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ABSTRACT

Most existing methods for multi-source unsupervised domain adaptation (UDA)
rely on a common feature encoder to extract domain-invariant features. However,
learning such an encoder involves updating the parameters of the entire network,
which makes the optimization computationally expensive, particularly when cou-
pled with min-max objectives. Inspired by recent advances in prompt learning
that adapts high-capacity deep models for downstream tasks in a computation-
ally economic way, we introduce Multi-Prompt Alignment (MPA), a simple yet
efficient two-stage framework for multi-source UDA. Given a source and target
domain pair, MPA first trains an individual prompt to minimize the domain gap
through a contrastive loss, while tuning only a small set of parameters. Then,
MPA derives a low-dimensional latent space through an auto-encoding process
that maximizes the agreement of multiple learned prompts. The resulting embed-
ding further facilitates generalization to unseen domains, making MPA naturally
suitable for test time adaptation. Extensive experiments show that our method
achieves state-of-the-art results on popular benchmark datasets while requiring
substantially fewer tunable parameters. To the best of our knowledge, we are the
first to apply prompt learning to the multi-source UDA problem and our method
achieves the highest reported average accuracy of 54.1% on DomainNet, the most
challenging UDA dataset to date, with only 15.9M parameters trained. More im-
portantly, we demonstrate that the learned embedding space can be easily adapted
to novel unseen domains with even fewer tuned parameters.

1 INTRODUCTION

Deep learning has achieved remarkable progress in various computer vision tasks such as image
classification (Krizhevsky et al., 2012; He et al., 2016), object detection (Ren et al., 2015; Redmon
et al., 2016; Liu et al., 2016) and image segmentation (Long et al., 2015a; Chen et al., 2017). How-
ever, these success relies on high capacity models trained in a supervised manner using a massive
amount of manually labeled data, which are oftentimes expensive and time-consuming to collect.
Furthermore, current deep models are brittle to the presence of domain shift (Quinonero-Candela
et al., 2008; Torralba & Efros, 2011; Zhang et al., 2013) in the forms of different image styles,
varied lighting conditions, diverse viewpoints, etc., between training and testing distributions.

Unsupervised domain adaptation (UDA) is a popular strategy that mitigates domain discrepancies
through transferring knowledge learned from a well-labeled source domain to an unlabeled target
domain (Pan & Yang, 2010; Csurka, 2017; Wang & Deng, 2018). While significant advances have
been achieved, current approaches focus on the single source setting, where all the labeled training
data share the same distribution. In practice, however, it is more common for the labeled data to be
collected from multiple sources that are diverse in distribution. Naturally, one could still tackle this
problem by straightforwardly combining all the data into one single source and apply off-the-shelf
UDA methods. However, directly applying single source UDA methods often results in a limited
performance, as domain shift also exists among different source domains.

The integration of multiple source domains for improved adaptation results on the unlabeled tar-
get domain is generally known as multi-source unsupervised domain adaptation. Inspired by the
theoretical analysis of Ben-David et al. (2006), learning domain-invariant feature representations
has become a prevailing paradigm for multi-source UDA. One typical approach is to jointly learn

1



Under review as a conference paper at ICLR 2023

j-th classifier
Cj...Ci

target image

source j imagesource i image

Conventional Methods Our Method

Common Feature Encoder

prompt i prompt j
PjPi

i-th classifier

CLIP’s Text Encoder

CLIP’s Image Encoder

...

...

...

11
i IT

21
i IT

31
i IT

1K
i IT

2K
i IT

3K
i IT

...

...

...

11
j IT 1K

j IT

21
j IT 2K

j IT

31
j IT 3K

j IT

1I

2I

3I

... ...1
iT K

iT 1
jT K

jT

3K
i IT

(a) Method comparison (b) Tunable parameters vs accuracy on DomainNet

Figure 1: (a) Most conventional multi-source UDA methods use a common feature extractor with
domain-specific classifier heads, while we introduce prompt learning to multi-source UDA and omit
the repeated need for classifier heads. (b) MPA outperforms all other multi-source UDA methods
by a large margin on the DomainNet dataset with roughly one third tunable parameters. We also
introduce a Latent Space Tuning (LST) strategy that further reduces the trainable parameters from
15.9M (MPA) to 1.47M while still capable of achieving a high accuracy. See texts for more details.

a common feature extractor together with domain-specific feature extractors and classifier heads.
Various feature distance metrics (Long et al., 2015b; Sun & Saenko, 2016; Kang et al., 2019) or
domain adversarial training (Tzeng et al., 2017) can be leveraged that serves as a preliminary align-
ment between source and target domains, followed by different auxiliary losses carefully designed
to further reduce the domain shift. While these methods offer decent results, they require optimizing
the entire set of parameters in the network and hence poses a significant challenge for optimization
even without the widely used min-max objective (Zhao et al., 2018; Li et al., 2018; Hoffman et al.,
2018). Such problem is further amplified if we wish to apply more advanced backbones such as
Vision Transformer (Dosovitskiy et al., 2021) for improved performance.

In this paper, we introduce a simple yet efficient approach for multi-source UDA without the need
of retraining the entire network and the use of complicated min-max loss functions (See Figure 1 for
a comparison). In particular, we build upon prompt learning (Lester et al., 2021; Wei et al., 2021)
that has been designed to transfer knowledge learned from large pre-trained vision language models
like CLIP (Radford et al., 2021). In prompt learning, image representations are learned contrastively
with a piece of language text termed as “prompt” that describes the class of the image. While recent
studies (Ge et al., 2022; Ben-David et al., 2022) suggest that learnable prompts can be used for
UDA, they are restricted to the single source scenario and directly generalizing them to the multi-
source setting produces limited results. Furthermore, while prompt learning provides an efficient
alternative, we argue that the number of parameters needed to be tuned could be further reduced.

