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ABSTRACT

Benchmark contamination undermines LLM evaluations, and existing post-hoc
detection methods are heuristics and thus lack verifiable guarantees. We propose a
proactive solution: embedding cryptographic watermarks into benchmarks before
their release through question reformulation with a language model, and introduce a
detection algorithm that overcomes tokenizer mismatches by aligning text prefixes
to reliably identify the watermark signal in the suspect model. To validate our
method, we pre-train 1B-parameter models on 10B tokens with controlled con-
tamination of MMLU and ARC. The watermarking process preserves benchmark
utility, while our test detects contamination with high confidence, achieving, e.g., a
p-value < 107° for a mere 5% performance gain on 5000 MMLU questions.
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Figure 1: Problem overview. Alice is a benchmark provider. Before release, she rephrases the original benchmark
dataset while embedding a watermark. Bob decides to train a model. The benchmark may contaminate Bob’s
model during training. Alice can give statistical evidence if her benchmark was used in training.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated remarkable advancements in
their capabilities (Brown et al., 2020; Touvron et al., [2023a)). This advancement places increasingly
greater emphasis on proper evaluation to both inform the state of LLM research and to guide
future developments. To this end, a multitude of benchmark datasets such as (MMLU) (Hendrycks
et al., [2020), School Math 8K (GSMS8K) (Cobbe et al., 2021)), and the AI2 Reasoning Challenge
(ARC) (Clark et al., 2018)), or more recently GPQA (Rein et al., 2023) and FrontierMath (Glazer et al.,
2024), are developed to measure the model’s capabilities in terms of general or specific knowledge,
understanding, and scientific reasoning.

The reliability of LLM evaluation is critically undermined by benchmark contamination. While
drops in performance on rephrased benchmarks such as the recent GSMS8K variant (Zhang et al.|
2024a)) strongly suggest contamination, they do not provide definitive proof, leaving the community
to debate the validity of a model’s claimed capabilities. This uncertainty stems from the fundamental
limitations of existing post-hoc detection methods. These methods analyze a model after training and
are ultimately heuristics, i.e., they rely on indirect evidence and observable patterns rather than direct
proof of contamination. For instance, methods like Membership Inference Attacks (MIAs) rely on a
held-out set from the same data distribution. This requirement is a paradox for public benchmarks: if
such a set existed, it could simply serve as the new, uncontaminated benchmark. This gap reveals
the need for a shift from post-hoc suspicion to proactive, verifiable proof. Instead of trying to find
evidence of contamination after the fact, we argue that the community must embed a provable but
undetectable signal into benchmarks before their release. Our work introduces such a framework.
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We propose a novel strategy of embedding non-intrusive watermarks in the benchmark dataset before
release. Our approach is inspired by [Sander et al.|(2024)), who demonstrated that slightly distilling a
watermarked LLM can be reliably detected, as the model retains identifiable traces of the watermark.
We extend this idea to dataset watermarking, and when possibly different tokenizers are used by the
watermarking and the suspect models. Our approach enables reporting both model performance on
the benchmark and a reliable p-value as a contamination score, which relates to the False Positive
Rate of the contamination test (see Proposition|[I). If the reported p-value is low, the LLM’s training
data is likely contaminated with the benchmark dataset and the performance numbers should not be
trusted as genuine. Our method requires only access to an LLM capable of rephrasing benchmark
questions; see for an overview, and operates in a white-box setting to detect contamination,
which would work for open source models and self auditing for closed ones. Our contributions are:

* A proactive framework for detecting pre-training contamination. We adapt the concept of
watermark radioactivity (Sander et al., 2024), previously applied to instruction-tuning data, to the
distinct and more challenging problem of detecting pre-training data contamination. Our method
proactively embeds a secret statistical signal into benchmarks via a rephrasing LLM prior to their
release — while safeguarding utility — in order to later provide provable evidence of contamination.

* A robust, cross-tokenizer detection algorithm. Recognizing the diversity of tokenizers in the
LLM ecosystem, we introduce a novel detection algorithm that reliably identifies the watermark
signal even when a suspect model uses a different tokenizer from the one used for embedding. This
contribution significantly enhances the practical applicability of our method for auditing a wide
range of models (Algorithm[T]in Sec.[3.2).

» Extensive empirical validation and comparison. We provide a large-scale empirical validation of
this proactive detection method by pre-training models of up to 1B parameters on 10B tokens. Our
experiments demonstrate strong correlation between the detection confidence and the performance
inflation caused by contamination. They also show that our method is significantly more sensitive
than comparable baselines like canaries. For instance, we detect contamination with a p-value
below 10~° when accuracy is inflated by only 5% on MMLU, while correctly yielding p-values
near 0.5 for uncontaminated models (Figure 3b]and[Table T)).

Our code will be made available to enable post-hoc text watermarking and contamination detection.

2 RELATED WORK

2.1 BENCHMARK CONTAMINATION DETECTION

Benchmark contamination is a significant concern that can lead to unreliable LLM evaluations (Singh
et al.| 2024} Balloccu et al., 2024). The issue is pervasive, as even rigorous decontamination efforts
are not foolproof (Brown et al., 2020; Singh et al., 2024), and small amounts of contamination
can significantly inflate performance (Jiang et al.,2024). The existence of this problem has been
convincingly demonstrated by studies like the one by [Zhang et al.| (2024a). They crafted new
questions for GSMS8K and observed a significant drop in performance for most models, suggesting
memorization of the original test set.

While a variety of post-hoc methods exist to detect contamination — from membership inference
attacks (MIAs) (Carlini et al.} 2022) to analyzing performance on reformulated questions (Yang
et al.,2023; Duarte et al.,|2024) or on reorederd answers (Oren et al,2023)- they are fundamentally
heuristics and face practical limitations. For instance, many require a held-out set, which is a
paradoxical requirement for public benchmarks. Recent work has also shown that MIAs suffer from
distribution shifts, further complicating efforts to reliably detect contamination (Meeus et al., 2025)).

