)
M denotes the recalibrated camera pose in the

Metashape’s unified spatial coordinate space, and TM→G is
the transformation from the Metashape’s coordinate space to
the vehicle’s global coordinate space. After alignment, the
pose noise can be significantly reduced. Then, the aligned
camera pose ξ̂(i,t) can be used to generate the origins and
directions of rays for McNeRF, enabling high-fidelity ren-
dering. The aligned pose can also facilitate the foreground
rendering agent’s operations.
Brightness-consistent rendering. The exposure times of
cameras can differ substantially, causing significant bright-
ness differences across images, hindering the NeRF training.
As shown in Figure 4, McNeRF, addresses this by incorpo-
rating exposure times into HDR radiance fields, prompting
brightness consistency.

We adopt F2-NeRF [62] as our backbone model to handle
the unbounded scene, sampling K points along the ray r and
estimating each point’s HDR radiance ek and density σk.
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The HDR light intensity is then calculated as:

ÎHDR(r) = f(∆t) ·
K∑

k=1

Tkαkek, (1)

where αk = 1 − exp(−σkδi) is the opacity, δi is the point
sampling interval, Tk =

∏k−1
i=0 (1− αi) is the accumulated

transmittance and ∆t is the exposure time. The normal-
ization function f(∆t) = 1 + ϵ(∆t − µ)/σ is designed to
stabilize training, where ϵ is a hyperparameter for scaling, µ
and σ are the mean and standard deviation of the exposure
times of all images, respectively.

By predicting scene radiance in HDR and multiplying it
by the exposure time, we recover the light intensity received
by the sensor and tackle the inconsistent color supervision at
the intersections of two camera images with distinct exposure
times. Moreover, the HDR light intensity outputted by Mc-
NeRF can provide scene-level illumination for foreground
object rendering, a topic further discussed in Section 4.2.

To train the rendering network, we enforce the consis-
tency of radiance between the rendered image (prediction)
and the captured image (ground-truth). Given the ground-
truth image I, the loss function is then:

L =
1

|R|
∑
r∈R

(
OETF

(
ÎHDR(r)

)
− I(r)

)2

,

where R represents the ray set and OETF(·) is the sRGB
opto-electronic transfer function (gamma correction) [19]
that converts HDR light intensity to LDR colors.

4.2. McLight for Foreground Rendering

To enrich the scene’s content with substantial digital 3D
assets, we employ Blender [20] foreground virtual objects’
rendering. A seamless insertion critically depends on accu-
rately estimating the scene’s illumination conditions. Thus,
as shown in Figure 4, we propose McLight, a novel hybrid
lighting estimation consisting of skydome lighting and sur-



rounding lighting.
Skydome lighting estimation. Estimating skydome lighting
from images is challenging for restoring accurate sun behav-
ior. To achieve this, we propose a novel residual connection
from the estimated peak intensity to the HDR reconstruction
to address over-smoothing output. Further, we adopt a self-
attention mechanism to fuse multi-camera inputs, capturing
complementary visual cues.

Here we employ a two-stage process. In the first stage, we
train an autoencoder to reconstruct the corresponding HDR
panorama from an LDR panorama. Following [64], the
encoder transforms the LDR skydome panorama into three
intermediate vectors, including the peak direction vector
fdir ∈ R3, the intensity vector fint ∈ R3

+, and the sky content
vector fcontent ∈ R64. However, as HDR intensity behaves
like an impulse response at its peak position, with pixel
values thousands of times higher than its neighbors, it is
difficult for the decoder to recover such patterns. To tackle
this, we design a residual connection that injects fint into
the decoded HDR panorama with a spherical Gaussian lobe
attenuation. This explicitly restores the peak intensity of
the sun in the reconstructed HDR panorama, allowing us to
render strong shadows for virtual objects.

In the second stage, we train an image encoder and a
multi-camera fusion module built upon the pretrained de-
coder from the first stage. Specifically, for images from each
camera, a shared image encoder predicts the peak direction
vector f (i)dir , the intensity vector f (i)int , and the sky content vec-
tor f (i)content for each image I(i), where i is the camera index.
We design the latent vector fusion across the multiple camera
views as follows: all f (i)dir are aligned to the front-facing view
using their extrinsic parameters and averaged to form f̄dir;
all f (i)int are averaged to yield f̄int; all f (i)content are integrated
into f̄content through a self-attention module. Finally, the
pretrained decoder reconstructs the HDR skydome image
Iskydome from f̄dir, f̄int and f̄content.