In light of this, we present a surprisingly easy framework, Multi-Prompt Alignment (MPA), for
multi-source UDA. MPA is composed of two stages, one to learn an individual prompt by tuning
a small set of parameters for each source and target domain pair and one to mine the relationships
among learned prompts through deriving a shared embedding space. The resulting embedding is
expected to be domain-invariant and can generalize to unseen domains. More specifically, for the
first stage, given a source domain and a target domain, we use CLIP as our backbone and learn one
prompt tailored for such a pair. We then align all the learned prompts in a latent space of a lower
dimension dI . This is accomplished by a simple auto-encoder network with a reconstruction loss.
Additionally, we incorporate an L1 loss so that the reconstructed prompts agree on the classification
of target images. This is beneficial for prompts to handle situations in which the target data lies near
the decision boundary. We conduct extensive experiments on multiple benchmarks and the results
clearly show that our method outperforms state-of-the-art methods in the multi-source setting. In
particular, on DomainNet (Peng et al., 2019), the most challenging dataset for multi-source UDA so
far, MPA surpasses all state-of-the-arts methods. More importantly, as the latent space is optimized
with prompts from multiple source domains, it encodes knowledge shared by different domains
and could potentially generalize to unseen domains by traversing the space. Consequently, we show
how surprisingly easy it is to tune the learned low-dimensional embedding for deployment in unseen
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domains. Since such tuning involves no source domain data, this can be naturally extended to test
time adaptation problems. In summary, our contributions are three-fold:

• We introduce Multi-Prompt Alignment (MPA) for multi-source UDA. MPA takes advantage of
prompt learning, thus greatly reducing the number of parameters needed for training compared
with alternative methods.

• MPA learns a latent embedding space by maximizing the consensus of multiple learned prompts.
Consequently we provide a methodology that is able to solve test time adaptation problems by
facilitating the adaptation of the resulting low-dimensional embedding to novel unseen domains.

• MPA achieves state-of-the-art results on several popular benchmarks. Specifically, on the large-
scale DomainNet dataset, MPA achieves the best reported average accuracy. Moreover, tuning the
learned latent subspace offers comparable results with even fewer parameters when generalizing
to unseen domains.

2 RELATED WORK

2.1 MULTI-SOURCE UNSUPERVISED DOMAIN ADAPTATION

First studied by Yang et al. (2007), multi-source UDA has drawn increasing attention in the commu-
nity. Throughout the years, various methods have been studied. For example, in MDAN (Zhao et al.,
2018) and DCTN (Xu et al., 2018), a discriminator applied with adversarial losses is trained so that
the features from source and target domains are aligned. MFSAN (Zhu et al., 2019) calculates and
aligns the maximum mean discrepancy for each source and target pair. Similarly, M3SDA (Peng
et al., 2019) aligns the moment distance for both target and source domains. All these methods
require a shared feature extractor to obtain domain-invariant features, which is inevitably difficult
to optimize and at the risk of losing semantic information as the number of domains increases. On
the contrary, Rakshit et al. (2019) adopt one domain-specific encoder for each source and target pair
while Zhao et al. (2020) pretrain a classifier for each source domain and then adversarially map the
target images into each trained feature space. The better alignment of these methods is at the cost of
significantly increased number of parameters needed for training. To overcome such a trade-off be-
tween performance and efficiency, we introduce prompt learning to multi-source UDA. Since each
prompt contains substantially fewer parameters compared to a feature extractor, learning distinct
prompts for each source and target pair is affordable.

2.2 PROMPT LEARNING

Traditionally, given a pre-trained language model, a common approach in deep learning is fine-
tuning the whole model or its task-specific heads to adjust to downstream tasks. While effective,
however, two main drawbacks exist. First of all, as the model size keeps increasing, pre-training and
fine-tuning is becoming more and more expensive. Secondly, for each diverse task, fine-tuning needs
to be repeatedly conducted. Recently, researchers have shown that learned large-scale language
models can handle a wide range of downstream tasks with only a few or even no samples by pre-
pending instructions to the input text (Liu et al., 2021b). Such instruction texts are called prompts.
Consequently, prompts can be tuned instead of the entire network for a more efficient adaptation
to downstream tasks. Originally, prompts are essentially sequences of manually designed language
tokens that are mapped to an embedding space. To date, extensive research has demonstrated that
training soft prompts, i.e., prompts with their own parameters learned by deep models, is more
effective (Li & Liang, 2021; Lester et al., 2021). The success of prompt learning in NLP has also
garnered attention in the vision community that motivated the establishment of many related work.
To name a few, Zhou et al. (2022) are the first to apply soft prompt learning to the image recognition
task. Ju et al. (2021) explore prompt learning for efficient and lightweight video understanding.
While prompting in these studies are limited to the input of text encoders, Jia et al. (2022) prepend
token embeddings directly to the image patches.
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3 METHOD

Our goal is to use multiple labeled source domains for improved performance on a target domain
while only tuning a small set of parameters. To this end, we leverage prompt learning, which is an
effective strategy by learning a small set of parameters to adapt a pretrained model to different down-
stream tasks. In the following, we first review prompt learning in CLIP in Sec. 3.1 and then elaborate
in Sec. 3.2 our proposed MPA method, which is a two-stage framework that seeks agreement from
multiple learned prompts and derives a joint latent space with domain-invariant knowledge.