For active methods, the work most similar to ours is the contemporary paper by Rastogi et al.| (2025)),
which approaches dataset membership inference by generating multiple rephrased versions of a
benchmark. Each version is embedded with a unique watermark, yet only one is released publicly.
By employing a paired t-test to compare the model’s perplexity on the public version against the
withheld private versions, their method identifies training inclusion based on the model’s statistical
preference for the specific public watermark. However, similar to other MIAs such asMaini et al.
(2024)), contamination detection for STAMP is restricted to the entity holding the private benchmark
versions. Moreover, because it necessitates open-weight (or at least grey-box) access to the model, it
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thus makes it impractical for evaluating proprietary models. In contrast, our method relies solely on
the official version, enabling any party to perform the contamination test. Our approach is also close
to hiding canaries inside the benchmarks as done in |Srivastava et al.[(2022)), to which we compare
directly as it does not necessitate any held-out.

We provide a detailed comparison and discussion of the trade-offs between all methods in

2.2 DECODING-BASED WATERMARKING & RADIOACTIVITY

Overview. Recent watermarking techniques for large language models (LLMs) involve altering
either the probability distribution (Kirchenbauer et al., [2023a) or the method used for sampling
the subsequent token (Aaronson & Kirchner, 2023 |Kuditipudi et al., [2023)). Detection of these
watermarks is influenced by the entropy of the generated text (Christ et al., |2023; Huang et al.
2023)), so further investigations propose watermarking only sections with high entropy, especially in
code (Lee et al., [2023)), while other studies explore “semantic” watermarks that rely on the semantic
representation of the entire preceding text (Liu et al.|[2023; [Liu & Bul 2024} [Fu et al.| 2024)).

Greenlist/redlist watermark. Our work focuses on the watermarking scheme proposed by [Kirchen{
bauer et al.|(2023b), which modifies the logit vector during token generation based on a context
window of k previous tokens and a private key s. Both are hashed to serve as the seed for a random
number generator (RNG) to create a “greenlist” of || tokens, where V is the vocabulary of the
tokenizer, and y € [0, 1]. Logits of green tokens are incremented by 4 to increase their sampling prob-
ability. Detection involves repeating the greenlist computation for each token of a text, incrementing
a score by 1 if the token is in the greenlist, and performing a statistical test on the cumulative score.
Under the null hypothesis Hg “the text is not watermarked with that scheme”, this score follows a
binomial distribution (Fernandez et al.,|2023)). A simple binomial test thus provides a p-value.

Radioactivity of LLM watermarks. Sander et al.|(2024) show that fine-tuning language models
on LLLM-generated watermarked question-answer pairs can be detected with high confidence, as
the model retains traces of the watermark bias. The authors adapt the original watermark detection
tests to detect watermark “radioactivity” — a term first coined in |[Sablayrolles et al.| (2020) for image
data — depending on the access to the suspect model and its training data. Similar observations had
been made in other scenarios. For instance, |Gu et al. (2023) demonstrate that LLM watermarks
can be intentionally distilled, and |Gloaguen et al.|(2025)) examines model watermarks durability
post-training. |Zhao et al.|(2023) introduce a signal in generated text that can be learned by other
LLMs trained on it, and Jovanovi¢ et al.|(2024) investigate watermark radioactivity for RAG. detect
traces inserted during training, but the use case is largely different. Other work deal with embedding
traces in models to detect it a|[Elhassan et al.|(2025) embeds a LoRA-based watermark into weights
during fine-tuning, aiming to identify the model generator.

3 METHOD

Scope: threat model and access requirements. Our work focuses on detecting contamination
in LLMs that do next token-prediction with transformer-based models. Our method principally
targets unintentional benchmark contamination, the common result of indiscriminate web scraping.
Dedicated adversarial attacks, such as paraphrasing to evade detection, are not considered in this work.
Moreover, our detection test operates in a white-box setting, requiring logit access of the suspect
model. This enables transparent auditing of open-source models and supports verifiable self-reporting
of contamination p-values for closed-source developers, fostering greater trust in evaluations.

We first focus in Section [3.1]on the task of rephrasing the questions of a benchmark dataset while
embedding a watermark using |[Kirchenbauer et al.|(2023b). Then, in Section@ we show how to
detect if a language model was trained on the watermarked benchmark.

3.1 INSERTING WATERMARK THROUGH QUESTION REPHRASING

We use an instruct language model, denoted as LM ephrase, Which is assumed to be capable of
rephrasing each question in the benchmark test set such that the rephrased version is logically
equivalent to the original. This is a pretty light assumption as the task of rephrasing is considerably
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easier than answering the question (Deng et al.l 2023)). LM epnrase generates token per token and
at each step, takes as input a context, which is the concatenation of the system prompt, rephrasing
instruction, the question to rephrase and the reformulation generated so far. Everything is tokenized
into a sequence (z(1), ..., z(t=1) € V!~1 where V is the vocabulary of the tokenizer.

L Miephrase Outputs a logits vector £ e RVI. The watermark embedding modifies £(%) based on a
secret key s (one per benchmark) and the watermark window (oz(t*k), e ,x(tfl)) %

Specifically, following the method of [Kirchenbauer et al.| (2023Db) detailed in Sec.[2.2] a secret-key
cryptographic function hashes s as well as the the watermark window, which serves as a seed for a
random number generator used to create a pseudo-random “greenlist” of tokens, comprising v = 50%
of the entire vocabulary V, for which the logits are incremented by a quantity ¢ to form VAON thereby
increasing their probability of being sampled. The logits vector is then transformed into a probability
distribution p(*) = softmax(£(")) € [0,1]/V!, and the generation proceeds by sampling the next token
x(®) from this distribution using a sampling procedure such as top-k sampling (Fan et al., 2018) or
nucleus sampling (Holtzman et al., [2019). The selected token is appended to the context, and the
process repeats. An example for the watermark embedding process is depicted in with a
detailed version with different strength of watermarking in of Appendix [Al

Detectability/utility tradeoff. There is a common tradeoff in watermarking between detection and
utility. In our case detection is the ability to have statistical evidence that the benchmark was used
during training. We show in [subsection 3.2]that it can be measured through the p-value, which can
directly be linked to the False Positive Rate of the detection test (see Prop.[I). A lower p-value thus
indicates a stronger detection signal, making it more likely to identify unauthorized usage. On the
other hand, the utility of the watermarked benchmark is its ability to rank models and assess their
performance on specific tasks. To preserve utility, we therefore require that models perform similarly
on both the original and watermarked versions of the benchmark, allowing for accurate evaluation
and comparison of model performance. Specifically, the benchmark dataset exhibits a proportion
p > 0.5 of green tokens after rephrasing, the greater the easier detectability. For utility, we check if
pre-trained models perform similarly on the original and rephrased versions.