Compared to alternative approaches [31, 64], our multi-
camera sky dome estimation technique accurately reproduces
the sun’s intensity response behavior at its peak with our
residual designs, significantly improving the accuracy and
fidelity of the skydome reconstruction.
Surrounding lighting estimation. Merely modeling the sky-
dome cannot replicate the complex location-specific lighting
effects, like those in the shade with sunlight blocked by trees
or buildings. Our McNeRF is capable of storing precise 3D
scene information, enabling us to capture the surrounding
scene’s impact on lighting. This approach facilitates the
achievement of spatially-varying lighting estimation. Specif-
ically, we sample the hemisphere rays at the virtual object’s
position o. The rays’ directions, di, i = 0, 1, · · · , h × w,
are aligned with pixel coordinates on a unit sphere us-
ing equirectangular projection from an environment map,
where h and w are map’s height and width. With the ray

Figure 5. Editing result under a complex and mixed command.

r = o+ tdi, we query our McNeRF as Equation 1 to obtain
HDR surrounding lighting Isurround(o,di). The surround-
ing lighting estimation reconstructs complex environmental
lighting, achieving a spatially varying effect and high consis-
tency with the background.
Blending. We blend the HDR intensity value from the sky-
dome and surrounding lighting by transmittance of the final
sampling point from McNeRF. The idea is that the rays
emitted outside the radiance fields will definitely hit the sky-
dome. Given the direction di, we retrieve the skydome’s
intensity Iskydome(di) with equirectangular projection. The
final HDR light intensity Ienv(o,di) is a combination of
scene and skydome:

Ienv(o,di) = Isurround(o,di) + TKIskydome(di),

where TK is the last sampling point’s transmittance.
McLight offers two main advantages: i) it explicitly recov-

ers the illuminance behavior at the peak and use complemen-
tary information from multiple cameras to restore accurate
skydome; and ii) it enables location-specific lighting with
consideration of complex scene structures.

5. Experimental Results
5.1. Datasets and implementation details

We demonstrate a variety of results mainly on the Waymo
Open Dataset [57], which contains high-quality multi-
camera images and the corresponding calibrations. For
McLight skydome estimation, we collect 449 HDRIs from
online HDRI databases for the autoencoder training and use
HoliCity [75], a street view panorama dataset for the second
stage; see more dataset details in the Appendix.

In our experiment, we use front, left front, and right front



Figure 6. Editing result under a highly abstract command.

cameras in each frame. During the rendering process, we
choose 40 frames per scene at a 10Hz sampling rate, totaling
120 images. We evenly select 1/8 of these as the test set,
with the remainder used for training. The input images are
used at the dataset’s initial resolution of 1920 × 1280; we
employ GPT-4 as the LLMs in all of our experiments; see
more implementation details in the Appendix.

5.2. System results

Editing via language commands. We select three repre-
sentative commands to demonstrate the editing results. All
of the results demonstrate we achieve photo-realistic wide
angle results, thanks to McNeRF and McLight.

Mixed and complex command. We send the system with
a mixed and complex command, implying that a police car
is chasing a wrong-way racer. The target scene, command
and the result are shown in Figure 5. We see that i) every
requirement in the complex command is accurately executed
thanks to our multi-agent collaboration design; ii) this com-
mand successfully simulates one rare but dangerous driving
condition, which is significant in accident testing.

Highly abstract command. The second type is a highly
abstract command. The inputs and results are presented in
Figure 6. We see that i) this highly abstract command is hard
to decompose by sentence division but still can be correctly
executed by our method, and ii) our 3D asset bank offers a
large variety of objects for addition.

Multi-round command. We also perform a multi-round
chat with our system, and the commands in different rounds
exist context dependencies. The final results are shown in
Figure 7. We see that i) our system is well-equipped to
handle multi-round commands and execute the commands in
each round precisely; ii) our system can handle the context
dependencies across different rounds thanks to the recording

Figure 7. Editing result under multi-round commands.

Figure 8. Comparison of detection performance w/o and with our
simulated data under different amounts of real data during training.

ability of the project manager agent.
3D detection with simulation data. We validate the benefits
of our simulation as data augmentation for a downstream 3D
object detection task on Waymo Open Dataset [58]. We simu-
late 1960 frames, derived from scenes in the training dataset.
In the simulation, cars with various types, locations, and
orientations are incorporated. The detection model adopts
Lift-Splat [50]. Figure 8 shows detection performances with
and without fixed augmentation under various amounts of
real data. We see that i) a significant and consistent improve-
ment across different data sizes is achieved; ii) when real
data is limited, our simulation notably aids in rough detection
(AP30); iii) when the amount of real data increases, our sim-
ulation further significantly improves fine-grained detection
(AP70), reflecting the high-quality of our simulation.