3.1 AN OVERVIEW OF PROMPT LEARNING IN CLIP

CLIP consists of an image encoder and a text encoder that are jointly trained with a contrastive loss
on 400M image and text pairs. The image encoder f , which can either be a ResNet (He et al., 2016)
or a Vision Transformer (Dosovitskiy et al., 2021), maps raw images to an embedding space, and
the text encoder g is a Transformer (Vaswani et al., 2017) that maps an input text sequence to the
same embedding space. A prompt in CLIP usually exists in the form of “a photo of [CLS]” where
[CLS] is a class token that can be replaced by a certain class name. This sequence of tokens is first
converted into a lower cased byte pair encoding (BPE) representation, which is essentially a unique
numeric ID (Zhou et al., 2022). Then the numeric IDs are embedded to a 512 dimension vector that
is further passed to the Transformer text encoder. In our work, instead of using manually crafted
prompts, we train soft prompts that are directly embedded by the text encoder. Given an image x
and a text embedding wk for class k ∈ {1, 2, ...,K}, where K is the total number of categories,
CLIP aligns them in a contrastive manner so that:

p(y = k|x) = exp(< wk, f(x) > /T )∑K
i=1 exp(< wi, f(x) > /T )

(1)

is maximized when the input image x indeed belongs to class k. Here < ·, · > denotes the cosine
similarity and T is a learnable temperature parameter.

3.2 MULTI-PROMPT ALIGNMENT

Let N denote the total number of domains, where the first N − 1 domains are source domains
and the N -th domain is the target domain. For all N − 1 source domains, both images and their
labels are provided, while for the target domain, we only assume access to their images, as in the
standard UDA setting. For multi-source UDA, we wish to learn a domain-invariant latent space so
that the domain shift among different source domains as well as the discrepancies between all the
source and target domain pairs can be minimized. Unlike current multi-source UDA methods that
require a significant amount of parameters for adaption, we leverage prompt learning for alignment
among different domains. In the following, we begin by introducing the prompt design, followed by
learning individual prompts and multi-prompt alignment. Finally we describe how to learn a joint
embedding space that has the potential of generalizing to unseen domains.

Prompt Design. Following (Ge et al., 2022), our prompt for multi-source UDA includes a set of
class-specific context vectors vk

i , i ∈ {1, 2, ...,M1}, k ∈ {1, 2, ...,K} and another set of domain-
specific vectors shared across all classes dd

j , j ∈ {1, 2, ...,M2}, d ∈ {s, t}. See Figure 2 for an
overview. Here, M1 and M2 represent the number of tokens, K is the number of classes, s is short
for source and t is short for target, resulting in a total of 2K categories for training. In other words,
each class prompt tdk ∈ R1×(M1+M2)×512 is a concatenation of a “source prompt” and a “target
prompt”. Therefore, the prompt for each source and target pair can be derived as:

Pi = [ts1, t
s
2, ..., t

s
K , tt1, t

t
2, ..., t

t
K ]⊤, i ∈ {1, 2, ..., N − 1}. (2)

These prompts serve as learnable parameters that help bridging the domain gap between a source
domain and the target domain through a contrastive loss, as will be introduced below.

Learning Individual Prompts. To apply prompt learning to multi-source UDA, we first train
individual prompts for each source and target pair using the image and text encoders of CLIP. Given
an image xs sampled from the source domain Ds whose label is y∗, we optimize the prompts
so that the outputs from the image and text encoder are aligned. For an image xt from the target
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Figure 2: Each source and target pair prompt Pi is the concatenation of a “source prompt” segment
and a “target prompt” segment composed of domain-invariant and domain-specific features. There-
fore, the size of Pi is R2K×(M1+M2)×512. During our prompt training stage, the text encoder and
the image encoder of CLIP are both frozen.

domain Dt whose label is unknown, we first leverage the strong zero-shot ability of CLIP to generate
static pseudo-label ŷ∗ for image-text alignment. Pseudo-labels are only generated for images whose
maximum probability is larger than a fixed threshold τ using Equation 1. While more sophisticated
approaches like self-training could be leveraged to generate pseudo labels (Zou et al., 2018; Liu
et al., 2021a), we find that pseudo labels from CLIP are simple and effective. Finally, prompts
are trained with cross-entropy loss functions and Figure 2 gives an overview of the process. More
formally, for a prompt Pi, i ∈ {1, 2, ..., N − 1}, the objective function for optimization follows:

min
Pi

− 1

ns

∑
xs∼Ds

logP (y = y∗|xs;Pi)−
1

nt

∑
xt∼Dt

logP (y = ŷ∗|xt;Pi). (3)

Here, the probability P (·|xd;Pi) of an image sample belonging to the k-th class is derived from a
contrastive loss:

P (y = k|xd;Pi) =
exp(< g(tdk), f(x

d) > /T )∑
d∈{s,t}

∑K
i=1 exp(< g(tdi ), f(x

d) > /T )
, (4)

where d ∈ {s, t} is a domain identifier indicating where the image comes from, T is a learnable tem-
perature parameter, and f and g represents the image and text encoder in CLIP respectively, which
are kept frozen during training. This specific design can push the prompts to learn disentangled rep-
resentation of both class-invariant and class-specific semantic information to boost the performance
of domain adaptation methods (Bousmalis et al., 2016; Liu et al., 2018). Once prompts are learned,
the predicted label of an image xt can be computed as:

argmax
k

exp(< g(ttk), f(x
t) > /T )∑K

i=1 exp(< g(tti), f(x
t) > /T )

. (5)