We envision a practical workflow where benchmark creators are the final arbiters of quality. They
can tune the watermark strength () and rephrasing model, and use a human-in-the-loop process to
validate or select from multiple rephrased candidates, ensuring the benchmark’s integrity.

3.2 DETECTING RADIOACTIVITY WITH A STATISTICAL TEST

To test a suspect model for contamination, we check for “radioactivity” by analyzing its predictions
on the watermarked benchmark questions in a “reading mode” approach (Sander et al.}2024). That
is, for each question, we forward the NV tokens that form the question and observe the IV predicted
next tokens. The core idea is that a model contaminated with the benchmark data will have learned
the statistical biases introduced by our watermark, causing its predictions to be skewed towards the
watermark’s “green list”, as illustrated in Fig.

.
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window

System prompt + instruction:
“You are a problem rephrasing assistant [...]”

Question: “The rate of acceleration of an object
is determined by the mass of the object and”

Rephrased with watermark (§ = 4):

. . Scored token:
“What factor, aside from an object’s mass, deter-

S +=1

mines its acceleration?” (73% of green tokens) [ ‘i! 5
(a) Embedding - benchmark rephrasing (b) Detection - statistical test

Figure 2: Method description. (Left) Watermarking benchmarks’ questions using LLMs, as in
with an example from ARC-easy. The quality of the question is maintained. (Right) Reading mode, as detailed
in[subsection 3.2] The upper sequence is the watermarked question, and the tokens bellow are top-1 predictions
from the suspect model.
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This allows us to formulate a powerful statistical test based on a clear null hypothesis, Ho: an
uncontaminated model’s predictions are statistically independent of our secret watermark key, s.
Since our scheme partitions the vocabulary into equally sized “green” and “red” lists for any context,
a model under H, should predict a green-list token with 50% probability. We can therefore count
the number of green-list predictions, S, over a set of N trials. To ensure each trial is independent
and identically distributed (i.i.d.), we only score each unique context window once (Fernandez et al.,
2023). This count follows a binomial distribution, S ~ B(N,1/2), and a significantly high score
allows us to reject H( and conclude the model is radioactive. The corresponding p-value is calculated
using the regularized incomplete Beta function: p-value(s) = In5(s, N — s + 1).

A key practical challenge arises when the suspect model uses a different tokenizer (75) from the
one used for watermarking (7}), preventing direct comparison. Our method addresses this with an
alignment procedure detailed in Algorithm[I] We tokenize the input with both 7} and 75 and only
consider a prediction for scoring at “alignment points” where the text prefixes generated by both
tokenizers are identical. At these points, we can safely regenerate the green list using the 77 context.
If the predicted token from 7% also exists in 77 ’s vocabulary, we score it (incrementing S by 1 if it is
green). This ensures our statistical test’s validity across different tokenizers.

Proposition 1. If we define “being contaminated” as having memorized the watermark (i.e., being
radioactive), then the test T, (that rejects Hq if the p-value is less than o) correctly tests for
contamination with a False Positive Rate (FPR) equal to .

This proposition (proven in Appendix [B]) confirms that our p-value provides a theoretically grounded
measure of contamination. While being radioactive is distinct from having an artificially inflated
benchmark score, our results in Section 4] empirically demonstrate a strong correlation.

Algorithm 1: Reading Mode Scoring with Different Tokenizers

Input: Question ¢ from watermarked benchmark, Tokenizer T} for watermarking, Tokenizer 75
of suspect model M, tape T of already-scored watermark window, score S
Tokenize s with T1: xg, x1,...,Tn_1;
Tokenize s with T5: Yo, Y1, - .-, Ym—15
Get top-1 predictions ¢y, Y2, . - . , Y, from M;
fori < O0Otom — 1do
if there exists j where text(yo, . . ., y;) = text(xg, ..., x;) then
if J;41 € Th.vocab and (x;_j41,...,x;) ¢ T then
S +=Score((Tj k415 -+ Tj, Yit1))s
T.add((xj_;ﬁ_l, e ,xj));

4 RESULTS

4.1 BENCHMARK QUALITY AFTER WATERMARKING

Set-up. For the watermark embedding, we rephrase with Llama-3.1-8B-Instruct (Dubey et al.,|[2024)
by default, with top-p sampling with p = 0.7 and temperature = 0.5 (default values on the Hugging
Face hub), and the green/red watermarking scheme of |[Kirchenbauer et al.| (2023b) with a watermark
window k = 2 and a “greenlist” of size 3|V| (|V| is the vocabulary size). We compare different values
of § when rephrasing: 0 (no watermarking), 1, 2, and 4. We choose to watermark ARC-Challenge,
ARC-Easy, and MMLU due to their widespread use in model evaluation. In practice, one would need
to watermark their own benchmark before release. For MMLU, we select a subset of 5000 questions,
randomly chosen across all disciplines, to accelerate experimentation and maintain a comparable size
to the other benchmarks. We refer to this subset as MMLU*. ARC-Easy contains 1172 questions,
and ARC-Challenge contains 2372 questions. In[Figure 5 we show the exact instructions given to the
rephrasing model (identical for all benchmarks) and the results for different watermarking strengths.
We use a different watermarking key s for each benchmark.