5.3. Component results
Multi-agent collaboration. We evaluated the effectiveness
of the multi-agent collaboration by checking whether the
command is successfully executed in Table 2. In scenarios
without multi-agent collaboration, all operations are exe-
cuted by a single LLM agent. We see that a single LLM
agent leads to notably lower execution accuracy across all
categories due to process limitations. In contrast, the collab-
orative multi-agent approach can manage most commands,
attributed to its task division and agent role specificity.



Multi-agent
collaboration

Language command category
Deletion Addition View change Revision Abstract

0.617 0.383 0.717 0.367 0.216
✓ 0.983 0.867 0.967 0.917 0.883

Table 2. The accuracy (%) of task completion by LLM without and
with multi-agent collaboration.

Methods PSNR↑ SSIM↑ LPIPS↓ Inf. time (s)↓

DVGO [56] 23.57 0.770 0.508 7.7
Mip-NeRF360 [8] 24.40 0.754 0.528 101.8

S-NeRF [69] 24.71 0.759 0.519 114.5
F2NeRF [62] 23.26 0.773 0.439 2.4

Ours w/o alignment 23.32 0.776 0.437 2.5
Ours w/o exposure 25.18 0.819 0.381 2.4
McNeRF (Ours) 25.82 0.822 0.378 2.5

Table 3. Background novel view rendering performance evaluation.

Figure 9. Comparisons of wide-angle images generation. (a) S-
NeRF.(b) F2NeRF. (c) McNeRF (Ours). Last row: target images.

Background rendering. We compare our McNeRF with
several other state-of-the-art methods on the background
novel view synthesis task. We perform reconstruction and
rendering on 32 selected scenes. Table 3 shows the quantita-
tive results comparison on three metrics: PSNR, SSIM, and
LPIPS. We see that i) McNeRF achieves SoTA performance
on all three metrics, significantly outperforming other base-
lines; ii) McNeRF has a fast inference speed, enabling quick
responses to user requests for image rendering.

Figure 9 demonstrates qualitative comparisons between
other methods and ours. We see that existing NeRF meth-
ods do not consider the exposure time, leading to noticeable
changes in brightness at the junctions of different cameras
in the image, as well as an overall inconsistency in expo-
sure across the wide-angle view. Our method can make the
brightness of the entire image more consistent.
Foreground rendering. We compare our McLight with the
other two SoTA methods [31, 64]. Table 4 shows the compar-
ison of relative intensity(log 10) error on our HDRI dataset,
angular error on HoliCity [75], and user study. We see that

Method Peak Intensity(log10) Error Peak Angular Error (deg) User study(%) ↑Mean ↓ Median ↓ Mean ↓ Median ↓

Hold-Geoffroy et al. [31] 0.899 0.975 48.4 51.6 19.5
Wang et al. [64] 0.590 0.628 33.5 29.4 37.3
McLight (Ours) 0.449 0.270 32.3 26.5 43.1

Table 4. Comparison with previous methods on lighting estimation.

Figure 10. Comparison with different lighting estimation methods.

Methods Straight Left Turn Right Turn Speed Within-road
GPT2Code 0.738 0.559 0.536 0.893 0.214

GPT2Motion 0.595 0.119 0.167 0.345 0.277
Ours 0.988 0.940 0.976 0.952 1.000

Table 5. Comparison with motion generation from text methods.

McLight achieves more accurate peak behavior and receives
noticeably higher user preferences. Figure 10 shows the vi-
sualizations of vehicle insertion. The vehicles added through
McLight feature significantly more realistic reflections and
strong shadows consistent with the scene.
Vehicle motion. As shown in Table 5, we compare the
motion generation method from user commands with two of
our designed baselines: 1. GPT2Motion, which directly uses
LLM to return the motion coordinates; 2. GPT2Code, which
first generates code using LLM and executes it to obtain the
vehicle motion. We validate multiple actions in multiple
scenarios and report the user study result. The user study is
to determine if the generated motions matched the command
intents and fitted with the lane map. We see that our method
demonstrated a significant advantage in generating motions
from language commands. Additionally, it maintained a high
rate of keeping the trajectories within the lane boundaries.

6. Conclusions and Limitations
This paper introduces ChatSim, the first system for edit-

ing 3D driving scene simulations via language commands
and realistic rendering with import of external digital as-
sets. To effectively execute user commands, ChatSim adopts
an LLM-agent collaboration workflow. To promote photo-
realistic simulation, we propose McNeRF and McLight for
background and foreground rendering, respectively, accom-
modating multi-camera inputs. Experiments show that Chat-
Sim successfully simulates customized data via language
commands, achieving high-quality, photo-realistic outcomes.
In future, we plan to integrate more background editing
functionalities to ChatSim, such as weather changes.
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