Multi-Prompt Alignment. Thus far, we have obtained a prompt for each source and target domain
pair. However, the number of images as well as the noise level in each source domain varies, and
hence these learned prompts might produce inconsistent results even for the same image. In the
second stage, we aim to align predictions from different prompts and more importantly, we wish
to find a domain-invariant latent space that minimizes the noise in learned prompts as well as can
potentially generalize to unseen domains. To this end, we leverage auto-encoders that are trained to
reconstruct the learned prompts. More formally, we use two separate auto-encoders, each consisting
of a projection function Proj(·) and a back-projection function Projb(·). The learned prompts Pi

are first projected into a latent subspace of a lower dimension dI by Proj(·), followed by Projb(·)
projecting the vectors back into soft prompts P̂i. Instead of reconstructing the whole prompt, we
adjust Pi to only contain the target token segment and feed its domain-specific and domain-invariant
pieces to the two auto-encoders respectively. We posit that since these two feature vectors serve
different purposes, using two separate auto-encoders will help with the alignment process. The
Proj(·) function is implemented by a one-layer feed forward network while Projb(·) is implemented
by a two-layer nonlinear perceptron:

Proj(Pi) = W1(Pi) + b1 and Projb(dI) = W3(tanh(W2dI + b1)) + b2 (6)
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Figure 3: (a) All prompts are first sliced to the size RK×(M1+M2)×512 containing only the target
token segment. Then they are further partitioned into domain-invariant and domain-specific pieces
that are projected into the same latent space and aligned by an auto-encoder structure. (b) The latent
subspace learned by the auto-encoder can be utilized for generalizing to novel domain.

Here, dI represents a vector in the embedding space and we optimize a reconstruction loss

LAE =
1

N − 1

N−1∑
i=1

∥P̂i − Pi∥22 where P̂i = Projb(Proj(Pi)). (7)

Intuitively, one would expect a certain target domain image to be classified as the same category for
all the reconstructed prompts P̂i. Inspired by this, we align the reconstructed prompts by introducing
an additional L1 loss to the objective function

L1 =
2

(N − 1)× (N − 2)

N−2∑
j=1

N−1∑
i=j+1

|P (y = kt|xk, P̂i)− P (y = kt|xk, P̂j)| (8)

The overall loss function now becomes:
L = LCLS + αL1 + LAE , (9)

where LCLS is the cross entropy loss calculated using the reconstructed prompts P̂i and static
pseudo labels. Here α is a hyper-parameter controlling the weight of the L1 loss. The whole training
procedure is depicted in Figure 3a. Finally, for predicting the labels of target samples, we compute
the average of the output logits using each P̂i.

Generalizing to Unseen Domains. With multi-prompt alignment, we are able to derive a low-
dimensional embedding space that potentially captures the relationships among different domains.
With this, we introduce a Latent Subspace Tuning (LST) strategy. Given a novel domain, a
domain-invariant feature vector vtune ∈ RN×M1×dI with a domain-specific feature vector dtune ∈
R1×M2×dI is randomly initialized and passed to the two learned back projection function Projb(·)
from MPA. Consequently, an entirely new prompt P̃ can be constructed for predicting image labels
on the novel domain. This is achieved by minimizing the following loss function:

min
dtune,vtune

− 1

nnew

∑
xnew∼Dnew

logP (y = ŷ∗|xnew; dtune; vtune). (10)

By doing so, this further decreases the number of tunable parameters by a factor of at least (N−1)×
dc

dI
times (for example, on the Office-Home dataset, dI = 150, dc = 512 and N = 4) as against to

MPA when adapting to novel domains and is thus much more computationally efficient. Since data
from the source domains are not required in the training of LST, this is in fact a problem of test time
adaptation (Kundu et al., 2020; Liang et al., 2020; Wang et al., 2021). Considering that the domain
of interest is not involved in the training of the latent subspace throughout the whole process, we
dub it “unseen”.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and metrics. Experiments are conducted on three popular benchmark datasets of UDA
to evaluate the effectiveness of MPA, including ImageCLEF, Office-Home and DomainNet. Image-
CLEF is a small-scaled dataset consisting of 1,800 images from 12 object categories in 3 different
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domains: ImageNet ILSVRC 2012(I), Pascal VOC 2012(P), and Caltech-256 (C). Office-Home is
a medium scaled dataset consisting of about 15,500 images from 65 categories in 4 different do-
mains: Art, Clipart, Product and Real World. DomainNet is the largest dataset to date, consisting of
about 0.6 million images from 345 categories in 6 different domains: Clipart, Infograph, Painting,
Quickdraw, Real and Sketch.

We use top-1 accuracy as our evaluation metric and report results of the following settings: (1)
CLIP: zero-shot CLIP on the target domain, which can be regarded as a baseline of our method.
(2) Source Combined: all source domains are combined into one single domain and applied with
popular single-source UDA methods. Specially in this setting, we adopt the prompting method from
Zhou et al. (2022) to serve as another baseline named as “Simple Prompting”. (3) Multi-Source:
results reported from other multi-source UDA methods. Note that we tried to re-implement state-of-
the-art methods using backbone networks from CLIP, yet most of the results are unsatisfactory and
thus we only report one such attempt. Similar trends are also found in (Devillers et al., 2021; Yang
et al., 2022) when transferring CLIP to pure vision tasks.