Even strong watermarking retains benchmark utility. We evaluate the performance of Llama-
3.3-1B, Llama-3.3-3B and Llama-3.1-8B on the original benchmark and the rephrased version using
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as similar evaluation as the one from the lm-evaluation-harness library 2024).
To check if the benchmark is still as meaningful, we check that evaluated models obtain a similar
accuracy on the watermarked benchmarks and on the original version (see [subsection 3.1)). [Figure 3a|
shows the performance on ARC-Easy. All models perform very similarly on all the rephrased versions
of the benchmark, even when pushing the watermark to 80% of green tokens. Importantly, they rank
the same. Similar results are shown for MMLU* and ARC-Challenge in[Figure 7] of Appendix [A]
although for MMLU*, we observe some discrepancies. For instance, when using a watermarking
window size of 2 (subfig i), the performance of Llama-3.2-1B increases from 38% to 42% between
the original and the other versions. However, we observe the same issue when rephrasing without
watermarking in that case. As detailed in[subsection 3.1} tuning the instruction specifically for each
benchmark could help. Note that the choice of § depends on the benchmark and the rephrasing model,
and needs to be empirically tested. Performance of other models are given in app.

4.2 CONTAMINATION DETECTION THROUGH RADIOACTIVITY

We now propose an experimental design to control benchmark contamination, and evaluate both the
impact on model performance and on contamination detection.

Training set-up. We train 1B standard decoder-only transformer architecture with the causal
language modeling objective similar to the foundational T-decoder (Liu et al.} 2018) and GPT (Radford
& Narasimhan| [2018), adapted from the encoder-decoder architecture proposed in [Vaswani et al.

(2017) using Meta Lingua (Videau et al.,[2024) and the code-base’s default architectural choices.
We train on 10B tokens from DCLM (Li et al., 2024), with the same tokenizer used to embed the

watermark, unless stated otherwise (e.g., in Sec. E[) The model architecture includes a hidden
dimension of 2048, 25 layers, and 16 attention heads. The training process consists of 10,000 steps,
using a batch size of 4 and a sequence length of 4096. Each training is distributed across 64 A-100
GPUs, and takes approximately three hours to finish. The optimization is performed with a learning
rate of 3 x 1073, a weight decay of 0.033, and a warmup period of 5,000 steps. The learning rate is
decayed to a minimum ratio of 10~%, and gradient clipping is applied with a threshold of 1.0.

Contamination set-up. Between training steps 2,500 and 7,500, we perform contamination by
replacing a training batch from the DCLM corpus with a batch sampled from the shuffled concatena-
tion of the three watermarked benchmarks. This batch replacement occurs periodically, specifically
every 5000 / #ContaminationSteps training steps Each batch has batch size x sequence length x
number of GPUs = 4 x 4096 x 64 ~ 1M tokens. As shown in[Table 1} the concatenation of the
three benchmarks is approximately 500k tokens, so each contamination is a gradient that encompasses
all the benchmark’s tokens. Any sample that contaminates the model is formatted as: £"Question:
{Question}\nAnswer: {Answer}" In the experiments, #ContaminationSteps is refered as the

1.0 4 Original Benchmark m |lama-3.2-1B g e— 4 contaminations
Watermarked Benchmarks m Llama-3.2-3B © I
004 Liama-3.1-88 i 8 contaminations
: o 124 —e— 16 contaminations
0.8 >
o
> -
@ 0.7 <
©
g 0.6 g
€
0.5 s
o 4 4
0.4+ g
2
(%3
0.3 s
l'U
NA 5=0 6=1 6=2 6=4 S
49.8% 49.9% 58.7% 66.3% 79.5%
Watermark strength 6 and proportion of green tokens Watermark strength 6
(a) Watermarking questions preserves utility, (b) Contaminations lead to stronger WM detection.

Figure 3: Result for benchmark watermarking on ARC-Easy. (Left) We rephrase the questions from ARC-Easy
using Llama-3.1-8B-Instruct while adding watermarks of varying strength. The performance of multiple Llama-3
models on rephrased ARC-Easy is comparable to the original, preserving the benchmark’s usefulness for ranking
models and assessing accuracy (Sec. @ Sec. @ (Right) We train 1B models from scratch on 10B tokens
while intentionally contaminating its training set with the watermarked benchmark dataset. Increasing the
number of contaminations and watermark strength both enhance detection confidence (Sec. @ Sec. @)

6
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Table 1: Detection and performance metrics across different levels of contamination for ARC-Easy, ARC-
Challenge, and MMLU benchmarks, watermarked with 6 = 4. The performance increase is shown for OOD
evaluation as detailed in[subsection 4.2] The logio p-value of the detection test is strongly correlated with the
number of contaminations, as well as with the performance increase of the LLM on the benchmark.

ARC-Easy (112k toks.) ~ARC-Challenge (64k toks.) MMLU* (325k toks.)

Contaminations  log,4(p) Acc. (% A) logo(p) Acc. (% A) log,o(p) Acc. (% A)
0 -0.3  53.5 (+0.0) -03 294 (+0.0) -0.9  30.6 (+0.0)
4 3.0 579 (+4.3) -1.2 324 (+3.1) -5.7 357 (+5.1)
8 -5.5  63.0 (+9.5) -45 393 (+9.9) <-12 40.8 (+10.2)
16 <-12 71.7 (+18.2) <-12 543 (+24.9) <-12 54.0 (+23.5)

number of contaminations (e.g. labels in[Figure 3b): it corresponds to the number of times that the
model has seen the benchmarks during pretraining.

Evaluation. ARC and MMLU are multi-choice question-answering (QA) benchmarks. We evaluate
the accuracy of the models on the benchmarks by comparing the loss between the different choices and
choosing the one with the smallest loss (as standarly done in e.g. (Gao et al.[(2024))) either “in distri-
bution” by using the above template seen during contamination or “out of distribution” (OOD)
by wusing: f"During a lecture, the professor posed a question: {Question}.
After discussion, it was revealed that the answer is: {Answer}"

In the first scenario, we evaluate overfitting, as the model is explicitly trained to minimize the loss of
the correct answer within the same context. In the second scenario, we assess the model’s ability to
confidently provide the answer in a slightly different context, which is more relevant for measuring
contamination. Indeed, it’s important to note that evaluations often use templates around questions —
e.g.,inthe lm-evaluation-harness library (Gao et al.| 2024)) — which may not be part of the
question/answer files that could have leaked into the pre-training data. [Table I|focuses on § = 4 and
shows the increase in performance across the three watermarked benchmarks as a function of the
number of contaminations when evaluated OOD. Results for in-distribution evaluation are provided
in[Table 6]of [Appendix Al (w/o contamination, the model performs similarly on the two templates).