4.2 COMPARISON TO STATE-OF-THE-ART

The results on ImageCLEF and Office-Home are shown in Table 1. For ImageCLEF, it is obvious
that MPA outperforms other methods on every task with an average accuracy of 91.7%, where there
is at least a 3% increase when adapting to domain C and I. For Office-Home, MPA achieves the best
results except when adapting to the domain Clipart. Nevertheless, we achieve an accuracy of 75.4%
on average, which is 1.3% higher than the second best method MFSAN. It is worth noting that
compared to state-of-the-art method MFSAN on both datasets, MPA only trains 0.78M and 2.36M
parameters, while MFSAN has a total of 51.75M and 51.80M parameters needed for optimizing
(66.3 and 21.9 times larger than ours). Furthermore, to justify whether the performance gain is
from a more powerful backbone, we conduct two different sets of experiments. One is applying a
simple prompt learning method (Zhou et al., 2022) to the source combined scenario; and again, as
Table 1 suggests, while the Simple Prompting baseline is 1% on average better than zero shot CLIP,
MPA still outperforms it with a significant margin. The other experiment is by directly switching
MFSAN’s ResNet50 backbone pretrained on ImageNet to CLIP’s image encoder. Surprisingly,
when tested on the ImageCLEF dataset, the performance even drops by a small margin of 0.3%. To
conclude, both results demonstrate that CLIP’s backbone is not universally better and the majority
of the performance gain of our method is from its domain adaptation ability.

ImageCLEF Office-Home
→ C → I → P Avg → Ar → Cl → Pr → Rw Avg

Zero-Shot
CLIP (Radford et al., 2021) 95.1 87.3 74.0 85.5 71.5 50.2 81.3 82.4 71.4

Source Combine
DAN (Long et al., 2015b) 93.3 92.2 77.6 87.7 68.5 59.4 79.0 82.5 72.4
DANN (Ganin et al., 2016) 93.7 91.8 77.9 87.8 68.4 59.1 79.5 82.7 72.4
D-CORAL (Sun & Saenko, 2016) 93.6 91.7 77.1 87.5 68.1 58.6 79.5 82.7 72.2
DAPL∗ (Ge et al., 2022) 96.0 89.2 76.0 87.1 72.8 51.9 82.6 83.7 72.8
Simple Prompt∗ 93.6 90.6 80.9 88.4 70.7 52.9 82.9 83.9 72.4

Multi-Source
DCTN (Xu et al., 2018) 95.7 90.3 75.0 87.0 N.A. N.A. N.A. N.A. N.A.
MDDA (Zhao et al., 2020) N.A. N.A. N.A. N.A. 66.7 62.3 79.5 79.6 71.0
SImpAI50 (Venkat et al., 2020) 93.3 91.0 77.5 87.3 70.8 56.3 80.2 81.5 72.2
MFSAN (Zhu et al., 2019) 95.4 93.6 79.1 89.4 72.1 62.0 80.3 81.8 74.1
MFSAN+CLIP∗ 96.7 93.0 77.7 89.1 N.A. N.A. N.A. N.A. N.A.
MPA (ours) 98.6 96.2 80.4 91.7 74.8 54.9 86.2 85.7 75.4

Table 1: Accuracy (%) on ImageCLEF and Office-Home. ∗ implies that the method is based on our
implementation

Table 2 shows that for DomainNet, MPA exceeds other multi-source UDA methods by more than
5%. To the best of our knowledge, this is the highest reported accuracy on this dataset so far with
less than one third parameters optimized compared with most state-of-the-arts methods. Regard-
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DomainNet
→ Clp → Inf → Pnt → Qdr → Rel → Skt Avg

Zero-Shot
CLIP (Radford et al., 2021) 61.3 42.0 56.1 10.3 79.3 54.1 50.5

Source Combined
DANN (Ganin et al., 2016) 45.5 13.1 37.0 13.2 48.9 31.8 32.6
MCD (Saito et al., 2018) 54.3 22.1 45.7 7.6 58.4 43.5 38.5
DAPL∗ (Ge et al., 2022) 62.4 43.8 59.3 10.6 81.5 54.6 52.0
Simple Prompt∗ 63.1 41.2 57.7 10.0 75.8 55.8 50.6

Multi-Source
DCTN (Xu et al., 2018) 48.6 23.5 48.4 7.2 53.5 47.3 38.2
SImpAI101 (Venkat et al., 2020) 66.4 26.5 56.6 18.9 68.0 55.5 48.6
M3SDA-β (Peng et al., 2019) 58.6 26.0 52.3 6.3 62.7 49.5 42.6
LtC-MSDA (Wang et al., 2020) 63.1 28.7 56.1 16.3 66.1 53.8 47.4
T-SVDNet (Li et al., 2021) 66.1 25.0 54.3 16.5 65.4 54.6 47.0
PFSA (Fu et al., 2021) 64.5 29.2 57.6 17.2 67.2 55.1 48.5
PTMDA (Ren et al., 2022) 66.0 28.5 58.4 13.0 63.0 54.1 47.2
MPA (ours) 65.2 47.3 62.0 10.2 82.0 57.9 54.1

Table 2: Accuracy (%) on DomainNet. ∗ implies that the method is based on our implementation

ing individual adaptations, MPA achieves best results on most of the adaptation tasks but performs
mediocre on the Quickdraw domain. Interestingly, the result is even a little worse than CLIP. We hy-
pothesize that this is because of the large domain gap between Quickdraw and other domains. While
CLIP exhibits strong performance on the DomainNet dataset, its performance on ImageCLEF and
OfficeHome dataset is limited. On the contrary, MPA consistently achieves decent results regardless
of the dataset assessed on. As a result, for all three datasets, MPA surpasses CLIP by 6.2%, 4.0% and
3.6% respectively. More importantly, the Simple Prompt baseline reached an average accuracy of
50.6%, 3.5% lower than MPA. All the above results further demonstrate the success of our strategy.