Contamination detection. For each benchmark, we employ the reading mode detailed in [subsec]
to compute the radioactivity score S and the corresponding p-value. Results are illustrated
for ARC-Easy, and in of Appendix [A]for the other two benchmarks, across
different numbers of contaminations and varying watermark strengths §. We observe that the stronger
the watermark strength and the greater the number of contaminations, the easier it is to detect contam-
ination: a larger negative log;,(p) value indicates smaller p-values, implying a lower probability of
obtaining this score if the model is not contaminated. For instance, a — log;,(p) of 6 implies that we
can confidently assert model contamination, with a probability 10~° of it happening by chance. We
also observe that without contamination, the test yields log;,(p) values close to —0.3 = log;,(0.5).
This is expected because under H, the p-value should follow a uniform distribution between 0 and 1,
which implies that [-1, 0] is a 90% confidence interval (CI) for log;,(p), and that [-2, 0] is a 99% CI.

links the contamination detection to the actual cheating on the benchmarks when 6 = 4 is
used. For each benchmark column, the ‘Acc.” sub-column shows the performance of the model at the
end of training, for different numbers of contaminations. In light grey, we see how many percentage
points the model has gained compared to the non-contaminated run. We can see that when the gain is
around 10%, for all benchmarks, the corresponding p-value of the detection test is very small, and
that we can therefore flag contamination with high confidence When the cheat is smaller, with four
contaminations ranging from +3% to +5%, the p-value is small enough on ARC-Easy and MMLU*,
but doubtful for ARC-Challenge (because smaller, see [subsection 4.4). For MMLU*, we detect
contamination, with a p-value of 10~¢ when 5 points are artificially added.

4.3 COMPARISON WITH OTHER CONTAMINATION DETECTION METHODS

A variety of methods have been proposed to detect benchmark contamination. We categorize them
as either proactive (requiring modification of the benchmark before release) or post-hoc (analyzing
a model after training). Our work is proactive, providing verifiable guarantees, while most others
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Table 2: Comparison of contamination detection methods. Post-hoc methods (*) which only provide heuristics
evidence. STAMP (Rastogi et al.,|2025) provides p-values, but can only be ran by the benchmark provider as
it necessitates rephrased versions of the benchmark to be kept private. Radioactive Benchmarks and canaries
provide p-values without necessitating held-out samples.

Method Key Requirement Evidence Type
Radioactive Benchmarks (Our Method) Benchmark rephrasing Statistical p-value
Canaries (Srivastava et al., 2022) Canary string insertion Statistical p-value
Min-k%/++* (Shi et al.| [2023 |[Zhang et al.,[2024b)  Logit access Correlation
DyVal / KIEval* (Zhu et al.| 2023} [Yu et al.| [2024) ~ Dynamic content Performance delta
MIAs* (Carlini et al., 2022} [Main et al., [2024) Held-out set Classifier score
STAMP (Rastogi et al.|[2025) Rephrasing + Held-out set ~ Statistical p-value

are post-hoc, offering strong but heuristics evidence. We always consider having logit access to the
suspect models. Table 2] summarizes the key differences, which we discuss below.

Canaries. Inserting “canaries” — unique, memorable strings —is another proactive method
that provides theoretical guarantees, and has been used in benchmarks such as BIG-
bench (Srivastava et al) [2022). We compare our approach to this important baseline.
A random 64-digit string is added to one ques-

tion of MMLU" and we pre-train a 360M- Table 3: 360M-parameter model sees a 64-digit canary
parameter model with 160 MMLU™ contamina- 160 times throughout the 10000 steps.

tions, using the same set-up as for other experi- Training step 2500 5000 7500 10000
ments. We monitor memorization by forwarding

the canary through the model and counting the Matches 4/64  8/64  6/64  9/64
number of correct digit predictions. A model Loss 74 64 338 2.9
that has not seen the canary guesses randomly, p-val 0.9 03 063 0.19

so the number of matches follows a binomial

B(64,1/10). demonstrates that even with 10 times more contamination than our most
extreme setup, the model does not memorize the canary sufficiently to achieve a low p-value. This
highlights the superior sensitivity of radioactivity, which distributes the signal across the entire text
rather than concentrating it in one location that can be easily filtered or ignored during training.

Post-hoc methods. A direct quantitative comparison with post-hoc methods is ill-suited, as they
are fundamentally heuristics and often measure different phenomena than our proactive test. Among
them, Min-k % (Shi et al.,[2023) and its variants detect contamination by identifying text segments
that elicit unusually low-loss values. While effective for general auditing, this provides correlational
evidence of memorization, not the verifiable proof of exposure to a specific dataset that our secret-
keyed watermark offers. Rewrite-based methods like DyVal (Zhu et al., [2023) and KIEval (Yu et al.,
2024) address a different scientific question: they measure a model’s capability to generalize beyond
memorized answers by creating dynamic evaluation samples. Their goal is to provide a contamination-
resilient performance score, whereas our goal is to provide a p-value for contamination itself. As
both papers acknowledge, their central challenge is validating the generated content’s quality and
difficulty. Finally, we believe that classical Membership Inference Attacks (MIAs) (Carlini et al.,
2022; Maini et al., 2024) are ill-suited for this problem, as they require a held-out set from the same
distribution as the benchmark — a paradoxical requirement that, if met, would solve the contamination
problem outright. |Rastogi et al.|(2025) approaches the problem differently by generating multiple
watermarked rephrased versions of a benchmark: all are kept private except one. However, similar
to other MIAs, contamination detection for STAMP is restricted to the entity holding the private
benchmark versions. Therefore, because it necessitates open-weight (or at least grey-box) access
to the model, it makes it impractical for evaluating proprietary models. Our proactive approach is
designed to circumvent these limitations by providing a direct, verifiable test for data exposure.