Effectiveness of Generalizing to Unseen Domains Inspired by recent research that shows the
generalization ability of large language models when adapting to unseen tasks presented with lan-
guage prompts (Sanh et al., 2022), we are interested in whether MPA also possess such ability.
Results from Table 1 and Table 2 are already strong indication of the success of MPA under conven-
tional multi-source UDA setting. Now, we would like to investigate a more efficient framework, the
LST strategy as mentioned in Section 3.2, for test-time adaptation tasks.

We first present a concrete example that simulates a test-time adaptation scenario. On the Office-
Home dataset, LST can be conducted by training MPA using Clipart and Product as source domains
and Art as target domain, while fine-tuning the latent subspace on the unseen Real World domain.
Applying this to all domains from the Office-Home and DomainNet dataset produces results shown
in Table 3, where compared with MPA, the performance only dropped by 0.4% on DomainNet and
1.6% on Office-Home. Nevertheless, LST achieves higher accuracy compared to most baseline
methods of Table 1 and Table 2. In particular, LST is still better than CLIP with an increase of
2.4% and 3.2% respectively for the two tested datasets. Notably, only a total of 0.17M and 1.47M
parameters are tuned, which is a further drop in the number of parameters (0.17M v.s. 2.36M, 1.47M
v.s. 15.9M in MPA). All of these are convincing evidence showing the generalization ability of MPA.

Office-Home DomainNet
→ Ar → Cl → Pr → Rw Avg → Clp → Inf → Pnt → Qdr → Rel → Skt Avg

CLIP 71.5 50.5 81.3 82.4 71.4 61.3 42.0 56.1 10.3 79.3 54.1 50.5
MPA 74.8 54.9 86.2 85.7 75.4 65.2 47.3 62.0 10.2 82.0 57.9 54.1
LST 72.9 52.2 84.9 85.0 73.8 64.6 46.7 61.6 9.8 81.2 57.6 53.6

Table 3: Results (%) of different approaches when generalizing to unseen domains.

Qualitative Results To obtain further insights into MPA, we visualize, in Figure 4, the distribu-
tions of prediction confidence of MPA and CLIP for the four target domains on the Office-Home
dataset. We see that for Art, Prouct and Real World, MPA produces highly confident predictions for
the majority of samples. As for the Clipart domain where the recognition accuracy is lower than the
other domains, MPA is clearly better than CLIP that produces a distribution skewed to the bottom.
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Low
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Figure 4: Visualization of the confidence density.

4.3 ABLATION STUDY

Effectiveness of Prompt Alignment The second stage of MPA can be seen as a refinement of the
prompt learned during stage one. Thus, we verify how the quality of those prompts has changed
and the results are shown in Table 4. It is worth pointing out that stage one of MPA improves the
accuracy of CLIP by an average of 1.2%, while the second stage improves the first stage by an
average of 2.8%, highlighting that the prompt has indeed been refined.

A → C A → P A → R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ C R→ P Avg

CLIP 50.2 81.3 82.4 71.5 81.3 82.4 71.5 50.2 82.4 71.5 50.2 81.3 71.4
Stage One 52.2 83.5 82.1 72.8 83.6 82.8 73.3 52.7 82.4 72.0 51.6 82.1 72.6
Stage Two 54.1 85.9 85.2 74.3 86.0 85.3 74.6 54.1 85.3 74.3 54.2 86.0 75.4

Table 4: Performance (%) of individual prompts on Office-Home dataset.

Effectiveness of loss function To validate the effectiveness of our objective function Equation 9,
two variants are evaluated: one without the LAE loss and one without the L1 loss. Table 5a shows
that the removal of either piece will result in a performance degradation of about 0.7%. In particular,
L1 loss exhibits a larger impact on the more difficult Clipart domain, where the accuracy dropped by
a large margin of 1.5% without the L1 loss, demonstrating the effectiveness of enforcing consistent
predictions on different prompts.

L1 LAE → Ar → Cl → Pr → Rw Avg

✕ ✓ 74.8 53.4 85.2 85.3 74.7
✓ ✕ 74.0 53.8 85.5 85.4 74.7
✓ ✓ 74.8 54.9 86.2 85.7 75.4

(a) Effectiveness of loss function.

# of AE → Ar → Cl → Pr → Rw Avg

Zero 75.0 53.4 85.7 85.4 74.9
One 74.6 54.3 85.9 85.6 75.1
Two 74.8 54.9 86.2 85.7 75.4

(b) Effectiveness of auto-encoders.
Table 5: Ablation studies.

Effectiveness of auto-encoders In addition to the objective function, we also tested the effec-
tiveness of utilizing the auto-encoder structure in MPA. For details, zero auto-encoders means we
completely discarded the auto-encoder structure and one auto-encoder is for testing the necessity of
using two separate auto-encoders for reconstructing domain-specific and domain-invariant prompt.
Results from Table 5b show that in general, our design of the auto-encoder structure is beneficial
to the overall performance. Furthermore, we find that another benefit of applying the auto-encoder
structure is that it helps stabilizing the training process.

5 CONCLUSION

In this paper, we introduced prompt learning to multi-source UDA and proposed a simple MPA
scheme to align the source and target domains. MPA is composed of two stages. The first stage is to
train individual source and target pair prompts and the second stage is to align them by auto-encoder
structures. Extensive experiments showed that MPA achieved better results on various multi-source
UDA tasks with substantially fewer parameters tuned. Moreover, a latent subspace tuning strategy
was introduced for generalization to novel unseen domains that further dropped the number of pa-
rameters needed for training and can be applied to test-time adaptation tasks. Hopefully, our work
can inspire future work on applying prompt learning to transfer learning.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Sk Miraj Ahmed, Dripta S Raychaudhuri, Sujoy Paul, Samet Oymak, and Amit K Roy-Chowdhury.
Unsupervised multi-source domain adaptation without access to source data. In CVPR, 2021.