4.4 ANALYZES

Impact of model size. We also test radioactivity detection on 135M and 360M transformer models
using the architectures of [Smo1LM and the same training pipeline as described in
training each model on 10B tokens as well. shows the detection confidence as a function
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of the cheat on MMLU*. We find that, for a fixed number of contaminations, smaller models show
less performance increase — expected as they memorize less — and we obtain lower confidence in the
contamination detection test. As detailed in[subsection 3.1} the p-values indicate how well a model
overfits the questions, hence the expected correlation. For a fixed performance gain on benchmarks,
p-values are consistent across models. After 4, 8, and 16 contaminations on the 1B, 360M, and
135M models respectively, all models show around +6% gain, with detection tests yielding p-values
around 10~°. Thus, while larger models require fewer contaminations to achieve the same gain on the
benchmark, our method effectively measures how contamination artifically enhanced performance.

Impact of window size. Watermark insertion through ) . )

rephrasing (subsection 3.1) depends on the watermark win- Tab(l;: ? Propomé)n 01; %rcle(en tokens dm ftthe

dow size k. Each window creates a unique greenlist/redlist P cC ¢11OnS, NUMBEr Of FOkens Scored a'ter
lit for th ken. L nd d d deduplication and logio(p-value) for differ-

split for the next token. Larger windows reduce repeated | o ermark window sizes, with 16 con-

biases but are less robust. Becaus.e of repetitions, Sand'er taminations and & = 4 on ARC-Easy.

et al.| (2024)) show that smaller windows can lead to big-

ger overfitting on token-level watermark biases, helping kp  Tokens log(p)
radioactivity detection. In our case, benchmark sizes are 0 0.3 5k -6.07
relatively small and deduplication limits the number of to- 1 053 28k -25.89
kens tested, because each watermarked window is scored 2 053 47k -38.69

only once (subsection 3.2)). Thus, smaller windows mean

fewer tokens to score. Moreover, as shown in the proportion of predicted green tokens
is not even larger for smaller windows: there seems to be not enough repetitions for increased
over-fitting on smaller windows. The two factors combined result in lower confidence. A comparison
of contamination detection across benchmarks and window sizes is shown in[Figure 7] and the utility
of the benchmarks in

Impact of benchmark size. With a fixed proportion of predicted green tokens, more evidence (i.e.,
more scored tokens) increases test confidence. As shown in[Table 1] at a fixed level of cheating (e.g.,
+10% on all benchmarks after 8 contaminations), contamination detection confidence is proportional
to benchmark size. This is similar to our observations on watermark window sizes in [Table 4]

Impact of rephrasing model. The difficulty and entropy of questions can significantly affect the
method’s performance. Indeed, math questions for instance can be challenging to rephrase, even
more with watermarks. Thus, better models may be needed for technical benchmarks. We tested
rephrasing with Llama3-70B-Instruct instead of the 8B version, and observed that some 8B model
failures, especially on mathy questions, are resolved with the 70B model, though quantifying this is
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Figure 4: Detection confidence as a function of performance increase on MMLU™ for different model sizes and
#contaminations, for 6 = 4 and OOD evaluation.



Under review as a conference paper at ICLR 2026

Table 5: Performance and contamination detection when pretraining models with fixed backbone architecture
from scratch on 10B tokens with different tokenizers, with and without 16 contamination of MMLU™, water-
marked with § = 4 using Llama-3’s tokenizer. The gray line highlights that this is the ideal case were both
tokenizers match, as in previous sections. We use our new algorithmfor the contamination detection test.

#Params #Tokens Scored w/ Contamination ~w/o Contamination
Tokenizer Vocab Size  (in millions)  (in thousands) log,y(p)  Acc. logio(p)  Acc.

Llama-1/2 32K 376 149 (44.9%) -7 39.1 -0.1 27.4
Gemma-1/2 256K 806 142 (42.8%) -12 443 -0.2 30.1
Gemma-3 262K 818 142 (42.9%) -15 44.5 -0.1 30.3
Llama-3 128K 561 154 (46.4%) -14 41.2 -0.6 29.6

challenging. An example is provided in[Figure 6|of app.[A] We note that increasing 0 to 8 is necessary
to match the green token proportion of § = 2 with the 8B model, using the same decoding parameters.
This may result from lower entropy in generation or bigger logits, as the greenlist bias is applied
before the softmax (see [subsection 3.1). Moreover, in math or code, rephrasing can offer limited
entropy, and even better models will not be enough. An alternative would be to add watermarked
verbose text around the questions, or using entropy-aware LLM watermarking (Lee et al., [2023).

4.5 DIFFERENCE IN TOKENIZERS

In section 4.2 and section[4.4] the tokenizer of Llama-3 was used for both the watermark embedding
and by the suspect model. Using algorithm[I] we show here that contamination detection remains
strong and reliable when another tokenizer is used by the suspect model. We keep the tokenizer of
Llama-3 for watermark embedding, and use the tokenizers of Llama-1/2 (Touvron et al.| 2023ajb),
Llama-3, Gemma-1/2 (Team et al.,2024bja), Gemma-3 (Team et al., 2025) for the suspect model.

presents the performance metrics and contamination detection capabilities of models pre-
trained with various tokenizers, both with and without contamination on MMLU*, with 16 contami-
nations, and 0 = 4. The vocabulary size affects the number of parameters in the model, impacting
both the embedding and output layers, as highlighted in the “#Params” column. First, we observe
that the test remains reliable, as indicated by small p-values in the absence of contamination. Second,
the “#Tokens Scored” column shows that scoring only tokens shared across vocabularies (the trigger
condition in our Algorithm T)) still results in a substantial number of tokens being scored. This results
in high detection confidence across all tokenizers. However, we note that the test appears weaker for
Llama-1’s tokenizer. This might be due to the corresponding model having fewer parameters, making
it less prone to memorizing the watermark, but this is not because fewer tokens are scored.

5 LIMITATIONS & CONCLUSION

* Rephrasing impact: Model performance remains similar across benchmark versions, but some
questions lose coherence after rephrasing (e.g., Figure[6), which can be difficult to spot. Possible
improvements are discussed in[subsection 3.1|and [subsection 4.4]

* Intentional evasion: The method is primarily designed for unintentional contamination. Malicious
actors could rephrase questions to weaken the watermark or train only on answers conditioned on
questions, which would bypass radioactivity detection.

* Before release: The method is only applicable to protect new datasets, not exising ones.

Conclusion. Watermarking benchmark appears like a promising solution to the problem of contam-
ination in Large Language Models: experiments confirm the method’s ability to maintain benchmark
utility while successfully identifying contamination. We note that the method can be applied to other
text datasets: the statistical test’s power depends on the number of watermarked tokens the model has
memorized, making it a general solution for any textual dataset used, in pretraining or finetuning.

Statement on LLLM Usage: We used LLMs to polish the writing of some parts of the paper. We
also used LLM-based tools to check if we had missed relevant related work.
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A ADDITIONAL EXPERIMENTS

A.1  QUALITATIVE EXAMPLES

On one question from ARC-Easy, we compare qualitatively different watermarking strengths in[Fig]
We also show failure cases in fig. [6] but where rephrasing with the 70B model works.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

Evaluation Template. As detailed in we evaluate the accuracy on the benchmark
using both the same template seen during contamination and an alternative one. [Table 6|presents the
results when evaluated with the same template. Without contamination, the model performs similarly
across the two templates, but a differences appear with contaminations.

Ablations on different benchmarks, watermark strength, watermark window sizes, and number
of contaminations. Results for all benchmarks (ARC-Easy, ARC-Challenge, and MMLU*), with
variations in watermark window size, number of contaminations, and watermark strength, are shown
in for utility and [Figure 8] for radioactivity detection. For utility, all models perform very
similarly on all the rephrased versions of the benchmarks, even when pushing the watermark to
80% of green tokens, although for MMLU*, we observe some discrepancies. For instance, when
using a watermarking window size of 2 (subfig i), the performance of Llama-3.2-1B increases from
38% to 42% between the original and the other versions. However we observe the same issue when
rephrasing without watermarking in that case. The watermark window size does not have an impact.
For radioactivity detection on the other hand, as detailed in smaller window sizes
correlates with lower detection confidence.

System Prompt: “You are a problem rephrasing ~ Llama-3-8B-Instruct Rephrased, § = 0
assistant. Your task is to rephrase the given prob- ~ What factors, in addition to the mass of an object,
lem, which includes a question, while ensuring  influence its rate of acceleration? (47%)

that the rephrased version is logically and contex-  [Jama-3-8B-Instruct Rephrased, § = 0.5
tually equivalent to the original. Do not provide  What factor, in addition to the mass of an ob-
answers or solutions to the problem.” ject, influences the rate at which its acceleration
Instruction: “Please rephrase the following prob- ~ changes over time? (55%)

lem, ensuring that the rephrased version is equiva- [ ]ama-3-8B-Instruct Rephrased, § = 2

lent to the original in terms of logic, context, and  Wha factor, in addition to the mass of an object,

details. Your response should only include the  js a determining influence on its rate of accelera-
rephrased version of the problem and question.  tjon? (63%)

Beginning of the problem:”

£ . & . P ] ) Llama-3-8B-Instruct Rephrased, 6 = 4
Question: “The rate of acceleration of an object  What factor, aside from an object’s mass, deter-
is determined by the mass of the object and” mines its acceleration? (73%)

Figure 5: Benchmark watermarking example on a question of ARC-easy. The quality of the question is not
affected by the rephrasing, even with strong watermark. The proportion of green tokens is given in parenthesis.

Original question: An object accelerates at 3 meters per second® when a 10-newton (N) force
is applied to it. Which force would cause this object to accelerate at 6 meters per second>?
Llama-3-8B-Instruct, § = 2: What addi- Llama-3-70B-Instruct, 6 = 8: What force would be
tional force, applied in conjunction with the ~ necessary to apply to the object in order to increase
existing 10-N force, would cause the object its acceleration to 6 meters per second?, given that an
to experience an acceleration of 6 meters  acceleration of 3 meters per second?is achieved with a
per second?? (70%) 10-newton force? (65%)

Figure 6: Watermarking failure on an ARC-Challenge question with an 8B model, while the 70B succeeds.
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Table 6: Detection and performance metrics across different levels of contamination for ARC-Easy, ARC-
Challenge, and MMLU benchmarks, watermarked with 6 = 4. The performance increase is for in distribution

evaluation as detailed in[subsection 4.2} Similar results for a different templates are shown in[Table T}
ARC-Easy (1172 quest.) ARC-Challenge (2373 quest.) MMLU* (5000 quest.)

Contaminations  log;y(p) Acc. (% 2A)  logio(p) Acc. (% A) logio(p) Acc. (% A)
0 -0.3 517 (+0.0) -0.3 285 (+0.0) -0.9 304 (+0.0)
4 -3.0 61.3 (+9.9) -1.2 351 (+7.0) -5.7 369 (+6.5)
8 -5.5 682 (+16.9) 45 422 (+14.0) <-12 43.0 (+12.6)
16 <-12 84.1 (+32.8) <-12 65.3 (+37.2) <-12 62.1 (+31.7)

B PROOF OF CORRECTNESS FOR CONTAMINATION DETECTION

We give the proof of Proposition [} We remind that #, is “The cummulative score S follows a
binomial distribution B(N, 0.5)” and p-value(s) = P(S(Xy) > s | Ho) = I,(s + 1, N — s) and:

Proposition 1. If we define “being contaminated” as having memorized the watermark, then “not

being contaminated” matches Ho := S ~ B(N,1/2). Therefore, the test T, (that rejects H if the
p-value is less than o) correctly tests for contamination, and has a False Positive Rate equal to o

Proof. Assume that “M has not memorized watermark bias with secret key s”. Since the summed
scores are i.i.d. due to de-duplication, and independent of the watermarking process because the sus-
pect model has no other knowledge about s, and because we exclude the possibility of simply repeating
watermarked tuples from the prompt through de-duplication, there is no bias towards the green or red