Eyal Ben-David, Nadav Oved, and Roi Reichart. Pada: Example-based prompt learning for on-the-
fly adaptation to unseen domains. TACL, 2022.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In NeurIPS, 2006.

Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan.
Domain separation networks. In NeurIPS, 2016.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI, 2017.

Gabriela Csurka. Domain adaptation for visual applications: A comprehensive survey. arXiv
preprint arXiv:1702.05374, 2017.

Benjamin Devillers, Bhavin Choksi, Romain Bielawski, and Rufin VanRullen. Does language help
generalization in vision models? arXiv preprint arXiv:2104.08313, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Yangye Fu, Ming Zhang, Xing Xu, Zuo Cao, Chao Ma, Yanli Ji, Kai Zuo, and Huimin Lu. Partial
feature selection and alignment for multi-source domain adaptation. In CVPR, 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. JMLR, 2016.

Chunjiang Ge, Rui Huang, Mixue Xie, Zihang Lai, Shiji Song, Shuang Li, and Gao Huang. Domain
adaptation via prompt learning. arXiv preprint arXiv:2202.06687, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Judy Hoffman, Mehryar Mohri, and Ningshan Zhang. Algorithms and theory for multiple-source
adaptation. In NeurIPS, 2018.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. Prompting visual-language models
for efficient video understanding. arXiv preprint arXiv:2112.04478, 2021.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation network
for unsupervised domain adaptation. In CVPR, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, 2012.

Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu, et al. Universal source-free domain
adaptation. In CVPR, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Ruihuang Li, Xu Jia, Jianzhong He, Shuaijun Chen, and Qinghua Hu. T-svdnet: Exploring high-
order prototypical correlations for multi-source domain adaptation. In ICCV, 2021.

10



Under review as a conference paper at ICLR 2023

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yitong Li, David E Carlson, et al. Extracting relationships by multi-domain matching. In NeurIPS,
2018.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In ICML, 2020.

Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-training for domain adaptation. In
NeurIPS, 2021a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. arXiv preprint arXiv:2107.13586, 2021b.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

Yen-Cheng Liu, Yu-Ying Yeh, Tzu-Chien Fu, Sheng-De Wang, Wei-Chen Chiu, and Yu-
Chiang Frank Wang. Detach and adapt: Learning cross-domain disentangled deep representation.
In CVPR, 2018.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015a.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In ICML, 2015b.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. TKDE, 2010.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In ICCV, 2019.

Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset shift in machine learning. 2008.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Sayan Rakshit, Biplab Banerjee, Gemma Roig, and Subhasis Chaudhuri. Unsupervised multi-source
domain adaptation driven by deep adversarial ensemble learning. In GCPR, 2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In CVPR, 2016.

Chuan-Xian Ren, Yong-Hui Liu, Xi-Wen Zhang, and Ke-Kun Huang. Multi-source unsupervised
domain adaptation via pseudo target domain. TIP, 2022.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NeurIPS, 2015.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier dis-
crepancy for unsupervised domain adaptation. In CVPR, 2018.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le
Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted
training enables zero-shot task generalization. In ICLR, 2022.

11



Under review as a conference paper at ICLR 2023

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
ECCV, 2016.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR, 2011.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In CVPR, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Naveen Venkat, Jogendra Nath Kundu, Durgesh Singh, Ambareesh Revanur, et al. Your classifier
can secretly suffice multi-source domain adaptation. In NeurIPS, 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In ICLR, 2021.

Hang Wang, Minghao Xu, Bingbing Ni, and Wenjun Zhang. Learning to combine: Knowledge
aggregation for multi-source domain adaptation. In ECCV, 2020.

Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing, 2018.

Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help in down-
stream tasks? an analysis of head and prompt tuning. In NeurIPS, 2021.

Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and Liang Lin. Deep cocktail network: Multi-
source unsupervised domain adaptation with category shift. In CVPR, 2018.

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Bin Xiao, Ce Liu, Lu Yuan, and Jianfeng Gao.
Unified contrastive learning in image-text-label space. In CVPR, 2022.

Jun Yang, Rong Yan, and Alexander G Hauptmann. Cross-domain video concept detection using
adaptive svms. In ACM MM, 2007.

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation under
target and conditional shift. In ICML, 2013.

Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira, and Geoffrey J
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

For fair comparisons, we adopt a ResNet50 as our backbone on ImageCLEF and Office-Home and
a ResNet101 on DomainNet. The weights for ResNet50 and ResNet101 are from CLIP and frozen
through our experiments. The prompts and auto-encoders are trained using the mini-batch SGD
optimizer with a learning rate of 0.003 and 0.005 while the learned subspace is tuned with 0.0005
learning rate. We use a batch size of 32 and adopt a cosine learning rate scheduler. For the hyper-
parameters of stage one, token length M1 and M2 are both set to 16. Pseudo-label threshold τ is set
to 0.4 for producing reliable labels. As for stage two, α in Equation 9 is set to 500. Ablation studies
on hyper-parameter selection is presented in the following section. The weight matrix W2 of the
back projection function in Equation 6 has a size of R384×dI , where dI is 100 for ImageCLEF, 150
for OfficeHome and 250 for DomainNet. Therefore, for generalizing to novel domains, only 0.02M,
0.17M and 1.47M parameters are tuned respectively.

A.2 HYPER-PARAMETER SELECTION

Experimental results for ablation studies on hyper-parameter selections are reported in Table 6.

τ → Ar → Cl → Pr → Rw Avg

0.3 74.5 55.0 86.1 85.9 75.4
0.6 74.6 54.9 85.9 85.3 75.2
0.8 74.0 54.2 85.2 85.5 74.7

0.4 (reported) 74.8 54.9 86.2 85.7 75.4

(a) Ablation on pseudo-label threshold τ .

Token length → Ar → Cl → Pr → Rw Avg

M1 = M2 = 8 74.3 54.9 85.8 85.3 75.1
M1 = M2 = 12 74.6 54.3 85.9 85.6 75.2
M1 = M2 = 20 74.8 55.2 86.3 86.0 75.6

M1 = M2 = 16 (reported) 74.8 54.9 86.2 85.7 75.4

(b) Ablation on token lengths M1 and M2.

α → Ar → Cl → Pr → Rw Avg

1 74.4 53.7 84.9 85.6 74.7
10 74.5 54.1 85.7 86.0 75.1
100 74.7 54.5 85.5 85.6 75.1

1000 74.4 55.0 86.3 86.0 75.4
500 (reported) 74.8 54.9 86.2 85.7 75.4

(c) Ablation on α.
Table 6: Ablation studies on hyper-parameter selection.

For both pseudo-label threshold τ and prompt token length M1,M2, three different choices τ ∈
{0.3, 0.6, 0.8} and M1,M2 ∈ {8, 12, 20} (for simplicity we are setting M1 and M2 to be equal)
are examined. As τ increases, while the quality of the pseudo labels gets higher, fewer images will
be fed into the model, and Table 6a suggests that doing so hurts the overall performance. On the
contrary, shown in Table 6b, the general trend for prompt token length is that the longer the prompt,
the better the performance. Consequently, we choose τ = 0.4 and M1 = M2 = 16 to balance
the trade-off between performance and efficiency. For α in Equation 9, we examined four different
choices α ∈ {1, 10, 100, 1000} and the main reason we chose 500 for α is to balance all losses (in
this case L1) to be of the same order of magnitude. Our experimental results from Table 6c also
support such motivation.

A.3 ABLATION ON PROMPT DESIGN

We also conduct experiments on ablating the necessity of using class and domain specific tokens in
our prompt design.

→ Ar → Cl → Pr → Rw Avg

Only class specific tokens 74.2 53.0 85.2 85.3 74.4
Class specific and domain specific tokens (reported) 74.8 54.9 86.2 85.7 75.4

Table 7: Ablation on prompt design.
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Note that for a fair comparison, when excluding domain specific tokens in the prompt design, the
total number of tokens remains 32, i.e., M1 = 32,M2 = 0. Still, results from Table 7 demonstrates
that the reported prompt design exhibits a significant performance gain.

A.4 SIMILARITY BETWEEN RECONSTRUCTED PROMPTS

As is observed in Table 4, the reconstructed prompts of different domains achieve almost the same
results on the target domain and this is a further indication of the success of our alignment strategy.
To justify such statement, the reconstructed prompts are tested without incorporating L1 loss in the
objective function and the results are shown in Table 8

Target
Source Ar Cl Pr Rw Std

Ar - 73.5 74.1 74.3 0.34
Cl 53.4 - 52.6 52.9 0.65
Pr 85.4 82.6 - 83.9 1.14
Rw 84.2 84.6 83.5 - 0.45

(a) Without L1 loss

Target
Source Ar Cl Pr Rw Std

Ar - 74.3 74.6 74.3 0.14
Cl 54.1 - 54.1 54.2 0.05
Pr 85.9 86.0 - 86.0 0.05
Rw 85.2 85.3 85.3 - 0.05

(b) With L1 loss
Table 8: Comparison of performance (%) of individual prompts with and without L1 loss.

By comparing the standard deviation on the same target domain, it is clear that, without the L1 loss,
the reconstructed prompts achieve different results on the target domain.

A.5 MPA WITH LIMITED DATA

Since prompt learning is also well-known for its strong few-shot ability, a limited data setting is
designed where only a small portion of the data is used for training MPA while still testing it on the
full dataset to assess whether our method has inherited such ability. We think that this framework
is also practically meaningful as access to data might be limited in real-life scenario due to privacy,
security and storage concerns (Ahmed et al., 2021). Specifically, no more than 50 images of each
category are sampled using two distinct sampling strategies. The most direct one is by complete
random sampling. On the contrary, strategy two selects high quality images by utilizing CLIP’s zero
shot inference ability similar to our pseudo label generating process.

Such setting is only experimented on the DomainNet dataset due to its large data scale. Despite
the fact that the total number of data was reduced from 0.6M to roughly 0.1M, results from Table 9
show that MPA is still capable of achieving a surprisingly good result where the recognition accuracy
only dropped by an average of 0.7% compared with full data training and is still 2.9% better than
our baseline CLIP. We also want to point out that the quality of input images seems to be irrelevant
to the performance, as results from the two sampling strategies don’t vary much.

→ Clp → Inf → Pnt → Qdr → Rel → Skt Avg
CLIP 61.3 42.0 56.1 10.3 79.3 54.1 50.5

Random Sampled Data 64.1 46.9 60.5 9.6 81.6 57.3 53.3
CLIP Sampled Data 64.2 47.3 60.9 9.6 81.6 57.6 53.5

All Data 65.2 47.3 62.0 10.2 82.0 57.9 54.1

Table 9: MPA with limited data on the DomainNet dataset
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