Original Benchmark - lama-32-18 Original Benchmark = lama-3.2-18 Original Benchmark = lama-32-18
Watermarked Benchmarks = Llama-3.2-38 Watermarked Benchmarks s Llama-3.2-38 Watermarked Benchmarks s Llama-3.2-38

Llama-3.1-88 Llama-3.1-88 Llama-3.1-88

NA 65=0 6=1 6=2 6=4 NA 6=0 6=1 6=2 6=4 NA 6=0 6=1 6=2 6=4

49.5% 47.2% 54.3% 61.2% 74.1% 52.2% 50.8% 59.4% 67.1% 79.6% 49.8% 49.9% 58.7% 66.3% 79.5%
Watermark strength & and proportion of green tokens Watermark strength & and proportion of green tokens. Watermark strength & and proportion of green tokens
(a) ARC-Easy, Window size 0 (b) ARC-Easy, Window size 1 (c) ARC-Easy, Window size 2

Original Benchmark - Llama3.2-18 Original Benchmark - Liama3.2-18 Original Benchmark - Llama3.2-18
Watermarked Benchmarks B Llama-3.2-38 Watermarked Benchmarks B Llama-3.2-38 Watermarked Benchmarks B Llama-3.2-38
Llama-3.1-88 Llama-3.1-88 Llama-3.1-88

NA 5=0 6=1 6=2 5=4 NA 5=0 6=1 6=2 5=4 NA 5=0 6=1 6=2 6=4
49.7% 47.8% 54.9% 61.8% 74.6% 51.8% 51.1% 59.4% 67.4% 79.7% 50.2% 49.9% 58.6% 66.6% 79.6%
Watermark strength 6 and proportion of green tokens Watermark strength 6 and proportion of green tokens Watermark strength 6 and proportion of green tokens

(d) ARC-Challenge, Window size 0 (e) ARC-Challenge, Window size 1 (f) ARC-Challenge, Window size 2

Original Benchmark - Lama3.2-18 Original Benchmark = Lama-3.2-18 Original Benchmark = Lama-3.2-18
Watermarked Benchmarks B Liama-3.2-38 Watermarked Benchmarks B Llama-3.2-38 Watermarked Benchmarks B Llama-3.2-38
Llama-3.1-88 Llama-3.1-88 Llama-3.1-88

NA 6=0 6=1 6=2 6=4 NA 6=0 6=1 6=2 6=4 NA 6=0 6=1 6=2 65=4
P A P v A v v A ¥ ) stk shan s e 7eew
Watermark strength & and proportion of green tokens. Watermark strength & and proportion of green tokens. Watermark strength 6 and proportion of green tokens.
(g) MMLU", Window size 0 (h) MMLU", Window size 1 (i) MMLU™, Window size 2

Figure 7: Comparison of Llama3 model performance on various versions of ARC-Easy, ARC-Challenge, and
MMLU* for different watermark window sizes. Each row corresponds to a different dataset, and each column
corresponds to a different window size. The window size does not noticeably impact the benchmark’s utility.
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tokens specific to s. Therefore, the indicators 1 (y®) is in the greenlist of (s, (z(*="+1))!_ ) are
i.i.d. simulations distributed according to a Bernoulli distribution with parameter 0.5 (in expectation

over the keys). Thus, S follows a binomial distribution B (N ,0.5). So, Hy is true.

Reciprocally, if H is True, then there is no bias towards the green tokens, which by definition means
that it has not memorized the watermark. The p-value is exactly the probability to observe a score
as extreme as s under Hy, so it is the probability to observe a score as extreme as s if M has not
memorized the watermark with secret key s present in the benchmark. Now let T, be the test that
rejects H if the p-value is less than «. It correctly tests for contamination, and has a FPR of . [J

C COMPUTE RESOURCES

We use our internal cluster with A-100 GPUs with 80GB memory, and:

» Each radioactivity detection test took less than 30 minutes on a single GPU. We processed the
benchmark through the model, which contains a maximum of 325k tokens for MMLU* (see/T).

* Pretraining of the 1B models was conducted on 8 nodes (so 64 GPUs) and took approximately six
hours. Training of smaller models, with 360M and 135M parameters, was performed on 4 nodes,
taking 2 hours and 1 hours respectively.

Overall, we estimate that training the 1B models required approximately 5,000 GPU hours, calculated
as 3 (different window sizes) x 4 (different degrees of contamination) x 6 x 8 x 8 (GPU hours for
training). We approximate an additional factor of 2 for the other models trained, resulting in a total of
approximately 10,000 GPU hours.
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Figure 8: Comparison of radioactivity detection on various versions of ARC-Easy, ARC-Challenge, and MMLU*
for different watermark window sizes. Each row corresponds to a different dataset, and each column corresponds
to a different window size. Bigger benchmarks leads to easier detection, and window size impacts the detection
confidence, the larger the better, accross all benchmarks.
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D ADDITIONAL RELATED WORK AND EXPERIMENTS AFTER REBUTTAL

Quality assessment of watermarked bemchmarks. Following the rebuttal, we evaluate other
families of models on the watermarked benchmark. Specifically, we evaluate Qwen 2023)
and Gemma-3 (Team et all, 2025) models on the benchmarks. shows that for different
watermark strength, the performance of the models is still maintained.

Accuracy by Delta for arc_easy

Model

[ meta-llama/Llama-3.2-1B
B google/gemma-3-1b-pt
I meta-llama/Llama-3.2-3B
I Qwen/Qwen2.5-32B
B Qwen/Qwen2.5-7B

EE Qwen/Qwen2.5-14B
B meta-llama/Llama-3.1-88
3 google/gemma-3-4b-pt
m google/gemma-3-12b-pt
B google/gemma-3-27b-pt

0.8 1

0.6 4

0.14

6=0 &6=1 6=2 o=4

Figure 9: Performance of Llama-3 (Grattafiori et al.,[2024), Qwen 2023) and Gemma-3

2025) models on different rephrased versions of Arc-easy. Performance is maintained.
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